1
|
Heiser BJ, Veyssi A, Ghosh D. Recent strategies for enhanced delivery of mRNA to the lungs. Nanomedicine (Lond) 2025; 20:1043-1069. [PMID: 40190037 PMCID: PMC12051540 DOI: 10.1080/17435889.2025.2485669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
mRNA-based therapies have emerged as a transformative tool in modern medicine, gaining significant attention following their successful use in COVID-19 vaccines. Delivery to the lungs offers several compelling advantages for mRNA delivery. The lungs are one of the most vascularized organs in the body, which provides an extensive surface area that can facilitate efficient drug transport. Local delivery to the lungs bypasses gastrointestinal degradation, potentially enhancing therapeutic efficacy. In addition, the extensive capillary network of the lungs provides an ideal target for systemic delivery. However, developing effective mRNA therapies for the lungs presents significant challenges. The complex anatomy of the lungs and the body's immune response to foreign particles create barriers to delivery. This review discusses key approaches for overcoming these challenges and improving mRNA delivery to the lungs. It examines both local and systemic delivery strategies aimed at improving lung delivery while mitigating off-target effects. Although substantial progress has been made in lung-targeted mRNA therapies, challenges remain in optimizing cellular uptake and achieving therapeutic efficacy within pulmonary tissues. The continued refinement of delivery strategies that enhance lung-specific targeting while minimizing degradation is critical for the clinical success of mRNA-based pulmonary therapies.
Collapse
Affiliation(s)
- Brittany J. Heiser
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Arian Veyssi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
2
|
Carrera-Pacheco SE, Mueller A, Puente-Pineda JA, Zúñiga-Miranda J, Guamán LP. Designing cytochrome P450 enzymes for use in cancer gene therapy. Front Bioeng Biotechnol 2024; 12:1405466. [PMID: 38860140 PMCID: PMC11164052 DOI: 10.3389/fbioe.2024.1405466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 06/12/2024] Open
Abstract
Cancer is a significant global socioeconomic burden, as millions of new cases and deaths occur annually. In 2020, almost 10 million cancer deaths were recorded worldwide. Advancements in cancer gene therapy have revolutionized the landscape of cancer treatment. An approach with promising potential for cancer gene therapy is introducing genes to cancer cells that encode for chemotherapy prodrug metabolizing enzymes, such as Cytochrome P450 (CYP) enzymes, which can contribute to the effective elimination of cancer cells. This can be achieved through gene-directed enzyme prodrug therapy (GDEPT). CYP enzymes can be genetically engineered to improve anticancer prodrug conversion to its active metabolites and to minimize chemotherapy side effects by reducing the prodrug dosage. Rational design, directed evolution, and phylogenetic methods are some approaches to developing tailored CYP enzymes for cancer therapy. Here, we provide a compilation of genetic modifications performed on CYP enzymes aiming to build highly efficient therapeutic genes capable of bio-activating different chemotherapeutic prodrugs. Additionally, this review summarizes promising preclinical and clinical trials highlighting engineered CYP enzymes' potential in GDEPT. Finally, the challenges, limitations, and future directions of using CYP enzymes for GDEPT in cancer gene therapy are discussed.
Collapse
Affiliation(s)
- Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | | | | | | | | |
Collapse
|
3
|
Application of Green Gold Nanoparticles in Cancer Therapy and Diagnosis. NANOMATERIALS 2022; 12:nano12071102. [PMID: 35407220 PMCID: PMC9000429 DOI: 10.3390/nano12071102] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023]
Abstract
Nanoparticles are currently used for cancer theranostics in the clinical field. Among nanoparticles, gold nanoparticles (AuNPs) attract much attention due to their usability and high performance in imaging techniques. The wide availability of biological precursors used in plant-based synthesized AuNPs allows for the development of large-scale production in a greener manner. Conventional cancer therapies, such as surgery and chemotherapy, have significant limitations and frequently fail to produce satisfying results. AuNPs have a prolonged circulation time, allow easy modification with ligands detected via cancer cell surface receptors, and increase uptake through receptor-mediated endocytosis. To exploit these unique features, studies have been carried out on the use of AuNPs as contrast agents for X-ray-based imaging techniques (i.e., computed tomography). As nanocarriers, AuNPs synthesized by nontoxic and biocompatible plants to deliver therapeutic biomolecules could be a significant stride forward in the effective treatment of various cancers. Fluorescent-plant-based markers, including AuNPs, fabricated using Medicago sativa, Olax Scandens, H. ambavilla, and H. lanceolatum, have been used in detecting cancers. Moreover, green synthesized AuNPs using various extracts have been applied for the treatment of different types of solid tumors. However, the cytotoxicity of AuNPs primarily depends on their size, surface reactivity, and surface area. In this review, the benefits of plant-based materials in cancer therapy are firstly explained. Then, considering the valuable position of AuNPs in medicine, the application of AuNPs in cancer therapy and detection is highlighted with an emphasis on limitations faced by the application of such NPs in drug delivery platforms.
Collapse
|
4
|
Snipstad S, Vikedal K, Maardalen M, Kurbatskaya A, Sulheim E, Davies CDL. Ultrasound and microbubbles to beat barriers in tumors: Improving delivery of nanomedicine. Adv Drug Deliv Rev 2021; 177:113847. [PMID: 34182018 DOI: 10.1016/j.addr.2021.113847] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022]
Abstract
Successful delivery of drugs and nanomedicine to tumors requires a functional vascular network, extravasation across the capillary wall, penetration through the extracellular matrix, and cellular uptake. Nanomedicine has many merits, but penetration deep into the tumor interstitium remains a challenge. Failure of cancer treatment can be caused by insufficient delivery of the therapeutic agents. After intravenous administration, nanomedicines are often found in off-target organs and the tumor extracellular matrix close to the capillary wall. With circulating microbubbles, ultrasound exposure focused toward the tumor shows great promise in improving the delivery of therapeutic agents. In this review, we address the impact of focused ultrasound and microbubbles to overcome barriers for drug delivery such as perfusion, extravasation, and transport through the extracellular matrix. Furthermore, we discuss the induction of an immune response with ultrasound and delivery of immunotherapeutics. The review discusses mainly preclinical results and ends with a summary of ongoing clinical trials.
Collapse
Affiliation(s)
- Sofie Snipstad
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway; Cancer Clinic, St. Olav's Hospital, Trondheim, Norway.
| | - Krister Vikedal
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Matilde Maardalen
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anna Kurbatskaya
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Einar Sulheim
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | | |
Collapse
|
5
|
Dong R, Zhang B, Tan B, Lin N. Long non-coding RNAs as the regulators and targets of macrophage M2 polarization. Life Sci 2021; 266:118895. [PMID: 33310042 DOI: 10.1016/j.lfs.2020.118895] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/16/2020] [Accepted: 12/04/2020] [Indexed: 12/30/2022]
Abstract
Macrophages are immune cells with high heterogeneity and plasticity. M2 polarization is one extreme of the well-established phenotypes of macrophage polarization, and involves in diverse biological processes. The polarization process is initiated at the command of numerous components. Long non-coding RNAs (lncRNAs) are RNAs longer than 200 nucleotides with limited protein-coding capacity. Recent studies have revealed a newly found subset of lncRNAs engaged in the M2 polarization and their potent and multifunctional roles in developing diseases. By interfering with specific signaling pathways and altering the active mode, acting as the sponges of microRNAs or decoys of transcription factors, lncRNAs prompted macrophages to an M2 phenotype. Further, lncRNAs can bind to the genome to regulate the chromatin dynamics or work as a platform for protein complexes tether. Exosomal lncRNAs can also orchestrate the polarization in a paracrine way. To make it easier to interpret the roles of lncRNAs in the M2 polarization, we review the reported lncRNAs according to the underlying mechanisms. Moreover, we discuss the possibilities of targeting macrophages' M2 polarization using the oligonucleotides drugs or clustered regularly interspaced palindromic repeats (CRISPR) technologies to provoke wisdom on the therapeutic strategies.
Collapse
Affiliation(s)
- Rong Dong
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Bo Zhang
- Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 31006, China
| | - Biqin Tan
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Nengming Lin
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 31006, China.
| |
Collapse
|
6
|
Mohammadabadi A, Huynh RN, Wadajkar AS, Lapidus RG, Kim AJ, Raub CB, Frenkel V. Pulsed focused ultrasound lowers interstitial fluid pressure and increases nanoparticle delivery and penetration in head and neck squamous cell carcinoma xenograft tumors. Phys Med Biol 2020; 65:125017. [PMID: 32460260 DOI: 10.1088/1361-6560/ab9705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nanocarriers offer a promising approach to significantly improve therapeutic delivery to solid tumors as well as limit the side effects associated with anti-cancer agents. However, their relatively large size can negatively affect their ability to efficiently penetrate into more interior tumor regions, ultimately reducing therapeutic efficacy. Poor penetration of large agents such as nanocarriers is attributed to factors in the tumor microenvironment such as elevated interstitial fluid pressure (IFP) and fibrillar collagen in the extracellular matrix. Our previous studies reported that pretreatment of solid tumor xenografts with nondestructive pulsed focused ultrasound (pFUS) can improve the delivery and subsequent therapy of a variety of therapeutic formulations in different tumor models, where the results were associated with expanded extracellular spaces (ECS), an increase in hydraulic conductivity, and decrease in tissue stiffness. Here, we demonstrate the inverse relationship between IFP and the penetration of systemically administered nanoparticle (NP) probes, where IFP increased from the tumor periphery to their center. Furthermore, we show that pretreatment with pFUS can safely reduce IFP and improve NP delivery; especially into the center of the tumors. These results coincide with effects generated in the fibrillar collagen network microstructure in the ECS as determined by quantitative polarized light microscopy. Whole tumor and histomorphometric analysis, however, did not show significant differences in collagen area fraction or collagen feature solidity, as well as tumor cross-sectional area and aspect ratio, as a result of the treatments. We present a biophysical model connecting the experimental results, where pFUS-mediated cytoarchitectural changes are associated with improved redistribution of the interstitial fluid and lower IFP. The resulting improvement in NP delivery supports our previous therapeutic studies and may have implications for clinical applications to improve therapeutic outcomes in cancer therapy.
Collapse
Affiliation(s)
- Ali Mohammadabadi
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America. Department of Mechanical Engineering, University of Maryland, Baltimore County, Catonsville, MD, United States of America
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Nanoparticle-based drug delivery system (DDS) is considered promising for cancer treatment. Compared with traditional DDS, the nanoparticle-based DDS shows improved efficacy by: 1) increasing half-life of vulnerable drugs and proteins, 2) improving the solubility of hydrophobic drugs, and 3) allowing controlled and targeted release of drugs in diseased site. This review mainly focuses on nanoparticle-based DDS fabricated from chitosan, silica, and poly (lactic-co-glycolic acid). Their fabrication methods and applications in cancer treatment are introduced. The current limitations and future perspectives of the nanoparticle-based DDS are discussed.
Collapse
Affiliation(s)
- Yu Dang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Jianjun Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
8
|
Jenner AL, Frascoli F, Coster ACF, Kim PS. Enhancing oncolytic virotherapy: Observations from a Voronoi Cell-Based model. J Theor Biol 2019; 485:110052. [PMID: 31626813 DOI: 10.1016/j.jtbi.2019.110052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 09/13/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
Abstract
Oncolytic virotherapy is a promising cancer treatment using genetically modified viruses. Unfortunately, virus particles rapidly decay inside the body, significantly hindering their efficacy. In this article, treatment perturbations that could overcome obstacles to oncolytic virotherapy are investigated through the development of a Voronoi Cell-Based model (VCBM). The VCBM derived captures the interaction between an oncolytic virus and cancer cells in a 2-dimensional setting by using an agent-based model, where cell edges are designated by a Voronoi tessellation. Here, we investigate the sensitivity of treatment efficacy to the configuration of the treatment injections for different tumour shapes: circular, rectangular and irregular. The model predicts that multiple off-centre injections improve treatment efficacy irrespective of tumour shape. Additionally, we investigate delaying the infection of cancer cells by modifying viral particles with a substance such as alginate (a hydrogel polymer used in a range of cancer treatments). Simulations of the VCBM show that delaying the infection of cancer cells, and thus allowing more time for virus dissemination, can improve the efficacy of oncolytic virotherapy. The simulated treatment noticeably decreases the tumour size with no increase in toxicity. Improving oncolytic virotherapy in this way allows for a more effective treatment without changing its fundamental essence.
Collapse
Affiliation(s)
- Adrianne L Jenner
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia.
| | - Federico Frascoli
- Department of Mathematics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Adelle C F Coster
- School of Mathematics and Statistics, University of New South Wales, Sydney, NSW, Australia
| | - Peter S Kim
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Glass Z, Lee M, Li Y, Xu Q. Engineering the Delivery System for CRISPR-Based Genome Editing. Trends Biotechnol 2018; 36:173-185. [PMID: 29305085 PMCID: PMC5801045 DOI: 10.1016/j.tibtech.2017.11.006] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022]
Abstract
Clustered regularly interspaced short palindromic repeat-CRISPR-associated protein (CRISPR-Cas) systems, found in nature as microbial adaptive immune systems, have been repurposed into an important tool in biological engineering and genome editing, providing a programmable platform for precision gene targeting. These tools have immense promise as therapeutics that could potentially correct disease-causing mutations. However, CRISPR-Cas gene editing components must be transported directly to the nucleus of targeted cells to exert a therapeutic effect. Thus, efficient methods of delivery will be critical to the success of therapeutic genome editing applications. Here, we review current strategies available for in vivo delivery of CRISPR-Cas gene editing components and outline challenges that need to be addressed before this powerful tool can be deployed in the clinic.
Collapse
Affiliation(s)
- Zachary Glass
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Matthew Lee
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Yamin Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
10
|
Sanchala DS, Bhatt LK, Prabhavalkar KS. Oncolytic Herpes Simplex Viral Therapy: A Stride toward Selective Targeting of Cancer Cells. Front Pharmacol 2017; 8:270. [PMID: 28559846 PMCID: PMC5432606 DOI: 10.3389/fphar.2017.00270] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/01/2017] [Indexed: 12/18/2022] Open
Abstract
Oncolytic viral therapy, which makes use of replication-competent lytic viruses, has emerged as a promising modality to treat malignancies. It has shown meaningful outcomes in both solid tumor and hematologic malignancies. Advancements during the last decade, mainly genetic engineering of oncolytic viruses have resulted in improved specificity and efficacy of oncolytic viruses in cancer therapeutics. Oncolytic viral therapy for treating cancer with herpes simplex virus-1 has been of particular interest owing to its range of benefits like: (a) large genome and power to infiltrate in the tumor, (b) easy access to manipulation with the flexibility to insert multiple transgenes, (c) infecting majority of the malignant cell types with quick replication in the infected cells and (d) as Anti-HSV agent to terminate HSV replication. This review provides an exhaustive list of oncolytic herpes simplex virus-1 along with their genetic alterations. It also encompasses the major developments in oncolytic herpes simplex-1 viral therapy and outlines the limitations and drawbacks of oncolytic herpes simplex viral therapy.
Collapse
Affiliation(s)
| | - Lokesh K. Bhatt
- Department of Pharmacology, Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W)Mumbai, India
| | | |
Collapse
|
11
|
Qin J, Wang TY, Willmann JK. Sonoporation: Applications for Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:263-91. [PMID: 26486343 DOI: 10.1007/978-3-319-22536-4_15] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Therapeutic efficacy of both traditional chemotherapy and gene therapy in cancer is highly dependent on the ability to deliver drugs across natural barriers, such as the vessel wall or tumor cell membranes. In this regard, sonoporation induced by ultrasound-guided microbubble (USMB) destruction has been widely investigated in the enhancement of therapeutic drug delivery given it can help overcome these natural barriers, thereby increasing drug delivery into cancer. In this chapter we discuss challenges in current cancer therapy and how some of these challenges could be overcome using USMB-mediated drug delivery. We particularly focus on recent advances in delivery approaches that have been developed to further improve therapeutic efficiency and specificity of various cancer treatments. An example of clinical translation of USMB-mediated drug delivery is also shown.
Collapse
Affiliation(s)
- Jiale Qin
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA, USA
| | - Tzu-Yin Wang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA, USA
| | - Jürgen K Willmann
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA, USA.
| |
Collapse
|
12
|
Nande R, Howard CM, Claudio PP. Ultrasound-mediated oncolytic virus delivery and uptake for increased therapeutic efficacy: state of art. Oncolytic Virother 2015; 4:193-205. [PMID: 27512682 PMCID: PMC4918399 DOI: 10.2147/ov.s66097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The field of ultrasound (US) has changed significantly from medical imaging and diagnosis to treatment strategies. US contrast agents or microbubbles (MB) are currently being used as potential carriers for chemodrugs, small molecules, nucleic acids, small interfering ribonucleic acid, proteins, adenoviruses, and oncolytic viruses. Oncolytic viruses can selectively replicate within and destroy a cancer cell, thus making them a powerful therapeutic in treating late-stage or metastatic cancer. These viruses have been shown to have robust activity in clinical trials when injected directly into tumor nodules. However limitations in oncolytic virus’ effectiveness and its delivery approach have warranted exploration of ultrasound-mediated delivery. Gene therapy bearing adenoviruses or oncolytic viruses can be coupled with MBs and injected intravenously. Following application of US energy to the target region, the MBs cavitate, and the resulting shock wave enhances drug, gene, or adenovirus uptake. Though the underlying mechanism is yet to be fully understood, there is evidence to suggest that mechanical pore formation of cellular membranes allows for the temporary uptake of drugs. This delivery method circumvents the limitations due to stimulation of the immune system that prevented intravenous administration of viruses. This review provides insight into this intriguing new frontier on the delivery of oncolytic viruses to tumor sites.
Collapse
Affiliation(s)
- Rounak Nande
- Department of Biochemistry and Microbiology, Marshall University School of Medicine, Huntington, WV, USA
| | - Candace M Howard
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Pier Paolo Claudio
- Department of BioMolecular Sciences and National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS, USA; Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
13
|
Qi Y, Hu T, Li K, Ye R, Ye Z. Lentivirus-Mediated Short-Hairpin RNA Targeting Protein Phosphatase 4 Regulatory Subunit 1 Inhibits Growth in Breast Cancer. J Breast Cancer 2015; 18:218-24. [PMID: 26472971 PMCID: PMC4600685 DOI: 10.4048/jbc.2015.18.3.218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 08/11/2015] [Indexed: 02/07/2023] Open
Abstract
Purpose Protein phosphatase 4 regulatory subunit 1 (PP4R1), as an interaction partner of the catalytic serine/threonine-protein phosphatase 4 catalytic subunit has been shown to involve in cellular processes and nuclear factor κB signaling. However, the functions of PP4R1 in human breast cancers remain unclear. This study is designed to explore the effect of PP4R1 knockdown on the biological characteristics of breast cancer cells. Methods A lentivirus-mediated short hairpin RNA (shRNA) was designed to knockdown the expression of PP4R1 in ZR-75-30 breast cancer cells. The efficiency of lentivirus-mediated shRNA infection was determined using fluorescence microscopy to observe lentivirus-mediated green fluorescent protein expression and confirmed to be over 80%. PP4R1 expression in infected ZR-75-30 cells was detected by quantitative real-time polymerase chain reaction and western blot analysis. Cell proliferation and colony formation ability were measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and colony formation assay, respectively. Flow cytometry was used to measure cell cycle progression and cell apoptosis. In addition, apoptosis makers, including poly-ADP-ribose polymerase (PARP) and caspase-3, were investigated in PP4R1-silenced ZR-75-30 cells by western blot assay. Results We successfully constructed lentivirus-mediated shRNA to target PP4R1 in ZR-75-30 cells. MTT assay and colony formation assay showed the loss of PP4R1 suppressed the proliferation of ZR-75-30 cells. Flow cytometry analysis indicated cell cycle arrest and increased cell apoptosis in PP4R1 knockdown cells. Further, the apoptosis response in cells depleted of PP4R1 was illustrated by downregulation of PARP and upregulation of caspase-3. Conclusion Our results suggest that PP4R1 could promote breast cancer cell proliferation and might play a vital role in breast cancer occurrence.
Collapse
Affiliation(s)
- Yuying Qi
- Department of Laboratory, The Affiliated Ningde Municipal Hospital of Fujian Medical University, Ningde, China
| | - Tinghui Hu
- Department of Oncological Surgery, The Affiliated Ningde Municipal Hospital of Fujian Medical University, Ningde, China
| | - Kai Li
- Department of Oncological Surgery, The Affiliated Ningde Municipal Hospital of Fujian Medical University, Ningde, China
| | - Renqing Ye
- Department of Laboratory, The Affiliated Ningde Municipal Hospital of Fujian Medical University, Ningde, China
| | - Zuodong Ye
- Department of Laboratory, The Affiliated Ningde Municipal Hospital of Fujian Medical University, Ningde, China
| |
Collapse
|
14
|
Hutzen B, Raffel C, Studebaker AW. Advances in the design and development of oncolytic measles viruses. Oncolytic Virother 2015; 4:109-18. [PMID: 27512675 PMCID: PMC4918395 DOI: 10.2147/ov.s66078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A successful oncolytic virus is one that selectively propagates and destroys cancerous tissue without causing excessive damage to the normal surrounding tissue. Oncolytic measles virus (MV) is one such virus that exhibits this characteristic and thus has rapidly emerged as a potentially useful anticancer modality. Derivatives of the Edmonston MV vaccine strain possess a remarkable safety record in humans. Promising results in preclinical animal models and evidence of biological activity in early phase trials contribute to the enthusiasm. Genetic modifications have enabled MV to evolve from a vaccine agent to a potential anticancer therapy. Specifically, alterations of the MV genome have led to improved tumor selectivity and delivery, therapeutic potency, and immune system modulation. In this article, we will review the advancements that have been made in the design and development of MV that have led to its use as a cancer therapy. In addition, we will discuss the evidence supporting its use, as well as the challenges associated with MV as a potential cancer therapeutic.
Collapse
Affiliation(s)
- Brian Hutzen
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Corey Raffel
- Department of Neurological Surgery and Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Adam W Studebaker
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
15
|
Alassaf A, Aleid A, Frenkel V. In vitro methods for evaluating therapeutic ultrasound exposures: present-day models and future innovations. J Ther Ultrasound 2013; 1:21. [PMID: 25093079 PMCID: PMC4109267 DOI: 10.1186/2050-5736-1-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/09/2013] [Indexed: 11/30/2022] Open
Abstract
Although preclinical experiments are ultimately required to evaluate new therapeutic ultrasound exposures and devices prior to clinical trials, in vitro experiments can play an important role in the developmental process. A variety of in vitro methods have been developed, where each of these has demonstrated their utility for various test purposes. These include inert tissue-mimicking phantoms, which can incorporate thermocouples or cells and ex vivo tissue. Cell-based methods have also been used, both in monolayer and suspension. More biologically relevant platforms have also shown utility, such as blood clots and collagen gels. Each of these methods possesses characteristics that are well suited for various well-defined investigative goals. None, however, incorporate all the properties of real tissues, which include a 3D environment and live cells that may be maintained long-term post-treatment. This review is intended to provide an overview of the existing application-specific in vitro methods available to therapeutic ultrasound investigators, highlighting their advantages and limitations. Additional reporting is presented on the exciting and emerging field of 3D biological scaffolds, employing methods and materials adapted from tissue engineering. This type of platform holds much promise for achieving more representative conditions of those found in vivo, especially important for the newest sphere of therapeutic applications, based on molecular changes that may be generated in response to non-destructive exposures.
Collapse
Affiliation(s)
- Ahmad Alassaf
- Department of Biomedical Engineering, Catholic University of America, 620 Michigan Ave NE, Washington, DC 20064, USA
| | - Adham Aleid
- Department of Biomedical Engineering, Catholic University of America, 620 Michigan Ave NE, Washington, DC 20064, USA
| | - Victor Frenkel
- Department of Biomedical Engineering, Catholic University of America, 620 Michigan Ave NE, Washington, DC 20064, USA
| |
Collapse
|
16
|
Ziadloo A, Xie J, Frenkel V. Pulsed focused ultrasound exposures enhance locally administered gene therapy in a murine solid tumor model. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 133:1827-34. [PMID: 23464051 PMCID: PMC3606298 DOI: 10.1121/1.4789390] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Gene therapy by intratumoral injection is a promising approach for treating solid tumors. However, this approach has limited success due to insufficient distribution of gene vectors used for gene delivery. Previous studies have shown that pulsed-focused ultrasound (pFUS) can enhance both systemic and local delivery of therapeutic agents in solid tumors and other disease models. Here, murine squamous cell carcinoma flank tumors were treated with single intratumoral injection of naked tumor necrosis factor-alpha (TNF-α) plasmid, either with or without a preceding pFUS exposure. The exposures were given at 1 MHz, at a spatial average, temporal peak intensity of 2660 W cm(-2), using 50 ms pulses, given at a pulse repetition frequency of 1 Hz. One hundred pulses were given at individual raster points, spaced evenly over the projected surface of the tumor at a distance of 2 mm. Exposures alone had no effect on tumor growth. Significant growth inhibition was observed with injection of TNF-α plasmid, and tumor growth was further inhibited with pFUS. Improved results with pFUS correlated with larger necrotic regions in histological sections and improved distribution and penetration of fluorescent surrogate nanoparticles. Electron microscopy demonstrated enlarged gaps between cells in exposed tissue, and remote acoustic palpation showed decreases in tissue stiffness after pFUS. Combined, these results suggest pFUS effects may be reducing barriers for tissue transport and additionally lowering interstitial fluid pressure to further improve delivery and distribution of injected plasmid for greater therapeutic effects. This suggests that pFUS could potentially be beneficial for improving local gene therapy treatment of human malignancies.
Collapse
Affiliation(s)
- Ali Ziadloo
- Molecular Imaging Lab, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
17
|
Chen ZY, Liang K, Lin Y, Yang F. Study of the UTMD-based delivery system to induce cervical cancer cell apoptosis and inhibit proliferation with shRNA targeting Survivin. Int J Mol Sci 2013; 14:1763-77. [PMID: 23325045 PMCID: PMC3565346 DOI: 10.3390/ijms14011763] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 01/04/2013] [Accepted: 01/06/2013] [Indexed: 01/14/2023] Open
Abstract
Apoptosis induction by short hairpin RNA (shRNA) expression vectors could be an efficient and promising strategy for cancer gene therapy. Ultrasound-targeted microbubble destruction (UTMD) is an appealing technique. In this study, we investigated the apoptosis induction and suppression of cell proliferation in vivo transfected by the UTMD-based shRNA delivery system. Nude mice with transplanted tumors of cervical cancer were randomly arranged into three groups: control group, plasmid injection and ultrasound (P + US), P + UTMD group. Expressions of Survivin and proliferating cell nuclear antigen (PCNA), Bcl-2, Bax, Caspase-3, Ki-67, nucleostemin (NS) were investigated by immunohistochemistry. Furthermore, microvessel density (MVD) was detected by CD34 protein expressions and apoptotic index (AI) was measured by TUNEL. As compared with those in the control and P + US groups, protein expressions of PCNA, Ki-67, Bcl-2, Survivin and NS in P + UTMD groups were down-regulated markedly, while those of Bax, Caspase-3 were up-regulated significantly (p < 0.05). MVD decreased significantly, whereas AI increased remarkably (p < 0.05). We suggested that UTMD-based shRNA delivery system could induce apoptosis and inhibit proliferation significantly, without causing any apparently adverse effect, representing a new, promising technology that would be used in the future gene therapy and research.
Collapse
Affiliation(s)
- Zhi-Yi Chen
- Department of Medical Ultrasound, Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; E-Mails: (Y.L.); (F.Y.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-020-8129-2115; Fax: +86-020-8129-2949
| | - Kun Liang
- Guangzhou Research Institute of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Institute of Obstetrics and Gynecology, Guangzhou 510150, China; E-Mail:
| | - Yan Lin
- Department of Medical Ultrasound, Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; E-Mails: (Y.L.); (F.Y.)
| | - Feng Yang
- Department of Medical Ultrasound, Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; E-Mails: (Y.L.); (F.Y.)
| |
Collapse
|
18
|
Improving interstitial transport of macromolecules through reduction in cell volume fraction in tumor tissues. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:1088-95. [DOI: 10.1016/j.nano.2011.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 12/14/2011] [Accepted: 12/17/2011] [Indexed: 11/23/2022]
|
19
|
TGF-β blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma. Proc Natl Acad Sci U S A 2012; 109:16618-23. [PMID: 22996328 DOI: 10.1073/pnas.1117610109] [Citation(s) in RCA: 288] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although the role of TGF-β in tumor progression has been studied extensively, its impact on drug delivery in tumors remains far from understood. In this study, we examined the effect of TGF-β blockade on the delivery and efficacy of conventional therapeutics and nanotherapeutics in orthotopic mammary carcinoma mouse models. We used both genetic (overexpression of sTβRII, a soluble TGF-β type II receptor) and pharmacologic (1D11, a TGF-β neutralizing antibody) approaches to block TGF-β signaling. In two orthotopic mammary carcinoma models (human MDA-MB-231 and murine 4T1 cell lines), TGF-β blockade significantly decreased tumor growth and metastasis. TGF-β blockade also increased the recruitment and incorporation of perivascular cells into tumor blood vessels and increased the fraction of perfused vessels. Moreover, TGF-β blockade normalized the tumor interstitial matrix by decreasing collagen I content. As a result of this vessel and interstitial matrix normalization, TGF-β blockade improved the intratumoral penetration of both a low-molecular-weight conventional chemotherapeutic drug and a nanotherapeutic agent, leading to better control of tumor growth.
Collapse
|
20
|
Viral dose, radioiodide uptake, and delayed efflux in adenovirus-mediated NIS radiovirotherapy correlates with treatment efficacy. Gene Ther 2012; 20:567-74. [PMID: 22972493 PMCID: PMC3525803 DOI: 10.1038/gt.2012.71] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have constructed a prostate tumor-specific conditionally replicating adenovirus (CRAd), named Ad5PB_RSV-NIS, which expresses the human sodium iodine symporter (NIS) gene. LNCaP tumors were established in nude mice and infected with this CRAd to study tumor viral spread, NIS expression, and efficacy. Using quantitative PCR, we found a linear correlation between the viral dose and viral genome copy numbers recovered after tumor infection. Confocal microscopy showed a linear correlation between adenovirus density and NIS expression. Radioiodide uptake vs virus dose-response curves revealed that the dose response curve was not linear and displayed a lower threshold of detection at 10(7) vp (virus particles) and an upper plateau of uptake at 10(11) vp. The outcome of radiovirotherapy was highly dependent upon viral dose. At 10(10) vp, no significant differences were observed between virotherapy alone or radiovirotherapy. However, when radioiodide therapy was combined with virotherapy at a dose of 10(11) vp, significant improvement in survival was observed, indicating a relationship between viral dose-response uptake and the efficacy of radiovirotherapy. The reasons behind the differences in radioiodide therapy efficacy can be ascribed to more efficient viral tumor spread and a decrease in the rate of radioisotope efflux. Our results have important implications regarding the desirable and undesirable characteristics of vectors for clinical translation of virus-mediated NIS transfer therapy.
Collapse
|
21
|
Eukaryotic expression vectors bearing genes encoding cytotoxic proteins for cancer gene therapy. Plasmid 2012; 68:69-85. [PMID: 22613563 DOI: 10.1016/j.plasmid.2012.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 02/11/2012] [Accepted: 05/09/2012] [Indexed: 01/03/2023]
Abstract
Cancer gene therapy is a promising direction for the treatment of cancer patients. A primary goal of all cancer therapies is to selectively target and kill tumour cells. Such therapies are administered via different approaches, including both viral and non-viral delivery; however, both methods have advantages and disadvantages. Transcriptional targeting enables genes encoding toxic proteins to be expressed directly in cancer cells. Numerous vectors have been created with the purpose of killing cancer cells, and some have successfully suppressed malignant tumours. Data concerning the function of vectors bearing genes that encode cytotoxic proteins under the control of different promoters, including tissue/tumour specific and constitutive promoters, is summarised here. This review focuses on vectors that bear genes encoding diphtheria toxin, Pseudomonas exotoxin A, caspases, gef, streptolysin, and melittin. Data describing the efficacy of such vectors have been summarised. Notably, there are vectors that killed cancer cell lines originating from the same type of cancer with differential efficiency. Thus, there is differential inhibition of cancer cell growth dependent on the cell line. In this review, the constructs employing genes whose expression induces cell death and the efficiency with which they suppress cancer cell growth will be summarised.
Collapse
|
22
|
Elliott NT, Yuan F. A microfluidic system for investigation of extravascular transport and cellular uptake of drugs in tumors. Biotechnol Bioeng 2011; 109:1326-35. [PMID: 22124930 DOI: 10.1002/bit.24397] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 10/23/2011] [Accepted: 11/14/2011] [Indexed: 12/25/2022]
Abstract
Three-dimensional (3D) tumor models have been established in various microfluidic systems for drug delivery and resistance studies in vitro. However, one of the main drawbacks of these models is non-uniform distribution of cells, leaving regions with very low cell density within the 3D structures. As a result, molecular diffusion in the cell compartments is faster than that observed in solid tumors. To solve this problem, we developed a new technique for preparation of 3D tumor models in vitro. It was based on a microfluidic device containing three parallel channels separated by narrowly spaced posts. Tumor cells were loaded into the central channel at high density. To test the system, B16.F10 melanoma cells were perfusion-cultured overnight and the resulting 3D structure was characterized in terms of viability, density, and morphology of cells as well as transport properties of small fluorescent molecules. Immediately upon loading of tumor cells, the cell density was comparable to those observed in B16.F10 tumor tissues in vivo; and the viability of tumor cells was maintained through the overnight culture. The tumor model displayed low extracellular space and high resistance to diffusion of small molecules. For membrane-permeant molecules (e.g., Hoechst 33342), the rate of interstitial penetration was extremely slow, compared to membrane-impermeant molecules (e.g., sodium fluorescein). This versatile tumor model could be applied to in vitro studies of transport and cellular uptake of drugs and genes.
Collapse
Affiliation(s)
- Nelita T Elliott
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | | |
Collapse
|
23
|
Shintani M, Takahashi G, Hamada M, Okunaga S, Iwai S, Yura Y. Effect of ultrasound on herpes simplex virus infection in cell culture. Virol J 2011; 8:446. [PMID: 21939524 PMCID: PMC3189159 DOI: 10.1186/1743-422x-8-446] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 09/22/2011] [Indexed: 11/24/2022] Open
Abstract
Background Ultrasound has been shown to increase the efficiency of gene expression from retroviruses, adenoviruses and adeno-associated viruses. The effect of ultrasound to stimulate cell membrane permeabilization on infection with an oncolytic herpes simplex virus type 1 (HSV-1) was examined. Results Vero monkey kidney cells were infected with HSV-1 and exposed to 1 MHz ultrasound after an adsorption period. The number of plaques was significantly greater than that of the untreated control. A combination of ultrasound and microbubbles further increased the plaque number. Similar results were obtained using a different type of HSV-1 and oral squamous cell carcinoma (SCC) cells. The appropriate intensity, duty cycle and time of ultrasound to increase the plaque number were 0.5 W/cm2, 20% duty cycle and 10 sec, respectively. Ultrasound with microbubbles at an intensity of 2.0 W/cm2, at 50% duty cycle, or for 40 sec reduced cell viability. Conclusion These results indicate that ultrasound promotes the entry of oncolytic HSV-1 into cells. It may be useful to enhance the efficiency of HSV-1 infection in oncolytic virotherapy.
Collapse
Affiliation(s)
- Motoko Shintani
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Chen Z, Liu S, Sumida T, Sun S, Wei Y, Liu M, Dong Z, Zhang F, Hamakawa H, Wei F. Silencing Id-1 with RNA Interference Inhibits Adenoid Cystic Carcinoma in Mice. J Surg Res 2011; 169:57-66. [DOI: 10.1016/j.jss.2009.11.723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 10/12/2009] [Accepted: 11/19/2009] [Indexed: 11/15/2022]
|
25
|
Electrospun Nanofibrous Scaffolds-Current Status and Prospects in Drug Delivery. BIOMEDICAL APPLICATIONS OF POLYMERIC NANOFIBERS 2011. [DOI: 10.1007/12_2011_125] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Soontornworajit B, Wang Y. Nucleic acid aptamers for clinical diagnosis: cell detection and molecular imaging. Anal Bioanal Chem 2010; 399:1591-9. [PMID: 21161512 DOI: 10.1007/s00216-010-4559-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/24/2010] [Accepted: 12/01/2010] [Indexed: 01/09/2023]
Abstract
Nucleic acid aptamers have recently attracted significant attention in the field of clinical diagnosis because they have numerous merits, such as high affinity, high specificity, small size, little immunogenicity, stable structures, and ease of synthesis. This review focuses on discussing the potential applications of aptamers in cell detection and molecular imaging. For the ex vivo cell detection, this review discusses the status of five strategies: endogenous nucleic acid analysis, flow cytometry analysis, nanoparticle-based cell sensing, microfluidic cell separation, and histological examination. This review also discusses in vivo molecular and cell imaging by introducing aptamer-based molecular imaging, cell imaging, and integrated imaging and therapy. On the basis of the status of these promising studies, this review summarizes several challenging issues and unmet needs that may require more effort or attention in the future.
Collapse
Affiliation(s)
- Boonchoy Soontornworajit
- Department of Chemical, Materials & Biomolecular Engineering, University of Connecticut, 191 Auditorium Road, Storrs, CT 06269-3222, USA
| | | |
Collapse
|
27
|
Lentiviral transfer of an inducible transgene expressing a soluble form of Gas1 causes glioma cell arrest, apoptosis and inhibits tumor growth. Cancer Gene Ther 2010; 18:87-99. [DOI: 10.1038/cgt.2010.54] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
28
|
Kim TH, Mount CW, Gombotz WR, Pun SH. The delivery of doxorubicin to 3-D multicellular spheroids and tumors in a murine xenograft model using tumor-penetrating triblock polymeric micelles. Biomaterials 2010; 31:7386-97. [PMID: 20598741 DOI: 10.1016/j.biomaterials.2010.06.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 06/01/2010] [Indexed: 02/07/2023]
Abstract
Doxorubicin (DOX) is an effective chemotherapeutic against a wide range of solid tumors. However, its clinical use is limited by severe side effects such as cardiotoxicity as well as inherent and acquired drug resistance of tumors. DOX encapsulation within self-assembled polymeric micelles has the potential to decrease the systemic distribution of free drug and enhance the drug accumulation in the tumor via the enhanced permeability and retention (EPR). In this study, DOX was encapsulated in micelles composed of poly (ethylene oxide)-poly [(R)-3-hydroxybutyrate]-poly (ethylene oxide) (PEO-PHB-PEO) triblock copolymers. Micelle size, DOX loading and DOX release were characterized. To evaluate DOX activity, micelles were tested in both monolayer cell cultures and three-dimensional (3-D) multicellular spheroids (MCS) that mimic solid tumors. Antitumor activity in vivo was further studied with tumor-bearing mice. The micelles improved the efficiency of Dox penetration in 3-D MCS compared with free DOX. Efficient cell killing by Dox-micelles in both monolayer cells and 3-D MCS was also demonstrated. Finally, DOX-loaded micelles mediate efficient tumor delivery from tail vein injections to tumor-bearing mice with much less toxicity compared with free DOX.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5061, USA
| | | | | | | |
Collapse
|
29
|
Maitland N, Chambers K, Georgopoulos L, Simpson-Holley M, Leadley R, Evans H, Essand M, Danielsson A, van Weerden W, de Ridder C, Kraaij R, Bangma CH. Gene Transfer Vectors Targeted to Human Prostate Cancer: Do We Need Better Preclinical Testing Systems? Hum Gene Ther 2010; 21:815-27. [DOI: 10.1089/hum.2009.210] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Norman Maitland
- Yorkshire Cancer Research Unit, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | - Karen Chambers
- Yorkshire Cancer Research Unit, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | - Lindsay Georgopoulos
- Yorkshire Cancer Research Unit, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | - Martha Simpson-Holley
- Yorkshire Cancer Research Unit, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | - Regina Leadley
- Yorkshire Cancer Research Unit, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | - Helen Evans
- Yorkshire Cancer Research Unit, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | - Magnus Essand
- Clinical Immunology, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden
| | - Angelika Danielsson
- Clinical Immunology, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden
| | - Wytske van Weerden
- Department of Urology, Josephine Nefkens Institute, Erasmus MC, 3000CA Rotterdam, The Netherlands
| | - Corrina de Ridder
- Department of Urology, Josephine Nefkens Institute, Erasmus MC, 3000CA Rotterdam, The Netherlands
| | - Robert Kraaij
- Department of Urology, Josephine Nefkens Institute, Erasmus MC, 3000CA Rotterdam, The Netherlands
| | - Chris H. Bangma
- Department of Urology, Josephine Nefkens Institute, Erasmus MC, 3000CA Rotterdam, The Netherlands
| |
Collapse
|
30
|
Elliott NT, Yuan F. A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci 2010; 100:59-74. [PMID: 20533556 DOI: 10.1002/jps.22257] [Citation(s) in RCA: 328] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 05/04/2010] [Indexed: 12/12/2022]
Abstract
The use of animal models in drug discovery studies presents issues with feasibility and ethical concerns. To address these limitations, in vitro tissue models have been developed to provide a means for systematic, repetitive, and quantitative investigation of drugs. By eliminating or reducing the need for animal subjects, these models can serve as platforms for more tightly controlled, high-throughput screening of drugs and for pharmacokinetic and pharmacodynamic analyses of drugs. The focus of this review is three-dimensional (3D) tissue models that can capture cell-cell and cell-matrix interactions. Compared to the 2D culture of cell monolayers, 3D models more closely mimic native tissues since the cellular microenvironment established in the 3D models often plays a significant role in disease progression and cellular responses to drugs. A growing body of research has been published in the literature, which highlights the benefits of the 3D in vitro models of various tissues. This review provides an overview of some successful 3D in vitro models that have been developed to mimic liver, breast, cardiac, muscle, bone, and corneal tissues as well as malignant tissues in solid tumors.
Collapse
Affiliation(s)
- Nelita T Elliott
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, PO Box 90281, Durham, North Carolina 27708, USA
| | | |
Collapse
|
31
|
Lin CW, Yuan F. Numerical simulations of ethacrynic acid transport from precorneal region to trabecular meshwork. Ann Biomed Eng 2010; 38:935-44. [PMID: 20140518 DOI: 10.1007/s10439-010-9947-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 01/23/2010] [Indexed: 12/22/2022]
Abstract
Topical application of drugs for treatment of intraocular diseases is often limited by inadequate transport and induced toxicity in corneal tissues. To improve the drug delivery, a mathematical model was developed to numerically simulate the transport process of ethacrynic acid (ECA), a potential drug for glaucoma treatment, in the anterior segment of a typical human eye. The model considered diffusion of ECA in all tissues and the aqueous humor (AH) as well as convection of ECA in the AH. The simulation results showed that ECA concentration in the eye depended on the rate of AH production, the half-life of ECA in the precorneal tear film, and the transport parameters in the model. In addition, the main pathway for ECA clearance from the eye was the trabecular meshwork (TM) and the rate of clearance was approximately proportional to the AH production rate. The model predicted that the most effective approach to improving topical drug delivery was to prolong its half-life in the precorneal tear film. These simulation results and model prediction, which could be verified experimentally, might be useful for improving delivery of ECA and other therapeutic agents to the TM as well as other tissues in the anterior segment of the eye.
Collapse
Affiliation(s)
- Cheng-Wen Lin
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC 27708, USA
| | | |
Collapse
|
32
|
Stukel JM, Caplan MR. Targeted drug delivery for treatment and imaging of glioblastoma multiforme. Expert Opin Drug Deliv 2009; 6:705-18. [PMID: 19538036 DOI: 10.1517/17425240902988470] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Glioblastoma multiforme is a grade IV astrocytic tumor with a very high mortality rate. Although current treatment often includes surgical resection, this rarely removes all primary tumor cells, so is usually followed by radiation and/or chemotherapy. Remaining migratory tumor cells invade surrounding healthy tissue and contribute to secondary and tertiary tumor recurrence; therefore, despite significant research into glioma removal and treatment, prognosis remains poor. A variety of treatment modalities have been investigated to deliver drug to these cells, including systemic, diffusive and convection-enhanced delivery (CED). As systemic delivery is limited by molecules larger than approximately 500 Da being unable to cross the blood-brain barrier (BBB), therapeutic concentrations are difficult to attain; thus, localized delivery options relying on diffusion and CED have been used to circumvent the BBB. Although CED enables delivery to a greater volume of tissue than diffusive delivery alone, limitations still exist, requiring that these delivery strategies be improved. This review enumerates the strengths and weaknesses of these currently used strategies and details how predictive mathematical modeling can be used to aid investigators in optimizing these delivery modalities for clinical application.
Collapse
Affiliation(s)
- Jill M Stukel
- Arizona State University, Center for Interventional Biomaterials, Harrington Department of Bioengineering, Tempe, AZ 85287, USA
| | | |
Collapse
|
33
|
Liao IC, Chen S, Liu JB, Leong KW. Sustained viral gene delivery through core-shell fibers. J Control Release 2009; 139:48-55. [PMID: 19539680 DOI: 10.1016/j.jconrel.2009.06.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 06/08/2009] [Accepted: 06/10/2009] [Indexed: 12/18/2022]
Abstract
Although viral gene transfer is efficient in achieving transgene expression for tissue engineering, drawbacks of virus dissemination, toxicity and transient gene expression due to immune response have hindered its widespread application. Many tissue engineering studies thus opt to genetically engineer cells in vitro prior to their introduction in vivo. However, it would be attractive to obviate the need for in vitro manipulation by transducing the infiltrating progenitor cells in situ. This study introduces the fabrication of a virus-encapsulated electrospun fibrous scaffold to achieve sustained and localized transduction. Adenovirus encoding the gene for green fluorescent protein was efficiently encapsulated into the core of poly(epsilon-caprolactone) fibers through co-axial electrospinning and was subsequently released via a porogen-mediated process. HEK 293 cells seeded on the scaffolds expressed high level of transgene expression over a month, while cells inoculated by scaffold supernatant showed only transient expression for a week. RAW 264.7 cells cultured on the virus-encapsulated fibers produced a lower level of IL-1 beta, TNF-alpha and IFN-alpha, suggesting that the activation of macrophage cells by the viral vector was reduced when encapsulated in the core-shell PCL fibers. In demonstrating sustained and localized cell transduction, this study presents an attractive alternative mode of applying viral gene transfer for regenerative medicine.
Collapse
Affiliation(s)
- I-Chien Liao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
34
|
Krishnamachary B, Glunde K, Wildes F, Mori N, Takagi T, Raman V, Bhujwalla ZM. Noninvasive detection of lentiviral-mediated choline kinase targeting in a human breast cancer xenograft. Cancer Res 2009; 69:3464-71. [PMID: 19336572 DOI: 10.1158/0008-5472.can-08-4120] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Elevated phosphocholine (PC) and total choline (tCho) metabolites are widely established characteristics of most cancer cells, including breast cancer. Effective silencing of choline kinase (chk), the enzyme that converts choline to PC, is associated with reduced tumor growth. The functional importance and down-regulation of chk using RNA interference has been previously established. Here, we report on the preclinical evaluation of lentiviral vector-mediated down-regulation of chk using short hairpin RNA (shRNA) in established tumors derived from human breast cancer cells. Concentrated lentivirus expressing shRNA against chk was injected i.v. in the tail vein of MDA-MB-231 tumor-bearing female severe combined immunodeficient mice. Transduction efficiency in cells and tumors in vivo was assessed optically by enhanced green fluorescent protein expression and additionally from chk mRNA and protein levels. An 80% reduction in chk mRNA and protein was achieved following approximately 90% transduction efficiency in cells. After transduction with chk-shRNA, (1)H magnetic resonance spectroscopy (MRS) of cell and tumor extracts showed decreases in PC and tCho levels (P < 0.01 and 0.05, respectively) in comparison with controls. PC levels were monitored noninvasively by (31)P MRS in tumors and by (1)H MRS in cell and tumor tissue extracts. Noninvasive (31)P MR spectra of chk-shRNA-transduced tumors in vivo showed lower PC and phosphomonoester levels that were associated with reduced tumor growth and proliferation. This study shows the use of lentiviral vectors to target chk in a human breast cancer xenograft and noninvasive MRS detection of this targeting.
Collapse
Affiliation(s)
- Balaji Krishnamachary
- Johns Hopkins University In Vivo Cellular Molecular Imaging Center Program, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Wang Z, Yuan Z, Jin L. Gene delivery into hepatocytes with the preS/liposome/DNA system. Biotechnol J 2009; 3:1286-95. [PMID: 18830969 DOI: 10.1002/biot.200800125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Gene delivery into human hepatocytes remains a critical issue for the development of liver-directed gene therapy. Gene delivery based on non-viral vectors is an attractive approach relative to viral vectors. In this report, novel delivery system of preS/liposome/DNA virus-like particle (VLP) was developed for gene transfection into hepatocytes in vivo and in vitro. Plasmid pCMVbeta, expressing beta-galactosidase, was encapsulated with cationic liposome, and then the histidine-tagged preS domain of hepatitis B virus was coated on the surface of liposome/DNA to form preS/liposome/ DNA VLP. Transfection efficiencies of preS/liposome/DNA, liposome/DNA, naked DNA and preS were analyzed using several different human cell lines. The highest transfection efficiency was found using preS/liposome/DNA VLP as the transfection reagent in human hepatocyte (HH) cell line. Results show that preS domain of hepatitis B virus coated on liposome/DNA can be used for highly efficient gene transfection into human hepatocytes. Moreover, the target characteristic of preS/liposome/DNA was analyzed in vivo. After preS/liposome/DNA VLP was injected into immunocompromised (Nude) mice via the tail vein, most of beta-galactosidase was expressed in the liver; however, no significant target expression was found with the injection of liposome/ DNA or naked DNA. Our results show that preS/liposome/DNA VLP can be used as a novel liver-specific gene delivery system.
Collapse
Affiliation(s)
- Zhijun Wang
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China.
| | | | | |
Collapse
|
36
|
O'Neill BE, Li KCP. Augmentation of targeted delivery with pulsed high intensity focused ultrasound. Int J Hyperthermia 2009; 24:506-20. [PMID: 18608574 DOI: 10.1080/02656730802093661] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
This paper reviews the enhanced delivery of genes, drugs and therapeutics using ultrasound. It begins with a general overview of the field and the various techniques associated with it, including sonophoresis, hyperthermia (with ultrasound), sonoporation, and microbubble assisted transvascular and targeted delivery. Particular attention is then paid to pulsed high intensity focused ultrasound drug delivery without the use of ultrasound contrast agents. Feasibility and mechanistic studies of this technique are described in some detail. Conclusions are then drawn regarding possible mechanisms of this treatment, and to contrast with the better known treatments relying on injection of ultrasound contrast agents.
Collapse
Affiliation(s)
- Brian E O'Neill
- Department of Radiology, The Methodist Hospital, Houston, TX 77030, USA
| | | |
Collapse
|
37
|
Marignol L, Robson T, McCarthy HO, Worthington J, Murray MM, Hollywood D, Lawler M, Hirst DG. The tissue plasminogen activator gene promoter: a novel tool for radiogenic gene therapy of the prostate? J Gene Med 2009; 10:1032-8. [PMID: 18615772 DOI: 10.1002/jgm.1221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Radiation therapy is a treatment modality routinely used in cancer management so it is not unexpected that radiation-inducible promoters have emerged as an attractive tool for controlled gene therapy. The human tissue plasminogen activator gene promoter (t-PA) has been proposed as a candidate for radiogenic gene therapy, but has not been exploited to date. The purpose of this study was to evaluate the potential of this promoter to drive the expression of a reporter gene, the green fluorescent protein (GFP), in response to radiation exposure. METHODS To investigate whether the promoter could be used for prostate cancer gene therapy, we initially transfected normal and malignant prostate cells. We then transfected HMEC-1 endothelial cells and ex vivo rat tail artery and monitored GFP levels using Western blotting following the delivery of single doses of ionizing radiation (2, 4, 6 Gy) to test whether the promoter could be used for vascular targeted gene therapy. RESULTS The t-PA promoter induced GFP expression up to 6-fold in all cell types tested in response to radiation doses within the clinical range. CONCLUSIONS These results suggest that the t-PA promoter may be incorporated into gene therapy strategies driving therapeutic transgenes in conjunction with radiation therapy.
Collapse
Affiliation(s)
- L Marignol
- Department of Haematology and Academic Unit of Clinical and Molecular Oncology, Institute of Molecular Medicine, St James's Hospital and Trinity College Dublin, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Measles virus offers an ideal platform from which to build a new generation of safe, effective oncolytic viruses. Occasional so-called spontaneous tumor regressions have occurred during natural measles infections, but common tumors do not express SLAM, the wild-type MV receptor, and are therefore not susceptible to the virus. Serendipitously, attenuated vaccine strains of measles virus have adapted to use CD46, a regulator of complement activation that is expressed in higher abundance on human tumor cells than on their nontransformed counterparts. For this reason, attenuated measles viruses are potent and selective oncolytic agents showing impressive antitumor activity in mouse xenograft models. The viruses can be engineered to enhance their tumor specificity, increase their antitumor potency, and facilitate noninvasive in vivo monitoring of their spread. A major impediment to the successful deployment of oncolytic measles viruses as anticancer agents is the high prevalence of preexisting anti-measles immunity, which impedes bloodstream delivery and curtails intratumoral virus spread. It is hoped that these problems can be addressed by delivering the virus inside measles-infected cell carriers and/or by concomitant administration of immunosuppressive drugs. From a safety perspective, population immunity provides an excellent defense against measles spread from patient to carers and, in 50 years of human experience, reversion of attenuated measles to a wild-type pathogenic phenotype has not been observed. Clinical trials testing oncolytic measles viruses as an experimental cancer therapy are currently underway.
Collapse
Affiliation(s)
- Stephen J. Russell
- Mayo Clinic Department of Molecular Medicine, 200 1 Street SW, Rochester, MN 55905, Phone: 507-824-8384, Fax: 507-284-8388,
| | - Kah Whye Peng
- Mayo Clinic Department of Molecular Medicine, 200 1Street SW, Rochester, MN 55905, Phone: 507-824-8357, Fax: 507-284-8388,
| |
Collapse
|
39
|
Henshaw J, Mossop B, Yuan F. Relaxin treatment of solid tumors: effects on electric field-mediated gene delivery. Mol Cancer Ther 2008; 7:2566-73. [PMID: 18723501 DOI: 10.1158/1535-7163.mct-08-0435] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pulsed electric fields have been shown to enhance interstitial transport of plasmid DNA (pDNA) in solid tumors in vivo. However, the extent of enhancement is still limited partly due to the collagen component in extracellular matrix. To this end, effects of collagen remodeling on interstitial electrophoresis were investigated by pretreatment of tumor-bearing mice with a recombinant human relaxin (rh-Rlx). In the study, two tumor lines (4T1 and B16.F10) were examined and implanted s.c. to establish two murine models: dorsal skin-fold chamber (DSC) and hind leg. Effects of rh-Rlx on pDNA electrophoresis were measured either directly in the DSC model or indirectly in the hind leg model via reporter gene expression. It was observed that rh-Rlx treatment reduced collagen levels in the hind leg tumors but not in the DSC tumors. The observation correlated with the results from electromobility experiments, where rh-Rlx treatment enhanced transgene expression in 4T1 hind leg tumors but did not increase the electromobility of pDNA in the DSC tumors. In addition, it was observed that pDNA binding to collagen could block its diffusion in collagen gel in vitro. These observations showed that effects of rh-Rlx on the collagen content depended on microenvironment in solid tumors and that rh-Rlx treatment would enhance electric field-mediated gene delivery only if it could effectively reduce the collagen content in collagen-rich tumors.
Collapse
Affiliation(s)
- Joshua Henshaw
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
40
|
Dixit V, Juliano RL. Selective killing of Smad4-negative tumor cells via a designed repressor strategy. Mol Pharmacol 2008; 74:289-97. [PMID: 18426856 PMCID: PMC2561925 DOI: 10.1124/mol.108.046953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Smad4 is a key tumor suppressor that is frequently deleted or inactive in pancreatic and colon tumors. In this report, we describe an approach for attaining selective killing of Smad4-deficient tumor cells. Using a vector system involving a designed repressor with zinc finger binding domains and the herpes simplex virus thymidine kinase (HSV-TK) "suicide gene," we demonstrate Smad4-responsive regulation of HSV-TK expression and consequent altered susceptibility to the prodrug ganciclovir (GCV). In pancreatic tumor cell lines stably transfected with the vector system, a robust differential of HSV-TK expression and GCV toxicity was attained depending on the presence or absence of cotransfected Smad4. In matched colon tumor cell lines lacking Smad4 or expressing physiological levels of Smad4, an adenoviral version of the vector system attained a significant degree of preferential killing of Smad4-negative tumor cells in response to GCV. These findings demonstrate the possibility of achieving selective killing of pancreatic and colon cells depending on their Smad4 status.
Collapse
Affiliation(s)
- Vidula Dixit
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-7365, USA
| | | |
Collapse
|
41
|
Frenkel V. Ultrasound mediated delivery of drugs and genes to solid tumors. Adv Drug Deliv Rev 2008; 60:1193-208. [PMID: 18474406 DOI: 10.1016/j.addr.2008.03.007] [Citation(s) in RCA: 339] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Accepted: 03/04/2008] [Indexed: 12/21/2022]
Abstract
It has long been shown that therapeutic ultrasound can be used effectively to ablate solid tumors, and a variety of cancers are presently being treated in the clinic using these types of ultrasound exposures. There is, however, an ever-increasing body of preclinical literature that demonstrates how ultrasound energy can also be used non-destructively for increasing the efficacy of drugs and genes for improving cancer treatment. In this review, a summary of the most important ultrasound mechanisms will be given with a detailed description of how each one can be employed for a variety of applications. This includes the manner by which acoustic energy deposition can be used to create changes in tissue permeability for enhancing the delivery of conventional agents, as well as for deploying and activating drugs and genes via specially tailored vehicles and formulations.
Collapse
|
42
|
Huszthy PC, Goplen D, Thorsen F, Immervoll H, Wang J, Gutermann A, Miletic H, Bjerkvig R. Oncolytic herpes simplex virus type-1 therapy in a highly infiltrative animal model of human glioblastoma. Clin Cancer Res 2008; 14:1571-80. [PMID: 18316582 DOI: 10.1158/1078-0432.ccr-07-2000] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have examined the spread and antitumor efficacy of an oncolytic herpes simplex virus-1-based vector (G207) in glioblastoma biopsy spheroids in vitro and in vivo after local delivery to corresponding intracranial xenografts. Spheroids from three patients were infected with increasing doses of G207 and transgene expression was quantified. Other infected spheroids were followed for 10 days to assess cytotoxic effects. For the in vivo study, spheroids were grafted intracerebrally into Rowett nude rats. The resulting highly infiltrative xenografts were injected with 3.4 x 10(6) plaque-forming units (penetration study) or 6.8 x 10(6) plaque-forming units (therapeutic study) of G207 using microprocessor-controlled stereotaxic delivery. Vector spread was tracked by histochemical staining. In the therapeutic study, tumor volumes were monitored weekly by magnetic resonance imaging, and survival data were collected. In vitro, lacZ expression was seen at the spheroid surfaces 24 h postinfection, whereas the spheroid cores were transgene positive after 96 h. Cytotoxic susceptibility varied between the patients, showing a 36% to 95% lysis 10 days postinfection. Local delivery of G207 into intracranial xenografts resulted in extensive vector spread throughout the lesions. In the therapeutic study, G207 application reduced tumor volumes compared with controls, but did not significantly improve survival of the animals. Histologic analysis revealed infection of host structures such as the ventricular and choroid plexus ependyma. In conclusion, G207 replicates in patient-derived glioblastoma multiforme xenografts and tumor volumes are reduced after intratumoral delivery; however, the survival data suggest that the therapeutic effect could be improved by repeated vector application or through combination with other treatment modalities.
Collapse
Affiliation(s)
- Peter C Huszthy
- Department of Biomedicine, The Gade Institute, University of Bergen, Bergen, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Weinberg BD, Blanco E, Gao J. Polymer Implants for Intratumoral Drug Delivery and Cancer Therapy. J Pharm Sci 2008; 97:1681-702. [PMID: 17847077 DOI: 10.1002/jps.21038] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To address the need for minimally invasive treatment of unresectable tumors, intratumoral polymer implants have been developed to release a variety of chemotherapeutic agents for the locoregional therapy of cancer. These implants, also termed "polymer millirods," were designed to provide optimal drug release kinetics to improve drug delivery efficiency and antitumor efficacy when treating unresectable tumors. Modeling of drug transport properties in different tissue environments has provided theoretical insights on rational implant design, and several imaging techniques have been established to monitor the local drug concentrations surrounding these implants both ex vivo and in vivo. Preliminary antitumor efficacy and drug distribution studies in a rabbit liver tumor model have shown that these implants can restrict tumor growth in small animal tumors (diameter < 1 cm). In the future, new approaches, such as three-dimensional (3-D) drug distribution modeling and the use of multiple drug-releasing implants, will be used to extend the efficacy of these implants in treating larger tumors more similar to intractable human tumors.
Collapse
Affiliation(s)
- Brent D Weinberg
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
44
|
Stukel JM, Heys JJ, Caplan MR. Optimizing Delivery of Multivalent Targeting Constructs for Detection of Secondary Tumors. Ann Biomed Eng 2008; 36:1291-304. [DOI: 10.1007/s10439-008-9498-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 04/04/2008] [Indexed: 11/29/2022]
|
45
|
Zaharoff DA, Henshaw JW, Mossop B, Yuan F. Mechanistic analysis of electroporation-induced cellular uptake of macromolecules. Exp Biol Med (Maywood) 2008; 233:94-105. [PMID: 18156311 DOI: 10.3181/0704-rm-113] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Pulsed electric field has been widely used as a nonviral gene delivery platform. The delivery efficiency can be improved through quantitative analysis of pore dynamics and intracellular transport of plasmid DNA. To this end, we investigated mechanisms of cellular uptake of macromolecules during electroporation. In the study, fluorescein isothiocyanate-labeled dextran (FD) with molecular weight of 4,000 (FD-4) or 2,000,000 (FD-2000) was added into suspensions of a murine mammary carcinoma cell (4T1) either before or at different time points (ie, 1, 2, or 10 sec) after the application of different pulsed electric fields (in high-voltage mode: 1.2-2.0 kV in amplitude, 99 microsec in duration, and 1-5 pulses; in low-voltage mode: 100-300 V in amplitude, 5-20 msec in duration, and 1-5 pulses). The intracellular concentrations of FD were quantified using a confocal microscopy technique. To understand transport mechanisms, a mathematical model was developed for numerical simulation of cellular uptake. We observed that the maximum intracellular concentration of FD-2000 was less than 3% of that in the pulsing medium. The intracellular concentrations increased linearly with pulse number and amplitude. In addition, the intracellular concentration of FD-2000 was approximately 40% lower than that of FD-4 under identical pulsing conditions. The numerical simulations predicted that the pores larger than FD-4 lasted <10 msec after the application of pulsed fields if the simulated concentrations were on the same order of magnitude as the experimental data. In addition, the simulation results indicated that diffusion was negligible for cellular uptake of FD molecules. Taken together, the data suggested that large pores induced in the membrane by pulsed electric fields disappeared rapidly after pulse application and convection was likely to be the dominant mode of transport for cellular uptake of uncharged macromolecules.
Collapse
Affiliation(s)
- David A Zaharoff
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Durham, North Carolina 27708, USA
| | | | | | | |
Collapse
|
46
|
Rosca EV, Stukel JM, Gillies RJ, Vagner J, Caplan MR. Specificity and mobility of biomacromolecular, multivalent constructs for cellular targeting. Biomacromolecules 2007; 8:3830-5. [PMID: 18039007 DOI: 10.1021/bm700791a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Effective targeting of drugs to cells requires that the drug reach the target cell and interact specifically with it. In this study, we synthesized a biomacromolecular, multivalent construct intended to target glioblastoma tumors. The construct was created by linking three dodecapeptides, reported to bind the alpha 6beta1 integrin, with poly(ethylene glycol) linkers. The construct is intended to be delivered locally, and it demonstrates a more homogeneous and more rapid perfusion profile in comparison with quantum dots. The binding specificity of the construct was investigated by using glioblastoma cells and normal human astrocyte cells. The results reveal qualitative differences in binding between glioma and normal human astrocyte cells, with a moderate increase in binding avidity due to multivalency (0.79 microM for the trivalent construct versus 4.28 microM for the dodecapeptide). Overall, biomacromolecular constructs appear to be a promising approach for targeting with high biocompatibility, good perfusion abilities, and specificity.
Collapse
Affiliation(s)
- Elena V Rosca
- Harrington Department of Bioengineering, Arizona State University, Tempe, Arizona 85287-9709, USA
| | | | | | | | | |
Collapse
|
47
|
Hartig SM, Greene RR, Dikov MM, Prokop A, Davidson JM. Multifunctional Nanoparticulate Polyelectrolyte Complexes. Pharm Res 2007; 24:2353-69. [DOI: 10.1007/s11095-007-9459-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 09/10/2007] [Indexed: 11/24/2022]
|
48
|
Kim TH, Jiang HL, Jere D, Park IK, Cho MH, Nah JW, Choi YJ, Akaike T, Cho CS. Chemical modification of chitosan as a gene carrier in vitro and in vivo. Prog Polym Sci 2007. [DOI: 10.1016/j.progpolymsci.2007.05.001] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
49
|
Abstract
Interstitial flow plays important roles in the morphogenesis, function, and pathogenesis of tissues. To investigate these roles and exploit them for tissue engineering or to overcome barriers to drug delivery, a comprehensive consideration of the interstitial space and how it controls and affects such processes is critical. Here we attempt to review the many physical and mathematical correlations that describe fluid and mass transport in the tissue interstitium; the factors that control and affect them; and the importance of interstitial transport on cell biology, tissue morphogenesis, and tissue engineering. Finally, we end with some discussion of interstitial transport issues in drug delivery, cell mechanobiology, and cell homing toward draining lymphatics.
Collapse
Affiliation(s)
- Melody A Swartz
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Switzerland.
| | | |
Collapse
|
50
|
Witlox M, Lamfers M, Wuisman P, Curiel D, Siegal G. Evolving gene therapy approaches for osteosarcoma using viral vectors: review. Bone 2007; 40:797-812. [PMID: 17189720 PMCID: PMC2731716 DOI: 10.1016/j.bone.2006.10.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 10/25/2006] [Accepted: 10/26/2006] [Indexed: 12/11/2022]
Abstract
This review begins with an introduction to the malignant bone tumor, osteosarcoma [OS] and then moves to a discussion of the commonly used vectors for gene transfer. We first briefly highlight non-viral vectors including polymeric and liposomal delivery systems but concentrate predominantly on the 5 leading viral vectors used in cancer gene therapy, specifically retroviruses, adeno-associated viruses, herpes viruses and lentiviruses with the most detailed analysis reserved for adenoviruses. The 3 main strategies for gene therapy in osteosarcoma are next summarized. As part of this review, the several prodrug-converting enzymes utilized in OS suicide gene therapy are examined. The text then turns to a discussion of adenovirus-mediated gene transfer and the need for tumor targeting via transductional or transcriptional approaches. Because of practical problems with use of replication-incompetent viruses in achieving complete tumor kill in vivo, virotherapy utilizing replication competent viruses has come to the fore. This topic is, thus, next reviewed which allows for a natural transition to a discussion of armed therapeutic viruses many of which are conditionally replicating adenoviruses carrying transgenes with established anti-tumor efficacy. We recognize that several other issues have arisen which hamper progress in the field of cancer gene therapy. We, therefore, review viral-induced toxicity in the host and vector delivery issues which have been found to potentially influence safety. We end with a brief perspective including commenting on animal models used in examining delivery strategies for osteosarcoma gene therapy. The challenges remaining are touched upon most especially the need to deal with pulmonary metastatic disease from OS.
Collapse
Affiliation(s)
- M.A. Witlox
- Department of Orthopedic Surgery, VU University Medical Center, Amsterdam, NL, ,
- Divison of Gene Therapy, Department of Medical Oncology, VU University Medical Center, Amsterdam, NL
| | - M.L. Lamfers
- Department of Neurosurgery, VU University Medical Center, Amsterdam, NL,
| | - P.I.J.M. Wuisman
- Department of Orthopedic Surgery, VU University Medical Center, Amsterdam, NL, ,
| | - D.T. Curiel
- Division of Human Gene Therapy, Depts. Of Medicine, Surgery, Pathology & Ob/Gyn and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL, USA,
| | - G.P. Siegal
- Departments of Pathology, Cell Biology, and Surgery, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL, USA,
| |
Collapse
|