1
|
Acharya R, Dutta SD, Mallik H, Patil TV, Ganguly K, Randhawa A, Kim H, Lee J, Park H, Mo C, Lim KT. Physical stimuli-responsive DNA hydrogels: design, fabrication strategies, and biomedical applications. J Nanobiotechnology 2025; 23:233. [PMID: 40119420 PMCID: PMC11929200 DOI: 10.1186/s12951-025-03237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/16/2025] [Indexed: 03/24/2025] Open
Abstract
Physical stimuli-responsive DNA hydrogels hold immense potential for tissue engineering due to their inherent biocompatibility, tunable properties, and capacity to replicate the mechanical environment of natural tissue, making physical stimuli-responsive DNA hydrogels a promising candidate for tissue engineering. These hydrogels can be tailored to respond to specific physical triggers such as temperature, light, magnetic fields, ultrasound, mechanical force, and electrical stimuli, allowing precise control over their behavior. By mimicking the extracellular matrix (ECM), DNA hydrogels provide structural support, biomechanical cues, and cell signaling essential for tissue regeneration. This article explores various physical stimuli and their incorporation into DNA hydrogels, including DNA self-assembly and hybrid DNA hydrogel methods. The aim is to demonstrate how DNA hydrogels, in conjunction with other biomolecules and the ECM environment, generate dynamic scaffolds that respond to physical stimuli to facilitate tissue regeneration. We investigate the most recent developments in cancer therapies, including injectable DNA hydrogel for bone regeneration, personalized scaffolds, and dynamic culture models for drug discovery. The study concludes by delineating the remaining obstacles and potential future orientations in the optimization of DNA hydrogel design for the regeneration and reconstruction of tissue. It also addresses strategies for surmounting current challenges and incorporating more sophisticated technologies, thereby facilitating the clinical translation of these innovative hydrogels.
Collapse
Affiliation(s)
- Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institution of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hemadri Mallik
- Department of Botany, The University of Burdwan, Bardhaman, West Bengal, 713104, India
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hojin Kim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Changyeun Mo
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Institution of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
2
|
Li B, Lu Y, Huang X, Sojic N, Jiang D, Liu B. Stimuli-Responsive DNA Nanomachines for Intracellular Targeted Electrochemiluminescence Imaging in Single Cells. Angew Chem Int Ed Engl 2025; 64:e202421658. [PMID: 39714401 DOI: 10.1002/anie.202421658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Electrochemiluminescence (ECL) microscopy has emerged as a powerful technique for single-cell imaging owing to its unparalleled background-free imaging advantages. However, controlled intracellular ECL imaging remains challenging. Here, we developed a stimuli-responsive self-assembled DNA nanomachine that enables the ECL imaging of intracellular target biomolecules in single cells. The ECL nanoprobe consists of an ECL nanoemitter constructed from Ru(bpy)3 2+-doped metal-organic framework as the nanoreactor core, with a DNA polymer hydrogel (DNAgel) shell acting as the stimuli-gated layer. The outer functionalized DNAgel of the ECL nanoprobe was specifically designed to block ECL generation and to dissociate by ATP molecules, thereby enabling selective recovery of ECL emission capability. Such an engineered stimuli-responsive nanomachine successfully achieved the targeted ECL imaging of intracellular ATP distribution with spatial resolution. In addition, ECL imaging of various intracellular biomolecules should be generalizable by simply changing the switching DNA sequence of the probe. Our research provided a reliable strategy for ECL microscopy within cells, which will broaden the application of ECL in single-cell and single-molecule profiling.
Collapse
Affiliation(s)
- Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Yanwei Lu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Neso Sojic
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR, 5255, F-33400, Talence, France
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
3
|
Kopyeva I, Goldner EC, Hoye JW, Yang S, Regier MC, Bradford JC, Vera KR, Bretherton RC, Robinson JL, DeForest CA. Stepwise Stiffening/Softening of and Cell Recovery from Reversibly Formulated Hydrogel Interpenetrating Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404880. [PMID: 39240007 PMCID: PMC11530321 DOI: 10.1002/adma.202404880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/06/2024] [Indexed: 09/07/2024]
Abstract
Biomechanical contributions of the extracellular matrix underpin cell growth and proliferation, differentiation, signal transduction, and other fate decisions. As such, biomaterials whose mechanics can be spatiotemporally altered- particularly in a reversible manner- are extremely valuable for studying these mechanobiological phenomena. Herein, a poly(ethylene glycol) (PEG)-based hydrogel model consisting of two interpenetrating step-growth networks is introduced that are independently formed via largely orthogonal bioorthogonal chemistries and sequentially degraded with distinct recombinant sortases, affording reversibly tunable stiffness ranges that span healthy and diseased soft tissues (e.g., 500 Pa-6 kPa) alongside terminal cell recovery for pooled and/or single-cell analysis in a near "biologically invisible" manner. Spatiotemporal control of gelation within the primary supporting network is achieved via mask-based and two-photon lithography; these stiffened patterned regions can be subsequently returned to the original soft state following sortase-based secondary network degradation. Using this approach, the effects of 4D-triggered network mechanical changes on human mesenchymal stem cell morphology and Hippo signaling, as well as Caco-2 colorectal cancer cell mechanomemory using transcriptomics and metabolic assays are investigated. This platform is expected to be of broad utility for studying and directing mechanobiological phenomena, patterned cell fate, and disease resolution in softer matrices.
Collapse
Affiliation(s)
- Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
| | - Ethan C. Goldner
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Jack W. Hoye
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Shiyu Yang
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Mary C. Regier
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - John C. Bradford
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - Kaitlyn R. Vera
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Ross C. Bretherton
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - Jennifer L. Robinson
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
- Department of Orthopedic Surgery and Sports Medicine, University of Washington, Seattle WA 98105, USA
- Department of Mechanical Engineering, University of Washington, Seattle WA 98105, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
| | - Cole A. DeForest
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
- Department of Chemistry, University of Washington, Seattle WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle WA 98105, USA
| |
Collapse
|
4
|
Shi Z, Li Y, Du X, Liu D, Dong Y. Constructing Stiffness Tunable DNA Hydrogels Based on DNA Modules with Adjustable Rigidity. NANO LETTERS 2024; 24:8634-8641. [PMID: 38950146 DOI: 10.1021/acs.nanolett.4c01870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
DNA hydrogel represents a potent material for crafting biological scaffolds, but the toolbox to systematically regulate the mechanical property is still limited. Herein, we have provided a strategy to tune the stiffness of DNA hydrogel through manipulating the rigidity of DNA modules. By introducing building blocks with higher molecular rigidity and proper connecting fashion, DNA hydrogel stiffness could be systematically elevated. These hydrogels showed excellent dynamic properties and biocompatibility, thus exhibiting great potential in three-dimensional (3D) cell culture. This study has offered a systematic method to explore the structure-property relationship, which may contribute to the development of more intelligent and personalized biomedical platforms.
Collapse
Affiliation(s)
- Ziwei Shi
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yujie Li
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xiuji Du
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dongsheng Liu
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yuanchen Dong
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
5
|
Tusnim J, Budharaju K, Grasman JM. Fabrication of ECM protein coated hollow collagen channels to study peripheral nerve regeneration. Sci Rep 2024; 14:16096. [PMID: 38997331 PMCID: PMC11245515 DOI: 10.1038/s41598-024-67046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
Peripheral nerve injury is a prevalent clinical problem that often leads to lifelong disability and reduced quality of life. Although peripheral nerves can regenerate, recovery after severe injury is slow and incomplete. The current gold standard treatment, autologous nerve transplantation, has limitations including donor site morbidity and poor functional outcomes, highlighting the need for improved repair strategies. We developed a reproducible in vitro hollow channel collagen gel construct to investigate peripheral nerve regeneration (PNR) by exploring the influence of key extracellular matrix (ECM) proteins on axonal growth and regeneration. Channels were coated with ECM proteins: collagen IV, laminin, or fibronectin and seeded with dorsal root ganglia (DRG) collected from E16 rat embryos to compare the ability of the ECM proteins to enhance axonal growth. Robust axonal extension and Schwann cell (SC) infiltration were observed in fibronectin-coated channels, suggesting its superiority over other ECM proteins. Differential effects of ECM proteins on axons and SCs indicated direct growth stimulation beyond SC-mediated guidance. In vitro laceration injury modeling further confirmed fibronectin's superior pro-regenerative effects, showcasing its potential in enhancing axonal regrowth post-injury. Advancing in vitro modeling that closely replicates native microenvironments will accelerate progress in overcoming the limitations of current nerve repair approaches.
Collapse
Affiliation(s)
- Jarin Tusnim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Karthik Budharaju
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Jonathan M Grasman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
6
|
Singh N, Singh A, Dhanka M, Bhatia D. DNA functionalized programmable hybrid biomaterials for targeted multiplexed applications. J Mater Chem B 2024. [PMID: 38973587 DOI: 10.1039/d4tb00287c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
With the advent of DNA nanotechnology, DNA-based biomaterials have emerged as a unique class of materials at the center of various biological advances. Owing to DNA's high modification capacity via programmable Watson-Crick base-pairing, DNA structures of desired design with increased complexity have been developed. However, the limited scalability, along with poor mechanical properties, high synthesis costs, and poor stability, reduced the adaptability of DNA-based materials to complex biological applications. DNA-based hybrid biomaterials were designed to overcome these limitations by conjugating DNA with functional materials. Today, DNA-based hybrid materials have attracted significant attention in biological engineering with broad application prospects in biomedicine, clinical diagnosis, and nanodevices. Here, we summarize the recent advances in DNA-based hybrid materials with an in-depth understanding of general molecular design principles, functionalities, and applications. Finally, the challenges and prospects associated with DNA-based hybrid materials are discussed at the end of this review.
Collapse
Affiliation(s)
- Nihal Singh
- Discipline of Bioengineering, Indian Institute of Technology Gandhinagar, Gujarat, India, 382355.
| | - Ankur Singh
- Discipline of Bioengineering, Indian Institute of Technology Gandhinagar, Gujarat, India, 382355.
| | - Mukesh Dhanka
- Discipline of Bioengineering, Indian Institute of Technology Gandhinagar, Gujarat, India, 382355.
| | - Dhiraj Bhatia
- Discipline of Bioengineering, Indian Institute of Technology Gandhinagar, Gujarat, India, 382355.
| |
Collapse
|
7
|
Zhu J, Zhu X, Xu Y, Chen X, Ge X, Huang Y, Wang Z. The role of noncoding RNAs in beta cell biology and tissue engineering. Life Sci 2024; 348:122717. [PMID: 38744419 DOI: 10.1016/j.lfs.2024.122717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
The loss or dysfunction of pancreatic β-cells, which are responsible for insulin secretion, constitutes the foundation of all forms of diabetes, a widely prevalent disease worldwide. The replacement of damaged β-cells with regenerated or transplanted cells derived from stem cells is a promising therapeutic strategy. However, inducing the differentiation of stem cells into fully functional glucose-responsive β-cells in vitro has proven to be challenging. Noncoding RNAs (ncRNAs) have emerged as critical regulatory factors governing the differentiation, identity, and function of β-cells. Furthermore, engineered hydrogel systems, biomaterials, and organ-like structures possess engineering characteristics that can provide a three-dimensional (3D) microenvironment that supports stem cell differentiation. This review summarizes the roles and contributions of ncRNAs in maintaining the differentiation, identity, and function of β-cells. And it focuses on regulating the levels of ncRNAs in stem cells to activate β-cell genetic programs for generating alternative β-cells and discusses how to manipulate ncRNA expression by combining hydrogel systems and other tissue engineering materials. Elucidating the patterns of ncRNA-mediated regulation in β-cell biology and utilizing this knowledge to control stem cell differentiation may offer promising therapeutic strategies for generating functional insulin-producing cells in diabetes cell replacement therapy and tissue engineering.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xiaoren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yang Xu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xingyou Chen
- Medical School of Nantong University, Nantong 226001, China
| | - Xinqi Ge
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Zhiwei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
8
|
Ghosh S, Ghosh S, Sharma H, Bhaskar R, Han SS, Sinha JK. Harnessing the power of biological macromolecules in hydrogels for controlled drug release in the central nervous system: A review. Int J Biol Macromol 2024; 254:127708. [PMID: 37923043 DOI: 10.1016/j.ijbiomac.2023.127708] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Hydrogels have immense potential in revolutionizing central nervous system (CNS) drug delivery, improving outcomes for neurological disorders. They serve as promising tools for controlled drug delivery to the CNS. Available hydrogel types include natural macromolecules (e.g., chitosan, hyaluronic acid, alginate), as well as hybrid hydrogels combining natural and synthetic polymers. Each type offers distinct advantages in terms of biocompatibility, mechanical properties, and drug release kinetics. Design and engineering considerations encompass hydrogel composition, crosslinking density, porosity, and strategies for targeted drug delivery. The review emphasizes factors affecting drug release profiles, such as hydrogel properties and formulation parameters. CNS drug delivery applications of hydrogels span a wide range of therapeutics, including small molecules, proteins and peptides, and nucleic acids. However, challenges like limited biodegradability, clearance, and effective CNS delivery persist. Incorporating 3D bioprinting technology with hydrogel-based CNS drug delivery holds the promise of highly personalized and precisely controlled therapeutic interventions for neurological disorders. The review explores emerging technologies like 3D bioprinting and nanotechnology as opportunities for enhanced precision and effectiveness in hydrogel-based CNS drug delivery. Continued research, collaboration, and technological advancements are vital for translating hydrogel-based therapies into clinical practice, benefiting patients with CNS disorders. This comprehensive review article delves into hydrogels for CNS drug delivery, addressing their types, design principles, applications, challenges, and opportunities for clinical translation.
Collapse
Affiliation(s)
- Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India; ICMR - National Institute of Nutrition, Tarnaka, Hyderabad, Telangana 500007, India
| | - Soumya Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India
| | - Hitaishi Sharma
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea.
| | | |
Collapse
|
9
|
Han S, Kim J, Kim SH, Youn W, Kim J, Ji GY, Yang S, Park J, Lee GM, Kim Y, Choi IS. In vitro induction of in vivo-relevant stellate astrocytes in 3D brain-derived, decellularized extracellular matrices. Acta Biomater 2023; 172:218-233. [PMID: 37788738 DOI: 10.1016/j.actbio.2023.09.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
In vitro fabrication of 3D cell culture systems that could provide in vivo tissue-like, structural, and biochemical environments to neural cells is essential not only for fundamental studies on brain function and behavior, but also for tissue engineering and regenerative medicine applicable to neural injury and neurodegenerative diseases. In particular, for astrocytes-which actively respond to the surroundings and exhibit varied morphologies based on stimuli (e.g., stiffness and chemicals) in vitro, as well as physiological or pathological conditions in vivo-it is crucial to establish an appropriate milieu in in vitro culture platforms. Herein, we report the induction of in vivo-relevant, stellate-shaped astrocytes derived from cortices of Rattus norvegicus by constructing the 3D cell culture systems of brain-derived, decellularized extracellular matrices (bdECMs). The bdECM hydrogels were mechanically stable and soft, and the bdECM-based 3D scaffolds supplied biochemically active environments that astrocytes could interact with, leading to the development of in vivo-like stellate structures. In addition to the distinct morphology with actively elongated endfeet, the astrocytes, cultured in 3D bdECM scaffolds, would have neurosupportive characteristics, indicated by the accelerated neurite outgrowth in the astrocyte-conditioned media. Furthermore, next-generation sequencing showed that the gene expression profiles of astrocytes cultured in bdECMs were significantly different from those cultured on 2D surfaces. The stellate-shaped astrocytes in the bdECMs were analyzed to have reached a more mature state, for instance, with decreased expression of genes for scaffold ECMs, actin filaments, and cell division. The results suggest that the bdECM-based 3D culture system offers an advanced platform for culturing primary cortical astrocytes and their mixtures with other neural cells, providing a brain-like, structural and biochemical milieu that promotes the maturity and in vivo-like characteristics of astrocytes in both form and gene expression. STATEMENT OF SIGNIFICANCE: Decellularized extracellular matrices (dECMs) have emerged as strong candidates for the construction of three-dimensional (3D) cell cultures in vitro, owing to the potential to provide native biochemical and physical environments. In this study, we fabricated hydrogels of brain-derived dECMs (bdECMs) and cultured primary astrocytes within the bdECM hydrogels in a 3D context. The cultured astrocytes exhibited a stellate morphology distinct from conventional 2D cultures, featuring tridimensionally elongated endfeet. qRT-PCR and NGS-based transcriptomic analyses revealed gene expression patterns indicative of a more mature state, compared with the 2D culture. Moreover, astrocytes cultured in bdECMs showed neurosupportive characteristics, as demonstrated by the accelerated neurite outgrowth in astrocyte-conditioned media. We believe that the bdECM hydrogel-based culture system can serve as an in vitro model system for astrocytes and their coculture with other neural cells, holding significant potential for neural engineering and therapeutic applications.
Collapse
Affiliation(s)
- Sol Han
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Jungnam Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Su Hyun Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, South Korea
| | - Wongu Youn
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Jihoo Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Gil Yong Ji
- Cannabis Medical, Inc., Asan 31418, South Korea
| | - Seoin Yang
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Joohyouck Park
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, South Korea
| | | | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea; Department of Bio and Brain Engineering, KAIST, Daejeon 34141, South Korea.
| |
Collapse
|
10
|
Peng YH, Hsiao SK, Gupta K, Ruland A, Auernhammer GK, Maitz MF, Boye S, Lattner J, Gerri C, Honigmann A, Werner C, Krieg E. Dynamic matrices with DNA-encoded viscoelasticity for cell and organoid culture. NATURE NANOTECHNOLOGY 2023; 18:1463-1473. [PMID: 37550574 PMCID: PMC10716043 DOI: 10.1038/s41565-023-01483-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Three-dimensional cell and organoid cultures rely on the mechanical support of viscoelastic matrices. However, commonly used matrix materials lack control over key cell-instructive properties. Here we report on fully synthetic hydrogels based on DNA libraries that self-assemble with ultrahigh-molecular-weight polymers, forming a dynamic DNA-crosslinked matrix (DyNAtrix). DyNAtrix enables computationally predictable and systematic control over its viscoelasticity, thermodynamic and kinetic parameters by changing DNA sequence information. Adjustable heat activation allows homogeneous embedding of mammalian cells. Intriguingly, stress-relaxation times can be tuned over four orders of magnitude, recapitulating mechanical characteristics of living tissues. DyNAtrix is self-healing, printable, exhibits high stability, cyto- and haemocompatibility, and controllable degradation. DyNAtrix-based cultures of human mesenchymal stromal cells, pluripotent stem cells, canine kidney cysts and human trophoblast organoids show high viability, proliferation and morphogenesis. DyNAtrix thus represents a programmable and versatile precision matrix for advanced approaches to biomechanics, biophysics and tissue engineering.
Collapse
Affiliation(s)
- Yu-Hsuan Peng
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Syuan-Ku Hsiao
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Krishna Gupta
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - André Ruland
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Günter K Auernhammer
- Institute for Physical Chemistry and Polymer Physics, Polymer Interfaces, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Manfred F Maitz
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Susanne Boye
- Institute for Macromolecular Chemistry, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Johanna Lattner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Claudia Gerri
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Alf Honigmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Carsten Werner
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Elisha Krieg
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany.
- Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
11
|
Ji R, Hao Z, Wang H, Li X, Duan L, Guan F, Ma S. Application of Injectable Hydrogels as Delivery Systems in Spinal Cord Injury. Gels 2023; 9:907. [PMID: 37998998 PMCID: PMC10670785 DOI: 10.3390/gels9110907] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Spinal cord injury (SCI) is a severe neurological injury caused by traffic accidents, trauma, or falls, which leads to significant loss of sensory, motor, and autonomous functions and seriously affects the patient's life quality. Although considerable progress has been made in mitigating secondary injury and promoting the regeneration/repair of SCI, the therapeutic effects need to be improved due to drug availability. Given their good biocompatibility, biodegradability, and low immunogenicity, injectable hydrogels can be used as delivery systems to achieve controlled release of drugs and other substances (cells and proteins, etc.), offering new hope for SCI repair. In this article, we summarized the types of injectable hydrogels, analyzed their application as delivery systems in SCI, and further discussed the mechanisms of hydrogels in the treatment of SCI, such as anti-inflammatory, antioxidant, anti-apoptosis, and pro-neurogenesis. Moreover, we highlighted the potential benefits of hydrogels in the treatment of SCI in combination with therapies, including the recent advances and achievements of these promising tools. Our review may offer new strategies for the development of SCI treatments based on injectable hydrogels as delivery systems.
Collapse
Affiliation(s)
| | | | | | | | | | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (R.J.); (Z.H.); (H.W.); (X.L.); (L.D.)
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (R.J.); (Z.H.); (H.W.); (X.L.); (L.D.)
| |
Collapse
|
12
|
Huang WH, Ding SL, Zhao XY, Li K, Guo HT, Zhang MZ, Gu Q. Collagen for neural tissue engineering: Materials, strategies, and challenges. Mater Today Bio 2023; 20:100639. [PMID: 37197743 PMCID: PMC10183670 DOI: 10.1016/j.mtbio.2023.100639] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023] Open
Abstract
Neural tissue engineering (NTE) has made remarkable strides in recent years and holds great promise for treating several devastating neurological disorders. Selecting optimal scaffolding material is crucial for NET design strategies that enable neural and non-neural cell differentiation and axonal growth. Collagen is extensively employed in NTE applications due to the inherent resistance of the nervous system against regeneration, functionalized with neurotrophic factors, antagonists of neural growth inhibitors, and other neural growth-promoting agents. Recent advancements in integrating collagen with manufacturing strategies, such as scaffolding, electrospinning, and 3D bioprinting, provide localized trophic support, guide cell alignment, and protect neural cells from immune activity. This review categorises and analyses collagen-based processing techniques investigated for neural-specific applications, highlighting their strengths and weaknesses in repair, regeneration, and recovery. We also evaluate the potential prospects and challenges of using collagen-based biomaterials in NTE. Overall, this review offers a comprehensive and systematic framework for the rational evaluation and applications of collagen in NTE.
Collapse
Affiliation(s)
- Wen-Hui Huang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 101499, PR China
| | - Sheng-Long Ding
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China
| | - Xi-Yuan Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 101499, PR China
| | - Kai Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
| | - Hai-Tao Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 101499, PR China
| | - Ming-Zhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China
- Corresponding author.
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chaoyang District, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 101499, PR China
- Corresponding author. Institute of Zoology, Chinese Academy of Sciences, No. 5 of Courtyard 1, Beichen West Road, Chaoyang District, Beijing 100101, PR China.
| |
Collapse
|
13
|
Mattiassi S, Conner AA, Feng F, Goh ELK, Yim EKF. The Combined Effects of Topography and Stiffness on Neuronal Differentiation and Maturation Using a Hydrogel Platform. Cells 2023; 12:cells12060934. [PMID: 36980275 PMCID: PMC10047827 DOI: 10.3390/cells12060934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Biophysical parameters such as substrate topography and stiffness have been shown independently to elicit profound effects on neuronal differentiation and maturation from neural progenitor cells (NPCs) yet have not been investigated in combination. Here, the effects of various micrograting and stiffness combinations on neuronal differentiation and maturation were investigated using a polyacrylamide and N-acryloyl-6-aminocaproic acid copolymer (PAA-ACA) hydrogel with tunable stiffness. Whole laminin was conjugated onto the PAA-ACA surface indirectly or directly to facilitate long-term mouse and human NPC-derived neuron attachment. Three micrograting dimensions (2-10 µm) were patterned onto gels with varying stiffness (6.1-110.5 kPa) to evaluate the effects of topography, stiffness, and their interaction. The results demonstrate that the extracellular matrix (ECM)-modified PAA-ACA gels support mouse and human neuronal cell attachment throughout the differentiation and maturation stages (14 and 28 days, respectively). The interaction between topography and stiffness is shown to significantly increase the proportion of β-tubulin III (TUJ1) positive neurons and microtubule associated protein-2 (MAP2) positive neurite branching and length. Thus, the effects of topography and stiffness cannot be imparted. These results provide a novel platform for neural mechanobiology studies and emphasize the utility of optimizing numerous biophysical cues for improved neuronal yield in vitro.
Collapse
Affiliation(s)
- Sabrina Mattiassi
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Abigail A Conner
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Fan Feng
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Eyleen L K Goh
- Neuroscience and Mental Health Faculty, Lee Kong China School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
- Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
14
|
Abstract
Recently, substrate stiffness has been involved in the physiology and pathology of the nervous system. However, the role and function of substrate stiffness remain unclear. Here, we review known effects of substrate stiffness on nerve cell morphology and function in the central and peripheral nervous systems and their involvement in pathology. We hope this review will clarify the research status of substrate stiffness in nerve cells and neurological disorder.
Collapse
Affiliation(s)
- Weijin Si
- Key Laboratory of Cognitive Science, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| | - Jihong Gong
- Key Laboratory of Cognitive Science, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| | - Xiaofei Yang
- Key Laboratory of Cognitive Science, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
15
|
Kutlehria S, D'Souza A, Bleier BS, Amiji MM. Role of 3D Printing in the Development of Biodegradable Implants for Central Nervous System Drug Delivery. Mol Pharm 2022; 19:4411-4427. [PMID: 36154128 DOI: 10.1021/acs.molpharmaceut.2c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increased life expectancy has led to a rise in age-related disorders including neurological diseases such as Alzheimer's disease and Parkinson's disease. Limited progress has been made in the development of clinically translatable therapies for these central nervous system (CNS) diseases. Challenges including the blood-brain barrier, brain complexity, and comorbidities in the elderly population are some of the contributing factors toward lower success rates. Various invasive and noninvasive ways are being employed to deliver small and large molecules across the brain. Biodegradable, implantable drug-delivery systems have gained lot of interest due to advantages such as sustained and targeted delivery, lower side effects, and higher patient compliance. 3D printing is a novel additive manufacturing technique where various materials and printing techniques can be used to fabricate implants with the desired complexity in terms of mechanical properties, shapes, or release profiles. This review discusses an overview of various types of 3D-printing techniques and illustrative examples of the existing literature on 3D-printed systems for CNS drug delivery. Currently, there are various technical and regulatory impediments that need to be addressed for successful translation from the bench to the clinical stage. Overall, 3D printing is a transformative technology with great potential in advancing customizable drug treatment in a high-throughput manner.
Collapse
Affiliation(s)
- Shallu Kutlehria
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts 02115, United States
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts 02115, United States.,Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Benjamin S Bleier
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts 02115, United States.,Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
16
|
Yi B, Xu Q, Liu W. An overview of substrate stiffness guided cellular response and its applications in tissue regeneration. Bioact Mater 2022; 15:82-102. [PMID: 35386347 PMCID: PMC8940767 DOI: 10.1016/j.bioactmat.2021.12.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023] Open
Abstract
Cell-matrix interactions play a critical role in tissue repair and regeneration. With gradual uncovering of substrate mechanical characteristics that can affect cell-matrix interactions, much progress has been made to unravel substrate stiffness-mediated cellular response as well as its underlying mechanisms. Yet, as a part of cell-matrix interaction biology, this field remains in its infancy, and the detailed molecular mechanisms are still elusive regarding scaffold-modulated tissue regeneration. This review provides an overview of recent progress in the area of the substrate stiffness-mediated cellular responses, including 1) the physical determination of substrate stiffness on cell fate and tissue development; 2) the current exploited approaches to manipulate the stiffness of scaffolds; 3) the progress of recent researches to reveal the role of substrate stiffness in cellular responses in some representative tissue-engineered regeneration varying from stiff tissue to soft tissue. This article aims to provide an up-to-date overview of cell mechanobiology research in substrate stiffness mediated cellular response and tissue regeneration with insightful information to facilitate interdisciplinary knowledge transfer and enable the establishment of prognostic markers for the design of suitable biomaterials. Substrate stiffness physically determines cell fate and tissue development. Rational design of scaffolds requires the understanding of cell-matrix interactions. Substrate stiffness depends on scaffold molecular-constituent-structure interaction. Substrate stiffness-mediated cellular responses vary in different tissues.
Collapse
|
17
|
Osouli-Bostanabad K, Masalehdan T, Kapsa RMI, Quigley A, Lalatsa A, Bruggeman KF, Franks SJ, Williams RJ, Nisbet DR. Traction of 3D and 4D Printing in the Healthcare Industry: From Drug Delivery and Analysis to Regenerative Medicine. ACS Biomater Sci Eng 2022; 8:2764-2797. [PMID: 35696306 DOI: 10.1021/acsbiomaterials.2c00094] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Three-dimensional (3D) printing and 3D bioprinting are promising technologies for a broad range of healthcare applications from frontier regenerative medicine and tissue engineering therapies to pharmaceutical advancements yet must overcome the challenges of biocompatibility and resolution. Through comparison of traditional biofabrication methods with 3D (bio)printing, this review highlights the promise of 3D printing for the production of on-demand, personalized, and complex products that enhance the accessibility, effectiveness, and safety of drug therapies and delivery systems. In addition, this review describes the capacity of 3D bioprinting to fabricate patient-specific tissues and living cell systems (e.g., vascular networks, organs, muscles, and skeletal systems) as well as its applications in the delivery of cells and genes, microfluidics, and organ-on-chip constructs. This review summarizes how tailoring selected parameters (i.e., accurately selecting the appropriate printing method, materials, and printing parameters based on the desired application and behavior) can better facilitate the development of optimized 3D-printed products and how dynamic 4D-printed strategies (printing materials designed to change with time or stimulus) may be deployed to overcome many of the inherent limitations of conventional 3D-printed technologies. Comprehensive insights into a critical perspective of the future of 4D bioprinting, crucial requirements for 4D printing including the programmability of a material, multimaterial printing methods, and precise designs for meticulous transformations or even clinical applications are also given.
Collapse
Affiliation(s)
- Karim Osouli-Bostanabad
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular, Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Tahereh Masalehdan
- Department of Materials Engineering, Institute of Mechanical Engineering, University of Tabriz, Tabriz 51666-16444, Iran
| | - Robert M I Kapsa
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Anita Quigley
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Aikaterini Lalatsa
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular, Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Kiara F Bruggeman
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Stephanie J Franks
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Richard J Williams
- Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,The Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia.,Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
18
|
Kumarapuram S, Kunnath AJ, Omelchenko A, Boustany NN, Firestein BL. Glutamate Receptors Mediate Changes to Dendritic Mitochondria in Neurons Grown on Stiff Substrates. Ann Biomed Eng 2022; 50:1116-1133. [PMID: 35652995 DOI: 10.1007/s10439-022-02987-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022]
Abstract
The stiffness of brain tissue changes during development and disease. These changes can affect neuronal morphology, specifically dendritic arborization. We previously reported that N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors regulate dendrite number and branching in a manner that is dependent on substrate stiffness. Since mitochondria affect the shape of dendrites, in this study, we determined whether the stiffness of substrates on which rat hippocampal neurons are grown affects mitochondrial characteristics and if glutamate receptors mediate the effects of substrate stiffness. Dendritic mitochondria are small, short, simple, and scarce in neurons cultured on substrates of 0.5 kPa stiffness. In contrast, dendritic mitochondria are large, long, complex, and low in number in neurons grown on substrates of 4 kPa stiffness. Dendritic mitochondria of neurons cultured on glass are high in number and small with complex shapes. Treatment of neurons grown on the stiffer gels or glass with the NMDA and AMPA receptor antagonists, 2-amino-5-phosphonopentanoic acid and 6-cyano-7-nitroquinoxaline-2,3-dione, respectively, results in mitochondrial characteristics of neurons grown on the softer substrate. These results suggest that glutamate receptors play important roles in regulating both mitochondrial morphology and dendritic arborization in response to substrate stiffness.
Collapse
Affiliation(s)
- Siddhant Kumarapuram
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Ansley J Kunnath
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Anton Omelchenko
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA.,Neurosciences Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nada N Boustany
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA.
| |
Collapse
|
19
|
Cao D, Xie Y, Song J. DNA Hydrogels in the Perspective of Mechanical Properties. Macromol Rapid Commun 2022; 43:e2200281. [PMID: 35575627 DOI: 10.1002/marc.202200281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/25/2022] [Indexed: 11/10/2022]
Abstract
Tailoring the mechanical properties has always been a key to the field of hydrogels in terms of different applications. Particularly, deoxyribonucleic acid (DNA) hydrogels offer an unambiguous way to precisely tune the mechanical properties, largely on account of their programmable sequences, abundant responding toolbox, and various ligation approaches. In this review, DNA hydrogels from the perspective of mechanical properties, from synthetic standpoint to different applications are introduced. The relationship between the structure and their mechanical properties in DNA hydrogels and the methods of regulating the mechanical properties of DNA hydrogels are specifically summarized. Furthermore, several recent applications of DNA hydrogels in relation to their mechanical properties are discussed. Benefiting from the tunability and flexibility, rational design of mechanical properties in DNA hydrogels provided unheralded interest from fundamental science to extensive applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dengjie Cao
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| |
Collapse
|
20
|
Bioactive injectable hydrogels for on demand molecule/cell delivery and for tissue regeneration in the central nervous system. Acta Biomater 2022; 140:88-101. [PMID: 34852302 DOI: 10.1016/j.actbio.2021.11.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022]
Abstract
Currently there are no potential curative therapies that can improve the central nervous system (CNS) regeneration after traumatic injuries or diseases. Indeed, the regeneration of CNS is greatly impaired by limited drug penetration across the blood brain barrier (BBB), poor drug targeting, deficient progenitor neural cells and limited proliferation of mature neural cells. To overcome these limitations, bioengineered injectable hydrogels in combination with drug and cell therapy have been proposed to mimic the complexity of the CNS microenvironment and architecture. Additionally, to enhance relevant CNS regeneration, proper biophysical and biochemical cues are needed. Recently, great efforts have been devoted to tailor stimuli-responsive hydrogels as novel carrier systems which are able to guide neural tissue regeneration. This review provides an extensive overview on the most promising injectable hydrogels for neural tissue engineering. A special emphasis is made to highlight the ability of these hydrogels to deliver bioactive compounds/cells upon the exposure to internal and external stimuli. Bioactive injectable hydrogels have a broad application in central nervous system's (CNS) regeneration. This review gives an overview of the latest pioneering approaches in CNS recovery using stimuli-responsive hydrogels for several neurodegenerative disorders. STATEMENT OF SIGNIFICANCE: This review summarizes the latest innovations on bioactive injectable hydrogels, focusing on tailoring internal/external stimuli-responsive hydrogels for the new injectable systems design, able to guide neural tissue response. The purpose is to highlight the advantages and the limitations of thermo-responsive, photo responsive, magnetic responsive, electric responsive, ultrasound responsive and enzymes-triggered injectable hydrogels in developing customizable neurotherapies. We believe that this comprehensive review will help in identifying the strengths and gaps in the existing literature and to further support the use of injectable hydrogels in stimulating CNS regeneration.
Collapse
|
21
|
Abstract
Stimuli-responsive DNA-based hydrogels are attracting growing interest because of their smart responsiveness, excellent biocompatibility, regulated biodegradability, and programmable design properties. Integration of reconfigurable DNA architectures and switchable supramolecular moieties (as cross-linkers) in hydrogels by responding to external stimuli provides an ideal approach for the reversible tuning structural and mechanical properties of the hydrogels, which can be exploited in the development of intelligent DNA-based materials. This review highlights recent advances in the design of responsive pure DNA hydrogels, DNA-polymer hybrid hydrogels, and autonomous DNA-based hydrogels with transient behaviors. A variety of chemically and physically triggered DNA-based stimuli-responsive hydrogels and their versatile applications in biosensing, biocatalysis, cell culture and separation, drug delivery, shape memory, self-healing, and robotic actuators are summarized. Finally, we address the key challenges that the field will face in the coming years, and future prospects are identified.
Collapse
Affiliation(s)
- Chen Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, No. 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
22
|
Gangrade A, Stephanopoulos N, Bhatia D. Programmable, self-assembled DNA nanodevices for cellular programming and tissue engineering. NANOSCALE 2021; 13:16834-16846. [PMID: 34622910 DOI: 10.1039/d1nr04475c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
DNA-based nanotechnology has evolved into an autonomous, highly innovative, and dynamic field of research at the nexus of supramolecular chemistry, nanotechnology, materials science, and biotechnology. DNA-based materials, including origami nanodevices, have started to emerge as an ideal scaffold for use in cellular programming, tissue engineering, and drug delivery applications. We cover herein the applications for DNA as a scaffold for interfacing with, and guiding, the activity of biological systems like cells and tissues. Although DNA is a highly programmable molecular building block, it suffers from a lack of functional capacity for guiding and modulating cells. Coupling DNA to biologically active molecules can bestow bioactivity to these nanodevices. The main goal of such nanodevices is to synthesize systems that can bind to cells and mimic the extracellular environment, and serve as a highly promising toolbox for multiple applications in cellular programming and tissue engineering. DNA-based programmable devices offer a highly promising approach for programming collections of cells, tissue engineering, and regenerative medicine applications.
Collapse
Affiliation(s)
- Ankit Gangrade
- Biological Engineering, Indian Institute of Technology Gandhinagar, India.
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Arizona State University, USA
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, USA
| | - Dhiraj Bhatia
- Biological Engineering, Indian Institute of Technology Gandhinagar, India.
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, India
| |
Collapse
|
23
|
Wang DY, Melero C, Albaraky A, Atherton P, Jansen KA, Dimitracopoulos A, Dajas-Bailador F, Reid A, Franze K, Ballestrem C. Vinculin is required for neuronal mechanosensing but not for axon outgrowth. Exp Cell Res 2021; 407:112805. [PMID: 34487728 DOI: 10.1016/j.yexcr.2021.112805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/19/2021] [Accepted: 08/21/2021] [Indexed: 11/29/2022]
Abstract
Integrin receptors are transmembrane proteins that bind to the extracellular matrix (ECM). In most animal cell types integrins cluster together with adaptor proteins at focal adhesions that sense and respond to external mechanical signals. In the central nervous system (CNS), ECM proteins are sparsely distributed, the tissue is comparatively soft and neurons do not form focal adhesions. Thus, how neurons sense tissue stiffness is currently poorly understood. Here, we found that integrins and the integrin-associated proteins talin and focal adhesion kinase (FAK) are required for the outgrowth of neuronal processes. Vinculin, however, whilst not required for neurite outgrowth was a key regulator of integrin-mediated mechanosensing of neurons. During growth, growth cones of axons of CNS derived cells exerted dynamic stresses of around 10-12 Pa on their environment, and axons grew significantly longer on soft (0.4 kPa) compared to stiff (8 kPa) substrates. Depletion of vinculin blocked this ability of growth cones to distinguish between soft and stiff substrates. These data suggest that vinculin in neurons acts as a key mechanosensor, involved in the regulation of growth cone motility.
Collapse
Affiliation(s)
- De-Yao Wang
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Cristina Melero
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Ashwaq Albaraky
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Paul Atherton
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Oxford Road, Manchester, M13 9PT, UK; Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre. Manchester, M13 9PT, UK
| | - Karin A Jansen
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Andrea Dimitracopoulos
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | | | - Adam Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre. Manchester, M13 9PT, UK; Department of Plastic Surgery & Nurns, Wythenshawe Hospital, Manchester University NHS Foundation Trust. Manchester Academic Health Science Centre, Manchester, M23 9LT, UK
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK; Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nuremberg, 91052, Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91054, Erlangen, Germany
| | - Christoph Ballestrem
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
24
|
Abe K, Baba K, Huang L, Wei KT, Okano K, Hosokawa Y, Inagaki N. Mechanosensitive axon outgrowth mediated by L1-laminin clutch interface. Biophys J 2021; 120:3566-3576. [PMID: 34384760 PMCID: PMC8456307 DOI: 10.1016/j.bpj.2021.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/28/2021] [Accepted: 08/04/2021] [Indexed: 11/11/2022] Open
Abstract
Mechanical properties of the extracellular environment modulate axon outgrowth. Growth cones at the tip of extending axons generate traction force for axon outgrowth by transmitting the force of actin filament retrograde flow, produced by actomyosin contraction and F-actin polymerization, to adhesive substrates through clutch and cell adhesion molecules. A molecular clutch between the actin filament flow and substrate is proposed to contribute to cellular mechanosensing. However, the molecular identity of the clutch interface responsible for mechanosensitive growth cone advance is unknown. We previously reported that mechanical coupling between actin filament retrograde flow and adhesive substrates through the clutch molecule shootin1a and the cell adhesion molecule L1 generates traction force for axon outgrowth and guidance. Here, we show that cultured mouse hippocampal neurons extend longer axons on stiffer substrates under elastic conditions that correspond to the soft brain environments. We demonstrate that this stiffness-dependent axon outgrowth requires actin-adhesion coupling mediated by shootin1a, L1, and laminin on the substrate. Speckle imaging analyses showed that L1 at the growth cone membrane switches between two adhesive states: L1 that is immobilized and that undergoes retrograde movement on the substrate. The duration of the immobilized phase was longer on stiffer substrates; this was accompanied by increases in actin-adhesion coupling and in the traction force exerted on the substrate. These data suggest that the interaction between L1 and laminin is enhanced on stiffer substrates, thereby promoting force generation for axon outgrowth.
Collapse
Affiliation(s)
- Kouki Abe
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Kentarou Baba
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Liguo Huang
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Koay Teng Wei
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Kazunori Okano
- Bio-processing Engineering Laboratory, Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yoichiroh Hosokawa
- Bio-processing Engineering Laboratory, Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Naoyuki Inagaki
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan.
| |
Collapse
|
25
|
Buchberger A, Saini H, Eliato KR, Zare A, Merkley R, Xu Y, Bernal J, Ros R, Nikkhah M, Stephanopoulos N. Reversible Control of Gelatin Hydrogel Stiffness by Using DNA Crosslinkers*. Chembiochem 2021; 22:1755-1760. [PMID: 33484601 DOI: 10.1002/cbic.202100030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/16/2022]
Abstract
Biomaterials with dynamically tunable properties are critical for a range of applications in regenerative medicine and basic biology. In this work, we show the reversible control of gelatin methacrylate (GelMA) hydrogel stiffness through the use of DNA crosslinkers. We replaced some of the inter-GelMA crosslinks with double-stranded DNA, allowing for their removal through toehold-mediated strand displacement. The crosslinks could be restored by adding fresh dsDNA with complementary handles to those on the hydrogel. The elastic modulus (G') of the hydrogels could be tuned between 500 and 1000 Pa, reversibly, over two cycles without degradation of performance. By functionalizing the gels with a second DNA strand, it was possible to control the crosslink density and a model ligand in an orthogonal fashion with two different displacement strands. Our results demonstrate the potential for DNA to reversibly control both stiffness and ligand presentation in a protein-based hydrogel, and will be useful for teasing apart the spatiotemporal behavior of encapsulated cells.
Collapse
Affiliation(s)
- Alex Buchberger
- School of Molecular Sciences, Arizona State University, P.O. Box 877301, Tempe, AZ 85287, USA.,Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA
| | - Harpinder Saini
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler mall, ECG 334A, Tempe AZ, 85287, USA.,Virginia G. Piper Center for Personalized Diagnostics The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe AZ, 85281, USA
| | - Kiarash Rahmani Eliato
- Department of Physics, Arizona State University, 550 E Tyler Drive, Tempe, AZ 85287, USA.,Center for Biological Physics, Arizona State University, P.O. Box 871504, Tempe, AZ, 85287, USA.,Center for Single Molecule Biophysics, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA
| | - Azadeh Zare
- Department of Physics, Arizona State University, 550 E Tyler Drive, Tempe, AZ 85287, USA.,Center for Biological Physics, Arizona State University, P.O. Box 871504, Tempe, AZ, 85287, USA.,Center for Single Molecule Biophysics, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA
| | - Ryan Merkley
- School of Molecular Sciences, Arizona State University, P.O. Box 877301, Tempe, AZ 85287, USA.,Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA
| | - Yang Xu
- School of Molecular Sciences, Arizona State University, P.O. Box 877301, Tempe, AZ 85287, USA.,Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA
| | - Julio Bernal
- School of Molecular Sciences, Arizona State University, P.O. Box 877301, Tempe, AZ 85287, USA.,Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA
| | - Robert Ros
- Department of Physics, Arizona State University, 550 E Tyler Drive, Tempe, AZ 85287, USA.,Center for Biological Physics, Arizona State University, P.O. Box 871504, Tempe, AZ, 85287, USA.,Center for Single Molecule Biophysics, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler mall, ECG 334A, Tempe AZ, 85287, USA.,Virginia G. Piper Center for Personalized Diagnostics The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe AZ, 85281, USA
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Arizona State University, P.O. Box 877301, Tempe, AZ 85287, USA.,Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA
| |
Collapse
|
26
|
Mechanical Properties of DNA Hydrogels: Towards Highly Programmable Biomaterials. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041885] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA hydrogels are self-assembled biomaterials that rely on Watson–Crick base pairing to form large-scale programmable three-dimensional networks of nanostructured DNA components. The unique mechanical and biochemical properties of DNA, along with its biocompatibility, make it a suitable material for the assembly of hydrogels with controllable mechanical properties and composition that could be used in several biomedical applications, including the design of novel multifunctional biomaterials. Numerous studies that have recently emerged, demonstrate the assembly of functional DNA hydrogels that are responsive to stimuli such as pH, light, temperature, biomolecules, and programmable strand-displacement reaction cascades. Recent studies have investigated the role of different factors such as linker flexibility, functionality, and chemical crosslinking on the macroscale mechanical properties of DNA hydrogels. In this review, we present the existing data and methods regarding the mechanical design of pure DNA hydrogels and hybrid DNA hydrogels, and their use as hydrogels for cell culture. The aim of this review is to facilitate further study and development of DNA hydrogels towards utilizing their full potential as multifeatured and highly programmable biomaterials with controlled mechanical properties.
Collapse
|
27
|
Han SS, Cho MO, Huh KM, Kang SW. Effects of nanopatterned-surface dishes on chondrocyte growth and cell cycle progression. RSC Adv 2020; 11:39-47. [PMID: 35423029 PMCID: PMC8690039 DOI: 10.1039/d0ra08256b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
Discovering and developing ideal cell culture methods is important for cell biology, drug development, and cell therapy. Recent studies have explored and demonstrated the use of nanoscale structures and patterns that influence cell behavior, such as 3D scaffolds. In this study, we analyzed the effects of nanopatterned-surface dishes using chondrocytes as model cells. Chondrocytes grown on nanopatterned dishes exhibited rounded shapes. Interestingly, chondrocytes have a lower COL10 mRNA level when cultured using nanopatterned dishes. The nanopatterned dishes induced G0-/G1-phase cell cycle arrest and reduced the rate of proliferation. Our results suggest that nanoscale structures can directly control cellular behaviors and can be used for chondrocyte cell culture without causing chondrocytes to lose their functions. These results help to elucidate cellular responses and behaviors in native-like environments, and this information can be used to improve human health.
Collapse
Affiliation(s)
- Sang-Soo Han
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology Daejeon Korea +82-42-610-8209
| | - Myung-Ok Cho
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology Daejeon Korea +82-42-610-8209
- Department of Polymer Science and Engineering, Chungnam National University Daejeon Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University Daejeon Korea
| | - Sun-Woong Kang
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology Daejeon Korea +82-42-610-8209
- Department of Human and Environmental Toxicology, University of Science and Technology Daejeon Korea
| |
Collapse
|
28
|
Acquired demyelination but not genetic developmental defects in myelination leads to brain tissue stiffness changes. BRAIN MULTIPHYSICS 2020. [DOI: 10.1016/j.brain.2020.100019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Morya V, Walia S, Mandal BB, Ghoroi C, Bhatia D. Functional DNA Based Hydrogels: Development, Properties and Biological Applications. ACS Biomater Sci Eng 2020; 6:6021-6035. [DOI: 10.1021/acsbiomaterials.0c01125] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Vinod Morya
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Shanka Walia
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam India
| | - Chinmay Ghoroi
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
- Chemical Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| |
Collapse
|
30
|
Kumari S, Ye F, Podgornik R. Ordering of adsorbed rigid rods mediated by the Boussinesq interaction on a soft substrate. J Chem Phys 2020; 153:144905. [PMID: 33086810 DOI: 10.1063/5.0022556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Orientational ordering driven by mechanical distortion of soft substrates plays a major role in material transformation processes such as elastocapillarity and surface anchoring. We present a theoretical model of the orientational response of anisotropic rods deposited onto a surface of a soft, elastic substrate of finite thickness. We show that anisotropic rods exhibit a continuous isotropic-nematic phase transition, driven by orientational interactions between surface deposited rods. This interaction is mediated by the deformation of the underlying elastic substrate and is quantified by the Boussinesq solution adapted to the case of slender, surface deposited rods. From the microscopic rod-rod interactions, we derive the appropriate Maier-Saupe mean-field description, which includes the Boussinesq elastic free energy contribution due to the substrate elasticity, derive the conditions for the existence of a continuous orientational ordering transition, and discuss the implication of results in the soft (bio)system context.
Collapse
Affiliation(s)
- Sunita Kumari
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangfu Ye
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Rudolf Podgornik
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
31
|
Abstract
The brain is our most complex organ. During development, neurons extend axons, which may grow over long distances along well-defined pathways to connect to distant targets. Our current understanding of axon pathfinding is largely based on chemical signaling by attractive and repulsive guidance cues. These cues instruct motile growth cones, the leading tips of growing axons, where to turn and where to stop. However, it is not chemical signals that cause motion-motion is driven by forces. Yet our current understanding of the mechanical regulation of axon growth is very limited. In this review, I discuss the origin of the cellular forces controlling axon growth and pathfinding, and how mechanical signals encountered by growing axons may be integrated with chemical signals. This mechanochemical cross talk is an important but often overlooked aspect of cell motility that has major implications for many physiological and pathological processes involving neuronal growth.
Collapse
Affiliation(s)
- Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
| |
Collapse
|
32
|
Jonášová EP, Bjørkøy A, Stokke BT. Toehold Length of Target ssDNA Affects Its Reaction-Diffusion Behavior in DNA-Responsive DNA- co-Acrylamide Hydrogels. Biomacromolecules 2020; 21:1687-1699. [PMID: 31887025 DOI: 10.1021/acs.biomac.9b01515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present study, we expand on the understanding of hydrogels with embedded deoxyribonucleic acid (DNA) cross-links, from the overall swelling to characterization of processes that precede the swelling. The hydrogels respond to target DNA strands because of a toehold-mediated strand displacement reaction in which the target strand binds to and opens the dsDNA cross-link. The spatiotemporal evolution of the diffusing target ssDNA was determined using confocal laser scanning microscopy (CLSM). The concentration profiles revealed diverse partitioning of the target DNA inside the hydrogel as compared with the immersing solution: excluding a nonbinding DNA, while accumulating a binding target. The data show that a longer toehold results in faster cross-link opening but reduced diffusion of the target, thus resulting in only a moderate increase in the overall swelling rate. The parameters obtained by fitting the data using a reaction-diffusion model were discussed in view of the molecular parameters of the target ssDNA and hydrogels.
Collapse
Affiliation(s)
- Eleonóra Parelius Jonášová
- Biophysics and Medical Technology, Dept of Physics, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Astrid Bjørkøy
- Biophysics and Medical Technology, Dept of Physics, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Bjørn Torger Stokke
- Biophysics and Medical Technology, Dept of Physics, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
33
|
Anderson AJ, Culver HR, Bryant SJ, Bowman CN. Viscoelastic and Thermoreversible Networks Crosslinked by Non-covalent Interactions Between "Clickable" Nucleic Acids Oligomers and DNA. Polym Chem 2020; 11:2959-2968. [PMID: 34992679 PMCID: PMC8729761 DOI: 10.1039/d0py00165a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
An approach to efficient and scalable production of oligonucleotide-based gel networks is presented. Specifically, a new class of xenonucleic acid (XNA) synthesized through a scalable and efficient thiol-ene polymerization mechanism, "Clickable" Nucleic Acids (CNAs), were conjugated to a multifunctional poly(ethylene glycol), PEG. In the presence of complementary single stranded DNA (ssDNA), the macromolecular conjugate assembled into a crosslinked 3D gel capable of achieving storage moduli on the order of 1 kPa. Binding studies between the PEG-CNA macromolecule and complementary ssDNA indicate that crosslinking is due to the CNA/DNA interaction. Gel formation was specific to the base sequence and length of the ssDNA crosslinker. The gels were fully thermoreversible, completely melting at temperatures above 60°C and re-forming upon cooling over multiple cycles and with no apparent hysteresis. Shear stress relaxation experiments revealed that relaxation dynamics are dependent on crosslinker length, which is hypothesized to be an effect of the polydisperse CNA chains. Arrhenius analysis of characteristic relaxation times was only possible for shorter crosslinker lengths, and the activation energy for these gels was determined to be 110 ± 20 kJ/mol. Overall, the present work demonstrates that CNA is capable of participating in stimuli-responsive interactions that would be expected from XNAs, and that these interactions support 3D gels that have potential uses in biological and materials science applications.
Collapse
Affiliation(s)
- Alex J Anderson
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80303
| | - Heidi R Culver
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80303
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80303
- Material Science and Engineering Program, University of Colorado, Boulder, CO 80303
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80303
- Material Science and Engineering Program, University of Colorado, Boulder, CO 80303
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303
| |
Collapse
|
34
|
Joung D, Lavoie NS, Guo SZ, Park SH, Parr AM, McAlpine MC. 3D Printed Neural Regeneration Devices. ADVANCED FUNCTIONAL MATERIALS 2020; 30. [PMID: 32038121 PMCID: PMC7007064 DOI: 10.1002/adfm.201906237] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 05/16/2023]
Abstract
Neural regeneration devices interface with the nervous system and can provide flexibility in material choice, implantation without the need for additional surgeries, and the ability to serve as guides augmented with physical, biological (e.g., cellular), and biochemical functionalities. Given the complexity and challenges associated with neural regeneration, a 3D printing approach to the design and manufacturing of neural devices could provide next-generation opportunities for advanced neural regeneration via the production of anatomically accurate geometries, spatial distributions of cellular components, and incorporation of therapeutic biomolecules. A 3D printing-based approach offers compatibility with 3D scanning, computer modeling, choice of input material, and increasing control over hierarchical integration. Therefore, a 3D printed implantable platform could ultimately be used to prepare novel biomimetic scaffolds and model complex tissue architectures for clinical implants in order to treat neurological diseases and injuries. Further, the flexibility and specificity offered by 3D printed in vitro platforms have the potential to be a significant foundational breakthrough with broad research implications in cell signaling and drug screening for personalized healthcare. This progress report examines recent advances in 3D printing strategies for neural regeneration as well as insight into how these approaches can be improved in future studies.
Collapse
Affiliation(s)
- Daeha Joung
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Nicolas S Lavoie
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shuang-Zhuang Guo
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Sung Hyun Park
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ann M Parr
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael C McAlpine
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
35
|
Nichol RH, Catlett TS, Onesto MM, Hollender D, Gómez TM. Environmental Elasticity Regulates Cell-type Specific RHOA Signaling and Neuritogenesis of Human Neurons. Stem Cell Reports 2019; 13:1006-1021. [PMID: 31708476 PMCID: PMC6915847 DOI: 10.1016/j.stemcr.2019.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 02/08/2023] Open
Abstract
The microenvironment of developing neurons is a dynamic landscape of both chemical and mechanical cues that regulate cell proliferation, differentiation, migration, and axon extension. While the regulatory roles of chemical ligands in neuronal morphogenesis have been described, little is known about how mechanical forces influence neurite development. Here, we tested how substratum elasticity regulates neurite development of human forebrain (hFB) neurons and human motor neurons (hMNs), two populations of neurons that naturally extend axons into distinct elastic environments. Using polyacrylamide and collagen hydrogels of varying compliance, we find that hMNs preferred rigid conditions that approximate the elasticity of muscle, whereas hFB neurons preferred softer conditions that approximate brain tissue elasticity. More stable leading-edge protrusions, increased peripheral adhesions, and elevated RHOA signaling of hMN growth cones contributed to faster neurite outgrowth on rigid substrata. Our data suggest that RHOA balances contractile and adhesive forces in response to substratum elasticity. Motor neurons derived from hiPSCs are tuned to grow optimally on rigid substrata hiPSCs derived forebrain neurons prefer softer substrata RHOA-dependent adhesion contributes to elasticity preferences Modulating RHOA affects axon development depending on substrata elasticity
Collapse
Affiliation(s)
- Robert H Nichol
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, WIMR II Room 5433, 1111 Highland Avenue, Madison, WI 53706, USA; Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, WIMR II Room 5433, 1111 Highland Avenue, Madison, WI 53706, USA
| | - Timothy S Catlett
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, WIMR II Room 5433, 1111 Highland Avenue, Madison, WI 53706, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin School of Medicine and Public Health, WIMR II Room 5433, 1111 Highland Avenue, Madison, WI 53706, USA
| | - Massimo M Onesto
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, WIMR II Room 5433, 1111 Highland Avenue, Madison, WI 53706, USA
| | - Drew Hollender
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, WIMR II Room 5433, 1111 Highland Avenue, Madison, WI 53706, USA
| | - Timothy M Gómez
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, WIMR II Room 5433, 1111 Highland Avenue, Madison, WI 53706, USA; Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, WIMR II Room 5433, 1111 Highland Avenue, Madison, WI 53706, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin School of Medicine and Public Health, WIMR II Room 5433, 1111 Highland Avenue, Madison, WI 53706, USA.
| |
Collapse
|
36
|
Licht C, Rose JC, Anarkoli AO, Blondel D, Roccio M, Haraszti T, Gehlen DB, Hubbell JA, Lutolf MP, De Laporte L. Synthetic 3D PEG-Anisogel Tailored with Fibronectin Fragments Induce Aligned Nerve Extension. Biomacromolecules 2019; 20:4075-4087. [PMID: 31614080 DOI: 10.1021/acs.biomac.9b00891] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An enzymatically cross-linked polyethylene glycol (PEG)-based hydrogel was engineered to promote and align nerve cells in a three-dimensional manner. To render the injectable, otherwise bioinert, PEG-based material supportive for cell growth, its mechanical and biochemical properties were optimized. A recombinant fibronectin fragment (FNIII9*-10/12-14) was coupled to the PEG backbone during gelation to provide cell adhesive and growth factor binding domains in close vicinity. Compared to full-length fibronectin, FNIII9*-10/12-14 supports nerve growth at similar concentrations. In a 3D environment, only the ultrasoft 1 w/v% PEG hydrogels with a storage modulus of ∼10 Pa promoted neuronal growth. This gel was used to establish the first fully synthetic, injectable Anisogel by the addition of magnetically aligned microelements, such as rod-shaped microgels or short fibers. The Anisogel led to linear neurite extension and represents a large step in the direction of clinical translation with the opportunity to treat acute spinal cord injuries.
Collapse
Affiliation(s)
- Christopher Licht
- DWI - Leibniz Institute for Interactive Materials , 52074 Aachen , Germany
| | - Jonas C Rose
- DWI - Leibniz Institute for Interactive Materials , 52074 Aachen , Germany
| | | | - Delphine Blondel
- Institute for Bioengineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , Lausanne 1015 , Switzerland
| | - Marta Roccio
- Institute for Bioengineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , Lausanne 1015 , Switzerland.,Department of Biomedical Research , University of Bern , 3010 Bern , Switzerland
| | - Tamás Haraszti
- DWI - Leibniz Institute for Interactive Materials , 52074 Aachen , Germany
| | - David B Gehlen
- DWI - Leibniz Institute for Interactive Materials , 52074 Aachen , Germany
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
| | - Matthias P Lutolf
- Institute for Bioengineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , Lausanne 1015 , Switzerland
| | - Laura De Laporte
- DWI - Leibniz Institute for Interactive Materials , 52074 Aachen , Germany.,ITMC - Institute of Technical and Macromolecular Chemistry , RWTH University Aachen , 52074 Aachen , Germany
| |
Collapse
|
37
|
Chighizola M, Dini T, Lenardi C, Milani P, Podestà A, Schulte C. Mechanotransduction in neuronal cell development and functioning. Biophys Rev 2019; 11:701-720. [PMID: 31617079 PMCID: PMC6815321 DOI: 10.1007/s12551-019-00587-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
Although many details remain still elusive, it became increasingly evident in recent years that mechanosensing of microenvironmental biophysical cues and subsequent mechanotransduction are strongly involved in the regulation of neuronal cell development and functioning. This review gives an overview about the current understanding of brain and neuronal cell mechanobiology and how it impacts on neurogenesis, neuronal migration, differentiation, and maturation. We will focus particularly on the events in the cell/microenvironment interface and the decisive extracellular matrix (ECM) parameters (i.e. rigidity and nanometric spatial organisation of adhesion sites) that modulate integrin adhesion complex-based mechanosensing and mechanotransductive signalling. It will also be outlined how biomaterial approaches mimicking essential ECM features help to understand these processes and how they can be used to control and guide neuronal cell behaviour by providing appropriate biophysical cues. In addition, principal biophysical methods will be highlighted that have been crucial for the study of neuronal mechanobiology.
Collapse
Affiliation(s)
- Matteo Chighizola
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Tania Dini
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Cristina Lenardi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Paolo Milani
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Alessandro Podestà
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Carsten Schulte
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy.
| |
Collapse
|
38
|
Affiliation(s)
- Cong Du
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC H3A 0C5, Canada
| | - Reghan J. Hill
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC H3A 0C5, Canada
| |
Collapse
|
39
|
Sun H, Yu D, Guan Y, Du Z, Ren J, Qu X. Wireless near-infrared electrical stimulation of neurite outgrowth. Chem Commun (Camb) 2019; 55:9833-9836. [PMID: 31363722 DOI: 10.1039/c9cc03537k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, through using electropolymerized pyrrole (PPy) to coat near-infrared upconversion nanoparticles (UCNPs) on an indium tin oxide (ITO) electrode, the as-prepared PPy/UCNPs photoelectrode could generate an interfacial electric field, release rare earth ions and induce reactive oxygen species (ROS) in PC12 cells under NIR irradiation, which could realize wireless neurite development and outgrowth.
Collapse
Affiliation(s)
- Hanjun Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | | | | | | | | | | |
Collapse
|
40
|
Osteogenesis-Related Behavior of MC3T3-E1 Cells on Substrates with Tunable Stiffness. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4025083. [PMID: 30515396 PMCID: PMC6236916 DOI: 10.1155/2018/4025083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/25/2018] [Accepted: 10/23/2018] [Indexed: 12/28/2022]
Abstract
Osteogenic differentiation of cells has considerable clinical significance in bone defect treatment, and cell behavior is linked to extracellular matrix stiffness. This study aimed to determine how matrix stiffness affects cell morphology and subsequently regulates the osteogenic phenotype of osteogenesis precursor cells. Four PDMS substrates were prepared with stiffness corresponding to the elastic modulus ranging from 0.6 MPa to 2.7 MPa by altering the Sylgard 527 and Sylgard 184 concentrations. MC3T3-E1 cells were cultured on the matrices. Cell morphology, vinculin expression, and key osteogenic markers, Col I, OCN, OPN, and calcium nodule, were examined. The activity and expression level of Yes-associated protein (YAP) were evaluated. Results showed that cell spreading exhibited no correlation with the stiffness of matrix designed in this paper, but substratum stiffness did modulate MC3T3-E1 osteogenic differentiation. Col I, OPN, and OCN proteins were significantly increased in cells cultured on soft matrices compared with stiff matrices. Additionally, cells cultured on the 1:3 ratio matrices had more nodules than those on other matrices. Accordingly, cells on substrates with low stiffness showed enhanced expression of the osteogenic markers. Meanwhile, YAP expression was downregulated on soft substrates although the subcellular location was not affected. Our results provide evidence that matrix stiffness (elastic modulus ranging from 0.6 MPa to 2.7 MPa) affects the osteogenic differentiation of MC3T3-E1, but it is not that “the stiffer, the better” as showed in some of the previous studies. The optimal substrate stiffness may exist to promote osteoblast differentiation. Cell differentiation triggered by the changes in substrate stiffness may be independent of the YAP signal. This study has important implications for biomaterial design and stem cell-based tissue engineering.
Collapse
|
41
|
Shahbazi MA, Bauleth-Ramos T, Santos HA. DNA Hydrogel Assemblies: Bridging Synthesis Principles to Biomedical Applications. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800042] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mohammad-Ali Shahbazi
- Drug Research Program; Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; FI-00014 University of Helsinki; Helsinki Finland
- Department of Micro- and Nanotechnology; Technical University of Denmark; Ørsteds Plads DK-2800 Kgs Lyngby Denmark
- Department of Pharmaceutical Nanotechnology; School of Pharmacy; Zanjan University of Medical Sciences; 56184-45139 Zanjan Iran
| | - Tomás Bauleth-Ramos
- Drug Research Program; Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; FI-00014 University of Helsinki; Helsinki Finland
- Instituto de Investigação e Inovação em Saúde; University of Porto; Rua Alfredo Allen 208 4200-135 Porto Portugal
- Instituto de Engenharia Biomédica; University of Porto; Rua Alfredo Allen 208 4200-135 Porto Portugal
- Instituto Ciências Biomédicas Abel Salazar; University of Porto; Rua Jorge Viterbo 228 4150-180 Porto Portugal
| | - Hélder A. Santos
- Drug Research Program; Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; FI-00014 University of Helsinki; Helsinki Finland
- Helsinki Institute of Life Science; FI-00014 University of Helsinki; Helsinki Finland
| |
Collapse
|
42
|
Impact of surface adhesion and sample heterogeneity on the multiscale mechanical characterisation of soft biomaterials. Sci Rep 2018; 8:6780. [PMID: 29712954 PMCID: PMC5928067 DOI: 10.1038/s41598-018-24671-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/03/2018] [Indexed: 12/12/2022] Open
Abstract
The mechanical properties of soft materials used in the biomedical field play an important role on their performance. In the field of tissue engineering, it is known that cells sense the mechanical properties of their environment, however some materials, such as Sylard 184 PDMS (poly(dimethylsiloxane)), have failed to elicit such response. It was proposed that differences in the mechanical properties of such soft materials, at different scales, could account for these discrepancies. Indeed, the variation in the elastic moduli obtained for soft materials characterised at different scales can span several orders of magnitude. This called for a side-by-side comparison of the mechanical behaviour of soft materials at different scales. Here we use indentation, rheology and atomic force microscopy nanoidentation (using different tip geometries) to characterise the mechanical properties of PDMS, poly(acrylamide) (PAAm) and carboxymethyl cellulose (CMC) hydrogels at different length scales. Our results highlight the importance of surface adhesion and the resulting changes in contact area, and sample microstructural heterogeneity, in particular for the mechanical characterisation of ultra-soft substrates at the nano- to micro-scale.
Collapse
|
43
|
Sarker M, Izadifar M, Schreyer D, Chen X. Influence of ionic crosslinkers (Ca2+/Ba2+/Zn2+) on the mechanical and biological properties of 3D Bioplotted Hydrogel Scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1126-1154. [DOI: 10.1080/09205063.2018.1433420] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Md. Sarker
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Mohammad Izadifar
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - David Schreyer
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
44
|
Ramadan S, Paul N, Naguib HE. Development and characterization of a synthetic PVC/DEHP myocardial tissue analogue material for CT imaging applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:582-598. [DOI: 10.1080/09205063.2018.1433421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sherif Ramadan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Narinder Paul
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
- Joint Department of Medical Imaging, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Canada
- Medical Imaging, Schulich School of Medicine & Dentistry, Western University, London Health Sciences Centre and St. Joseph’s Health Care London, University Hospital, London, Canada
| | - Hani E. Naguib
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Canada
- Department of Materials Science & Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
45
|
Rosso G, Young P, Shahin V. Implications of Schwann Cells Biomechanics and Mechanosensitivity for Peripheral Nervous System Physiology and Pathophysiology. Front Mol Neurosci 2017; 10:345. [PMID: 29118694 PMCID: PMC5660964 DOI: 10.3389/fnmol.2017.00345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
The presence of bones around the central nervous system (CNS) provides it with highly effective physiologically crucial mechanical protection. The peripheral nervous system (PNS), in contrast, lacks this barrier. Consequently, the long held belief is that the PNS is mechanically vulnerable. On the other hand, the PNS is exposed to a variety of physiological mechanical stresses during regular daily activities. This fact prompts us to question the dogma of PNS mechanical vulnerability. As a matter of fact, impaired mechanics of PNS nerves is associated with neuropathies with the liability to mechanical stresses paralleled by significant impairment of PNS physiological functions. Our recent biomechanical integrity investigations on nerve fibers from wild-type and neuropathic mice lend strong support in favor of natural mechanical protection of the PNS and demonstrate a key role of Schwann cells (SCs) therein. Moreover, recent works point out that SCs can sense mechanical properties of their microenvironment and the evidence is growing that SCs mechanosensitivity is important for PNS development and myelination. Hence, SCs exhibit mechanical strength necessary for PNS mechanoprotection as well as mechanosensitivity necessary for PNS development and myelination. This mini review reflects on the intriguing dual ability of SCs and implications for PNS physiology and pathophysiology.
Collapse
Affiliation(s)
- Gonzalo Rosso
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Peter Young
- Department of Sleep Medicine and Neuromuscular Disorders, University of Münster, Münster, Germany
| | - Victor Shahin
- Institute of Physiology II, University of Münster, Münster, Germany
| |
Collapse
|
46
|
How Deep Might Myoblasts Sense: The Effect of Substrate Stiffness and Thickness on the Behavior of Myoblasts. J Med Biol Eng 2017. [DOI: 10.1007/s40846-017-0341-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Abstract
Neurons allocated to sense organs respond rapidly to mechanical signals dictating behavioral responses at the organism level. The receptors that transduce these signals, and underlie these senses, are mechanically gated channels. Research on mechanosensation over the past decade, employing in many cases Drosophila as a model, has focused in typifying these receptors and in exploring the different ways, depending on context, in which these mechanosensors are modulated. In this review, we discuss first what we have learned from Drosophila on these mechanisms and we describe the different mechanosensory organs present in the Drosophila larvae and adult. Secondly, we focus on the progress obtained by studying the fly on the characterization of the mechanosensory crosstalk underlying complex behaviors like motor coordination. Finally, turning to a cellular level, we summarize what is known on the mechanical properties and sensing capabilities of neural cells and how they may affect neural physiology and pathology.
Collapse
Affiliation(s)
- Katerina Karkali
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Cientific de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Enrique Martin-Blanco
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Cientific de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain.
| |
Collapse
|
48
|
Snyder PJ, Kirste R, Collazo R, Ivanisevic A. Persistent Photoconductivity, Nanoscale Topography, and Chemical Functionalization Can Collectively Influence the Behavior of PC12 Cells on Wide Bandgap Semiconductor Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700481. [PMID: 28464526 DOI: 10.1002/smll.201700481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/15/2017] [Indexed: 06/07/2023]
Abstract
Wide bandgap semiconductors such as gallium nitride (GaN) exhibit persistent photoconductivity properties. The incorporation of this asset into the fabrication of a unique biointerface is presented. Templates with lithographically defined regions with controlled roughness are generated during the semiconductor growth process. Template surface functional groups are varied using a benchtop surface functionalization procedure. The conductivity of the template is altered by exposure to UV light and the behavior of PC12 cells is mapped under different substrate conductivity. The pattern size and roughness are combined with surface chemistry to change the adhesion of PC12 cells when the GaN is made more conductive after UV light exposure. Furthermore, during neurite outgrowth, surface chemistry and initial conductivity difference are used to facilitate the extension to smoother areas on the GaN surface. These results can be utilized for unique bioelectronics interfaces to probe and control cellular behavior.
Collapse
Affiliation(s)
- Patrick J Snyder
- Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27606, USA
| | - Ronny Kirste
- Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27606, USA
- Adroit Materials, 2054 Kildaire Farm Rd., Suite 205, Cary, NC, 27518, USA
| | - Ramon Collazo
- Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27606, USA
| | - Albena Ivanisevic
- Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27606, USA
| |
Collapse
|
49
|
Büyüköz M, Erdal E, Alsoy Altinkaya S. Nanofibrous gelatine scaffolds integrated with nerve growth factor‐loaded alginate microspheres for brain tissue engineering. J Tissue Eng Regen Med 2017; 12:e707-e719. [DOI: 10.1002/term.2353] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 09/30/2016] [Accepted: 11/09/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Melda Büyüköz
- Department of Biotechnology and BioengineeringIzmir Institute of Technology Turkey
| | - Esra Erdal
- Izmir Biomedicine and Genome InstituteDokuz Eylul University Turkey
| | | |
Collapse
|
50
|
Moeendarbary E, Weber IP, Sheridan GK, Koser DE, Soleman S, Haenzi B, Bradbury EJ, Fawcett J, Franze K. The soft mechanical signature of glial scars in the central nervous system. Nat Commun 2017; 8:14787. [PMID: 28317912 PMCID: PMC5364386 DOI: 10.1038/ncomms14787] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/31/2017] [Indexed: 02/02/2023] Open
Abstract
Injury to the central nervous system (CNS) alters the molecular and cellular composition of neural tissue and leads to glial scarring, which inhibits the regrowth of damaged axons. Mammalian glial scars supposedly form a chemical and mechanical barrier to neuronal regeneration. While tremendous effort has been devoted to identifying molecular characteristics of the scar, very little is known about its mechanical properties. Here we characterize spatiotemporal changes of the elastic stiffness of the injured rat neocortex and spinal cord at 1.5 and three weeks post-injury using atomic force microscopy. In contrast to scars in other mammalian tissues, CNS tissue significantly softens after injury. Expression levels of glial intermediate filaments (GFAP, vimentin) and extracellular matrix components (laminin, collagen IV) correlate with tissue softening. As tissue stiffness is a regulator of neuronal growth, our results may help to understand why mammalian neurons do not regenerate after injury.
Collapse
Affiliation(s)
- Emad Moeendarbary
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK,Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave 56, Cambridge, Massachusetts 02139, USA,Department of Mechanical Engineering, University College London, London WC1E 7JE, UK,
| | - Isabell P. Weber
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Graham K. Sheridan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK,School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ, UK
| | - David E. Koser
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Sara Soleman
- John van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge CB2 0PY, UK
| | - Barbara Haenzi
- John van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge CB2 0PY, UK
| | - Elizabeth J. Bradbury
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - James Fawcett
- John van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge CB2 0PY, UK
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK,
| |
Collapse
|