1
|
Geng X, Yao Y, Huang H, Li Q, Wang L, Fan Y. Mechanical and biological characteristics of 3D-printed auxetic structure in bone tissue engineering. J Biomech 2025; 184:112685. [PMID: 40215656 DOI: 10.1016/j.jbiomech.2025.112685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
The auxetic structures are highly effective in bone implants due to their unique deformation characteristics. However, ideal tissue engineering scaffolds must possess suitable mechanical properties and biocompatibility. The biological effects of auxetic structures require further study. In this study, three types of 3D re-entrant honeycomb structures with varying angles of 75°, 90°, and 105° were designed. These structures were fabricated by stereolithography 3D printing technology. Finite element simulations and compression tests were conducted to evaluate their mechanical properties. Scaffolds were inoculated with preosteoblast MC3T3-E1 cells, and cyclic loading was applied to investigate the influence of structural and mechanical stimulation on cell arrangement and proliferation. The results demonstrated that the 75° scaffold exhibited auxetic characteristics in all compression directions and possessed anti-fracture properties. The 75° scaffold also promoted cell proliferation by structural design. Cyclic compression facilitated the nuclear translocation of YAP, further enhancing cell growth. The combination of anti-fracture properties and the promotion of cell proliferation makes auxetic structures highly promising for extensive applications.
Collapse
Affiliation(s)
- Xuezheng Geng
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, 311115 Hangzhou, China; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yan Yao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing 100191, China; School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Huiwen Huang
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, 311115 Hangzhou, China; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qiao Li
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, 311115 Hangzhou, China; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing 100191, China; School of Engineering Medicine, Beihang University, Beijing 100191, China; State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China.
| | - Lizhen Wang
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, 311115 Hangzhou, China; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing 100191, China; State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China
| | - Yubo Fan
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, 311115 Hangzhou, China; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing 100191, China; School of Engineering Medicine, Beihang University, Beijing 100191, China; State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China.
| |
Collapse
|
2
|
Calazans Neto JV, Valente MLDC, Reis ACD. Effect of pores on cell adhesion to additively manufactured titanium implants: A systematic review. J Prosthet Dent 2025; 133:990-997. [PMID: 37353409 DOI: 10.1016/j.prosdent.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/25/2023]
Abstract
STATEMENT OF PROBLEM Titanium dental implants produced by additive manufacturing have pores that, depending on their size and quantity, may improve osteogenic cell adhesion without impairing mechanical properties. A systematic review of in vitro studies on this topic is lacking. PURPOSE The purpose of this systematic review was to answer the question "What is the influence of pores on osteogenic cell adhesion on titanium surfaces produced by additive manufacturing?". MATERIAL AND METHODS The study was designed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2020 standards and registered in the Open Science Framework (OSF) (osf.io/baw59). A manual search of published articles without language or time restrictions was conducted in November 2022 in the electronic databases PubMed, Scopus, ScienceDirect, Embase, and in the nonpeer-reviewed literature via Google Scholar. RESULTS A total of 1338 initial results were found, and after removing duplicates and applying eligibility criteria, 13 articles were included in this review that, according to the Joanna Briggs Institute (JBI) tool, presented a low risk of bias. Pores with larger diameters provide greater a surface area that favors cell filopodia adhesion and has interconnection that optimizes the transport of nutrients and oxygen and bone cell activity. CONCLUSIONS The presence of pores on the surface of titanium produced by additive manufacturing increases the adhesion, migration, proliferation, and viability of osteogenic cells.
Collapse
Affiliation(s)
- João Vicente Calazans Neto
- Master's student, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Brazil
| | - Mariana Lima da Costa Valente
- Post-Doctoral student, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Brazil
| | - Andréa Cândido Dos Reis
- Professor, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Brazil.
| |
Collapse
|
3
|
Le Grill S, Brouillet F, Drouet C. Bone Regeneration: Mini-Review and Appealing Perspectives. Bioengineering (Basel) 2025; 12:38. [PMID: 39851312 PMCID: PMC11763268 DOI: 10.3390/bioengineering12010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
Bone is a natural mineral-organic nanocomposite protecting internal organs and allowing mobility. Through the ages, numerous strategies have been developed for repairing bone defects and fixing fractures. Several generations of bone repair biomaterials have been proposed, either based on metals, ceramics, glasses, or polymers, depending on the clinical need, the maturity of technologies, and knowledge of the natural constitution of the bone tissue to be repaired. The global trend in bone implant research is shifting toward osteointegrative, bioactive and possibly stimuli-responsive biomaterials and, where possible, resorbable implants that actively promote the regeneration of natural bone tissue. In this mini-review, the fundamentals of bone healing materials and clinical challenges are summarized and commented on with regard to progressing scientific discoveries. The main types of bone-healing materials are then reviewed, and their specific relevance to the field is reminded, with the citation of reference works. In the final part, we highlight the promise of hybrid organic-inorganic bioactive materials and the ongoing research activities toward the development of multifunctional or stimuli-responsive implants. This contribution is expected to serve as a commented introduction to the ever-progressing field of bone regeneration and highlight trends of future-oriented research.
Collapse
Affiliation(s)
- Sylvain Le Grill
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 4 Allée Emile Monso, BP44362, CEDEX 4, 31030 Toulouse, France; (F.B.); (C.D.)
- Regenerative Nanomedicine Unit, Center of Research on Biomedicines of Strasbourg (CRBS), French National Institute of Health and Medical Research (INSERM), University of Strasbourg, UMR 1260, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
| | - Fabien Brouillet
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 4 Allée Emile Monso, BP44362, CEDEX 4, 31030 Toulouse, France; (F.B.); (C.D.)
| | - Christophe Drouet
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 4 Allée Emile Monso, BP44362, CEDEX 4, 31030 Toulouse, France; (F.B.); (C.D.)
| |
Collapse
|
4
|
Wang Y, Wang L, Soro N, Buenzli PR, Li Z, Green N, Tetsworth K, Erbulut D. Bone Ingrowth Simulation Within the Hexanoid, a Novel Scaffold Design. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:1949-1960. [PMID: 39734733 PMCID: PMC11669832 DOI: 10.1089/3dp.2023.0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
The utilization of bone scaffold implants represents a promising approach for repairing substantial bone defects. In recent years, various traditional scaffold structures have been developed and, with advances in materials biology and computer technology, novel scaffold designs are now being evaluated. This study investigated the effects of a novel scaffold unit cell design (Hexanoid) through a computational framework, comparing its performance to that of four well-known scaffold designs. A finite element analysis numerical simulation and mechanical testing were conducted to analyze the dynamic bone ingrowth process and the mechanical strength of the different scaffold designs. Bone formation within the Ti-6Al-4V metal scaffolds was simulated based on the theory of bone remodeling. The outcomes of the study reveal that the novel scaffold design (Hexanoid) attains a notably elevated ultimate bone volume fraction (∼27%), it outperformed conventional unit-cell designs found in extant literature, such as cubic design with 19.1% and circular design with 16.9% in relation to the bone-to-cavity volume ratio. This novel structure also has comparable mechanical strength to that of human compact bone tissue. While the design was not optimal in every category, it provided a very satisfactory overall performance regarding certain key aspects of bone performances in comparison with the five scaffold structures evaluated. Although limitations exist in this project, similar methodologies can also be applied in the primary evaluation of new scaffold structures, resulting in improved efficiency and effectiveness. In future research, the results of this project may be integrated with clinical rehabilitation processes to offer a critical evaluation for optimization of additional novel scaffold unit-cell structure designs.
Collapse
Affiliation(s)
- Yuheng Wang
- Orthopedics Program, Herston Biofabrication Institute, Block 7 Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
- Doctor of Medicine Program, School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Luping Wang
- Faculty of Engineering, Department of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nicolas Soro
- Centre for Advanced Material Processing and Manufacturing, Department of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Pascal R. Buenzli
- Faculty of Science, Department of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Zhiyong Li
- Faculty of Engineering, Department of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nicholas Green
- Orthopedics Program, Herston Biofabrication Institute, Block 7 Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Kevin Tetsworth
- Orthopedics Program, Herston Biofabrication Institute, Block 7 Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
- Doctor of Medicine Program, School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Department of Orthopedic Surgery, Royal Brisbane and Women's Hospital, Herstone, Queensland, Australia
| | - Deniz Erbulut
- Orthopedics Program, Herston Biofabrication Institute, Block 7 Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| |
Collapse
|
5
|
Wang Z, Zheng B, Yu X, Shi Y, Zhou X, Gao B, He F, Tam MS, Wang H, Cheang LH, Zheng X, Wu T. Promoting neurovascularized bone regeneration with a novel 3D printed inorganic-organic magnesium silicate/PLA composite scaffold. Int J Biol Macromol 2024; 277:134185. [PMID: 39074694 DOI: 10.1016/j.ijbiomac.2024.134185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
Critical-size bone defect repair presents multiple challenges, such as osteogenesis, vascularization, and neurogenesis. Current biomaterials for bone repair need more consideration for the above functions. Organic-inorganic composites combined with bioactive ions offer significant advantages in bone regeneration. In our work, we prepared an organic-inorganic composite material by blending polylactic acid (PLA) with 3-aminopropyltriethoxysilane (APTES)-modified magnesium silicate (A-M2S) and fabricated it by 3D printing. With the increase of A-M2S proportion, the hydrophilicity and mineralization ability showed an enhanced trend, and the compressive strength and elastic modulus were increased from 15.29 MPa and 94.61 MPa to 44.30 MPa and 435.77 MPa, respectively. Furthermore, A-M2S/PLA scaffolds not only exhibited good cytocompatibility of bone marrow mesenchymal stem cells (BMSCs), human umbilical vein endothelial cells (HUVECs), and Schwann cells (SCs), but also effectively promoted osteogenesis, angiogenesis, and neurogenesis in vitro. After implanting 10% A-M2S/PLA scaffolds in vivo, the scaffolds showed the most effective repair of cranium defects compared to the blank and control group (PLA). Additionally, they promoted the secretion of proteins related to bone regeneration and neurovascular formation. These results provided the basis for expanding the application of A-M2S and PLA in bone tissue engineering and presented a novel concept for neurovascularized bone repair.
Collapse
Affiliation(s)
- Zhaozhen Wang
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China; Orthopedic and traumatology department, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Boyuan Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Xiaolu Yu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Yiwan Shi
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Xinting Zhou
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Botao Gao
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Fupo He
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | | | - Huajun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China.
| | - Lek Hang Cheang
- Department of Orthopedic Surgery, Centro Hospitalar Conde de Sao Januario, Macau.
| | - Xiaofei Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China.
| | - Tingting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
6
|
Huo M, He S, Zhang Y, Liu Q, Liu M, Zhou G, Zhou P, Lu J. Mechano-driven intervertebral bone bridging via oriented mechanical stimulus in a twist metamaterial cage: An in silico study. Comput Biol Med 2024; 171:108149. [PMID: 38401455 DOI: 10.1016/j.compbiomed.2024.108149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/11/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
Stiffer cages provide sufficient mechanical support but fail to promote bone ingrowth due to stress shielding. It remains challenging for fusion cage to satisfy both bone bridging and mechanical stability. Here we designed a fusion cage based on twist metamaterial for improved bone ingrowth, and proved its superiority to the conventional diagonal-based cage in silico. The fusion process was numerically reproduced via an injury-induced osteogenesis model and the mechano-driven bone remodeling algorithm, and the outcomes fusion effects were evaluated by the morphological features of the newly-formed bone and the biomechanical behaviors of the bone-cage composite. The twist-based cages exhibited oriented bone formation in the depth direction, in comparison to the diagonal-based cages. The axial stiffness of the bone-cage composites with twist-based cages was notably higher than that with diagonal-based cages; meanwhile, the ranges of motion of the twist-based fusion segment were lower. It was concluded that the twist metamaterial cages led to oriented bone ingrowth, superior mechanical stability of the bone-cage composite, and less detrimental impacts on the adjacent bones. More generally, metamaterials with a tunable displacement mode of struts might provide more design freedom in implant designs to offer customized mechanical stimulus for osseointegration.
Collapse
Affiliation(s)
- Mengke Huo
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China; Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China; CityU-Shenzhen Futian Research Institute, Shenzhen, China
| | - Siyuan He
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China.
| | - Yun Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China; Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Qing Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Mengxing Liu
- Shenzhen Mindray Bio-Medical Electronics Co., Ltd, Shenzhen, China; Wuhan Mindray Scientific Co., Ltd, Wuhan, China
| | - Guangquan Zhou
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Ping Zhou
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Jian Lu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China; CityU-Shenzhen Futian Research Institute, Shenzhen, China; Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, China
| |
Collapse
|
7
|
Hu H, Wang L, Dou J, Shang Y, Liu X, Shen J, Yuan J. Nitric Oxide-Releasing Porous Coating with Antibacterial Activity and Blood Compatibility. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1286-1294. [PMID: 38171006 DOI: 10.1021/acs.langmuir.3c02797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Nitric oxide (NO)-releasing coating is promising to enhance the biocompatibility of medical devices. In this study, polyurethane (PU) and S-nitrosated keratin (KSNO) were dissolved with dimethyl sulfoxide (DMSO) and tetrahydrofuran (THF) to prepare a coating solution. This solution is facile to form a porous coating on various substrates based on solvent-evaporation-induced phase separation (SEIPS). The coating could continuously release NO up to 200 h in the presence of ascorbic acid (Asc). In addition, the coating could accelerate endothelialization by promoting the viability of human umbilical vein endothelial cells (HUVECs) while inhibiting the proliferation of human umbilical artery smooth muscle cells (HUASMCs). Furthermore, the coating had good antibacterial activity and blood compatibility. Taken together, this universal coating provides wider potential applications in the field of cardiovascular implants.
Collapse
Affiliation(s)
- Haiping Hu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Lijuan Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jie Dou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yushuang Shang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xu Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jiang Yuan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
8
|
Kechagias S, Theodoridis K, Broomfield J, Malpartida-Cardenas K, Reid R, Georgiou P, van Arkel RJ, Jeffers JRT. The effect of nodal connectivity and strut density within stochastic titanium scaffolds on osteogenesis. Front Bioeng Biotechnol 2023; 11:1305936. [PMID: 38107615 PMCID: PMC10721980 DOI: 10.3389/fbioe.2023.1305936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023] Open
Abstract
Modern orthopaedic implants use lattice structures that act as 3D scaffolds to enhance bone growth into and around implants. Stochastic scaffolds are of particular interest as they mimic the architecture of trabecular bone and can combine isotropic properties and adjustable structure. The existing research mainly concentrates on controlling the mechanical and biological performance of periodic lattices by adjusting pore size and shape. Still, less is known on how we can control the performance of stochastic lattices through their design parameters: nodal connectivity, strut density and strut thickness. To elucidate this, four lattice structures were evaluated with varied strut densities and connectivity, hence different local geometry and mechanical properties: low apparent modulus, high apparent modulus, and two with near-identical modulus. Pre-osteoblast murine cells were seeded on scaffolds and cultured in vitro for 28 days. Cell adhesion, proliferation and differentiation were evaluated. Additionally, the expression levels of key osteogenic biomarkers were used to assess the effect of each design parameter on the quality of newly formed tissue. The main finding was that increasing connectivity increased the rate of osteoblast maturation, tissue formation and mineralisation. In detail, doubling the connectivity, over fixed strut density, increased collagen type-I by 140%, increased osteopontin by 130% and osteocalcin by 110%. This was attributed to the increased number of acute angles formed by the numerous connected struts, which facilitated the organization of cells and accelerated the cell cycle. Overall, increasing connectivity and adjusting strut density is a novel technique to design stochastic structures which combine a broad range of biomimetic properties and rapid ossification.
Collapse
Affiliation(s)
- Stylianos Kechagias
- Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | | | - Joseph Broomfield
- Centre for Bio Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Kenny Malpartida-Cardenas
- Centre for Bio Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Ruth Reid
- Centre for Bio Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
| | - Pantelis Georgiou
- Centre for Bio Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
| | - Richard J. van Arkel
- Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | | |
Collapse
|
9
|
Barceló X, Eichholz K, Gonçalves I, Kronemberger GS, Dufour A, Garcia O, Kelly DJ. Bioprinting of scaled-up meniscal grafts by spatially patterning phenotypically distinct meniscus progenitor cells within melt electrowritten scaffolds. Biofabrication 2023; 16:015013. [PMID: 37939395 DOI: 10.1088/1758-5090/ad0ab9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/07/2023] [Indexed: 11/10/2023]
Abstract
Meniscus injuries are a common problem in orthopedic medicine and are associated with a significantly increased risk of developing osteoarthritis. While developments have been made in the field of meniscus regeneration, the engineering of cell-laden constructs that mimic the complex structure, composition and biomechanics of the native tissue remains a significant challenge. This can be linked to the use of cells that are not phenotypically representative of the different zones of the meniscus, and an inability to direct the spatial organization of engineered meniscal tissues. In this study we investigated the potential of zone-specific meniscus progenitor cells (MPCs) to generate functional meniscal tissue following their deposition into melt electrowritten (MEW) scaffolds. We first confirmed that fibronectin selected MPCs from the inner and outer regions of the meniscus maintain their differentiation capacity with prolonged monolayer expansion, opening their use within advanced biofabrication strategies. By depositing MPCs within MEW scaffolds with elongated pore shapes, which functioned as physical boundaries to direct cell growth and extracellular matrix production, we were able to bioprint anisotropic fibrocartilaginous tissues with preferentially aligned collagen networks. Furthermore, by using MPCs isolated from the inner (iMPCs) and outer (oMPCs) zone of the meniscus, we were able to bioprint phenotypically distinct constructs mimicking aspects of the native tissue. An iterative MEW process was then implemented to print scaffolds with a similar wedged-shaped profile to that of the native meniscus, into which we deposited iMPCs and oMPCs in a spatially controlled manner. This process allowed us to engineer sulfated glycosaminoglycan and collagen rich constructs mimicking the geometry of the meniscus, with MPCs generating a more fibrocartilage-like tissue compared to the mesenchymal stromal/stem cells. Taken together, these results demonstrate how the convergence of emerging biofabrication platforms with tissue-specific progenitor cells can enable the engineering of complex tissues such as the meniscus.
Collapse
Affiliation(s)
- Xavier Barceló
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Kian Eichholz
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Inês Gonçalves
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Gabriela S Kronemberger
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Alexandre Dufour
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Orquidea Garcia
- Johnson & Johnson 3D Printing Innovation & Customer Solutions, Johnson & Johnson Services, Inc, Dublin D02 R590, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| |
Collapse
|
10
|
Kiselevskiy MV, Anisimova NY, Kapustin AV, Ryzhkin AA, Kuznetsova DN, Polyakova VV, Enikeev NA. Development of Bioactive Scaffolds for Orthopedic Applications by Designing Additively Manufactured Titanium Porous Structures: A Critical Review. Biomimetics (Basel) 2023; 8:546. [PMID: 37999187 PMCID: PMC10669447 DOI: 10.3390/biomimetics8070546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
We overview recent findings achieved in the field of model-driven development of additively manufactured porous materials for the development of a new generation of bioactive implants for orthopedic applications. Porous structures produced from biocompatible titanium alloys using selective laser melting can present a promising material to design scaffolds with regulated mechanical properties and with the capacity to be loaded with pharmaceutical products. Adjusting pore geometry, one could control elastic modulus and strength/fatigue properties of the engineered structures to be compatible with bone tissues, thus preventing the stress shield effect when replacing a diseased bone fragment. Adsorption of medicals by internal spaces would make it possible to emit the antibiotic and anti-tumor agents into surrounding tissues. The developed internal porosity and surface roughness can provide the desired vascularization and osteointegration. We critically analyze the recent advances in the field featuring model design approaches, virtual testing of the designed structures, capabilities of additive printing of porous structures, biomedical issues of the engineered scaffolds, and so on. Special attention is paid to highlighting the actual problems in the field and the ways of their solutions.
Collapse
Affiliation(s)
- Mikhail V. Kiselevskiy
- N.N. Blokhin National Medical Research Center of Oncology (N.N. Blokhin NMRCO), Ministry of Health of the Russian Federation, 115478 Moscow, Russia;
- Department of Casting Technologies and Artistic Processing of Materials, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
| | - Natalia Yu. Anisimova
- N.N. Blokhin National Medical Research Center of Oncology (N.N. Blokhin NMRCO), Ministry of Health of the Russian Federation, 115478 Moscow, Russia;
- Department of Casting Technologies and Artistic Processing of Materials, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
| | - Alexei V. Kapustin
- Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia (A.A.R.); (D.N.K.); (V.V.P.); (N.A.E.)
| | - Alexander A. Ryzhkin
- Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia (A.A.R.); (D.N.K.); (V.V.P.); (N.A.E.)
| | - Daria N. Kuznetsova
- Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia (A.A.R.); (D.N.K.); (V.V.P.); (N.A.E.)
| | - Veronika V. Polyakova
- Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia (A.A.R.); (D.N.K.); (V.V.P.); (N.A.E.)
| | - Nariman A. Enikeev
- Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia (A.A.R.); (D.N.K.); (V.V.P.); (N.A.E.)
- Laboratory for Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
11
|
Lekhavadhani S, Shanmugavadivu A, Selvamurugan N. Role and architectural significance of porous chitosan-based scaffolds in bone tissue engineering. Int J Biol Macromol 2023; 251:126238. [PMID: 37567529 DOI: 10.1016/j.ijbiomac.2023.126238] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
In designing and fabricating scaffolds to fill the bone defects and stimulate new bone formation, the biomimetics of the construct is a crucial factor in invoking the bone microenvironment to promote osteogenic differentiation. Regarding structural traits, changes in porous characteristics of the scaffolds, such as pore size, pore morphology, and percentage porosity, may patronize or jeopardize their other physicochemical and biological properties. Chitosan (CS), a biodegradable naturally occurring polymer, has recently drawn considerable attention as a scaffolding material in tissue engineering and regenerative medicine. CS-based microporous scaffolds have been reported to aid osteogenesis under both in vitro and in vivo conditions by supporting cellular attachment and proliferation of osteoblast cells and the formation of mineralized bone matrix. This related notion may be found in numerous earlier research, even though the precise mechanism of action that encourages the development of new bone still needs to be understood completely. This article presents the potential correlations and the significance of the porous properties of the CS-based scaffolds to influence osteogenesis and angiogenesis during bone regeneration. This review also goes over resolving the mechanical limitations of CS by blending it with other polymers and ceramics.
Collapse
Affiliation(s)
- Sundaravadhanan Lekhavadhani
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
12
|
Bouakaz I, Drouet C, Grossin D, Cobraiville E, Nolens G. Hydroxyapatite 3D-printed scaffolds with Gyroid-Triply periodic minimal surface porous structure: Fabrication and an in vivo pilot study in sheep. Acta Biomater 2023; 170:580-595. [PMID: 37673232 DOI: 10.1016/j.actbio.2023.08.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
Bone repair is a major challenge in regenerative medicine, e.g. for large defects. There is a need for bioactive, highly percolating bone substitutes favoring bone ingrowth and tissue healing. Here, a modern 3D printing approach (VAT photopolymerization) was exploited to fabricate hydroxyapatite (HA) scaffolds with a Gyroid-"Triply periodic minimal surface" (TPMS) porous structure (65% porosity, 90.5% HA densification) inspired from trabecular bone. Percolation and absorption capacities were analyzed in gaseous and liquid conditions. Mechanical properties relevant to guided bone regeneration in non-load bearing sites, as for maxillofacial contour reconstruction, were evidenced from 3-point bending tests and macrospherical indentation. Scaffolds were implanted in a clinically-relevant large animal model (sheep femur), over 6 months, enabling thorough analyses at short (4 weeks) and long (26 weeks) time points. In vivo performances were systematically compared to the bovine bone-derived Bio-OssⓇ standard. The local tissue response was examined thoroughly by semi-quantitative histopathology. Results demonstrated the absence of toxicity. Bone healing was assessed by bone dynamics analysis through epifluorescence using various fluorochromes and quantitative histomorphometry. Performant bone regeneration was evidenced with similar overall performances to the control, although the Gyroid biomaterial slightly outperformed Bio-OssⓇ at early healing time in terms of osteointegration and appositional mineralization. This work is considered a pilot study on the in vivo evaluation of TPMS-based 3D porous scaffolds in a large animal model, for an extended period of time, and in comparison to a clinical standard. Our results confirm the relevance of such scaffolds for bone regeneration in view of clinical practice. STATEMENT OF SIGNIFICANCE: Bone repair, e.g. for large bone defects or patients with defective vascularization is still a major challenge. Highly percolating TPMS porous structures have recently emerged, but no in vivo data were reported on a large animal model of clinical relevance and comparing to an international standard. Here, we fabricated TPMS scaffolds of HA, determined their chemical, percolation and mechanical features, and ran an in-depth pilot study in the sheep with a systematic comparison to the Bio-OssⓇ reference. Our results clearly show the high bone-forming capability of such scaffolds, with outcomes even better than Bio-OssⓇ at short implantation time. This preclinical work provides quantitative data validating the relevance of such TMPS porous scaffolds for bone regeneration in view of clinical evaluation.
Collapse
Affiliation(s)
- Islam Bouakaz
- CERHUM - PIMW, 4000 Liège, Belgium; CIRIMAT, Université de Toulouse, CNRS / Toulouse INP / UT3, 31030 Toulouse, France
| | - Christophe Drouet
- CIRIMAT, Université de Toulouse, CNRS / Toulouse INP / UT3, 31030 Toulouse, France.
| | - David Grossin
- CIRIMAT, Université de Toulouse, CNRS / Toulouse INP / UT3, 31030 Toulouse, France
| | | | - Grégory Nolens
- CERHUM - PIMW, 4000 Liège, Belgium; Faculty of Medicine, University of Namur, 5000 Namur, Belgium.
| |
Collapse
|
13
|
Ivanovski S, Breik O, Carluccio D, Alayan J, Staples R, Vaquette C. 3D printing for bone regeneration: challenges and opportunities for achieving predictability. Periodontol 2000 2023; 93:358-384. [PMID: 37823472 DOI: 10.1111/prd.12525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/18/2023] [Accepted: 08/26/2023] [Indexed: 10/13/2023]
Abstract
3D printing offers attractive opportunities for large-volume bone regeneration in the oro-dental and craniofacial regions. This is enabled by the development of CAD-CAM technologies that support the design and manufacturing of anatomically accurate meshes and scaffolds. This review describes the main 3D-printing technologies utilized for the fabrication of these patient-matched devices, and reports on their pre-clinical and clinical performance including the occurrence of complications for vertical bone augmentation and craniofacial applications. Furthermore, the regulatory pathway for approval of these devices is discussed, highlighting the main hurdles and obstacles. Finally, the review elaborates on a variety of strategies for increasing bone regeneration capacity and explores the future of 4D bioprinting and biodegradable metal 3D printing.
Collapse
Affiliation(s)
- Saso Ivanovski
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Queensland, Herston, Australia
| | - Omar Breik
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, Queensland, Australia
| | - Danilo Carluccio
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, Queensland, Australia
| | - Jamil Alayan
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Queensland, Herston, Australia
| | - Ruben Staples
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Queensland, Herston, Australia
| | - Cedryck Vaquette
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Queensland, Herston, Australia
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Loi G, Scocozza F, Aliberti F, Rinvenuto L, Cidonio G, Marchesi N, Benedetti L, Ceccarelli G, Conti M. 3D Co-Printing and Substrate Geometry Influence the Differentiation of C2C12 Skeletal Myoblasts. Gels 2023; 9:595. [PMID: 37504474 PMCID: PMC10378771 DOI: 10.3390/gels9070595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/07/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023] Open
Abstract
Cells are influenced by several biomechanical aspects of their microenvironment, such as substrate geometry. According to the literature, substrate geometry influences the behavior of muscle cells; in particular, the curvature feature improves cell proliferation. However, the effect of substrate geometry on the myogenic differentiation process is not clear and needs to be further investigated. Here, we show that the 3D co-printing technique allows the realization of substrates. To test the influence of the co-printing technique on cellular behavior, we realized linear polycaprolactone substrates with channels in which a fibrinogen-based hydrogel loaded with C2C12 cells was deposited. Cell viability and differentiation were investigated up to 21 days in culture. The results suggest that this technology significantly improves the differentiation at 14 days. Therefore, we investigate the substrate geometry influence by comparing three different co-printed geometries-linear, circular, and hybrid structures (linear and circular features combined). Based on our results, all structures exhibit optimal cell viability (>94%), but the linear pattern allows to increase the in vitro cell differentiation, in particular after 14 days of culture. This study proposes an endorsed approach for creating artificial muscles for future skeletal muscle tissue engineering applications.
Collapse
Affiliation(s)
- Giada Loi
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100 Pavia, Italy
| | - Franca Scocozza
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100 Pavia, Italy
| | - Flaminia Aliberti
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Center for Inherited Cardiovascular Diseases, Transplant Research Area, 27100 Pavia, Italy
| | - Lorenza Rinvenuto
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Gianluca Cidonio
- Center for Life Nano- & Neuro-Science (CLN2S), Fondazione Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Nicola Marchesi
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Laura Benedetti
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Gabriele Ceccarelli
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Michele Conti
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100 Pavia, Italy
| |
Collapse
|
15
|
Barceló X, Garcia O, Kelly DJ. Chondroitinase ABC Treatment Improves the Organization and Mechanics of 3D Bioprinted Meniscal Tissue. ACS Biomater Sci Eng 2023; 9:3488-3495. [PMID: 37192278 PMCID: PMC10265576 DOI: 10.1021/acsbiomaterials.3c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/07/2023] [Indexed: 05/18/2023]
Abstract
The meniscus is a fibrocartilage tissue that is integral to the correct functioning of the knee joint. The tissue possesses a unique collagen fiber architecture that is integral to its biomechanical functionality. In particular, a network of circumferentially aligned collagen fibers function to bear the high tensile forces generated in the tissue during normal daily activities. The limited regenerative capacity of the meniscus has motivated increased interest in meniscus tissue engineering; however, the in vitro generation of structurally organized meniscal grafts with a collagen architecture mimetic of the native meniscus remains a significant challenge. Here we used melt electrowriting (MEW) to produce scaffolds with defined pore architectures to impose physical boundaries upon cell growth and extracellular matrix production. This enabled the bioprinting of anisotropic tissues with collagen fibers preferentially oriented parallel to the long axis of the scaffold pores. Furthermore, temporally removing glycosaminoglycans (sGAGs) during the early stages of in vitro tissue development using chondroitinase ABC (cABC) was found to positively impact collagen network maturation. Specially we found that temporal depletion of sGAGs is associated with an increase in collagen fiber diameter without any detrimental effect on the development of a meniscal tissue phenotype or subsequent extracellular matrix production. Moreover, temporal cABC treatment supported the development of engineered tissues with superior tensile mechanical properties compared to empty MEW scaffolds. These findings demonstrate the benefit of temporal enzymatic treatments when engineering structurally anisotropic tissues using emerging biofabrication technologies such as MEW and inkjet bioprinting.
Collapse
Affiliation(s)
- Xavier Barceló
- Trinity
Centre for Biomedical Engineering, Trinity
Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Mechanical, Manufacturing, & Biomedical Engineering, School
of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced
Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity
College Dublin, Dublin D02 F6N2, Ireland
| | - Orquidea Garcia
- Johnson
& Johnson 3D Printing Innovation & Customer Solutions, Johnson & Johnson Services, Inc., Dublin D02 R590, Ireland
| | - Daniel J. Kelly
- Trinity
Centre for Biomedical Engineering, Trinity
Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Mechanical, Manufacturing, & Biomedical Engineering, School
of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced
Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity
College Dublin, Dublin D02 F6N2, Ireland
- Department
of Anatomy and Regenerative Medicine, Royal
College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| |
Collapse
|
16
|
Barceló X, Eichholz KF, Gonçalves IF, Garcia O, Kelly DJ. Bioprinting of structurally organized meniscal tissue within anisotropic melt electrowritten scaffolds. Acta Biomater 2023; 158:216-227. [PMID: 36638941 DOI: 10.1016/j.actbio.2022.12.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023]
Abstract
The meniscus is characterised by an anisotropic collagen fibre network which is integral to its biomechanical functionality. The engineering of structurally organized meniscal grafts that mimic the anisotropy of the native tissue remains a significant challenge. In this study, inkjet bioprinting was used to deposit a cell-laden bioink into additively manufactured scaffolds of differing architectures to engineer fibrocartilage grafts with user defined collagen architectures. Polymeric scaffolds consisting of guiding fibre networks with varying aspect ratios (1:1; 1:4; 1:16) were produced using either fused deposition modelling (FDM) or melt electrowriting (MEW), resulting in scaffolds with different internal architectures and fibre diameters. Scaffold architecture was found to influence the spatial organization of the collagen network laid down by the jetted cells, with higher aspect ratios (1:4 and 1:16) supporting the formation of structurally anisotropic tissues. The MEW scaffolds supported the development of a fibrocartilaginous tissue with compressive mechanical properties similar to that of native meniscus, while the anisotropic tensile properties of these constructs could be tuned by altering the fibre network aspect ratio. This MEW framework was then used to generate scaffolds with spatially distinct fibre patterns, which in turn supported the development of heterogenous tissues consisting of isotropic and anisotropic collagen networks. Such bioprinted tissues could potentially form the basis of new treatment options for damaged and diseased meniscal tissue. STATEMENT OF SIGNIFICANCE: This study describes a multiple tool biofabrication strategy which enables the engineering of spatially organized fibrocartilage tissues. The architecture of MEW scaffolds can be tailored to not only modulate the directionality of the collagen fibres laid down by cells, but also to tune the anisotropic tensile mechanical properties of the resulting constructs, thereby enabling the engineering of biomimetic meniscal-like tissues. Furthermore, the inherent flexibility of MEW enables the development of zonally defined and potentially patient-specific implants.
Collapse
Affiliation(s)
- Xavier Barceló
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 R590, Ireland; Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, D02 R590, Ireland; Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin, D02 F6N2, Ireland
| | - Kian F Eichholz
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 R590, Ireland; Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, D02 R590, Ireland; Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin, D02 F6N2, Ireland
| | - Inês F Gonçalves
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 R590, Ireland; Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, D02 R590, Ireland; Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin, D02 F6N2, Ireland
| | - Orquidea Garcia
- Johnson & Johnson 3D Printing Innovation & Customer Solutions, Johnson & Johnson Services, Inc., Irvine, CA, USA
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 R590, Ireland; Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, D02 R590, Ireland; Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin, D02 F6N2, Ireland; Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland.
| |
Collapse
|
17
|
Schamberger B, Ziege R, Anselme K, Ben Amar M, Bykowski M, Castro APG, Cipitria A, Coles RA, Dimova R, Eder M, Ehrig S, Escudero LM, Evans ME, Fernandes PR, Fratzl P, Geris L, Gierlinger N, Hannezo E, Iglič A, Kirkensgaard JJK, Kollmannsberger P, Kowalewska Ł, Kurniawan NA, Papantoniou I, Pieuchot L, Pires THV, Renner LD, Sageman-Furnas AO, Schröder-Turk GE, Sengupta A, Sharma VR, Tagua A, Tomba C, Trepat X, Waters SL, Yeo EF, Roschger A, Bidan CM, Dunlop JWC. Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206110. [PMID: 36461812 DOI: 10.1002/adma.202206110] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.
Collapse
Affiliation(s)
- Barbara Schamberger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Ricardo Ziege
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Karine Anselme
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Université de Strasbourg, F-67081, Strasbourg, France
| | - Martine Ben Amar
- Department of Physics, Laboratoire de Physique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France
| | - Michał Bykowski
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - André P G Castro
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
- ESTS, Instituto Politécnico de Setúbal, 2914-761, Setúbal, Portugal
| | - Amaia Cipitria
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Group of Bioengineering in Regeneration and Cancer, Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Rhoslyn A Coles
- Cluster of Excellence, Matters of Activity, Humboldt-Universität zu Berlin, 10178, Berlin, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Michaela Eder
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Sebastian Ehrig
- Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 10115, Berlin, Germany
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013, Seville, Spain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Myfanwy E Evans
- Institute for Mathematics, University of Potsdam, 14476, Potsdam, Germany
| | - Paulo R Fernandes
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In Silico Medicine, University of Liège, 4000, Liège, Belgium
| | - Notburga Gierlinger
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (Boku), 1190, Vienna, Austria
| | - Edouard Hannezo
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical engineering, University of Ljubljana, Tržaška 25, SI-1000, Ljubljana, Slovenia
| | - Jacob J K Kirkensgaard
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
- Ingredients and Dairy Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark
| | - Philip Kollmannsberger
- Center for Computational and Theoretical Biology, University of Würzburg, 97074, Würzburg, Germany
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - Nicholas A Kurniawan
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Ioannis Papantoniou
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology (FORTH), Stadiou Str., 26504, Patras, Greece
| | - Laurent Pieuchot
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Université de Strasbourg, F-67081, Strasbourg, France
| | - Tiago H V Pires
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Lars D Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
| | | | - Gerd E Schröder-Turk
- School of Physics, Chemistry and Mathematics, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, ACT, 2600, Australia
| | - Anupam Sengupta
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg City, Grand Duchy of Luxembourg
| | - Vikas R Sharma
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Antonio Tagua
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013, Seville, Spain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Caterina Tomba
- Univ Lyon, CNRS, INSA Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, 69622, Villeurbanne, France
| | - Xavier Trepat
- ICREA at the Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08028, Barcelona, Spain
| | - Sarah L Waters
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, UK
| | - Edwina F Yeo
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, UK
| | - Andreas Roschger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Cécile M Bidan
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - John W C Dunlop
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| |
Collapse
|
18
|
Mastoid obliteration and external auditory canal reconstruction using 3D printed bioactive glass S53P4 /polycaprolactone scaffold loaded with bone morphogenetic protein-2: A simulation clinical study in rabbits. Regen Ther 2022; 21:469-476. [PMID: 36313396 PMCID: PMC9588957 DOI: 10.1016/j.reth.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION The lack of good prosthetic materials and objective standards has limited the promotion of mastoid obliteration and external auditory canal reconstruction, and the quality of the surgery varies. In this study, bioactive glass S53P4 (S53P4), the most popular artificial prosthetic material, was modified and combined with polycaprolactone (PCL) and bone morphogenetic protein-2 (BMP-2) to produce an individualized biological scaffold using 3D printing technology to explore a better material and method for mastoid obliteration and external auditory canal reconstruction. METHODS 3D-printed S53P4/PCL scaffolds were fabricated from 3D reconstruction data of bone defect areas in New Zealand rabbits simulating "Canal Wall Down Mastoidectomy". The water absorption, swelling rate, porosity, and Young's modulus of the scaffold were measured, and the morphology and pore size of the scaffold were observed using scanning electron microscopy. The cytotoxicity of the S53P4/PCL scaffolds was detected using the CCK8 assay, and the in vitro antibacterial activity of the S53P4/PCL scaffolds was detected using the inhibition circle method. The BMP-2-loaded S53P4/PCL scaffolds were prepared using the drop-in lyophilization method and implanted into animal models. The biocompatibility, osteogenic activity, and external auditory canal repair of the scaffolds were observed using endoscopy, micro-CT, and histological examination. RESULTS The S53P4/PCL scaffold was highly compatible with the defective area of the animal model, and its physicochemical properties met the requirements of bone tissue engineering. In vitro experiments showed that the S53P4/PCL scaffold was non-cytotoxic and exhibited better antibacterial activity than the same volume of the S53P4 powder. In vivo experiments showed that the S53P4/PCL scaffold had good biocompatibility and osteogenic activity, and could effectively repair bone defects and reconstruct the normal morphology of the external auditory canal in animal models. Furthermore, its osteogenic activity and repair ability were significantly improved after loading with BMP-2. CONCLUSIONS The 3D printed S53P4/PCL scaffold has great potential for clinical mastoid obliteration and external auditory canal reconstruction.
Collapse
|
19
|
Novel structural designs of 3D-printed osteogenic graft for rapid angiogenesis. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Study on βTCP/P(3HB) Scaffolds-Physicochemical Properties and Biological Performance in Low Oxygen Concentration. Int J Mol Sci 2022; 23:ijms231911587. [PMID: 36232889 PMCID: PMC9569667 DOI: 10.3390/ijms231911587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
The search for new materials for bone regenerative purposes is still ongoing. Therefore, we present a series of newly constructed composites based on β tricalcium phosphate (βTCP) and poly(3-hydroxybutyrate) bacteria-derived biopolymer (P(3HB)) in the form of 3D scaffolds with different pore sizes. To improve the polymer attachment to the βTCP surface, the etching of ceramic sinters, using citric acid, was applied. As expected, pre-treatment led to the increase in surface roughness and the creation of micropores facilitating polymer adhesion. In this way, the durability and compressive strength of the ceramic-polymer scaffolds were enhanced. It was confirmed that P(3HB) degrades to 3-hydroxybutyric acid, which broadens applications of developed materials in bone tissue engineering as this compound can potentially nourish surrounding tissues and reduce osteoporosis. Moreover, to the best of our knowledge, it is one of the first studies where the impact of βTCP/P(3HB) scaffolds on mesenchymal stem cells (MSCs), cultured in lowered (5%) oxygen concentration, was assessed. It was decided to use a 5% oxygen concentration in the culture to mimic the conditions that would be found in damaged bone in a living organism during regeneration. Scaffolds enabled cell migration and sufficient flow of the culture medium, ensuring high cell viability. Furthermore, in composites with etched βTCP, the MSCs adhesion was facilitated by hydrophilic ceramic protrusions which reduced hydrophobicity. The developed materials are potential candidates for bone tissue regeneration. Nevertheless, to confirm this hypothesis, in vivo studies should be performed.
Collapse
|
21
|
Multi-objective Shape Optimization of Bone Scaffolds: Enhancement of Mechanical Properties and Permeability. Acta Biomater 2022; 146:317-340. [PMID: 35533924 DOI: 10.1016/j.actbio.2022.04.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022]
Abstract
Porous scaffolds have recently attracted attention in bone tissue engineering. The implanted scaffolds are supposed to satisfy the mechanical and biological requirements. In this study, two porous structures named MFCC-1 (modified face centered cubic-1) and MFCC-2 (modified face centered cubic-2) are introduced. The proposed porous architectures are evaluated, optimized, and tested to enhance mechanical and biological properties. The geometric parameters of the scaffolds with porosities ranging from 70% to 90% are optimized to find a compromise between the effective Young's modulus and permeability, as well as satisfying the pore size and specific surface area requirements. To optimize the effective Young's modulus and permeability, we integrated a mathematical formulation, finite element analysis, and computational fluid dynamics simulations. For validation, the optimized scaffolds were 3D-printed, tested, and compared with two different orthogonal cylindrical struts (OCS) scaffold architectures. The MFCC designs are preferred to the generic OCS scaffolds from various perspectives: a) the MFCC architecture allows scaffold designs with porosities up to 96%; b) the very porous architecture of MFCC scaffolds allows achieving high permeabilities, which could potentially improve the cell diffusion; c) despite having a higher porosity compared to the OCS scaffolds, MFCC scaffolds improve mechanical performance regarding Young's modulus, stress concentration, and apparent yield strength; d) the proposed structures with different porosities are able to cover all the range of permeability for the human trabecular bones. The optimized MFCC designs have simple architectures and can be easily fabricated and used to improve the quality of load-bearing orthopedic scaffolds. STATEMENT OF SIGNIFICANCE: Porous scaffolds are increasingly being studied to repair large bone defects. A scaffold is supposed to withstand mechanical loads and provide an appropriate environment for bone cell growth after implantation. These mechanical and biological requirements are usually contradicting; improving the mechanical performance would require a reduction in porosity and a lower porosity is likely to reduce the biological performance of the scaffold. Various studies have shown that the mechanical and biological performance of bone scaffolds can be improved by internal architecture modification. In this study, we propose two scaffold architectures named MFCC-1 and MFCC-2 and provide an optimization framework to simultaneously optimize their stiffness and permeability to improve their mechanical and biological performances.
Collapse
|
22
|
Guo Y, Liu F, Bian X, Lu K, Huang P, Ye X, Tang C, Li X, Wang H, Tang K. Effect of Pore Size of Porous-Structured Titanium Implants on Tendon Ingrowth. Appl Bionics Biomech 2022; 2022:2801229. [PMID: 35510044 PMCID: PMC9061050 DOI: 10.1155/2022/2801229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The reconstruction of a tendon insertion on metal prostheses is a challenge in orthopedics. Of the available metal prostheses, porous metal prostheses have been shown to have better biocompatibility for tissue integration. Therefore, this study is aimed at identifying an appropriate porous structure for the reconstruction of a tendon insertion on metal prostheses. Methods Ti6Al4V specimens with a diamond-like porous structure with triply periodic minimal surface pore sizes of 300, 500, and 700 μm and a porosity of 58% (designated Ti300, Ti500, and Ti700, respectively) were manufactured by selective laser melting and were characterized with micro-CT and scanning electron microscopy for their porosity, pore size, and surface topography. The porous specimens were implanted into the patellar tendon of rabbits. Tendon integration was evaluated after implantation into the tendon at 4, 8, and 12 weeks by histology, and the fixation strength was evaluated with a pull-out test at week 12. Results The average pore sizes of the Ti300, Ti500, and Ti700 implants were 261, 480, and 668 μm, respectively. The Ti500 and Ti700 implants demonstrated better tissue growth than the Ti300 implant at weeks 4, 8, and 12. At week 12, the histological score of the Ti500 implant was 13.67 ± 0.58, and it had an area percentage of type I collagen of 63.90% ± 3.41%; both of these results were significantly higher than those for the Ti300 and Ti700 implants. The pull-out load at week 12 was also the highest in the Ti500 group. Conclusion Ti6Al4V implants with a diamond-like porous structure with triply periodic minimal surface pore size of 500 μm are suitable for tendon integration.
Collapse
Affiliation(s)
- Yupeng Guo
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Fei Liu
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xuting Bian
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Kang Lu
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Pan Huang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiao Ye
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chuyue Tang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xinxin Li
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Huan Wang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Kanglai Tang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
23
|
Three-dimensional gradient porous polymeric composites for osteochondral regeneration. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02989-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Xiong Q, Zhang N, Zhang M, Wang M, Wang L, Fan Y, Lin CY. Engineer a pre-metastatic niched microenvironment to attract breast cancer cells by utilizing a 3D printed polycaprolactone/nano-hydroxyapatite osteogenic scaffold - An in vitro model system for proof of concept. J Biomed Mater Res B Appl Biomater 2022; 110:1604-1614. [PMID: 35112785 DOI: 10.1002/jbm.b.35021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/18/2021] [Accepted: 01/15/2022] [Indexed: 01/17/2023]
Abstract
Breast cancer bone metastasis is not a random process. It is affected by the local microenvironment which determines the propensity of cancer cells to invade and colonize into the secondary sites. This microenvironment is termed a pre-metastatic niche. With the flexibility to incorporate different biofactors, tissue-engineering scaffolds provide an advantageous environment to promote "designed" osteogenesis that may mimic the bony pre-metastatic niche. In the current study, designed polycaprolactone (PCL) scaffolds enriched with nano-hydroxyapatite (nHA) were fabricated through three-dimensional (3D) printing. Subsequently, human mesenchymal stem cells (hMSCs) were seeded onto PCL-nHA scaffolds for osteogenic differentiation to establish the pre-metastatic niched microenvironment. Furthermore, transwell migration assay was used to investigate recruitment of MDA-MB-231, MCF-7, and MDA-MB-453 breast cancer cells to the osseous PCL-nHA scaffolds. Our results showed that the mRNA levels of alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and osteocalcin (OCN) of hMSCs on the PCL-nHA scaffolds were dramatically increased compared those with the PCL scaffolds (control) at day 7, 14, and 28. Meanwhile, the migration analysis showed that the higher maturation of osteogenesis and bone metabolism collectively contributed to the creation of a more favorable niched site for the cancerous invasion. Moreover, one of the hypothesized key mediators for the promoted migration, CXCL12, was confirmed using an assay of antagonist LIT-927. This early study demonstrated that a designed tissue engineering scaffold can be utilized to create a bone-mimicking environment that serves as a novel platform to recapitulate the pre-metastatic niche and help interrogate the scheme of bone metastasis by breast cancer.
Collapse
Affiliation(s)
- Qisheng Xiong
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Ningze Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Miaomiao Zhang
- Beijing Institute of 3D Printing, Beijing City University, Beijing, China
| | - Meng Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Lizhen Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Chia-Ying Lin
- Department of Orthopaedic Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
25
|
Alshareef M, Alshareef A, Vasas T, Shingala A, Cutrone J, Eskandari R. Pediatric Cranioplasty Using Hydroxyapatite Cement: A Retrospective Review and Preliminary Computational Model. Pediatr Neurosurg 2022; 57:40-49. [PMID: 34847549 DOI: 10.1159/000520954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Cranioplasty is a standard technique for skull defect repair. Restoration of cranial defects is imperative for brain protection and allowing for homeostasis of cerebral spinal fluid within the cranial vault. Calcium phosphate hydroxyapatite (HA) is a synthetic-organic material that is commonly used in cranioplasty. We evaluate a patient series undergoing HA cement cranioplasty with underlying bioresorbable mesh for various cranial defects and propose a preliminary computational model for understanding skull osteointegration. METHODS A retrospective review was performed at the institution for all pediatric patients who underwent HA cement cranioplasty. Seventeen patients were identified, and success of cranioplasty was determined based on clinical and radiographic follow-up. A preliminary computational model was developed using bone growth and scaffold decay equations from previously published literature. The model was dependent on defect size and shape. Patient data were used to optimize the computational model. RESULTS Seventeen patients were identified with an average age of 6 ± 5.6 years. Average defect size was 11.7 ± 16.8 cm2. Average time to last follow-up computer tomography scan was 10 ± 6 months. Three patients had failure of cranioplasty, all with a defect size above 15 cm2. The computational model developed shows a constant decay rate of the scaffold, regardless of size or shape. The bone growth rate was dependent on the shape and number of edges within the defect. Thus, a star-shaped defect obtained a higher rate of growth than a circular defect because of faster growth rates at the edges. The computational simulations suggest that shape and size of defects may alter success of osteointegration. CONCLUSION Pediatric cranioplasty is a necessary procedure for cranial defects with a relatively higher rate of failure than adults. Here, we use HA cement to perform the procedure while creating a preliminary computational model to understand osteointegration. Based on the findings, cranioplasty shape may alter the rate of integration and lead to higher success rates.
Collapse
Affiliation(s)
- Mohammed Alshareef
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ahmed Alshareef
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tyler Vasas
- College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Aakash Shingala
- College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jonathan Cutrone
- College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ramin Eskandari
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Shape optimization of orthopedic porous scaffolds to enhance mechanical performance. J Mech Behav Biomed Mater 2022; 128:105098. [DOI: 10.1016/j.jmbbm.2022.105098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 11/19/2022]
|
27
|
A quantitative analysis of cell bridging kinetics on a scaffold using computer vision algorithms. Acta Biomater 2021; 136:429-440. [PMID: 34571272 DOI: 10.1016/j.actbio.2021.09.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 01/01/2023]
Abstract
Tissue engineering involves the seeding of cells into a structural scaffolding to regenerate the architecture of damaged or diseased tissue. To effectively design a scaffold, an understanding of how cells collectively sense and react to the geometry of their local environment is needed. Advances in the development of melt electro-writing have allowed micron and submicron polymeric fibres to be accurately printed into porous, complex and three-dimensional structures. By using melt electrowriting, we created a geometrically relevant in vitro scaffold model to study cellular spatial-temporal kinetics. These scaffolds were paired with custom computer vision algorithms to investigate cell nuclei, cell membrane actin and scaffold fibres over different pore sizes (200-600 µm) and time points (28 days). We find that cells proliferated much faster in the smaller (200 µm) pores which halved the time until confluence versus larger (500 and 600 µm) pores. Our analysis of stained actin fibres revealed that cells were highly aligned to the fibres and the leading edge of the pore filling front, and we found that cells behind the leading edge were not aligned in any particular direction. This study provides a systematic understanding of cellular spatial temporal kinetics within a 3D in vitro model to inform the design of more effective synthetic tissue engineering scaffolds for tissue regeneration. STATEMENT OF SIGNIFICANCE: Advances in the development of melt electro-writing have allowed micron and submicron polymeric fibres to be accurately printed into porous, complex and three-dimensional structures. By using melt electrowriting, we created a geometrically relevant in vitro model to study cellular spatial-temporal kinetics to provide a systematic understanding of cellular spatial temporal kinetics within a 3D in vitro model. The insights presented in this work help to inform the design of more effective synthetic tissue engineering scaffolds by reducing cell culture time; which is valuable information for the implant or lab-grown-meat industries.
Collapse
|
28
|
Romero-Araya P, Pino V, Nenen A, Cárdenas V, Pavicic F, Ehrenfeld P, Serandour G, Lisoni JG, Moreno-Villoslada I, Flores ME. Combining Materials Obtained by 3D-Printing and Electrospinning from Commercial Polylactide Filament to Produce Biocompatible Composites. Polymers (Basel) 2021; 13:polym13213806. [PMID: 34771361 PMCID: PMC8588263 DOI: 10.3390/polym13213806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 01/29/2023] Open
Abstract
The design of scaffolds to reach similar three-dimensional structures mimicking the natural and fibrous environment of some cells is a challenge for tissue engineering, and 3D-printing and electrospinning highlights from other techniques in the production of scaffolds. The former is a well-known additive manufacturing technique devoted to the production of custom-made structures with mechanical properties similar to tissues and bones found in the human body, but lacks the resolution to produce small and interconnected structures. The latter is a well-studied technique to produce materials possessing a fibrillar structure, having the advantage of producing materials with tuned composition compared with a 3D-print. Taking the advantage that commercial 3D-printers work with polylactide (PLA) based filaments, a biocompatible and biodegradable polymer, in this work we produce PLA-based composites by blending materials obtained by 3D-printing and electrospinning. Porous PLA fibers have been obtained by the electrospinning of recovered PLA from 3D-printer filaments, tuning the mechanical properties by blending PLA with small amounts of polyethylene glycol and hydroxyapatite. A composite has been obtained by blending two layers of 3D-printed pieces with a central mat of PLA fibers. The composite presented a reduced storage modulus as compared with a single 3D-print piece and possessing similar mechanical properties to bone tissues. Furthermore, the biocompatibility of the composites is assessed by a simulated body fluid assay and by culturing composites with 3T3 fibroblasts. We observed that all these composites induce the growing and attaching of fibroblast over the surface of a 3D-printed layer and in the fibrous layer, showing the potential of commercial 3D-printers and filaments to produce scaffolds to be used in bone tissue engineering.
Collapse
Affiliation(s)
- Pablo Romero-Araya
- Laboratorio de Polímeros, Facultad de Ciencias, Instituto de Ciencias Químicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.R.-A.); (V.P.); (A.N.); (V.C.); (I.M.-V.)
- Escuela de Odontología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Victor Pino
- Laboratorio de Polímeros, Facultad de Ciencias, Instituto de Ciencias Químicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.R.-A.); (V.P.); (A.N.); (V.C.); (I.M.-V.)
- Escuela de Odontología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Ariel Nenen
- Laboratorio de Polímeros, Facultad de Ciencias, Instituto de Ciencias Químicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.R.-A.); (V.P.); (A.N.); (V.C.); (I.M.-V.)
| | - Verena Cárdenas
- Laboratorio de Polímeros, Facultad de Ciencias, Instituto de Ciencias Químicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.R.-A.); (V.P.); (A.N.); (V.C.); (I.M.-V.)
| | - Francisca Pavicic
- Facultad de Medicina, Instituto de Anatomia, Histologia y Patologia, Universidad Austral de Chile, Valdivia 5090000, Chile; (F.P.); (P.E.)
- Centro de Estudios Interdisciplinarios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Pamela Ehrenfeld
- Facultad de Medicina, Instituto de Anatomia, Histologia y Patologia, Universidad Austral de Chile, Valdivia 5090000, Chile; (F.P.); (P.E.)
- Centro de Estudios Interdisciplinarios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Guillaume Serandour
- LeufüLAB, Facultad de Ciencias de la Ingeniería, Instituto de Diseño y Métodos Industriales, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Judit G. Lisoni
- Facultad de Ciencias, Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Ignacio Moreno-Villoslada
- Laboratorio de Polímeros, Facultad de Ciencias, Instituto de Ciencias Químicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.R.-A.); (V.P.); (A.N.); (V.C.); (I.M.-V.)
| | - Mario E. Flores
- Laboratorio de Polímeros, Facultad de Ciencias, Instituto de Ciencias Químicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.R.-A.); (V.P.); (A.N.); (V.C.); (I.M.-V.)
- Correspondence: ; Tel.: +56-63-2293521
| |
Collapse
|
29
|
Karimzadeh Bardeei L, Seyedjafari E, Hossein G, Nabiuni M, Majles Ara MH, Salber J. Regeneration of Bone Defects in a Rabbit Femoral Osteonecrosis Model Using 3D-Printed Poly (Epsilon-Caprolactone)/Nanoparticulate Willemite Composite Scaffolds. Int J Mol Sci 2021; 22:10332. [PMID: 34638673 PMCID: PMC8508893 DOI: 10.3390/ijms221910332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 01/12/2023] Open
Abstract
Steroid-associated osteonecrosis (SAON) is a chronic disease that leads to the destruction and collapse of bone near the joint that is subjected to weight bearing, ultimately resulting in a loss of hip and knee function. Zn2+ ions, as an essential trace element, have functional roles in improving the immunophysiological cellular environment, accelerating bone regeneration, and inhibiting biofilm formation. In this study, we reconstruct SAON lesions with a three-dimensional (3D)-a printed composite made of poly (epsilon-caprolactone) (PCL) and nanoparticulate Willemite (npW). Rabbit bone marrow stem cells were used to evaluate the cytocompatibility and osteogenic differentiation capability of the PCL/npW composite scaffolds. The 2-month bone regeneration was assessed by a Micro-computed tomography (micro-CT) scan and the expression of bone regeneration proteins by Western blot. Compared with the neat PCL group, PCL/npW scaffolds exhibited significantly increased cytocompatibility and osteogenic activity. This finding reveals a new concept for the design of a 3D-printed PCL/npW composite-based bone substitute for the early treatment of osteonecrosis defects.
Collapse
Affiliation(s)
- Latifeh Karimzadeh Bardeei
- Developmental Biology Laboratory, Animal Biology Department, School of Biology, College of Science, University of Tehran, Tehran 1417935840, Iran;
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran 1417935840, Iran
| | - Ghamartaj Hossein
- Developmental Biology Laboratory, Animal Biology Department, School of Biology, College of Science, University of Tehran, Tehran 1417935840, Iran;
| | - Mohammad Nabiuni
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran;
| | - Mohammad Hosein Majles Ara
- Photonics Laboratory, Physics Department, Kharazmi University, Tehran 15719-14911, Iran;
- Applied Science Research Centre, Kharazmi University, Tehran 15719-14911, Iran
| | - Jochen Salber
- Salber Laboratory, Centre for Clinical Research, Department of Experimental Surgery, Ruhr-Universität Bochum, 44780 Bochum, Germany;
- Department of Surgery, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, 44892 Bochum, Germany
| |
Collapse
|
30
|
Yao YT, Yang Y, Ye Q, Cao SS, Zhang XP, Zhao K, Jian Y. Effects of pore size and porosity on cytocompatibility and osteogenic differentiation of porous titanium. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:72. [PMID: 34125310 PMCID: PMC8203544 DOI: 10.1007/s10856-021-06548-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
To find out the optimal porosity and pore size of porous titanium (Ti) regarding the cytocompatibility and osteogenic differentiation. Six groups of porous Ti samples with different porosities and pore sizes were fabricated by the powder metallurgy process. The microstructure and compressive mechanical properties were characterized. The cytocompatibility was examined by a series of biological tests as protein absorption with BCA assay kit, cell attachment with laser scanning confocal microscopy and vinculin expression, cell proliferation with CCK-8 assay. Cell differentiation and calcification were detected by qPCR and Alizarin Red S dying respectively. Pores distributed homogeneously throughout the porous Ti samples. The compressive test results showed that Young's modulus ranged from 2.80 ± 0.03 GPa to 5.43 ± 0.34 GPa and the compressive strength increased from 112.4 ± 3.6 MPa to 231.1 ± 9.4 MPa. Porous Ti with high porosity (53.3 ± 1.2%) and small pore size (191.6 ± 3.7 μm) adsorbed more proteins. More MC3T3-E1 cells adhered onto dense Ti samples than onto any other porous ones already after culture and no difference was identified within the porous groups. The porous structure of porous Ti with a porosity of 53.3 ± 1.2% and an average pore size of 191.6 ± 3.7 μm facilitated cell differentiation and calcification. Small pores were not beneficial to the osteo-initiation at the very beginning. Porous Ti with a porosity of 53.3 ± 1.2% and an average pore size of 191.6 ± 3.7 μm fabricated by powder metallurgy process showed the expected mechanical property and improved osseointegration as implants in dental treatment.
Collapse
Affiliation(s)
- Yi-Tong Yao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yue Yang
- Department of Stomatology, Shenzhen People's Hospital (Second Clinical Medical School of Jinan University; First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| | - Qi Ye
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Shan-Shan Cao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xin-Ping Zhang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Ke Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| | - Yutao Jian
- Institute of Stomatological Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
31
|
Das SL, Bose P, Lejeune E, Reich DH, Chen C, Eyckmans J. Extracellular Matrix Alignment Directs Provisional Matrix Assembly and Three Dimensional Fibrous Tissue Closure. Tissue Eng Part A 2021; 27:1447-1457. [PMID: 33979548 DOI: 10.1089/ten.tea.2020.0332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gap closure is a dynamic process in wound healing, in which a wound contracts and a provisional matrix is laid down, to restore structural integrity to injured tissues. The efficiency of wound closure has been found to depend on the shape of a wound, and this shape dependence has been echoed in various in vitro studies. While wound shape itself appears to contribute to this effect, it remains unclear whether the alignment of the surrounding extracellular matrix (ECM) may also contribute. In this study, we investigate the role both wound curvature and ECM alignment have on gap closure in a 3D culture model of fibrous tissue. Using microfabricated flexible micropillars positioned in rectangular and octagonal arrangements, seeded 3T3 fibroblasts embedded in a collagen matrix formed microtissues with different ECM alignments. Wounding these microtissues with a microsurgical knife resulted in wounds with different shapes and curvatures that closed at different rates. Observing different regions around the wounds, we noted local wound curvature did not impact the rate of production of provisional fibronectin matrix assembled by the fibroblasts. Instead, the rate of provisional matrix assembly was lowest emerging from regions of high fibronectin alignment and highest in the areas of low matrix alignment. Our data suggest that the underlying ECM structure affects the shape of the wound as well as the ability of fibroblasts to build provisional matrix, an important step in the process of tissue closure and restoration of tissue architecture. The study highlights an important interplay between ECM alignment, wound shape, and tissue healing that has not been previously recognized and may inform approaches to engineer tissues.
Collapse
Affiliation(s)
- Shoshana L Das
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Prasenjit Bose
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland, USA
| | - Emma Lejeune
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA
| | - Daniel H Reich
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christopher Chen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Jeroen Eyckmans
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Pei X, Wu L, Lei H, Zhou C, Fan H, Li Z, Zhang B, Sun H, Gui X, Jiang Q, Fan Y, Zhang X. Fabrication of customized Ti6AI4V heterogeneous scaffolds with selective laser melting: Optimization of the architecture for orthopedic implant applications. Acta Biomater 2021; 126:485-495. [PMID: 33766797 DOI: 10.1016/j.actbio.2021.03.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 02/08/2023]
Abstract
Orthopedic implants with heterogeneous porous structures were known as ideal bone osteointegration. This research introduced the selective laser melting (SLM), finite element analysis (FEA), and a hydrothermal process (HT) for manufacturing a three-level heterogeneous porous structure. The macroporous structure was designed via CAD and micropores were tuned via laser power regulation. A nano-size layer of hydroxyapatite crystals was coated by an HT process. The mechanical properties were reinforced via a core-shell structure with core reinforcement. The existence of micropores and nano-hydroxyapatite coating enhanced the in vitro proliferation of preosteoblasts and osteogenic cellular behaviors of rBMSCs. Thus, the three-level heterogeneous porous titanium implants could inspire researchers with potential clue of cyto-implant interaction mechanism, therefore building ideal orthopedic implants with accelerated osteointegration. STATEMENT OF SIGNIFICANCE: Porous structures of titanium implants play an important role in bone tissue regeneration; The geometrical environment influence cell behaviour and bone tissue ingrowth in all macro-/micro-/nanoscale. In this study, a novel method to fabricate heterogeneous scaffolds and its macro-/micro-/nanoscopic structures were studied. A CAD model was used to obtain the macroscopic structure and the insufficient laser power was introduced for porous microstructure. Therefore, a layer of nano hydroxyapatite was coated via hydrothermal process. Cytoproliferation and cytodifferentiation results indicated that a integrity of regular/irregular, macro-/micro-/nanoscale porous structure had advance in recruiting stem cells and promoting differentiation. This research is beneficial to the development of bone implants with better bone regeneration ability.
Collapse
|
33
|
Zhang Y, Attarilar S, Wang L, Lu W, Yang J, Fu Y. A Review on Design and Mechanical Properties of Additively Manufactured NiTi Implants for Orthopedic Applications. Int J Bioprint 2021; 7:340. [PMID: 33997434 PMCID: PMC8114098 DOI: 10.18063/ijb.v7i2.340] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/10/2021] [Indexed: 11/23/2022] Open
Abstract
NiTi alloy has a wide range of applications as a biomaterial due to its high ductility, low corrosion rate, and favorable biocompatibility. Although Young’s modulus of NiTi is relatively low, it still needs to be reduced; one of the promising ways is by introducing porous structure. Traditional manufacturing processes, such as casting, can hardly produce complex porous structures. Additive manufacturing (AM) is one of the most advanced manufacturing technologies that can solve impurity issues, and selective laser melting (SLM) is one of the well-known methods. This paper reviews the developments of AM-NiTi with a particular focus on SLM-NiTi utilization in biomedical applications. Correspondingly, this paper aims to describe the three key factors, including powder preparation, processing parameters, and gas atmosphere during the overall process of porous NiTi. The porous structure design is of vital importance, so the unit cell and pore parameters are discussed. The mechanical properties of SLM-NiTi, such as hardness, compressive strength, tensile strength, fatigue behavior, and damping properties and their relationship with design parameters are summarized. In the end, it points out the current challenges. Considering the increasing application of NiTi implants, this review paper may open new frontiers for advanced and modern designs.
Collapse
Affiliation(s)
- Yintao Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shokouh Attarilar
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Pediatric Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weijie Lu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junlin Yang
- Department of Pediatric Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China
| | - Yuanfei Fu
- Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
34
|
Charbonnier B, Hadida M, Marchat D. Additive manufacturing pertaining to bone: Hopes, reality and future challenges for clinical applications. Acta Biomater 2021; 121:1-28. [PMID: 33271354 DOI: 10.1016/j.actbio.2020.11.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
For the past 20 years, the democratization of additive manufacturing (AM) technologies has made many of us dream of: low cost, waste-free, and on-demand production of functional parts; fully customized tools; designs limited by imagination only, etc. As every patient is unique, the potential of AM for the medical field is thought to be considerable: AM would allow the division of dedicated patient-specific healthcare solutions entirely adapted to the patients' clinical needs. Pertinently, this review offers an extensive overview of bone-related clinical applications of AM and ongoing research trends, from 3D anatomical models for patient and student education to ephemeral structures supporting and promoting bone regeneration. Today, AM has undoubtably improved patient care and should facilitate many more improvements in the near future. However, despite extensive research, AM-based strategies for bone regeneration remain the only bone-related field without compelling clinical proof of concept to date. This may be due to a lack of understanding of the biological mechanisms guiding and promoting bone formation and due to the traditional top-down strategies devised to solve clinical issues. Indeed, the integrated holistic approach recommended for the design of regenerative systems (i.e., fixation systems and scaffolds) has remained at the conceptual state. Challenged by these issues, a slower but incremental research dynamic has occurred for the last few years, and recent progress suggests notable improvement in the years to come, with in view the development of safe, robust and standardized patient-specific clinical solutions for the regeneration of large bone defects.
Collapse
|
35
|
Deng F, Liu L, Li Z, Liu J. 3D printed Ti6Al4V bone scaffolds with different pore structure effects on bone ingrowth. J Biol Eng 2021; 15:4. [PMID: 33478505 PMCID: PMC7818551 DOI: 10.1186/s13036-021-00255-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/03/2021] [Indexed: 12/14/2022] Open
Abstract
The microstructure of porous scaffolds plays a vital role in bone regeneration, but its optimal shape is still unclear. In this study, four kinds of porous titanium alloy scaffolds with similar porosities (65%) and pore sizes (650 μm) and different structures were prepared by selective laser melting. Four scaffolds were implanted into the distal femur of rabbits to evaluate bone tissue growth in vivo. Micro-CT and hard tissue section analyses were performed 6 and 12 weeks after the operation to reveal the bone growth of the porous scaffold. The results show that diamond lattice unit (DIA) bone growth is the best of the four topological scaffolds. Through computational fluid dynamics (CFD) analysis, the permeability, velocity and flow trajectory inside the scaffold structure were calculated. The internal fluid velocity difference of the DIA structure is the smallest, and the trajectory of fluid flow inside the scaffold is the longest, which is beneficial for blood vessel growth, nutrient transport and bone formation. In this study, the mechanism of bone growth in different structures was revealed by in vivo experiments combined with CFD, providing a new theoretical basis for the design of bone scaffolds in the future.
Collapse
Affiliation(s)
- Fuyuan Deng
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.,Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - Linlin Liu
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Zhong Li
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China. .,Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China.
| | - Juncai Liu
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China. .,Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
36
|
Bailey S, Sroga GE, Hoac B, Katsamenis OL, Wang Z, Bouropoulos N, McKee MD, Sørensen ES, Thurner PJ, Vashishth D. The role of extracellular matrix phosphorylation on energy dissipation in bone. eLife 2020; 9:58184. [PMID: 33295868 PMCID: PMC7746230 DOI: 10.7554/elife.58184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/07/2020] [Indexed: 01/22/2023] Open
Abstract
Protein phosphorylation, critical for cellular regulatory mechanisms, is implicated in various diseases. However, it remains unknown whether heterogeneity in phosphorylation of key structural proteins alters tissue integrity and organ function. Here, osteopontin phosphorylation level declined in hypo- and hyper- phosphatemia mouse models exhibiting skeletal deformities. Phosphorylation increased cohesion between osteopontin polymers, and adhesion of osteopontin to hydroxyapatite, enhancing energy dissipation. Fracture toughness, a measure of bone’s mechanical competence, increased with ex-vivo phosphorylation of wildtype mouse bones and declined with ex-vivo dephosphorylation. In osteopontin-deficient mice, global matrix phosphorylation level was not associated with toughness. Our findings suggest that phosphorylated osteopontin promotes fracture toughness in a dose-dependent manner through increased interfacial bond formation. In the absence of osteopontin, phosphorylation increases electrostatic repulsion, and likely protein alignment and interfilament distance leading to decreased fracture resistance. These mechanisms may be of importance in other connective tissues, and the key to unraveling cell–matrix interactions in diseases.
Collapse
Affiliation(s)
- Stacyann Bailey
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, United States
| | - Grazyna E Sroga
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, United States
| | - Betty Hoac
- Faculty of Dentistry, McGill University, Montreal, Canada
| | - Orestis L Katsamenis
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom
| | - Zehai Wang
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, United States
| | | | - Marc D McKee
- Faculty of Dentistry, McGill University, Montreal, Canada.,Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Esben S Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Philipp J Thurner
- Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Vienna, Austria
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, United States
| |
Collapse
|
37
|
Culibrk RA, Hahn MS. The Role of Chronic Inflammatory Bone and Joint Disorders in the Pathogenesis and Progression of Alzheimer's Disease. Front Aging Neurosci 2020; 12:583884. [PMID: 33364931 PMCID: PMC7750365 DOI: 10.3389/fnagi.2020.583884] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Late-onset Alzheimer's Disease (LOAD) is a devastating neurodegenerative disorder that causes significant cognitive debilitation in tens of millions of patients worldwide. Throughout disease progression, abnormal secretase activity results in the aberrant cleavage and subsequent aggregation of neurotoxic Aβ plaques in the cerebral extracellular space and hyperphosphorylation and destabilization of structural tau proteins surrounding neuronal microtubules. Both pathologies ultimately incite the propagation of a disease-associated subset of microglia-the principle immune cells of the brain-characterized by preferentially pro-inflammatory cytokine secretion and inhibited AD substrate uptake capacity, which further contribute to neuronal degeneration. For decades, chronic neuroinflammation has been identified as one of the cardinal pathophysiological driving features of AD; however, despite a number of works postulating the underlying mechanisms of inflammation-mediated neurodegeneration, its pathogenesis and relation to the inception of cognitive impairment remain obscure. Moreover, the limited clinical success of treatments targeting specific pathological features in the central nervous system (CNS) illustrates the need to investigate alternative, more holistic approaches for ameliorating AD outcomes. Accumulating evidence suggests significant interplay between peripheral immune activity and blood-brain barrier permeability, microglial activation and proliferation, and AD-related cognitive decline. In this work, we review a narrow but significant subset of chronic peripheral inflammatory conditions, describe how these pathologies are associated with the preponderance of neuroinflammation, and posit that we may exploit peripheral immune processes to design interventional, preventative therapies for LOAD. We then provide a comprehensive overview of notable treatment paradigms that have demonstrated considerable merit toward treating these disorders.
Collapse
Affiliation(s)
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
38
|
Feng X, Ma L, Liang H, Liu X, Lei J, Li W, Wang K, Song Y, Wang B, Li G, Li S, Yang C. Osteointegration of 3D-Printed Fully Porous Polyetheretherketone Scaffolds with Different Pore Sizes. ACS OMEGA 2020; 5:26655-26666. [PMID: 33110992 PMCID: PMC7581231 DOI: 10.1021/acsomega.0c03489] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/10/2020] [Indexed: 05/02/2023]
Abstract
Polyetheretherketone (PEEK) constitutes a preferred alternative material for orthopedic implants owing to its good mechanical properties and biocompatibility. However, the poor osseointegration property of PEEK implants has limited their clinical applications. To address this issue, in this study, we investigated the mechanical and biological properties of fully porous PEEK scaffolds with different pore sizes both in vitro and in vivo. PEEK scaffolds with designed pore sizes of 300, 450, and 600 μm and a porosity of 60% were manufactured via fused deposition modeling (FDM) to explore the optimum pore size. Smooth solid PEEK cylinders (PEEK-S) were used as the reference material. The mechanical, cytocompatibility, proliferative, and osteogenic properties of PEEK scaffolds were characterized in comparison to those of PEEK-S. In vivo dynamic contrast-enhanced magnetic resonance imaging, microcomputed tomography, and histological observation were performed after 4 and 12 weeks of implantation to evaluate the microvascular perfusion and bone formation afforded by the various PEEK implants using a New Zealand white rabbit model with distal femoral condyle defects. Results of in vitro testing supported the good biocompatibility of the porous PEEK scaffolds manufactured via FDM. In particular, the PEEK-450 scaffolds were most beneficial for cell adhesion, proliferation, and osteogenic differentiation. Results of in vivo analysis further indicated that PEEK-450 scaffolds exhibited preferential potential for bone ingrowth and vascular perfusion. Together, our findings support that porous PEEK implants designed with a suitable pore size and fabricated via three-dimensional printing constitute promising alternative biomaterials for bone grafting and tissue engineering applications with marked potential for clinical applications.
Collapse
Affiliation(s)
- Xiaobo Feng
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Ma
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hang Liang
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoming Liu
- Department
of Radiology, Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jie Lei
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenqiang Li
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Wang
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Song
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bingjin Wang
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gaocai Li
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Li
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cao Yang
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
39
|
Additively Manufactured Continuous Cell-Size Gradient Porous Scaffolds: Pore Characteristics, Mechanical Properties and Biological Responses In Vitro. MATERIALS 2020; 13:ma13112589. [PMID: 32517161 PMCID: PMC7321598 DOI: 10.3390/ma13112589] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
Porous scaffolds with graded open porosity combining a morphology similar to that of bone with mechanical and biological properties are becoming an attractive candidate for bone grafts. In this work, scaffolds with a continuous cell-size gradient were studied from the aspects of pore properties, mechanical properties and bio-functional properties. Using a mathematical method named triply periodic minimal surfaces (TPMS), uniform and graded scaffolds with Gyroid and Diamond units were manufactured by selective laser melting (SLM) with Ti-6Al-4V, followed by micro-computer tomography (CT) reconstruction, mechanical testing and in vitro evaluation. It was found that gradient scaffolds were preferably replicated by SLM with continuous graded changes in surface area and pore size, but their pore size should be designed to be ≥ 450 μm to ensure good interconnectivity. Both the Gyroid and Diamond structures have superior strength compared to cancellous bones, and their elastic modulus is comparable to the bones. In comparison, Gyroid exhibits better performances than Diamond in terms of the elastic modulus, ultimate strength and ductility. In vitro cell culture experiments show that the gradients provide an ideal growth environment for osteoblast growth in which cells survive well and distribute uniformly due to biocompatibility of the Ti-6Al-4V material, interconnectivity and suitable pore size.
Collapse
|
40
|
Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110289. [DOI: 10.1016/j.msec.2019.110289] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 12/19/2022]
|
41
|
Callens SJP, Uyttendaele RJC, Fratila-Apachitei LE, Zadpoor AA. Substrate curvature as a cue to guide spatiotemporal cell and tissue organization. Biomaterials 2019; 232:119739. [PMID: 31911284 DOI: 10.1016/j.biomaterials.2019.119739] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 12/11/2022]
Abstract
Recent evidence clearly shows that cells respond to various physical cues in their environments, guiding many cellular processes and tissue morphogenesis, pathology, and repair. One aspect that is gaining significant traction is the role of local geometry as an extracellular cue. Elucidating how geometry affects cell and tissue behavior is, indeed, crucial to design artificial scaffolds and understand tissue growth and remodeling. Perhaps the most fundamental descriptor of local geometry is surface curvature, and a growing body of evidence confirms that surface curvature affects the spatiotemporal organization of cells and tissues. While well-defined in differential geometry, curvature remains somewhat ambiguously treated in biological studies. Here, we provide a more formal curvature framework, based on the notions of mean and Gaussian curvature, and summarize the available evidence on curvature guidance at the cell and tissue levels. We discuss the involved mechanisms, highlighting the interplay between tensile forces and substrate curvature that forms the foundation of curvature guidance. Moreover, we show that relatively simple computational models, based on some application of curvature flow, are able to capture experimental tissue growth remarkably well. Since curvature guidance principles could be leveraged for tissue regeneration, the implications for geometrical scaffold design are also discussed. Finally, perspectives on future research opportunities are provided.
Collapse
Affiliation(s)
- Sebastien J P Callens
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, the Netherlands.
| | - Rafael J C Uyttendaele
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, the Netherlands
| | - Lidy E Fratila-Apachitei
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, the Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, the Netherlands
| |
Collapse
|
42
|
Arjunan A, Demetriou M, Baroutaji A, Wang C. Mechanical performance of highly permeable laser melted Ti6Al4V bone scaffolds. J Mech Behav Biomed Mater 2019; 102:103517. [PMID: 31877520 DOI: 10.1016/j.jmbbm.2019.103517] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/08/2019] [Accepted: 10/31/2019] [Indexed: 01/05/2023]
Abstract
Critically engineered stiffness and strength of a scaffold are crucial for managing maladapted stress concentration and reducing stress shielding. At the same time, suitable porosity and permeability are key to facilitate biological activities associated with bone growth and nutrient delivery. A systematic balance of all these parameters are required for the development of an effective bone scaffold. Traditionally, the approach has been to study each of these parameters in isolation without considering their interdependence to achieve specific properties at a certain porosity. The purpose of this study is to undertake a holistic investigation considering the stiffness, strength, permeability, and stress concentration of six scaffold architectures featuring a 68.46-90.98% porosity. With an initial target of a tibial host segment, the permeability was characterised using Computational Fluid Dynamics (CFD) in conjunction with Darcy's law. Following this, Ashby's criterion, experimental tests, and Finite Element Method (FEM) were employed to study the mechanical behaviour and their interdependencies under uniaxial compression. The FE model was validated and further extended to study the influence of stress concentration on both the stiffness and strength of the scaffolds. The results showed that the pore shape can influence permeability, stiffness, strength, and the stress concentration factor of Ti6Al4V bone scaffolds. Furthermore, the numerical results demonstrate the effect to which structural performance of highly porous scaffolds deviate, as a result of the Selective Laser Melting (SLM) process. In addition, the study demonstrates that stiffness and strength of bone scaffold at a targeted porosity is linked to the pore shape and the associated stress concentration allowing to exploit the design freedom associated with SLM.
Collapse
Affiliation(s)
- Arun Arjunan
- School of Engineering, University of Wolverhampton, Telford, TF2 9NT, UK.
| | - Marios Demetriou
- School of Engineering, University of Wolverhampton, Telford, TF2 9NT, UK
| | - Ahmad Baroutaji
- School of Engineering, University of Wolverhampton, Telford, TF2 9NT, UK
| | - Chang Wang
- Department of Engineering and Design, University of Sussex, Brighton, BN1 9RH, UK
| |
Collapse
|
43
|
From macroscopic mechanics to cell-effective stiffness within highly aligned macroporous collagen scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109760. [DOI: 10.1016/j.msec.2019.109760] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 12/24/2022]
|
44
|
Ehrig S, Schamberger B, Bidan CM, West A, Jacobi C, Lam K, Kollmannsberger P, Petersen A, Tomancak P, Kommareddy K, Fischer FD, Fratzl P, Dunlop JWC. Surface tension determines tissue shape and growth kinetics. SCIENCE ADVANCES 2019; 5:eaav9394. [PMID: 31535019 PMCID: PMC6739108 DOI: 10.1126/sciadv.aav9394] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 08/15/2019] [Indexed: 05/23/2023]
Abstract
The collective self-organization of cells into three-dimensional structures can give rise to emergent physical properties such as fluid behavior. Here, we demonstrate that tissues growing on curved surfaces develop shapes with outer boundaries of constant mean curvature, similar to the energy minimizing forms of liquids wetting a surface. The amount of tissue formed depends on the shape of the substrate, with more tissue being deposited on highly concave surfaces, indicating a mechano-biological feedback mechanism. Inhibiting cell-contractility further revealed that active cellular forces are essential for generating sufficient surface stresses for the liquid-like behavior and growth of the tissue. This suggests that the mechanical signaling between cells and their physical environment, along with the continuous reorganization of cells and matrix is a key principle for the emergence of tissue shape.
Collapse
Affiliation(s)
- S. Ehrig
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - B. Schamberger
- Paris-Lodron University of Salzburg, Department of the Chemistry and Physics of Materials, Salzburg, Austria
| | - C. M. Bidan
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Université Grenoble Alpes, CNRS, Laboratoire Interdisciplinaire de Physique (LIPhy), Grenoble, France
| | - A. West
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - C. Jacobi
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - K. Lam
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - P. Kollmannsberger
- Center for Computational and Theoretical Biology, University of Würzburg, Germany
| | - A. Petersen
- Berlin-Brandenburg Center for Regenerative Therapies, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - P. Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - K. Kommareddy
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - F. D. Fischer
- Montanuniversität Leoben, Institute of Mechanics, Leoben, Austria
| | - P. Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - John W. C. Dunlop
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Paris-Lodron University of Salzburg, Department of the Chemistry and Physics of Materials, Salzburg, Austria
| |
Collapse
|
45
|
Egan PF. Integrated Design Approaches for 3D Printed Tissue Scaffolds: Review and Outlook. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2355. [PMID: 31344956 PMCID: PMC6695904 DOI: 10.3390/ma12152355] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/17/2019] [Accepted: 07/20/2019] [Indexed: 01/16/2023]
Abstract
Emerging 3D printing technologies are enabling the fabrication of complex scaffold structures for diverse medical applications. 3D printing allows controlled material placement for configuring porous tissue scaffolds with tailored properties for desired mechanical stiffness, nutrient transport, and biological growth. However, tuning tissue scaffold functionality requires navigation of a complex design space with numerous trade-offs that require multidisciplinary assessment. Integrated design approaches that encourage iteration and consideration of diverse processes including design configuration, material selection, and simulation models provide a basis for improving design performance. In this review, recent advances in design, fabrication, and assessment of 3D printed tissue scaffolds are investigated with a focus on bone tissue engineering. Bone healing and fusion are examples that demonstrate the needs of integrated design approaches in leveraging new materials and 3D printing processes for specified clinical applications. Current challenges for integrated design are outlined and emphasize directions where new research may lead to significant improvements in personalized medicine and emerging areas in healthcare.
Collapse
Affiliation(s)
- Paul F Egan
- Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA.
| |
Collapse
|
46
|
Brauer E, Lippens E, Klein O, Nebrich G, Schreivogel S, Korus G, Duda GN, Petersen A. Collagen Fibrils Mechanically Contribute to Tissue Contraction in an In Vitro Wound Healing Scenario. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801780. [PMID: 31065517 PMCID: PMC6498124 DOI: 10.1002/advs.201801780] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/20/2018] [Indexed: 05/06/2023]
Abstract
Wound contraction is an ancient survival mechanism of vertebrates that results from tensile forces supporting wound closure. So far, tissue tension was attributed to cellular forces produced by tissue-resident (myo-)fibroblasts alone. However, difficulties in explaining pathological deviations from a successful healing path motivate the exploration of additional modulatory factors. Here, it is shown in a biomaterial-based in vitro wound healing model that the storage of tensile forces in the extracellular matrix has a significant, so-far neglected contribution to macroscopic tissue tension. In situ monitoring of tissue forces together with second harmonic imaging reveal that the appearance of collagen fibrils correlates with tissue contraction, indicating a mechanical contribution of tensioned collagen fibrils in the contraction process. As the re-establishment of tissue tension is key to successful wound healing, the findings are expected to advance the understanding of tissue healing but also underlying principles of misregulation and impaired functionality in scars and tissue contractures.
Collapse
Affiliation(s)
- Erik Brauer
- Julius Wolff InstituteCharité—Universitätsmedizin Berlin13353BerlinGermany
- Berlin‐Brandenburg School for Regenerative TherapiesCharité—Universitätsmedizin Berlin13353BerlinGermany
| | - Evi Lippens
- Julius Wolff InstituteCharité—Universitätsmedizin Berlin13353BerlinGermany
| | - Oliver Klein
- Berlin‐Brandenburg Center for Regenerative TherapiesCharité—Universitätsmedizin Berlin13353BerlinGermany
| | - Grit Nebrich
- Berlin‐Brandenburg Center for Regenerative TherapiesCharité—Universitätsmedizin Berlin13353BerlinGermany
| | - Sophie Schreivogel
- Julius Wolff InstituteCharité—Universitätsmedizin Berlin13353BerlinGermany
- Berlin‐Brandenburg School for Regenerative TherapiesCharité—Universitätsmedizin Berlin13353BerlinGermany
| | - Gabriela Korus
- Julius Wolff InstituteCharité—Universitätsmedizin Berlin13353BerlinGermany
| | - Georg N. Duda
- Julius Wolff InstituteCharité—Universitätsmedizin Berlin13353BerlinGermany
- Berlin‐Brandenburg School for Regenerative TherapiesCharité—Universitätsmedizin Berlin13353BerlinGermany
- Berlin‐Brandenburg Center for Regenerative TherapiesCharité—Universitätsmedizin Berlin13353BerlinGermany
- Center for Musculo‐Skeletal SurgeryCharité—Universitätsmedizin Berlin13353BerlinGermany
| | - Ansgar Petersen
- Julius Wolff InstituteCharité—Universitätsmedizin Berlin13353BerlinGermany
- Berlin‐Brandenburg Center for Regenerative TherapiesCharité—Universitätsmedizin Berlin13353BerlinGermany
| |
Collapse
|
47
|
Li J, Li Z, Shi Y, Wang H, Li R, Tu J, Jin G. In vitro and in vivo comparisons of the porous Ti6Al4V alloys fabricated by the selective laser melting technique and a new sintering technique. J Mech Behav Biomed Mater 2019; 91:149-158. [DOI: 10.1016/j.jmbbm.2018.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/19/2018] [Accepted: 12/08/2018] [Indexed: 10/27/2022]
|
48
|
Wyatt H, Safar A, Clarke A, Evans SL, Mihai LA. Nonlinear scaling effects in the stiffness of soft cellular structures. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181361. [PMID: 30800383 PMCID: PMC6366230 DOI: 10.1098/rsos.181361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
For cellular structures with uniform geometry, cell size and distribution, made from a neo-Hookean material, we demonstrate experimentally that large stretching causes nonlinear scaling effects governed by the microstructural architecture and the large strains at the cell level, which are not predicted by the linear elastic theory. For this purpose, three honeycomb-like structures with uniform square cells in stacked distribution were designed, where the number of cells varied, while the material volume and the ratio between the thickness and the length of the cell walls were fixed. These structures were manufactured from silicone rubber and tested under large uniaxial tension in a bespoke test fixture. Optical strain measurements were used to assess the deformation by capturing both the global displacements of the structure and the local deformations in the form of a strain map. The experimental results showed that, under sufficiently large strains, there was an increase in the stiffness of the structure when the same volume of material was arranged as many small cells compared to when it was organized as fewer larger cells. Finite element simulations confirmed our experimental findings. This study sheds light upon the nonlinear elastic responses of cellular structures in large-strain deformations, which cannot be captured within the linear elasticity framework.
Collapse
Affiliation(s)
- Hayley Wyatt
- School of Engineering, Cardiff University, The Parade, Cardiff CF24 3AA, UK
| | - Alexander Safar
- School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4AG, UK
| | - Alastair Clarke
- School of Engineering, Cardiff University, The Parade, Cardiff CF24 3AA, UK
| | - Sam L. Evans
- School of Engineering, Cardiff University, The Parade, Cardiff CF24 3AA, UK
| | - L. Angela Mihai
- School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4AG, UK
| |
Collapse
|
49
|
Rüdrich U, Lasgorceix M, Champion E, Pascaud-Mathieu P, Damia C, Chartier T, Brie J, Magnaudeix A. Pre-osteoblast cell colonization of porous silicon substituted hydroxyapatite bioceramics: Influence of microporosity and macropore design. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:510-528. [PMID: 30678938 DOI: 10.1016/j.msec.2018.12.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 10/15/2018] [Accepted: 12/14/2018] [Indexed: 11/15/2022]
Abstract
Silicate-substituted hydroxyapatite scaffolds containing multiscale porosity are manufactured. Model parts containing macropores of five cross-sectional geometries (circle, square, rhombus, star and triangle) and two sizes are shaped by microstereolithography. Three open microporosity contents (0.5, 23 or 37 vol%) are introduced in the ceramic. MC3T3-E1 pre-osteoblasts are seeded onto these scaffolds. Analysis of cell colonization inside the macropores after 7 and 14 days of cultivation shows that the cellular filling is proportional to the macropore size and strongly influenced by macropore shape. Straight edges and convex surfaces are detrimental. High aspect ratios, the absence of reentrant angles and the presence of acute angles, by creating concavities and minimizing flat surfaces, facilitate cell colonization. Rhombus and triangle cross-sections are thus particularly favorable, while square and star geometries are the least favored. An increase in the microporosity content strongly impairs cell growth in the macropores. The data are statistically analyzed using a principal components analysis that shows that macro- and microtopographical parameters of scaffolds must be collectively considered with correlated interactions to understand cell behavior. The results indicate the important cell sensing of topography during the initial step of cell adhesion and proliferation and evidence the need for an optimized scaffold design.
Collapse
Affiliation(s)
- Urda Rüdrich
- Univ. Limoges, CNRS, IRCER UMR 7315, F-87000 Limoges, France
| | | | - Eric Champion
- Univ. Limoges, CNRS, IRCER UMR 7315, F-87000 Limoges, France
| | | | - Chantal Damia
- Univ. Limoges, CNRS, IRCER UMR 7315, F-87000 Limoges, France
| | | | - Joël Brie
- Univ. Limoges, CNRS, IRCER UMR 7315, F-87000 Limoges, France
| | | |
Collapse
|
50
|
Wang H, Su K, Su L, Liang P, Ji P, Wang C. The effect of 3D-printed Ti6Al4V scaffolds with various macropore structures on osteointegration and osteogenesis: A biomechanical evaluation. J Mech Behav Biomed Mater 2018; 88:488-496. [DOI: 10.1016/j.jmbbm.2018.08.049] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/05/2018] [Accepted: 08/29/2018] [Indexed: 12/25/2022]
|