1
|
Jin Z, Cao Y. Gremlin1: a BMP antagonist with therapeutic potential in Oncology. Invest New Drugs 2024; 42:716-727. [PMID: 39347850 DOI: 10.1007/s10637-024-01474-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Gremlins, originating from early 20th-century Western folklore, are mythical creatures known for causing mechanical malfunctions and electronic failures, aptly dubbed "little devils". Analogously, GREM1 acts like a horde of these mischievous entities by antagonizing the bone morphogenetic protein (BMP signaling) pathway or through other non-BMP dependent mechanisms (such as binding to Fibroblast Growth Factor Receptor 1and Epidermal Growth Factor Receptor) contributing to the malignant progression of various cancers. The overexpression of GREM1 promotes tumor cell growth and survival, enhances angiogenesis within the tumor microenvironment, and creates favorable conditions for tumor development and dissemination. Consequently, inhibiting the activity of GREM1 or blocking its interaction with BMP presents a promising strategy for suppressing tumor growth and metastasis. However, the role of GREM1 in cancer remains a subject of debate, with evidence suggesting both oncogenic and tumor-suppressive functions. Currently, several pharmaceutical companies are researching the GREM1 target, with some advancing to Phase I/II clinical trials. This article will provide a detailed overview of the GREM1 target and explore its potential role in cancer therapy.
Collapse
Affiliation(s)
- Zhao Jin
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
2
|
Benedetti A, Turco C, Gallo E, Daralioti T, Sacconi A, Pulito C, Donzelli S, Tito C, Dragonetti M, Perracchio L, Blandino G, Fazi F, Fontemaggi G. ID4-dependent secretion of VEGFA enhances the invasion capability of breast cancer cells and activates YAP/TAZ via integrin β3-VEGFR2 interaction. Cell Death Dis 2024; 15:113. [PMID: 38321003 PMCID: PMC10847507 DOI: 10.1038/s41419-024-06491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Understanding the mechanisms of breast cancer cell communication underlying cell spreading and metastasis formation is fundamental for developing new therapies. ID4 is a proto-oncogene overexpressed in the basal-like subtype of triple-negative breast cancer (TNBC), where it promotes angiogenesis, cancer stem cells, and BRACA1 misfunction. Here, we show that ID4 expression in BC cells correlates with the activation of motility pathways and promotes the production of VEGFA, which stimulates the interaction of VEGFR2 and integrin β3 in a paracrine fashion. This interaction induces the downstream focal adhesion pathway favoring migration, invasion, and stress fiber formation. Furthermore, ID4/ VEGFA/ VEGFR2/ integrin β3 signaling stimulates the nuclear translocation and activation of the Hippo pathway member's YAP and TAZ, two critical executors for cancer initiation and progression. Our study provides new insights into the oncogenic roles of ID4 in tumor cell migration and YAP/TAZ pathway activation, suggesting VEGFA/ VEGFR2/ integrin β3 axis as a potential target for BC treatment.
Collapse
Affiliation(s)
- Anna Benedetti
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Turco
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Enzo Gallo
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Theodora Daralioti
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- Biostatistics and Bioinformatics Unit, Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudio Pulito
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sara Donzelli
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudia Tito
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Martina Dragonetti
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Letizia Perracchio
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy.
| | - Giulia Fontemaggi
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
3
|
Gao Z, Houthuijzen JM, Ten Dijke P, Brazil DP. GREM1 signaling in cancer: tumor promotor and suppressor? J Cell Commun Signal 2023:10.1007/s12079-023-00777-4. [PMID: 37615860 DOI: 10.1007/s12079-023-00777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/07/2023] [Indexed: 08/25/2023] Open
Abstract
GREMLIN1 (GREM1) is member of a family of structurally and functionally related secreted cysteine knot proteins, which act to sequester and inhibit the action of multifunctional bone morphogenetic proteins (BMPs). GREM1 binds directly to BMP dimers, thereby preventing BMP-mediated activation of BMP type I and type II receptors. Multiple reports identify the overexpression of GREM1 as a contributing factor in a broad range of cancers. Additionally, the GREM1 gene is amplified in a rare autosomal dominant inherited form of colorectal cancer. The inhibitory effects of GREM1 on BMP signaling have been linked to these tumor-promoting effects, including facilitating cancer cell stemness and the activation of cancer-associated fibroblasts. Moreover, GREM1 has been described to bind and signal to vascular endothelial growth factor receptor (VEGFR) and stimulate angiogenesis, as well as epidermal and fibroblast growth factor receptor (EGFR and FGFR) to elicit tumor-promoting effects in breast and prostate cancer, respectively. In contrast, a 2022 report revealed that GREM1 can promote an epithelial state in pancreatic cancers, thereby inhibiting pancreatic tumor growth and metastasis. In this commentary, we will review these disparate findings and attempt to provide clarity around the role of GREM1 signaling in cancer.
Collapse
Affiliation(s)
- Zhichun Gao
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Northern Ireland, BT9 7BL, UK
| | - Julia M Houthuijzen
- Oncode Institute, Division of Molecular Pathology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Derek P Brazil
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Northern Ireland, BT9 7BL, UK.
| |
Collapse
|
4
|
Grillo E, Ravelli C, Colleluori G, D'Agostino F, Domenichini M, Giordano A, Mitola S. Role of gremlin-1 in the pathophysiology of the adipose tissues. Cytokine Growth Factor Rev 2023; 69:51-60. [PMID: 36155165 DOI: 10.1016/j.cytogfr.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 02/07/2023]
Abstract
Gremlin-1 is a secreted bone morphogenetic protein (BMP) antagonist playing a pivotal role in the regulation of tissue formation and embryonic development. Since its first identification in 1997, gremlin-1 has been shown to be a multifunctional factor involved in wound healing, inflammation, cancer and tissue fibrosis. Among others, the activity of gremlin-1 is mediated by its interaction with BMPs or with membrane receptors such as the vascular endothelial growth factor receptor 2 (VEGFR2) or heparan sulfate proteoglycans (HSPGs). Growing evidence has highlighted a central role of gremlin-1 in the homeostasis of the adipose tissue (AT). Of note, gremlin-1 is involved in AT dysfunction during type 2 diabetes, obesity and non-alcoholic fatty liver disease (NAFLD) metabolic disorders. In this review we discuss recent findings on gremlin-1 involvement in AT biology, with particular attention to its role in metabolic diseases, to highlight its potential as a prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Georgia Colleluori
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy
| | - Francesco D'Agostino
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mattia Domenichini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
5
|
Arricca M, Salvadori A, Bonanno C, Serpelloni M. Modeling Receptor Motility along Advecting Lipid Membranes. MEMBRANES 2022; 12:membranes12070652. [PMID: 35877855 PMCID: PMC9317916 DOI: 10.3390/membranes12070652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022]
Abstract
This work aims to overview multiphysics mechanobiological computational models for receptor dynamics along advecting cell membranes. Continuum and statistical models of receptor motility are the two main modeling methodologies identified in reviewing the state of the art. Within the former modeling class, a further subdivision based on different biological purposes and processes of proteins’ motion is recognized; cell adhesion, cell contractility, endocytosis, and receptor relocations on advecting membranes are the most relevant biological processes identified in which receptor motility is pivotal. Numerical and/or experimental methods and approaches are highlighted in the exposure of the reviewed works provided by the literature, pertinent to the topic of the present manuscript. With a main focus on the continuum models of receptor motility, we discuss appropriate multiphyisics laws to model the mass flux of receptor proteins in the reproduction of receptor relocation and recruitment along cell membranes to describe receptor–ligand chemical interactions, and the cell’s structural response. The mass flux of receptor modeling is further supported by a discussion on the methodology utilized to evaluate the protein diffusion coefficient developed over the years.
Collapse
Affiliation(s)
- Matteo Arricca
- The Mechanobiology Research Center, University of Brescia (UNIBS), 25123 Brescia, Italy; (M.A.); (C.B.); (M.S.)
- Department of Mechanical and Industrial Engineering, Università degli Studi di Brescia, via Branze 38, 25123 Brescia, Italy
| | - Alberto Salvadori
- The Mechanobiology Research Center, University of Brescia (UNIBS), 25123 Brescia, Italy; (M.A.); (C.B.); (M.S.)
- Department of Mechanical and Industrial Engineering, Università degli Studi di Brescia, via Branze 38, 25123 Brescia, Italy
- Correspondence:
| | - Claudia Bonanno
- The Mechanobiology Research Center, University of Brescia (UNIBS), 25123 Brescia, Italy; (M.A.); (C.B.); (M.S.)
- Department of Civil, Environmental, Architectural Engineering and Mathematics, Università degli Studi di Brescia, via Branze 43, 25123 Brescia, Italy
| | - Mattia Serpelloni
- The Mechanobiology Research Center, University of Brescia (UNIBS), 25123 Brescia, Italy; (M.A.); (C.B.); (M.S.)
- Department of Mechanical and Industrial Engineering, Università degli Studi di Brescia, via Branze 38, 25123 Brescia, Italy
| |
Collapse
|
6
|
Pérez-Lozano ML, Sudre L, van Eegher S, Citadelle D, Pigenet A, Lafage-Proust MH, Pastoureau P, De Ceuninck F, Berenbaum F, Houard X. Gremlin-1 and BMP-4 Overexpressed in Osteoarthritis Drive an Osteochondral-Remodeling Program in Osteoblasts and Hypertrophic Chondrocytes. Int J Mol Sci 2022; 23:ijms23042084. [PMID: 35216203 PMCID: PMC8874623 DOI: 10.3390/ijms23042084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Osteoarthritis (OA) is a whole joint disease characterized by an important remodeling of the osteochondral junction. It includes cartilage mineralization due to chondrocyte hypertrophic differentiation and bone sclerosis. Here, we investigated whether gremlin-1 (Grem-1) and its BMP partners could be involved in the remodeling events of the osteochondral junction in OA. We found that Grem-1, BMP-2, and BMP-4 immunostaining was detected in chondrocytes from the deep layer of cartilage and in subchondral bone of knee OA patients, and was positively correlated with cartilage damage. ELISA assays showed that bone released more Grem-1 and BMP-4 than cartilage, which released more BMP-2. In vitro experiments evidenced that compression stimulated the expression and the release of Grem-1 and BMP-4 by osteoblasts. Grem-1 was also overexpressed during the prehypertrophic to hypertrophic differentiation of murine articular chondrocytes. Recombinant Grem-1 stimulated Mmp-3 and Mmp-13 expression in murine chondrocytes and osteoblasts, whereas recombinant BMP-4 stimulated the expression of genes associated with angiogenesis (Angptl4 and osteoclastogenesis (Rankl and Ccl2). In conclusion, Grem-1 and BMP-4, whose expression at the osteochondral junction increased with OA progression, may favor the pathological remodeling of the osteochondral junction by inducing a catabolic and tissue remodeling program in hypertrophic chondrocytes and osteoblasts.
Collapse
Affiliation(s)
- Maria-Luisa Pérez-Lozano
- Centre de Recherche Saint-Antoine (CRSA), INSERM, Sorbonne Université, F-75012 Paris, France; (M.-L.P.-L.); (L.S.); (S.v.E.); (D.C.); (A.P.); (X.H.)
| | - Laure Sudre
- Centre de Recherche Saint-Antoine (CRSA), INSERM, Sorbonne Université, F-75012 Paris, France; (M.-L.P.-L.); (L.S.); (S.v.E.); (D.C.); (A.P.); (X.H.)
| | - Sandy van Eegher
- Centre de Recherche Saint-Antoine (CRSA), INSERM, Sorbonne Université, F-75012 Paris, France; (M.-L.P.-L.); (L.S.); (S.v.E.); (D.C.); (A.P.); (X.H.)
| | - Danièle Citadelle
- Centre de Recherche Saint-Antoine (CRSA), INSERM, Sorbonne Université, F-75012 Paris, France; (M.-L.P.-L.); (L.S.); (S.v.E.); (D.C.); (A.P.); (X.H.)
| | - Audrey Pigenet
- Centre de Recherche Saint-Antoine (CRSA), INSERM, Sorbonne Université, F-75012 Paris, France; (M.-L.P.-L.); (L.S.); (S.v.E.); (D.C.); (A.P.); (X.H.)
| | | | - Philippe Pastoureau
- Immuno-Inflammatory Diseases Department, Servier Research Institute, F-92150 Suresnes, France; (P.P.); (F.D.C.)
| | - Frédéric De Ceuninck
- Immuno-Inflammatory Diseases Department, Servier Research Institute, F-92150 Suresnes, France; (P.P.); (F.D.C.)
| | - Francis Berenbaum
- Centre de Recherche Saint-Antoine (CRSA), INSERM, Sorbonne Université, F-75012 Paris, France; (M.-L.P.-L.); (L.S.); (S.v.E.); (D.C.); (A.P.); (X.H.)
- Centre de Recherche Saint-Antoine (CRSA), INSERM, Sorbonne Université, AP-HP Hôpital Saint Antoine, F-75012 Paris, France
- Correspondence:
| | - Xavier Houard
- Centre de Recherche Saint-Antoine (CRSA), INSERM, Sorbonne Université, F-75012 Paris, France; (M.-L.P.-L.); (L.S.); (S.v.E.); (D.C.); (A.P.); (X.H.)
| |
Collapse
|
7
|
Elemam NM, Malek AI, Mahmoud EE, El-Huneidi W, Talaat IM. Insights into the Role of Gremlin-1, a Bone Morphogenic Protein Antagonist, in Cancer Initiation and Progression. Biomedicines 2022; 10:301. [PMID: 35203511 PMCID: PMC8869528 DOI: 10.3390/biomedicines10020301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
The bone morphogenic protein (BMP) antagonist Gremlin-1 is a biologically significant regulator known for its crucial role in tissue differentiation and embryonic development. Nevertheless, it has been reported that Gremlin-1 can exhibit its function through BMP dependent and independent pathways. Gremlin-1 has also been reported to be involved in organ fibrosis, which has been correlated to the development of other diseases, such as renal inflammation and diabetic nephropathy. Based on growing evidence, Gremlin-1 has recently been implicated in the initiation and progression of different types of cancers. Further, it contributes to the stemness state of cancer cells. Herein, we explore the recent findings on the role of Gremlin-1 in various cancer types, including breast, cervical, colorectal, and gastric cancers, as well as glioblastomas. Additionally, we highlighted the impact of Gremlin-1 on cellular processes and signaling pathways involved in carcinogenesis. Therefore, it was suggested that Gremlin-1 might be a promising prognostic biomarker and therapeutic target in cancers.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdullah Imadeddin Malek
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
| | - Esraa Elaraby Mahmoud
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
| | - Waseem El-Huneidi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| |
Collapse
|
8
|
Corsini M, Ravelli C, Grillo E, Dell'Era P, Presta M, Mitola S. Simultaneously characterization of tumoral angiogenesis and vasculogenesis in stem cell-derived teratomas. Exp Cell Res 2021; 400:112490. [PMID: 33484747 DOI: 10.1016/j.yexcr.2021.112490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/02/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
Tumor neovascularization may occur via both angiogenic and vasculogenic events. In order to investigate the vessel formation during tumor growth, we developed a novel experimental model that takes into account the differentiative and tumorigenic properties of Embryonic Stem cells (ESCs). Leukemia Inhibitory Factor-deprived murine ESCs were grafted on the top of the chick embryo chorionallantoic membrane (CAM) in ovo. Cell grafts progressively grew, forming a vascularized mass within 10 days. At this stage, the grafts are formed by cells with differentiative features representative of all three germ layers, thus originating teratomas, a germinal cell tumor. In addition, ESC supports neovascular events by recruiting host capillaries from surrounding tissue that infiltrates the tumor mass. Moreover, immunofluorescence studies demonstrate that perfused active blood vessels within the tumor are of both avian and murine origin because of the simultaneous occurrence of angiogenic and vasculogenic events. In conclusion, the chick embryo ESC/CAM-derived teratoma model may represent a useful approach to investigate both vasculogenic and angiogenic events during tumor growth and for the study of natural and synthetic modulators of the two processes.
Collapse
Affiliation(s)
- Michela Corsini
- Department of Molecular and Translational Medicine, Via Branze 39, 25123, Brescia, University of Brescia, Italy; Laboratory for Preventive and Personalized Medicine (MPP Lab), University of Brescia, Italy.
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, Via Branze 39, 25123, Brescia, University of Brescia, Italy; Laboratory for Preventive and Personalized Medicine (MPP Lab), University of Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, Via Branze 39, 25123, Brescia, University of Brescia, Italy
| | - Patrizia Dell'Era
- Department of Molecular and Translational Medicine, Via Branze 39, 25123, Brescia, University of Brescia, Italy; cFRU Lab, Università degli Studi di Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, Via Branze 39, 25123, Brescia, University of Brescia, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, Via Branze 39, 25123, Brescia, University of Brescia, Italy; Laboratory for Preventive and Personalized Medicine (MPP Lab), University of Brescia, Italy.
| |
Collapse
|
9
|
Corsini M, Moroni E, Ravelli C, Grillo E, Presta M, Mitola S. In Situ DNA/Protein Interaction Assay to Visualize Transcriptional Factor Activation. Methods Protoc 2020; 3:mps3040080. [PMID: 33233345 PMCID: PMC7720131 DOI: 10.3390/mps3040080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
The chick embryo chorioallantoic membrane (CAM) represents a powerful in vivo model to study several physiological and pathological processes including inflammation and tumor progression. Nevertheless, the possibility of deepening the molecular processes in the CAM system is biased by the absence/scarcity of chemical and biological reagents, designed explicitly for avian species. This is particularly true for transcriptional factors, proteinaceous molecules that regulate various cellular responses, including proliferation, survival, and differentiation. Here, we propose a detailed antibody-independent protocol to visualize the activation and nuclear translocation of transcriptional factors in cells or in tissues of different animal species. As a proof of concept, DNA/cAMP response element-binding protein (CREB) interaction was characterized on the CAM tissue using oligonucleotides containing the palindromic binding sequence of CREB. Scrambled oligonucleotides were used as controls. In situ DNA/protein interaction protocol is a versatile method that is useful for the study of transcription factors in the cell and tissue of different origins.
Collapse
|
10
|
Wu Y, Chen W, Zhang Y, Liu A, Yang C, Wang H, Zhu T, Fan Y, Yang B. Potent Therapy and Transcriptional Profile of Combined Erythropoietin-Derived Peptide Cyclic Helix B Surface Peptide and Caspase-3 siRNA against Kidney Ischemia/Reperfusion Injury in Mice. J Pharmacol Exp Ther 2020; 375:92-103. [PMID: 32759272 DOI: 10.1124/jpet.120.000092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Cause-specific treatment and timely diagnosis are still not available for acute kidney injury (AKI) apart from supportive therapy and serum creatinine measurement. A novel erythropoietin-derived cyclic helix B surface peptide (CHBP) protects kidneys against AKI with different causes, but the underlying mechanism is not fully defined. Herein, we investigated the transcriptional profile of renoprotection induced by CHBP and its potential synergistic effects with siRNA targeting caspase-3, an executing enzyme of apoptosis and inflammation (CASP3siRNA), on ischemia/reperfusion (IR)-induced AKI. Utilizing a mouse model with 30-minute renal bilateral ischemia and 48-hour reperfusion, the renoprotection of CHBP or CASP3siRNA was demonstrated in renal function and structure, active caspase-3 and HMGB1 expression. Combined treatment of CHBP and CASP3siRNA further preserved kidney structure and reduced active caspase-3 and HMGB1. Furthermore, differentially expressed genes (DEGs) were identified with fold change >1.414 and P < 0.05. In IR kidneys, 281 DEGs induced by CHBP were mainly involved in promoting cell division and improving cellular function and metabolism (upregulated signal transducer and activator of transcription 5B and solute carrier family 22 member 7). The additional administration of CASP3siRNA caused 504 and 418 DEGs in IR + CHBP kidneys with or without negative control small-interfering RNA, with 37 genes in common. These DEGs were associated with modulated apoptosis and inflammation (upregulated BCL6, SLPI, and SERPINA3M) as well as immunity, injury, and microvascular homeostasis (upregulated complement factor H and GREM1 and downregulated ANGPTL2). This proof-of-effect study indicated the potent renoprotection of CASP3siRNA upon CHBP at the early stage of IR-induced AKI. Underlying genes, BCL6, SLPI, SERPINA3M, GREM1, and ANGPTL2, might be potential new biomarkers for clinical applications. SIGNIFICANCE STATEMENT: It is imperative to explore new strategies of cause-specific treatment and timely diagnosis for acute kidney injury (AKI). CHBP and CASP3siRNA synergistically protected kidney structure after 48-hour ischemia/reperfusion-induced AKI with reduced injury mediators CASP3 and high mobility group box 1. CHBP upregulated cell division-, function-, and metabolism-related genes, whereas CASP3siRNA further regulated immune response- and tissue homeostasis-associated genes. Combined CHBP and CASP3siRNA might be a potent and specific treatment for AKI, and certain dysregulated genes secretory leukocyte peptidase inhibitor and SERPINA3M could facilitate timely diagnosis.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Weiwei Chen
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Yufang Zhang
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Aifen Liu
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Cheng Yang
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Hui Wang
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Tongyu Zhu
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Yaping Fan
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Bin Yang
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| |
Collapse
|
11
|
Todd GM, Gao Z, Hyvönen M, Brazil DP, Ten Dijke P. Secreted BMP antagonists and their role in cancer and bone metastases. Bone 2020; 137:115455. [PMID: 32473315 DOI: 10.1016/j.bone.2020.115455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/23/2020] [Accepted: 05/23/2020] [Indexed: 02/08/2023]
Abstract
Bone morphogenetic proteins (BMPs) are multifunctional secreted cytokines that act in a highly context-dependent manner. BMP action extends beyond the induction of cartilage and bone formation, to encompass pivotal roles in controlling tissue and organ homeostasis during development and adulthood. BMPs signal via plasma membrane type I and type II serine/threonine kinase receptors and intracellular SMAD transcriptional effectors. Exquisite temporospatial control of BMP/SMAD signalling and crosstalk with other cellular cues is achieved by a series of positive and negative regulators at each step in the BMP/SMAD pathway. The interaction of BMP ligand with its receptors is carefully controlled by a diverse set of secreted antagonists that bind BMPs and block their interaction with their cognate BMP receptors. Perturbations in this BMP/BMP antagonist balance are implicated in a range of developmental disorders and diseases, including cancer. Here, we provide an overview of the structure and function of secreted BMP antagonists, and summarize recent novel insights into their role in cancer progression and bone metastasis. Gremlin1 (GREM1) is a highly studied BMP antagonist, and we will focus on this molecule in particular and its role in cancer. The therapeutic potential of pharmacological inhibitors for secreted BMP antagonists for cancer and other human diseases will also be discussed.
Collapse
Affiliation(s)
- Grace M Todd
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | - Zhichun Gao
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Derek P Brazil
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK.
| | - Peter Ten Dijke
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
12
|
Zhang C, Cao P, Yang A, Xia X, Li Y, Shi M, Yang Y, Wei X, Yang C, Zhou G. Downregulation of ZC3H14 driven by chromosome 14q31 deletion promotes hepatocellular carcinoma progression by activating integrin signaling. Carcinogenesis 2020; 40:474-486. [PMID: 30371740 DOI: 10.1093/carcin/bgy146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 09/14/2018] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. Genomic copy number deletion at chromosome 14q31.1-32.13 was frequently observed in HCC; however, the relevant functional target(s) at that locus is not well determined. Here, we performed integrative genomic analyses and identified zinc finger CCCH-type containing 14 (ZC3H14) as a promising candidate at 14q31.1-32.13. We observed frequent copy number deletion (17.1%) and downregulation of ZC3H14 in primary HCC tissues. Downregulation of ZC3H14 was significantly associated with poor outcomes of patients with HCC. Overexpression of ZC3H14 in HCC cell lines significantly suppressed HCC cells growth in vitro and metastasis in vivo. In contrast, RNA interference silencing of ZC3H14 inhibited its tumor-suppressive function. Mechanismly, through combing bioinformatics analyses and experimental investigation, we demonstrated that loss of ZC3H14 promotes HCC progression through enhancing integrin pathway. This study suggests that ZC3H14 functions as a novel tumor suppressor and is a candidate prognostic biomarker for HCC patients.
Collapse
Affiliation(s)
- Chuxiao Zhang
- Affiliated Tumor Hospital of Guangxi Medical University, Nanning, P. R. China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P. R. China.,National Center for Protein Sciences at Beijing, Beijing, P. R. China
| | - Pengbo Cao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P. R. China.,National Center for Protein Sciences at Beijing, Beijing, P. R. China
| | - Aiqing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P. R. China.,National Center for Protein Sciences at Beijing, Beijing, P. R. China
| | - Xia Xia
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P. R. China.,National Center for Protein Sciences at Beijing, Beijing, P. R. China
| | - Yuanfeng Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P. R. China.,National Center for Protein Sciences at Beijing, Beijing, P. R. China
| | - Mengting Shi
- Guangxi Medical University, Nanning, P. R. China
| | - Ying Yang
- Department of Radiation and Oncology, Navy General Hospital, Beijing, P. R. China
| | - Xiaojun Wei
- Department of Hepatobiliary Surgery, Aerospace Center Hospital, Beijing, P. R. China
| | - Chun Yang
- Affiliated Tumor Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P. R. China.,National Center for Protein Sciences at Beijing, Beijing, P. R. China.,Guangxi Medical University, Nanning, P. R. China
| |
Collapse
|
13
|
Di Somma M, Schaafsma W, Grillo E, Vliora M, Dakou E, Corsini M, Ravelli C, Ronca R, Sakellariou P, Vanparijs J, Castro B, Mitola S. Natural Histogel-Based Bio-Scaffolds for Sustaining Angiogenesis in Beige Adipose Tissue. Cells 2019; 8:cells8111457. [PMID: 31752157 PMCID: PMC6912328 DOI: 10.3390/cells8111457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/17/2022] Open
Abstract
In the treatment of obesity and its related disorders, one of the measures adopted is weight reduction by controlling nutrition and increasing physical activity. A valid alternative to restore the physiological function of the human body could be the increase of energy consumption by inducing the browning of adipose tissue. To this purpose, we tested the ability of Histogel, a natural mixture of glycosaminoglycans isolated from animal Wharton jelly, to sustain the differentiation of adipose derived mesenchymal cells (ADSCs) into brown-like cells expressing UCP-1. Differentiated cells show a higher energy metabolism compared to undifferentiated mesenchymal cells. Furthermore, Histogel acts as a pro-angiogenic matrix, induces endothelial cell proliferation and sprouting in a three-dimensional gel in vitro, and stimulates neovascularization when applied in vivo on top of the chicken embryo chorioallantoic membrane or injected subcutaneously in mice. In addition to the pro-angiogenic activity of Histogel, also the ADSC derived beige cells contribute to activating endothelial cells. These data led us to propose Histogel as a promising scaffold for the modulation of the thermogenic behavior of adipose tissue. Indeed, Histogel simultaneously supports the acquisition of brown tissue markers and activates the vasculature process necessary for the correct function of the thermogenic tissue. Thus, Histogel represents a valid candidate for the development of bioscaffolds to increase the amount of brown adipose tissue in patients with metabolic disorders.
Collapse
Affiliation(s)
- Margherita Di Somma
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.D.S.); (E.G.); (M.V.); (M.C.); (C.R.); (R.R.)
| | - Wandert Schaafsma
- Histocell, S.L.Parque Tecnológico 801A, 2o 48160 Derio—BIZKAIA, Spain; (W.S.); (B.C.)
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.D.S.); (E.G.); (M.V.); (M.C.); (C.R.); (R.R.)
| | - Maria Vliora
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.D.S.); (E.G.); (M.V.); (M.C.); (C.R.); (R.R.)
- FAME Laboratory, Department of Exercise Science, University of Thessaly, 38221 Trikala, Greece;
| | - Eleni Dakou
- Laboratory of Cell Genetics, Department of Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.D.S.); (E.G.); (M.V.); (M.C.); (C.R.); (R.R.)
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.D.S.); (E.G.); (M.V.); (M.C.); (C.R.); (R.R.)
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.D.S.); (E.G.); (M.V.); (M.C.); (C.R.); (R.R.)
| | - Paraskevi Sakellariou
- FAME Laboratory, Department of Exercise Science, University of Thessaly, 38221 Trikala, Greece;
| | - Jef Vanparijs
- Department of Human Physiology, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - Begona Castro
- Histocell, S.L.Parque Tecnológico 801A, 2o 48160 Derio—BIZKAIA, Spain; (W.S.); (B.C.)
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.D.S.); (E.G.); (M.V.); (M.C.); (C.R.); (R.R.)
- Correspondence:
| |
Collapse
|
14
|
Dutton LR, O'Neill CL, Medina RJ, Brazil DP. No evidence of Gremlin1-mediated activation of VEGFR2 signaling in endothelial cells. J Biol Chem 2019; 294:18041-18045. [PMID: 31604823 DOI: 10.1074/jbc.ac119.010148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/20/2019] [Indexed: 01/10/2023] Open
Abstract
Canonical Gremlin1 (GREM1) signaling involves binding to and sequestering bone morphogenetic proteins (BMPs) in the extracellular matrix, preventing the activation of cognate BMP receptor. Exquisite temporospatial control of the GREM1-BMP interaction is required during development, and perturbation of this balance leads to abnormal limb formation and defective kidney development. In addition to inhibition of BMP signaling, several other noncanonical signaling modalities of GREM1 have been postulated. Some literature reports have suggested that GREM1 can bind to and activate vascular endothelial growth factor receptor-2 (VEGFR2) in endothelial cells, human kidney epithelial cells, and others. These reports suggest that the GREM1 → VEGFR2 signaling can drive angiogenesis both in vitro and in vivo We report here that, despite exhaustive attempts, we did not observe GREM1 activation of VEGFR2 in any of the cell lines reported by the above-mentioned studies. Incubation of endothelial colony-forming cells (ECFCs) or human umbilical vein endothelial cells (HUVECs) with recombinant VEGF triggered a robust increase in VEGFR2 tyrosine phosphorylation. In contrast, no VEGFR2 phosphorylation was detected when cells were incubated with recombinant GREM1 over a range of time points and concentrations. We also show that GREM1 does not interfere with VEGF-mediated VEGFR2 activation, suggesting that GREM1 does not bind with any great affinity to VEGFR2. Measurements of ECFC barrier integrity revealed that VEGF induces barrier function disruption, but recombinant human GREM1 had no effect in this assay. We believe that these results provide an important clarification of the potential interaction between GREM1 and VEGFR2 in mammalian cells.
Collapse
Affiliation(s)
- Louise R Dutton
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Christina L O'Neill
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Reinhold J Medina
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Derek P Brazil
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom.
| |
Collapse
|
15
|
Ren J, Smid M, Iaria J, Salvatori DCF, van Dam H, Zhu HJ, Martens JWM, Ten Dijke P. Cancer-associated fibroblast-derived Gremlin 1 promotes breast cancer progression. Breast Cancer Res 2019; 21:109. [PMID: 31533776 PMCID: PMC6751614 DOI: 10.1186/s13058-019-1194-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/30/2019] [Indexed: 12/21/2022] Open
Abstract
Background Bone morphogenetic proteins (BMPs) have been reported to maintain epithelial integrity and to antagonize the transforming growth factor β (TGFβ)-induced epithelial to mesenchymal transition. The expression of soluble BMP antagonists is dysregulated in cancers and interrupts proper BMP signaling in breast cancer. Methods In this study, we mined the prognostic role of BMP antagonists GREMLIN 1 (GREM1) in primary breast cancer tissues using in-house and publicly available datasets. We determined which cells express GREM1 RNA using in situ hybridization (ISH) on a breast cancer tissue microarray. The effects of Grem1 on the properties of breast cancer cells were assessed by measuring the mesenchymal/stem cell marker expression and functional cell-based assays for stemness and invasion. The role of Grem1 in breast cancer-associated fibroblast (CAF) activation was measured by analyzing the expression of fibroblast markers, phalloidin staining, and collagen contraction assays. The role of Grem1 in CAF-induced breast cancer cell intravasation and extravasation was studied by utilizing xenograft zebrafish breast cancer (co-) injection models. Results Expression analysis of clinical breast cancer datasets revealed that high expression of GREM1 in breast cancer stroma is correlated with a poor prognosis regardless of the molecular subtype. The large majority of human breast cancer cell lines did not express GREM1 in vitro, but breast CAFs did express GREM1 both in vitro and in vivo. Transforming growth factor β (TGFβ) secreted by breast cancer cells, and also inflammatory cytokines, stimulated GREM1 expression in CAFs. Grem1 abrogated bone morphogenetic protein (BMP)/SMAD signaling in breast cancer cells and promoted their mesenchymal phenotype, stemness, and invasion. Moreover, Grem1 production by CAFs strongly promoted the fibrogenic activation of CAFs and promoted breast cancer cell intravasation and extravasation in co-injection xenograft zebrafish models. Conclusions Our results demonstrated that Grem1 is a pivotal factor in the reciprocal interplay between breast cancer cells and CAFs, which promotes cancer cell invasion. Targeting Grem1 could be beneficial in the treatment of breast cancer patients with high Grem1 expression. Electronic supplementary material The online version of this article (10.1186/s13058-019-1194-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiang Ren
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Josephine Iaria
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Daniela C F Salvatori
- Central Laboratory Animal Facility, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans van Dam
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Hong Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| |
Collapse
|
16
|
Grillo E, Ravelli C, Corsini M, Ballmer-Hofer K, Zammataro L, Oreste P, Zoppetti G, Tobia C, Ronca R, Presta M, Mitola S. Monomeric gremlin is a novel vascular endothelial growth factor receptor-2 antagonist. Oncotarget 2018; 7:35353-68. [PMID: 27174917 PMCID: PMC5085234 DOI: 10.18632/oncotarget.9286] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/31/2016] [Indexed: 11/30/2022] Open
Abstract
Angiogenesis plays a key role in various physiological and pathological conditions, including inflammation and tumor growth. The bone morphogenetic protein (BMP) antagonist gremlin has been identified as a novel pro-angiogenic factor. Gremlin promotes neovascular responses via a BMP-independent activation of the vascular endothelial growth factor (VEGF) receptor-2 (VEGFR2). BMP antagonists may act as covalent or non-covalent homodimers or in a monomeric form, while VEGFRs ligands are usually dimeric. However, the oligomeric state of gremlin and its role in modulating the biological activity of the protein remain to be elucidated. Here we show that gremlin is expressed in vitro and in vivo both as a monomer and as a covalently linked homodimer. Mutagenesis of amino acid residue Cys141 prevents gremlin dimerization leading to the formation of gremlinC141A monomers. GremlinC141A monomer retains a BMP antagonist activity similar to the wild-type dimer, but is devoid of a significant angiogenic capacity. Notably, we found that gremlinC141A mutant engages VEGFR2 in a non-productive manner, thus acting as receptor antagonist. Accordingly, both gremlinC141A and wild-type monomers inhibit angiogenesis driven by dimeric gremlin or VEGF-A165. Moreover, by acting as a VEGFR2 antagonist, gremlinC141A inhibits the angiogenic and tumorigenic potential of murine breast and prostate cancer cells in vivo. In conclusion, our data show that gremlin exists in multiple forms endowed with specific bioactivities and provide new insights into the molecular bases of gremlin dimerization. Furthermore, we propose gremlin monomer as a new inhibitor of VEGFR2 signalling during tumor growth.
Collapse
Affiliation(s)
- Elisabetta Grillo
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Cosetta Ravelli
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Michela Corsini
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, National Institute of Neurosciences, University of Brescia, Brescia, 25123, Italy
| | - Kurt Ballmer-Hofer
- Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institut, Villigen, 5232, Switzerland
| | - Luca Zammataro
- Center of Genomics Science of IIT@SEMM, Milan, 20139, Italy
| | | | | | - Chiara Tobia
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Roberto Ronca
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Marco Presta
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy.,Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, National Institute of Neurosciences, University of Brescia, Brescia, 25123, Italy
| | - Stefania Mitola
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| |
Collapse
|
17
|
Wang R, Qi B, Dong YW, Cai QQ, Deng NH, Chen Q, Li C, Jin YT, Wu XZ. Sulfatide interacts with and activates integrin αVβ3 in human hepatocellular carcinoma cells. Oncotarget 2017; 7:36563-36576. [PMID: 27145276 PMCID: PMC5095021 DOI: 10.18632/oncotarget.9095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 04/16/2016] [Indexed: 12/12/2022] Open
Abstract
Integrin αVβ3 is a malignant driver of anchorage-independence and tumor angiogenesis, but its dysregulation in hepatocellular carcinoma (HCC) remains unclear. In this study, we observed that sulfatide significantly promoted integrin αV(ITGAV) expression and wound closure in HCC. We also noted that elevated sulfatide profoundly stimulated integrin αVβ3 clustering and signaling. In the cells with integrin αVβ3 clustering induced by sulfatide, integrin β3 subunit was phosphorylated. Simultaneously, focal adhesion kinase (FAK), Src and paxillin were also phosphorylated. Treatment with FAK inhibitor resulted in robust suppression of FAK-Y397 and Src-Y416 phosphorylation stimulated by sulfatide, but not suppression of integrin β3 phosphorylation. Src inhibitors repressed Src-Y416 and FAK Y861 and Y925 phosphorylation, but not FAK-Y397 and integrin β3 phosphorylation. After mutation of integrin β3 (Y773F and Y785F), FAK or Src phosphorylation failed to be stimulated by sulfatide. Moreover, β3 Y773 and Y785 phosphorylation was suppressed by insulin-like growth factor receptor knockdown even in cells stimulated by sulfatide. In assays of immunoprecipitation and immunostaining with integrin αV or β3 antibody, labeled sulfatide was found in the complex and co-localized with integrin αVβ3. Taken together, this study demonstrated that elevated sulfatide bound to integrin αVβ3 and induced clustering and phosphorylation of αVβ3 instead of matrix ligand binding, triggering outside-in signaling.
Collapse
Affiliation(s)
- Rong Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR. China.,Key Laboratory of Glycoconjugate Research, Ministry of Public Health, Shanghai, PR. China
| | - Bing Qi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR. China.,Key Laboratory of Glycoconjugate Research, Ministry of Public Health, Shanghai, PR. China
| | - Yi Wei Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR. China.,Key Laboratory of Glycoconjugate Research, Ministry of Public Health, Shanghai, PR. China
| | - Qian Qian Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR. China.,Key Laboratory of Glycoconjugate Research, Ministry of Public Health, Shanghai, PR. China
| | - Nian Hui Deng
- Yu Ying Children's Hospital, Wenzhou Medical University, Wenzhou, PR. China
| | - Qi Chen
- Yu Ying Children's Hospital, Wenzhou Medical University, Wenzhou, PR. China
| | - Chao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR. China
| | - Yu Tong Jin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR. China
| | - Xing Zhong Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR. China.,Key Laboratory of Glycoconjugate Research, Ministry of Public Health, Shanghai, PR. China
| |
Collapse
|
18
|
Damioli V, Salvadori A, Beretta GP, Ravelli C, Mitola S. Multi-physics interactions drive VEGFR2 relocation on endothelial cells. Sci Rep 2017; 7:16700. [PMID: 29196628 PMCID: PMC5711959 DOI: 10.1038/s41598-017-16786-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/04/2017] [Indexed: 12/31/2022] Open
Abstract
Vascular Endothelial Growth Factor Receptor-2 (VEGFR2) is a pro-angiogenic receptor, expressed on endothelial cells (ECs). Although biochemical pathways that follow the VEGFR2 activation are well established, knowledge about the dynamics of receptors on the plasma membrane remains limited. Ligand stimulation induces the polarization of ECs and the relocation of VEGFR2, either in cell protrusions or in the basal aspect in cells plated on ligand-enriched extracellular matrix (ECM). We develop a mathematical model in order to simulate the relocation of VEGFR2 on the cell membrane during the mechanical adhesion of cells onto a ligand-enriched substrate. Co-designing the in vitro experiments with the simulations allows identifying three phases of the receptor dynamics, which are controlled respectively by the high chemical reaction rate, by the mechanical deformation rate, and by the diffusion of free receptors on the membrane. The identification of the laws that regulate receptor polarization opens new perspectives toward developing innovative anti-angiogenic strategies through the modulation of EC activation.
Collapse
Affiliation(s)
- Valentina Damioli
- Università degli Studi di Brescia, DIMI Department of Mechanical and Industrial Engineering, Brescia, 25123, Italy
| | - Alberto Salvadori
- Università degli Studi di Brescia, DICATAM, Department of Civil, Environmental, Architectural Engineering and Mathematics, Brescia, 25123, Italy.,Laboratory for Preventive and Personalized Medicine (MPP Lab), Università degli Studi di Brescia, Brescia, 25123, Italy
| | - Gian Paolo Beretta
- Università degli Studi di Brescia, DIMI Department of Mechanical and Industrial Engineering, Brescia, 25123, Italy
| | - Cosetta Ravelli
- Università degli Studi di Brescia, DMMT, Department of Molecular and Translational Medicine, Brescia, 25123, Italy. .,Laboratory for Preventive and Personalized Medicine (MPP Lab), Università degli Studi di Brescia, Brescia, 25123, Italy.
| | - Stefania Mitola
- Università degli Studi di Brescia, DMMT, Department of Molecular and Translational Medicine, Brescia, 25123, Italy. .,Laboratory for Preventive and Personalized Medicine (MPP Lab), Università degli Studi di Brescia, Brescia, 25123, Italy.
| |
Collapse
|
19
|
Contribution of vascular endothelial growth factor receptor-2 sialylation to the process of angiogenesis. Oncogene 2017; 36:6531-6541. [PMID: 28783175 DOI: 10.1038/onc.2017.243] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/30/2017] [Accepted: 06/12/2017] [Indexed: 01/18/2023]
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR2) is the main pro-angiogenic receptor expressed by endothelial cells (ECs). Using surface plasmon resonance, immunoprecipitation, enzymatic digestion, immunofluorescence and cross-linking experiments with specific sugar-binding lectins, we demonstrated that VEGFR2 bears both α,1-fucose and α(2,6)-linked sialic acid (NeuAc). However, only the latter is required for VEGF binding to VEGFR2 and consequent VEGF-dependent VEGFR2 activation and motogenic response in ECs. Notably, downregulation of β-galactoside α(2,6)-sialyltransferase expression by short hairpin RNA transduction inhibits VEGFR2 α(2,6) sialylation that is paralleled by an increase of β-galactoside α(2,3)-sialyltransferase expression. This results in an ex-novo α(2,3)-NeuAc sialylation of the receptor that functionally replaces the lacking α(2,6)-NeuAc, thus allowing VEGF/VEGFR2 interaction. In keeping with the role of VEGFR2 sialylation in angiogenesis, the α(2,6)-NeuAc-binding lectin Sambucus nigra (SNA) prevents VEGF-dependent VEGFR2 autophosphorylation and EC motility, proliferation and motogenesis. In addition, SNA exerts a VEGF-antagonist activity in tridimensional angiogenesis models in vitro and in the chick-embryo chorioallantoic membrane neovascularization assay and mouse matrigel plug assay in vivo. In conclusion, VEGFR2-associated NeuAc plays an important role in modulating VEGF/VEGFR2 interaction, EC pro-angiogenic activation and neovessel formation. VEGFR2 sialylation may represent a target for the treatment of angiogenesis-dependent diseases.
Collapse
|
20
|
Wang H, Han X, Kunz E, Hartnett ME. Thy-1 Regulates VEGF-Mediated Choroidal Endothelial Cell Activation and Migration: Implications in Neovascular Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2017; 57:5525-5534. [PMID: 27768790 PMCID: PMC5080948 DOI: 10.1167/iovs.16-19691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Purpose This study addresses the hypothesis that age-related stresses upregulate Thy-1 in choroidal endothelial cells (CECs) and contribute to CEC activation and migration, processes important in choroidal neovascularization (CNV). Methods Measurements were made of Thy-1 protein (Western blot) in CECs and Thy-1 mRNA (real time quantitative PCR) in CECs treated with VEGF, CCL11, or PBS or in RPE/choroids from young or old donors or lasered or nonlasered mice. Immunolabeled Thy-1 in ocular sections was compared from young versus old human donor eyes or those with or without neovascular AMD or from lasered versus nonlasered mice. Choroidal endothelial cells transfected with Thy-1 or control siRNA or pretreated with Thy-1 blocking peptide or control were stimulated with VEGF or 7-ketocholesterol (7-KC). Choroidal endothelial cell migration, proliferation, cytoskeletal stress fibers, Rac1 activation, and phosphorylated VEGF receptor 2 (VEGFR2), integrin β3, and Src were measured. Statistics were performed using ANOVA. Results Thy-1 was expressed in retinal ganglion cells and in vascular endothelial-cadherin–labeled choroid and localized to human or mouse laser-induced CNV lesions. Thy-1 protein and mRNA were significantly increased in CECs treated with VEGF or CCL11 and in RPE/choroids from aged versus young donor eyes or from lasered mice versus nonlasered controls. Knockdown or inhibition of Thy-1 in CECs significantly reduced VEGF-induced CEC migration and proliferation, stress fiber formation and VEGFR2, Src, integrin β3 and Rac1 activation, and 7-KC–induced Rac1 and Src activation. Conclusions Thy-1 in CECs regulates VEGF-induced CEC activation and migration and links extracellular 7-KC to intracellular signaling. Future studies elucidating Thy-1 mechanisms in neovascular AMD are warranted.
Collapse
Affiliation(s)
- Haibo Wang
- The John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Xiaokun Han
- The John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States 2Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Eric Kunz
- The John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - M Elizabeth Hartnett
- The John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
21
|
Molecular Imaging to Predict Response to Targeted Therapies in Renal Cell Carcinoma. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:7498538. [PMID: 29097936 PMCID: PMC5612742 DOI: 10.1155/2017/7498538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/26/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022]
Abstract
Molecular magnetic resonance imaging targeted to an endothelial integrin involved in neoangiogenesis was compared to DCE-US and immunochemistry to assess the early response of three different therapeutic agents in renal cell carcinoma. Human A498 renal cells carcinoma was subcutaneously inoculated into 24 nude mice. Mice received either phosphate-buffered saline solution, sunitinib, everolimus, or bevacizumab during 4 days. DCE-US and molecular MRI targeting αvβ3 were performed at baseline and 4 days after treatment initiation. PI, AUC, relaxation rate variations ΔR2⁎, and percentage of vessels area quantified on CD31-stained microvessels were compared. Significant decreases were observed for PI and AUC parameters measured by DCE-US for bevacizumab group as early as 4 days, whereas molecular αvβ3-targeted MRI was able to detect significant changes in both bevacizumab and everolimus groups. Percentage of CD31-stained microvessels was significantly correlated with DCE-US parameters, PI (R = 0.87, p = 0.0003) and AUC (R = 0.81, p = 0.0013). The percentage of vessel tissue area was significantly reduced (p < 0.01) in both sunitinib and bevacizumab groups. We report an early detection of neoangiogenesis modification after induction of targeted therapies, using DCE-US or αvβ3-targeted MRI. We consider these outcomes should encourage clinical trial developments to further evaluate the potential of this molecular MRI technique.
Collapse
|
22
|
Church RH, Ali I, Tate M, Lavin D, Krishnakumar A, Kok HM, Hombrebueno JR, Dunne PD, Bingham V, Goldschmeding R, Martin F, Brazil DP. Gremlin1 plays a key role in kidney development and renal fibrosis. Am J Physiol Renal Physiol 2017; 312:F1141-F1157. [PMID: 28100499 PMCID: PMC5495891 DOI: 10.1152/ajprenal.00344.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 11/30/2016] [Accepted: 01/10/2017] [Indexed: 02/06/2023] Open
Abstract
Gremlin1 (Grem1), an antagonist of bone morphogenetic proteins, plays a key role in embryogenesis. A highly specific temporospatial gradient of Grem1 and bone morphogenetic protein signaling is critical to normal lung, kidney, and limb development. Grem1 levels are increased in renal fibrotic conditions, including acute kidney injury, diabetic nephropathy, chronic allograft nephropathy, and immune glomerulonephritis. We demonstrate that a small number of grem1−/− whole body knockout mice on a mixed genetic background (8%) are viable, with a single, enlarged left kidney and grossly normal histology. The grem1−/− mice displayed mild renal dysfunction at 4 wk, which recovered by 16 wk. Tubular epithelial cell-specific targeted deletion of Grem1 (TEC-grem1-cKO) mice displayed a milder response in the acute injury and recovery phases of the folic acid model. Increases in indexes of kidney damage were smaller in TEC-grem1-cKO than wild-type mice. In the recovery phase of the folic acid model, associated with renal fibrosis, TEC-grem1-cKO mice displayed reduced histological damage and an attenuated fibrotic gene response compared with wild-type controls. Together, these data demonstrate that Grem1 expression in the tubular epithelial compartment plays a significant role in the fibrotic response to renal injury in vivo.
Collapse
Affiliation(s)
- Rachel H Church
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Imran Ali
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Mitchel Tate
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Deborah Lavin
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Arjun Krishnakumar
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Helena M Kok
- Utrecht Medical Centre, Utrecht, The Netherlands
| | - Jose R Hombrebueno
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Philip D Dunne
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| | - Victoria Bingham
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| | | | - Finian Martin
- Conway Institute, University College Dublin, Dublin, Ireland; and
| | - Derek P Brazil
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom;
| |
Collapse
|
23
|
Han EJ, Yoo SA, Kim GM, Hwang D, Cho CS, You S, Kim WU. GREM1 Is a Key Regulator of Synoviocyte Hyperplasia and Invasiveness. J Rheumatol 2016; 43:474-85. [PMID: 26834210 DOI: 10.3899/jrheum.150523] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2015] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To investigate the expression of Gremlin 1 (GREM1), an antagonist of bone morphogenetic protein, in rheumatoid arthritis (RA) synovia and its involvement in the hyperplasia and invasiveness of fibroblast-like synoviocytes of RA (RA-FLS). METHODS Computational analysis was introduced to identify FLS-predominant regulators. GREM1 expression was examined by immunohistochemistry, real-time PCR, and ELISA. FLS proliferation and apoptosis were determined using tetrazolium-based colorimetric assay and APOPercentage assay, respectively. FLS migration and invasion were evaluated by wound migration and Matrigel invasion assay, respectively. Expressions of Bax, Bcl2, pErk1/2, and pAkt were detected by Western blot analysis. RESULTS Through global transcriptome profiling, we identified a GREM1 gene predominantly expressed in RA-FLS. Indeed, the GREM1 expression was higher in synovia, synovial fluids, and FLS of patients with RA than in those of patients with osteoarthritis, and its levels correlated well with proinflammatory cytokine concentrations. Knockdown of GREM1 transcripts using short interfering RNA (siRNA) reduced the proliferation and survival of RA-FLS along with downregulation of pErk1/2, pAkt, and Bcl2 expressions, whereas it induced Bax expression. Conversely, the addition of recombinant GREM1 to RA-FLS showed the opposite results. Moreover, GREM1 siRNA decreased the migratory and invasive capacity of RA-FLS, whereas exogenous GREM1 increased it. The GREM1-induced FLS survival, migration, and invasion were completely blocked by neutralizing antibodies to ανβ3 integrin on RA-FLS, suggesting that ανβ3 integrin mediates the antiapoptotic and promigratory effects of GREM1. CONCLUSION GREM1 is highly expressed in RA joints, and functions as a regulator of survival, proliferation, migration, and invasion of RA-FLS.
Collapse
Affiliation(s)
- Eun-Jin Han
- From the POSTECH-CATHOLIC Biomedical Engineering Institute, and Department of Internal Medicine, Catholic University of Korea, Seoul; Center for Systems Biology of Plant Senescence and Life History, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea; Department of Surgery and Biomedical Sciences, Cancer Biology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.E.J. Han, PhD Candidate, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; S.A. Yoo, PhD, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; G.M. Kim, PhD Candidate, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; D. Hwang, PhD, Center for Systems Biology of Plant Senescence and Life History, Institute for Basic Science, DGIST; C.S. Cho, MD, PhD, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; S. You, PhD, Department of Surgery and Biomedical Sciences, Cancer Biology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center; W.U. Kim, MD, PhD, POSTECH-CATHOLIC Biomedical Engineering Institute, and Department of Internal Medicine, Catholic University of Korea
| | - Seung-Ah Yoo
- From the POSTECH-CATHOLIC Biomedical Engineering Institute, and Department of Internal Medicine, Catholic University of Korea, Seoul; Center for Systems Biology of Plant Senescence and Life History, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea; Department of Surgery and Biomedical Sciences, Cancer Biology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.E.J. Han, PhD Candidate, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; S.A. Yoo, PhD, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; G.M. Kim, PhD Candidate, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; D. Hwang, PhD, Center for Systems Biology of Plant Senescence and Life History, Institute for Basic Science, DGIST; C.S. Cho, MD, PhD, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; S. You, PhD, Department of Surgery and Biomedical Sciences, Cancer Biology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center; W.U. Kim, MD, PhD, POSTECH-CATHOLIC Biomedical Engineering Institute, and Department of Internal Medicine, Catholic University of Korea
| | - Gi-Myo Kim
- From the POSTECH-CATHOLIC Biomedical Engineering Institute, and Department of Internal Medicine, Catholic University of Korea, Seoul; Center for Systems Biology of Plant Senescence and Life History, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea; Department of Surgery and Biomedical Sciences, Cancer Biology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.E.J. Han, PhD Candidate, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; S.A. Yoo, PhD, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; G.M. Kim, PhD Candidate, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; D. Hwang, PhD, Center for Systems Biology of Plant Senescence and Life History, Institute for Basic Science, DGIST; C.S. Cho, MD, PhD, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; S. You, PhD, Department of Surgery and Biomedical Sciences, Cancer Biology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center; W.U. Kim, MD, PhD, POSTECH-CATHOLIC Biomedical Engineering Institute, and Department of Internal Medicine, Catholic University of Korea
| | - Daehee Hwang
- From the POSTECH-CATHOLIC Biomedical Engineering Institute, and Department of Internal Medicine, Catholic University of Korea, Seoul; Center for Systems Biology of Plant Senescence and Life History, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea; Department of Surgery and Biomedical Sciences, Cancer Biology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.E.J. Han, PhD Candidate, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; S.A. Yoo, PhD, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; G.M. Kim, PhD Candidate, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; D. Hwang, PhD, Center for Systems Biology of Plant Senescence and Life History, Institute for Basic Science, DGIST; C.S. Cho, MD, PhD, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; S. You, PhD, Department of Surgery and Biomedical Sciences, Cancer Biology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center; W.U. Kim, MD, PhD, POSTECH-CATHOLIC Biomedical Engineering Institute, and Department of Internal Medicine, Catholic University of Korea
| | - Chul-Soo Cho
- From the POSTECH-CATHOLIC Biomedical Engineering Institute, and Department of Internal Medicine, Catholic University of Korea, Seoul; Center for Systems Biology of Plant Senescence and Life History, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea; Department of Surgery and Biomedical Sciences, Cancer Biology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.E.J. Han, PhD Candidate, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; S.A. Yoo, PhD, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; G.M. Kim, PhD Candidate, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; D. Hwang, PhD, Center for Systems Biology of Plant Senescence and Life History, Institute for Basic Science, DGIST; C.S. Cho, MD, PhD, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; S. You, PhD, Department of Surgery and Biomedical Sciences, Cancer Biology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center; W.U. Kim, MD, PhD, POSTECH-CATHOLIC Biomedical Engineering Institute, and Department of Internal Medicine, Catholic University of Korea
| | - Sungyong You
- From the POSTECH-CATHOLIC Biomedical Engineering Institute, and Department of Internal Medicine, Catholic University of Korea, Seoul; Center for Systems Biology of Plant Senescence and Life History, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea; Department of Surgery and Biomedical Sciences, Cancer Biology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.E.J. Han, PhD Candidate, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; S.A. Yoo, PhD, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; G.M. Kim, PhD Candidate, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; D. Hwang, PhD, Center for Systems Biology of Plant Senescence and Life History, Institute for Basic Science, DGIST; C.S. Cho, MD, PhD, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; S. You, PhD, Department of Surgery and Biomedical Sciences, Cancer Biology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center; W.U. Kim, MD, PhD, POSTECH-CATHOLIC Biomedical Engineering Institute, and Department of Internal Medicine, Catholic University of Korea.
| | - Wan-Uk Kim
- From the POSTECH-CATHOLIC Biomedical Engineering Institute, and Department of Internal Medicine, Catholic University of Korea, Seoul; Center for Systems Biology of Plant Senescence and Life History, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea; Department of Surgery and Biomedical Sciences, Cancer Biology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.E.J. Han, PhD Candidate, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; S.A. Yoo, PhD, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; G.M. Kim, PhD Candidate, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; D. Hwang, PhD, Center for Systems Biology of Plant Senescence and Life History, Institute for Basic Science, DGIST; C.S. Cho, MD, PhD, POSTECH-CATHOLIC Biomedical Engineering Institute, Catholic University of Korea; S. You, PhD, Department of Surgery and Biomedical Sciences, Cancer Biology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center; W.U. Kim, MD, PhD, POSTECH-CATHOLIC Biomedical Engineering Institute, and Department of Internal Medicine, Catholic University of Korea.
| |
Collapse
|
24
|
De Cecco L, Negri T, Brich S, Mauro V, Bozzi F, Dagrada G, Disciglio V, Sanfilippo R, Gronchi A, D'Incalci M, Casali PG, Canevari S, Pierotti MA, Pilotti S. Identification of a gene expression driven progression pathway in myxoid liposarcoma. Oncotarget 2015; 5:5965-77. [PMID: 25115389 PMCID: PMC4171605 DOI: 10.18632/oncotarget.2023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: to investigate the events involved in the progression of myxoid liposarcoma (MLS). Gene expression profiling and immunohistochemical/biochemical analyses were applied to specimens representative of the opposite ends of the MLS spectrum: pure myxoid (ML) and pure round cell (RC) liposarcomas. The analyses revealed the involvement of both coding and non coding RNAs (SNORDs located in DLK1-DIO3 region) and support a model of stepwise progression mainly driven by epigenetic changes involving tumour vascular supply and tumoral cellular component. In this model, a switch in the vascular landscape from a normal to a pro-angiogenic signature and the silencing of DLK1-DIO3 region mark the progression from ML to RC in concert with the acquisition by the latter of the over-expression of YY1/C-MYC/HDAC2, together with over-expression of genes involved in cell proliferation and stemness: MKNK2, MSX1 and TRIM71. Taken together, these findings strongly suggest that to progress from ML to RC liposarcoma the cells have to overcome the epigenetic silencing restriction point in order to reset their new stem-like differentiation signature. Our findings provide a first attempt at identifying the missing links between ML and RC liposarcomas, that may also have broader applications in other clinico-pathological settings characterised by a spectrum of progression.
Collapse
Affiliation(s)
- Loris De Cecco
- Functional Genomics and Bioinformatics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy; These authors contributed equally to this work
| | - Tiziana Negri
- Laboratory of Experimental Molecular Pathology, Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy; These authors contributed equally to this work
| | - Silvia Brich
- Laboratory of Experimental Molecular Pathology, Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | - Valentina Mauro
- Laboratory of Experimental Molecular Pathology, Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | - Fabio Bozzi
- Laboratory of Experimental Molecular Pathology, Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | - GianPaolo Dagrada
- Laboratory of Experimental Molecular Pathology, Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | - Vittoria Disciglio
- Functional Genomics and Bioinformatics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | - Roberta Sanfilippo
- Adult Mesenchymal Tumor Medical Oncology Unit, Cancer Medicine Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | - Alessandro Gronchi
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | - Maurizio D'Incalci
- Department of Oncology, IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Paolo G Casali
- Adult Mesenchymal Tumor Medical Oncology Unit, Cancer Medicine Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | - Silvana Canevari
- Functional Genomics and Bioinformatics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | - Marco A Pierotti
- Scientific Directorate, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | - Silvana Pilotti
- Laboratory of Experimental Molecular Pathology, Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| |
Collapse
|
25
|
Karagiannis GS, Afaloniati H, Karamanavi E, Poutahidis T, Angelopoulou K. BMP pathway suppression is an early event in inflammation-driven colon neoplasmatogenesis of uPA-deficient mice. Tumour Biol 2015; 37:2243-55. [PMID: 26358253 DOI: 10.1007/s13277-015-3988-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/25/2015] [Indexed: 12/21/2022] Open
Abstract
The suppression of the bone morphogenetic protein (BMP) signaling pathway has been recently shown to promote adenoma-to-carcinoma transition in sporadic colon cancer. However, its role in the evolution of early preneoplastic changes to neoplasia remains elusive. In the present study, we aimed to investigate the gene expression levels of multiple extracellular BMP family constituents, including BMP ligands/receptors and inhibitors, during the early stages of inflammation-associated colon carcinogenesis. For that, we used the recently developed urokinase-type plasminogen activator (uPA)-deficient mouse model of colonic polypoidogenesis, in which adenomatous polyps arise several months after the induction of dextran sodium sulfate (DSS) colitis. In DSS-treated wild-type mice, the preneoplastic lesions which did not eventually evolve to adenomas resided in a colitic microenvironment characterized by a balanced upregulation of both BMP ligands, i.e., Bmp4/7 and BMP inhibitors, such as chordin, noggin, and gremlin-1. In the uPA-deficient tumor-promoting inflammatory microenvironment, however, there was a clear evidence for BMP pathway suppression. By contrast to DSS-treated wild-type controls, the inflammation-associated Bmp4 upregulation was abolished, and the BMP signaling suppression was further enhanced by a particularly high increase of gremlin-1 expression. These findings propose that BMP pathway suppression in colon cancer could be associated with very early stages of the preneoplasia-to-neoplasia sequence of events.
Collapse
Affiliation(s)
- George S Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | - Hara Afaloniati
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Elisavet Karamanavi
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Department of Cardiovasular Sciences, Cardiovascular Research Centre, Glenfield General Hospital, University of Leicester, Leicester, UK
| | - Theofilos Poutahidis
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina Angelopoulou
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
26
|
Ravelli C, Grillo E, Corsini M, Coltrini D, Presta M, Mitola S. β3 Integrin Promotes Long-Lasting Activation and Polarization of Vascular Endothelial Growth Factor Receptor 2 by Immobilized Ligand. Arterioscler Thromb Vasc Biol 2015; 35:2161-71. [PMID: 26293466 PMCID: PMC4894810 DOI: 10.1161/atvbaha.115.306230] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 08/04/2015] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— During neovessel formation, angiogenic growth factors associate with the extracellular matrix. These immobilized factors represent a persistent stimulus for the otherwise quiescent endothelial cells (ECs), driving directional EC migration and proliferation and leading to new blood vessel growth. Vascular endothelial growth factor receptor 2 (VEGFR2) is the main mediator of angiogenesis. Although VEGFR2 signaling has been deeply characterized, little is known about its subcellular localization during neovessel formation. Aim of this study was the characterization and molecular determinants of activated VEGFR2 localization in ECs during neovessel formation in response to matrix-immobilized ligand. Approach and Results— Here we demonstrate that ECs stimulated by extracellular matrix–associated gremlin, a noncanonical VEGFR2 ligand, are polarized and relocate the receptor in close contact with the angiogenic factor–enriched matrix both in vitro and in vivo. GM1 (monosialotetrahexosylganglioside)-positive planar lipid rafts, β3 integrin receptors, and the intracellular signaling transducers focal adhesion kinase and RhoA (Ras homolog gene family, member A) cooperate to promote VEGFR2 long-term polarization and activation. Conclusions— A ligand anchored to the extracellular matrix induces VEGFR2 polarization in ECs. Long-lasting VEGFR2 relocation is closely dependent on lipid raft integrity and activation of β3 integrin pathway. The study of the endothelial responses to immobilized growth factors may offer insights into the angiogenic process in physiological and pathological conditions, including cancer, and for a better engineering of synthetic tissue scaffolds to blend with the host vasculature.
Collapse
Affiliation(s)
- Cosetta Ravelli
- From the Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- From the Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michela Corsini
- From the Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Coltrini
- From the Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marco Presta
- From the Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Stefania Mitola
- From the Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
27
|
Brazil DP, Church RH, Surae S, Godson C, Martin F. BMP signalling: agony and antagony in the family. Trends Cell Biol 2015; 25:249-64. [DOI: 10.1016/j.tcb.2014.12.004] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 01/14/2023]
|
28
|
Karagiannis GS, Musrap N, Saraon P, Treacy A, Schaeffer DF, Kirsch R, Riddell RH, Diamandis EP. Bone morphogenetic protein antagonist gremlin-1 regulates colon cancer progression. Biol Chem 2015; 396:163-83. [DOI: 10.1515/hsz-2014-0221] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/01/2014] [Indexed: 11/15/2022]
Abstract
Abstract
Bone morphogenetic proteins (BMP) are phylogenetically conserved signaling molecules of the transforming growth factor-beta (TGF-beta) superfamily of proteins, involved in developmental and (patho)physiological processes, including cancer. BMP signaling has been regarded as tumor-suppressive in colorectal cancer (CRC) by reducing cancer cell proliferation and invasion, and by impairing epithelial-to-mesenchymal transition (EMT). Here, we mined existing proteomic repositories to explore the expression of BMPs in CRC. We found that the BMP antagonist gremlin-1 (GREM1) is secreted from heterotypic tumor-host cell interactions. We then sought to investigate whether GREM1 is contextually and mechanistically associated with EMT in CRC. Using immunohistochemistry, we showed that GREM1-expressing stromal cells harbor prominent features of myofibroblasts (i.e., cancer-associated fibroblasts), such as expression of α-smooth muscle actin and laminin-beta-1, and were in contextual proximity to invasion fronts with loss of the tight junction protein occludin and parallel nuclear accumulation of β-catenin, two prominent EMT hallmarks. Furthermore, in vitro assays demonstrated that GREM1-dependent suppression of BMP signaling results in EMT induction, characterized by cadherin switching (loss of E-cadherin-upregulation of N-cadherin) and overexpression of Snail. Collectively, our data support that GREM1 promotes the loss of cancer cell differentiation at the cancer invasion front, a mechanism that may facilitate tumor progression.
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW This review considers recent developments concerning the role of integrins in vascular biology with a specific emphasis on integrin activation, and the crosstalk between integrins and growth factor receptors. RECENT FINDINGS Recent studies have shown leukocytes can mediate direct transfer of molecules into endothelial cells, how specific integrins can be used to transduce signaling events, in particular in vascular beds, and how endothelial cell integrins can be targeted with specific ligands for the delivery of therapeutics. Kindlin and talin are both essential for integrin activation based on in-vivo studies of mice and humans in which the genes encoding for these proteins have been inactivated. Recent studies have attempted to translate these in-vivo realities into in-vitro models with mixed results. SUMMARY Mechanisms and consequences of integrin-ligand interactions on blood and vascular cells remain a major topic of hematological research. Crucial to the ligand binding function of integrins are two intracellular binding partners, talin and kindlin. In seeking to define the molecular basis for 'integrin activation', a mechanism must be envisioned in which both proteins talin and kindlin are required to produce a productive functional response, be it platelet aggregation or leukocyte extravasation. On endothelial cells, integrins and vascular endothelial growth factor receptor 2 influence the activation of one another by virtue of their direct physical interaction. It has been shown that this bidirectional communication is subject to regulation during angiogenesis.
Collapse
|
30
|
Koketsu K, Yoshida D, Kim K, Ishii Y, Tahara S, Teramoto A, Morita A. Gremlin, a bone morphogenetic protein antagonist, is a crucial angiogenic factor in pituitary adenoma. Int J Endocrinol 2015; 2015:834137. [PMID: 25834571 PMCID: PMC4365323 DOI: 10.1155/2015/834137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 02/10/2015] [Accepted: 02/16/2015] [Indexed: 01/22/2023] Open
Abstract
Gremlin is an antagonist of bone morphogenetic protein (BMP) and a major driving force in skeletal modeling in the fetal stage. Several recent reports have shown that Gremlin is also involved in angiogenesis of lung cancer and diabetic retinopathy. The purpose of this study was to investigate the role of Gremlin in tumor angiogenesis in pituitary adenoma. Double fluorescence immunohistochemistry of Gremlin and CD34 was performed in pituitary adenoma tissues obtained during transsphenoidal surgery in 45 cases (7 PRLoma, 17 GHoma, 2 ACTHoma, and 2 TSHoma). Gremlin and microvascular density (MVD) were detected by double-immunofluorescence microscopy in CD34-positive vessels from tissue microarray analysis of 60 cases of pituitary adenomas (6 PRLoma, 23 GHoma, 22 NFoma, 5 ACTHoma, and 4 TSHoma). In tissue microarray analysis, MVD was significantly correlated with an increased Gremlin level (linear regression: P < 0.005, r (2) = 0.4958). In contrast, Gremlin expression showed no correlation with tumor subtype or Knosp score. The high level of expression of Gremlin in pituitary adenoma tissue with many CD34-positive vessels and the strong coherence of these regions indicate that Gremlin is associated with angiogenesis in pituitary adenoma cells.
Collapse
Affiliation(s)
- Kenta Koketsu
- Department of Neurosurgery, Nippon Medical School, Tokyo 113-8602, Japan
- *Kenta Koketsu:
| | - Daizo Yoshida
- Department of Neurosurgery, Nippon Medical School, Tokyo 113-8602, Japan
| | - Kyongsong Kim
- Department of Neurosurgery, Nippon Medical School, Tokyo 113-8602, Japan
| | - Yudo Ishii
- Department of Neurosurgery, Nippon Medical School, Tokyo 113-8602, Japan
| | - Shigeyuki Tahara
- Department of Neurosurgery, Nippon Medical School, Tokyo 113-8602, Japan
| | - Akira Teramoto
- Department of Neurosurgery, Nippon Medical School, Tokyo 113-8602, Japan
| | - Akio Morita
- Department of Neurosurgery, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
31
|
Domigan CK, Ziyad S, Iruela-Arispe ML. Canonical and noncanonical vascular endothelial growth factor pathways: new developments in biology and signal transduction. Arterioscler Thromb Vasc Biol 2014; 35:30-9. [PMID: 25278287 DOI: 10.1161/atvbaha.114.303215] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The past 5 years have witnessed a significant expansion in our understanding of vascular endothelial growth factor (VEGF) signaling. In particular, the process of canonical activation of VEGF receptor tyrosine kinases by homodimeric VEGF molecules has now been broadened by the realization that heterodimeric ligands and receptors are also active participants in the signaling process. Although heterodimer receptors were described 2 decades ago, their impact, along with the effect of additional cell surface partners and novel autocrine VEGF signaling pathways, are only now starting to be clarified. Furthermore, ligand-independent signaling (noncanonical) has been identified through galectin and gremlin binding and upon rise of intracellular levels of reactive oxygen species. Activation of the VEGF receptors in the absence of ligand holds immediate implications for therapeutic approaches that exclusively target VEGF. The present review provides a concise summary of the recent developments in both canonical and noncanonical VEGF signaling and places these findings in perspective to their potential clinical and biological ramifications.
Collapse
Affiliation(s)
- Courtney K Domigan
- From the Department of Molecular, Cell, and Developmental Biology (C.K.D., S.Z., M.L.I.-A.), Molecular Biology Institute (M.L.I.-A.), and Jonsson Comprehensive Cancer Center (M.L.I.-A.), University of California, Los Angeles
| | - Safiyyah Ziyad
- From the Department of Molecular, Cell, and Developmental Biology (C.K.D., S.Z., M.L.I.-A.), Molecular Biology Institute (M.L.I.-A.), and Jonsson Comprehensive Cancer Center (M.L.I.-A.), University of California, Los Angeles
| | - M Luisa Iruela-Arispe
- From the Department of Molecular, Cell, and Developmental Biology (C.K.D., S.Z., M.L.I.-A.), Molecular Biology Institute (M.L.I.-A.), and Jonsson Comprehensive Cancer Center (M.L.I.-A.), University of California, Los Angeles.
| |
Collapse
|
32
|
Siddique I, Curran SP, Ghayur A, Liu L, Shi W, Hoff CM, Gangji AS, Brimble KS, Margetts PJ. Gremlin promotes peritoneal membrane injury in an experimental mouse model and is associated with increased solute transport in peritoneal dialysis patients. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2976-84. [PMID: 25194662 DOI: 10.1016/j.ajpath.2014.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 11/29/2022]
Abstract
The peritoneal membrane becomes damaged in patients on peritoneal dialysis (PD). Gremlin 1 (GREM1) inhibits bone morphogenic proteins (BMPs) and plays a role in kidney development and fibrosis. We evaluated the role of gremlin in peritoneal fibrosis and angiogenesis. In a cohort of 32 stable PD patients, GREM1 concentration in the peritoneal effluent correlated with measures of peritoneal membrane damage. AdGrem1, an adenovirus to overexpress gremlin in the mouse peritoneum, induced submesothelial thickening, fibrosis, and angiogenesis in C57BL/6 mice, which was associated with decreased expression of BMP4 and BMP7. There was evidence of mesothelial cell transition to a mesenchymal phenotype with increased α smooth muscle actin expression and suppression of E-cadherin. Some of the GREM1 effects may be reversed with recombinant BMP7 or a pan-specific transforming growth factor β (TGF-β) antibody. Neovascularization was not inhibited with a TGF-β antibody, suggesting a TGF-β-independent angiogenic mechanism. Swiss/Jackson Laboratory (SJL) mice, which are resistant to TGF-β-induced peritoneal fibrosis, responded in a similar fashion to AdGrem1 as did C57BL/6 mice with fibrosis, angiogenesis, and mesothelial-to-mesenchymal transition. GREM1 was associated with up-regulated TGF-β expression in both SJL and C57BL/6 mice, but SJL mice demonstrated a defective TGF-β-induced GREM1 expression. In summary, GREM1 induces fibrosis and angiogenesis in mouse peritoneum and is associated with increased solute transport in these PD patients.
Collapse
Affiliation(s)
- Imad Siddique
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Simon P Curran
- Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
| | - Ayesha Ghayur
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Limin Liu
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Wei Shi
- Children's Hospital Los Angeles, University of Southern California, Los Angeles, California
| | | | - Azim S Gangji
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - K Scott Brimble
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Peter J Margetts
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
33
|
Nolan K, Thompson TB. The DAN family: modulators of TGF-β signaling and beyond. Protein Sci 2014; 23:999-1012. [PMID: 24810382 DOI: 10.1002/pro.2485] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 01/11/2023]
Abstract
Extracellular binding proteins or antagonists are important factors that modulate ligands in the transforming growth factor (TGF-β) family. While the interplay between antagonists and ligands are essential for developmental and normal cellular processes, their imbalance can lead to the pathology of several disease states. In particular, recent studies have implicated members of the differential screening-selected gene in neuroblastoma (DAN) family in disease such as renal fibrosis, pulmonary arterial hypertension, and reactivation of metastatic cancer stem cells. DAN family members are known to inhibit the bone morphogenetic proteins (BMP) of the TGF-β family. However, unlike other TGF-β antagonist families, DAN family members have roles beyond ligand inhibition and can modulate Wnt and vascular endothelial growth factor (VEGF) signaling pathways. This review describes recent structural and functional advances that have expanded our understanding of DAN family proteins with regards to BMP inhibition and also highlights their emerging roles in the modulation of Wnt and VEGF signaling pathways.
Collapse
Affiliation(s)
- Kristof Nolan
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio, 45267
| | | |
Collapse
|
34
|
Karagiannis GS, Treacy A, Messenger D, Grin A, Kirsch R, Riddell RH, Diamandis EP. Expression patterns of bone morphogenetic protein antagonists in colorectal cancer desmoplastic invasion fronts. Mol Oncol 2014; 8:1240-52. [PMID: 24812030 DOI: 10.1016/j.molonc.2014.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 02/24/2014] [Accepted: 04/09/2014] [Indexed: 01/31/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are a group of growth factors with dual functions in cancer development and progression. Recently, certain tumor-promoting roles have been identified for selected antagonists/inhibitors (BMPIs) of this developmental pathway. A recent focus on the implication of BMP in colorectal cancer progression has emerged, mainly due to the presence of inactivating mutations in several members of the canonical signaling cascade. However, the detailed expression profiles of BMPIs remain largely unknown. Based on our previous work, whereby three specific BMPIs, gremlin-1 (GREM1), high-temperature requirement A3 (HTRA3) and follistatin (FST) were collectively overexpressed in desmoplastic cocultures of colorectal cancer (CRC), here, we undertook an immunohistochemical approach to describe the patterns of their expression in CRC patients. Two major characteristics described the BMPI expression signature: First, the synchronous and coordinated stromal and epithelial overexpression of individual BMPIs in desmoplastic lesions, which demonstrated that all three of them contribute to increasing levels of BMP antagonism in such areas. Second, the presence of microenvironmental polarity in the BMPI pattern of expression, which was indicated through the preferential expression of HTRA3 in the stromal, and the parallel FST/GREM1 expression in the epithelial component of the investigated sections. In addition, expression of HTRA3 in the epithelial compartment of the tumors demonstrated a significant predictive power to discriminate between tumor-budding-bearing and tumor-budding-free desmoplastic microenvironments. Together, these findings contribute to the understanding of signaling dynamics of BMP antagonism in the colorectal cancer desmoplastic invasion front.
Collapse
Affiliation(s)
- George S Karagiannis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ann Treacy
- MC Pathology, The Laboratory, Charlemont Clinic, Charlemont Mall, Dublin, Ireland
| | - David Messenger
- Zane Cohen Clinical Research Centre, Mount Sinai Hospital, Toronto, Canada; Division of General Surgery, Mount Sinai Hospital, Toronto, Canada
| | - Andrea Grin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine, St Michael's Hospital, Toronto, Canada
| | - Richard Kirsch
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Robert H Riddell
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
35
|
Corsini M, Moroni E, Ravelli C, Andrés G, Grillo E, Ali IH, Brazil DP, Presta M, Mitola S. Cyclic adenosine monophosphate-response element-binding protein mediates the proangiogenic or proinflammatory activity of gremlin. Arterioscler Thromb Vasc Biol 2013; 34:136-45. [PMID: 24233491 DOI: 10.1161/atvbaha.113.302517] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Angiogenesis and inflammation are closely related processes. Gremlin is a novel noncanonical vascular endothelial growth factor receptor-2 (VEGFR2) ligand that induces a proangiogenic response in endothelial cells (ECs). Here, we investigated the role of the cyclic adenosine monophosphate-response element (CRE)-binding protein (CREB) in mediating the proinflammatory and proangiogenic responses of ECs to gremlin. APPROACH AND RESULTS Gremlin induces a proinflammatory response in ECs, leading to reactive oxygen species and cyclic adenosine monophosphate production and the upregulation of proinflammatory molecules involved in leukocyte extravasation, including chemokine (C-C motif) ligand-2 (Ccl2) and Ccl7, chemokine (C-X-C motif) ligand-1 (Cxcl1), vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1). Accordingly, gremlin induces the VEGFR2-dependent phosphorylation, nuclear translocation, and transactivating activity of CREB in ECs. CREB activation mediates the early phases of the angiogenic response to gremlin, including stimulation of EC motility and permeability, and leads to monocyte/macrophage adhesion to ECs and their extravasation. All these effects are inhibited by EC transfection with a dominant-negative CREB mutant or with a CREB-binding protein-CREB interaction inhibitor that competes for CREB/CRE binding. Also, both recombinant gremlin and gremlin-expressing tumor cells induce proinflammatory/proangiogenic responses in vivo that are suppressed by the anti-inflammatory drug hydrocortisone. Similar effects were induced by the canonical VEGFR2 ligand VEGF-A165. CONCLUSIONS Together, the results underline the tight cross-talk between angiogenesis and inflammation and demonstrate a crucial role of CREB activation in the modulation of the VEGFR2-mediated proinflammatory/proangiogenic response of ECs to gremlin.
Collapse
Affiliation(s)
- Michela Corsini
- From the Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (M.C., E.M., C.R., E.G., M.P., S.M.); Electron Microscopy Unit, Centro de Biologia Molecular Severo Ochoa, Campus Cantoblanco, Madrid, Spain (G.A.); and Centre for Experimental Medicine, Queen's University Belfast, ICS-A, Grosvenor Road, Belfast BT12 6BA, UK (I.H.A., D.P.B.)
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Wei Zhang
- Institutes for Advanced Interdisciplinary Research; East China Normal University; Shanghai 200062 China
- Shanghai Engineering Research Center of Molecular Therapy and Pharmaceutical Innovation; Shanghai 200062 China
| |
Collapse
|
37
|
Sprouty4 regulates endothelial cell migration via modulating integrin β3 stability through c-Src. Angiogenesis 2013; 16:861-75. [PMID: 23955631 DOI: 10.1007/s10456-013-9361-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/12/2013] [Indexed: 12/13/2022]
Abstract
Angiogenesis is mediated by signaling through receptor tyrosine kinases (RTKs), Src family kinases and adhesion receptors such as integrins, yet the mechanism how these signaling pathways regulate one another remains incompletely understood. The RTK modulator, Sprouty4 (Spry4) inhibits endothelial cell functions and angiogenesis, but the mechanisms remain to be fully elucidated. In this study, we demonstrate that Spry4 regulates angiogenesis in part by regulating endothelial cell migration. Overexpression of Spry4 in human endothelial cells inhibited migration and adhesion on vitronectin (VTN), whereas knockdown of Spry4 enhanced these behaviors. These activities were shown to be c-Src-dependent and Ras-independent. Spry4 disrupted the crosstalk between vascular endothelial growth factor-2 and integrin αVβ3, the receptor for VTN. Spry4 overexpression resulted in decreased integrin β3 protein levels in a post-transcriptional manner in part by modulating its tyrosine phosphorylation by c-Src. Conversely, knockdown of Spry4 resulted in increased integrin β3 protein levels and tyrosine phosphorylation. Moreover, in vivo analysis revealed that Spry4 regulated integrin β3 levels in murine embryos and yolk sacs. Our findings identify an unanticipated role for Spry4 in regulating c-Src activity and integrin β3 protein levels, which contributes to the regulation of migration and adhesion of endothelial cells. Thus, targeting Spry4 may be exploited as a target in anti-angiogenesis therapies.
Collapse
|
38
|
Karagiannis GS, Berk A, Dimitromanolakis A, Diamandis EP. Enrichment map profiling of the cancer invasion front suggests regulation of colorectal cancer progression by the bone morphogenetic protein antagonist, gremlin-1. Mol Oncol 2013; 7:826-39. [PMID: 23659962 DOI: 10.1016/j.molonc.2013.04.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/20/2013] [Accepted: 04/05/2013] [Indexed: 12/21/2022] Open
Abstract
The cancer invasion front (CIF), a spatially-recognized area due to the frequent presence of peritumoral desmoplastic reaction, represents a cancer site where many hallmarks of cancer metastasis occur. It is now strongly suggested that the desmoplastic microenvironment holds crucial information for determining tumor development and progression. Despite extensive research on tumor-host cell interactions at CIFs, the exact paracrine molecular network that is hardwired into the proteome of the stromal and cancer subpopulations remains partially understood. Here, we interrogated the signaling pathways and the molecular functional signatures across the proteome of a desmoplastic coculture model system of colorectal cancer progression. We discovered a group of bone morphogenetic protein (BMP) antagonists that coordinates major biological programs in CIFs, including cell proliferation, invasion, migration and differentiation processes. Using a mathematical model of cancer cell progression, coupled to in vitro cell migration assays, we demonstrated that the prominent BMP antagonist gremlin-1 (GREM1) may trigger motility of cancer cell cohorts. Our data collectively demonstrate that the desmoplastic CIFs deploy a microenvironmental signature, based on BMP antagonism, in order to regulate the motogenic fates of cancer cell cohorts invading the adjacent stroma.
Collapse
Affiliation(s)
- George S Karagiannis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|