1
|
Worton AJ, Norman RA, Gilbert L, Porter RB. GIS-ODE: linking dynamic population models with GIS to predict pathogen vector abundance across a country under climate change scenarios. J R Soc Interface 2024; 21:20240004. [PMID: 39106949 PMCID: PMC11303026 DOI: 10.1098/rsif.2024.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 06/20/2024] [Indexed: 08/09/2024] Open
Abstract
Mechanistic mathematical models such as ordinary differential equations (ODEs) have a long history for their use in describing population dynamics and determining estimates of key parameters that summarize the potential growth or decline of a population over time. More recently, geographic information systems (GIS) have become important tools to provide a visual representation of statistically determined parameters and environmental features over space. Here, we combine these tools to form a 'GIS-ODE' approach to generate spatiotemporal maps predicting how projected changes in thermal climate may affect population densities and, uniquely, population dynamics of Ixodes ricinus, an important tick vector of several human pathogens. Assuming habitat and host densities are not greatly affected by climate warming, the GIS-ODE model predicted that, even under the lowest projected temperature increase, I. ricinus nymph densities could increase by 26-99% in Scotland, depending on the habitat and climate of the location. Our GIS-ODE model provides the vector-borne disease research community with a framework option to produce predictive, spatially explicit risk maps based on a mechanistic understanding of vector and vector-borne disease transmission dynamics.
Collapse
Affiliation(s)
- A. J. Worton
- Division of Computing Science and Mathematics, University of Stirling, StirlingFK9 4LA, UK
| | - R. A. Norman
- Division of Computing Science and Mathematics, University of Stirling, StirlingFK9 4LA, UK
| | - L. Gilbert
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
| | - R. B. Porter
- Department of Engineering and Mathematics, Sheffield Hallam University, SheffieldS1 1WB, UK
| |
Collapse
|
2
|
Kjellander P, Bergvall UA, Chirico J, Ullman K, Christensson M, Lindgren PE. Winter activity of Ixodes ricinus in Sweden. Parasit Vectors 2023; 16:229. [PMID: 37430316 DOI: 10.1186/s13071-023-05843-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND In Europe, Ixodes ricinus (Acari: Ixodidae) is the most widespread and abundant tick species, acting as a vector for several microorganisms of medical and veterinary importance. In Northern and Central Europe, the tick has a bimodal activity pattern consisting of a peak in spring to the beginning of summer and a second peak at the end of summer. However, several findings of ticks on animals during winter have been reported, which raises the question of whether this is an overwintering strategy or whether ticks are active during winter in Scandinavia. The objectives of our study were to determine (i) whether ticks were active and finding hosts during winter, (ii) whether they parasitize their hosts, and (iii) what climatic factors-i.e., temperature, snow depth and precipitation-govern tick winter activity. METHODS Throughout three winter seasons, we examined wild-living and free-ranging roe deer (Capreolus capreolus) for ticks on 332 occasions. In total, 140 individual roe deer were captured in two climatically contrasting sites in south-central Sweden, Grimsö and the Bogesund research area, respectively. We re-examined individual roe deer up to 10 times within the same winter or approximately once a week (mean 10 days, median 7 days between re-examinations) and recorded the absence or presence of ticks on the animals, and tested to what extent meteorological factors affected tick activity. To determine the attachment day, we used the coxal/scutal index of 18 nymphs and 47 female ticks. RESULTS In total, 243 I. ricinus were collected from 301 roe deer captures between 14 December and 28 February at the Bogesund study site during three subsequent years (2013/2014-2015/2016). We found attached ticks every third to every second examination (32%, 48% and 32% of the examinations, respectively). However, we collected only three I. ricinus females from 31 roe deer captures at the Grimsö study site between 17 December 2015 and 26 February 2016. At the Bogesund study site, based on 192 captures of previously examined deer, we collected 121 ticks, and ticks were found at 33%, 48% and 26% of the examinations during the respective winters. The probability of finding an attached tick on a roe deer at a temperature of -5 °C was > 8% ± 5 (SE), and that probability increased to almost 20% ± 7 (SE) if the air temperature increased to 5 °C. CONCLUSIONS To the best of our knowledge, this is the first time that winter-active nymphs and female ticks have been documented to attach and feed on roe deer during winter (December to February) in Scandinavia. The main weather conditions regulating winter activity for females were temperature and precipitation, and the lowest estimated air temperature for finding an active tick was well below 5 °C. The behaviour of winter-active and blood-feeding ticks was documented over several winters and in two contrasting areas, implying that it is a common phenomenon that should be investigated more thoroughly, since it may have important consequences for the epidemiology of tick-borne pathogens.
Collapse
Affiliation(s)
- Petter Kjellander
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden.
| | - Ulrika A Bergvall
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden
| | - Jan Chirico
- Department of Microbiology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Karin Ullman
- Department of Microbiology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Madeleine Christensson
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden
| | - Per-Eric Lindgren
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, Linköping, Sweden
- Laboratory Medicine, Microbiological Laboratory, County Hospital Ryhov, Jönköping, Sweden
| |
Collapse
|
3
|
Mols B, Churchill JE, Cromsigt JPGM, Kuijper DPJ, Smit C. Recreation reduces tick density through fine-scale risk effects on deer space-use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156222. [PMID: 35623530 DOI: 10.1016/j.scitotenv.2022.156222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/28/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Altered interactions between pathogens, their hosts and vectors have potential consequences for human disease risk. Notably, tick-borne pathogens, many of which are associated with growing deer abundance, show global increasing prevalence and pose increasing challenges for disease prevention. Human activities can largely affect the patterns of deer space-use and can therefore be potential management tools to alleviate human-wildlife conflicts. Here, we tested how deer space-use patterns are influenced by human recreational activities, and how this in turn affects the spatial distribution of the sheep tick (Ixodes ricinus), a relevant disease vector of zoonoses such as Lyme borrelioses. We compared deer dropping and questing tick density on transects near (20 m) and further away from (100 m) forest trails that were either frequently used (open for recreation) or infrequently used (closed for recreation, but used by park managers). In contrast to infrequently used trails, deer dropping density was 31% lower near (20 m) than further away from (100 m) frequently used trails. Similarly, ticks were 62% less abundant near (20 m) frequently used trails compared to further away from (100 m) these trails, while this decline in tick numbers was only 14% near infrequently used trails. The avoidance by deer of areas close to human-used trails was thus associated with a similar reduction in questing tick density near these trails. As tick abundance generally correlates to pathogen prevalence, the use of trails for recreation may reduce tick-borne disease risk for humans on and near these trails. Our study reveals an unexplored effect of human activities on ecosystems and how this knowledge could be potentially used to mitigate zoonotic disease risk.
Collapse
Affiliation(s)
- B Mols
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands.
| | - J E Churchill
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - J P G M Cromsigt
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden; Centre for African Conservation Ecology, Department of Zoology, Nelson Mandela University, 6031 Gqeberha, South Africa
| | - D P J Kuijper
- Mammal Research Institute, Polish Academy of Sciences, Ul. Stoczek 1, 17-230 Białowieża, Poland
| | - C Smit
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
4
|
Da Rold G, Obber F, Monne I, Milani A, Ravagnan S, Toniolo F, Sgubin S, Zamperin G, Foiani G, Vascellari M, Drzewniokova P, Castellan M, De Benedictis P, Citterio CV. Clinical Tick-Borne Encephalitis in a Roe Deer (Capreolus capreolus L.). Viruses 2022; 14:v14020300. [PMID: 35215891 PMCID: PMC8875940 DOI: 10.3390/v14020300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is the causative agent of tick-borne encephalitis (TBE), a severe zoonosis occurring in the Palearctic region mainly transmitted through Ixodes ticks. In Italy, TBEV is restricted to the north-eastern part of the country. This report describes for the first time a case of clinical TBE in a roe deer (Capreolus capreolus L.). The case occurred in the Belluno province, Veneto region, an area endemic for TBEV. The affected roe deer showed ataxia, staggering movements, muscle tremors, wide-base stance of the front limbs, repetitive movements of the head, persistent teeth grinding, hypersalivation and prolonged recumbency. An autopsy revealed no significant lesions to explain the neurological signs. TBEV RNA was detected in the brain by real-time RT-PCR, and the nearly complete viral genome (10,897 nucleotides) was sequenced. Phylogenetic analysis of the gene encoding the envelope protein revealed a close relationship to TBEV of the European subtype, and 100% similarity with a partial sequence (520 nucleotides) of a TBEV found in ticks in the bordering Trento province. The histological examination of the midbrain revealed lymphohistiocytic encephalitis, satellitosis and microgliosis, consistent with a viral etiology. Other viral etiologies were ruled out by metagenomic analysis of the brain. This report underlines, for the first time, the occurrence of clinical encephalitic manifestations due to TBEV in a roe deer, suggesting that this pathogen should be included in the frame of differential diagnoses in roe deer with neurologic disease.
Collapse
Affiliation(s)
- Graziana Da Rold
- U.O. Ecopathology SCT2-Belluno, Istituto Zoprofilattico Sperimentale delle Venezie (IZSVe), Via Cappellari 44/A, 32100 Belluno, Italy; (F.O.); (C.V.C.)
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Correspondence:
| | - Federica Obber
- U.O. Ecopathology SCT2-Belluno, Istituto Zoprofilattico Sperimentale delle Venezie (IZSVe), Via Cappellari 44/A, 32100 Belluno, Italy; (F.O.); (C.V.C.)
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
| | - Isabella Monne
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Laboratory for Viral Genomics and Trascriptomics, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy
| | - Adelaide Milani
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Laboratory for Viral Genomics and Trascriptomics, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy
| | - Silvia Ravagnan
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Laboratory of Parasitology Micology and Sanitary Enthomology, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy
| | - Federica Toniolo
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Laboratory of Parasitology Micology and Sanitary Enthomology, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy
| | - Sofia Sgubin
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Laboratory of Parasitology Micology and Sanitary Enthomology, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy
| | - Gianpiero Zamperin
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Laboratory for Viral Genomics and Trascriptomics, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy
| | - Greta Foiani
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Histopathology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Universita 10, 35020 Legnaro, Italy
| | - Marta Vascellari
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Histopathology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Universita 10, 35020 Legnaro, Italy
| | - Petra Drzewniokova
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Laboratory for Viral Emerging Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy
| | - Martina Castellan
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Laboratory for Viral Emerging Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy
| | - Paola De Benedictis
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Laboratory for Viral Emerging Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy
| | - Carlo Vittorio Citterio
- U.O. Ecopathology SCT2-Belluno, Istituto Zoprofilattico Sperimentale delle Venezie (IZSVe), Via Cappellari 44/A, 32100 Belluno, Italy; (F.O.); (C.V.C.)
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
| |
Collapse
|
5
|
Poh KC, Evans JR, Skvarla MJ, Kent CM, Olafson PU, Hickling GJ, Mullinax JM, Machtinger ET. Patterns of deer ked (Diptera: Hippoboscidae) and tick (Ixodida: Ixodidae) infestation on white-tailed deer (Odocoileus virginianus) in the eastern United States. Parasit Vectors 2022; 15:31. [PMID: 35057829 PMCID: PMC8772158 DOI: 10.1186/s13071-021-05148-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/29/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
White-tailed deer (Odocoileus virginianus) host numerous ectoparasitic species in the eastern USA, most notably various species of ticks and two species of deer keds. Several pathogens transmitted by ticks to humans and other animal hosts have also been found in deer keds. Little is known about the acquisition and potential for transmission of these pathogens by deer keds; however, tick-deer ked co-feeding transmission is one possible scenario. On-host localization of ticks and deer keds on white-tailed deer was evaluated across several geographical regions of the eastern US to define tick-deer ked spatial relationships on host deer, which may impact the vector-borne disease ecology of these ectoparasites.
Methods
Ticks and deer keds were collected from hunter-harvested white-tailed deer from six states in the eastern US. Each deer was divided into three body sections, and each section was checked for 4 person-minutes. Differences in ectoparasite counts across body sections and/or states were evaluated using a Bayesian generalized mixed model.
Results
A total of 168 white-tailed deer were inspected for ticks and deer keds across the study sites. Ticks (n = 1636) were collected from all surveyed states, with Ixodes scapularis (n = 1427) being the predominant species. Counts of I. scapularis from the head and front sections were greater than from the rear section. Neotropical deer keds (Lipoptena mazamae) from Alabama and Tennessee (n = 247) were more often found on the rear body section. European deer keds from Pennsylvania (all Lipoptena cervi, n = 314) were found on all body sections of deer.
Conclusions
The distributions of ticks and deer keds on white-tailed deer were significantly different from each other, providing the first evidence of possible on-host niche partitioning of ticks and two geographically distinct deer ked species (L. cervi in the northeast and L. mazamae in the southeast). These differences in spatial distributions may have implications for acquisition and/or transmission of vector-borne pathogens and therefore warrant further study over a wider geographic range and longer time frame.
Graphical Abstract
Collapse
|
6
|
Stanko M, Derdáková M, Špitalská E, Kazimírová M. Ticks and their epidemiological role in Slovakia: from the past till present. Biologia (Bratisl) 2021; 77:1575-1610. [PMID: 34548672 PMCID: PMC8446484 DOI: 10.1007/s11756-021-00845-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/06/2021] [Indexed: 01/26/2023]
Abstract
In Slovakia, 22 tick species have been found to occur to date. Among them, Ixodes ricinus, Dermacentor reticulatus, D. marginatus and marginally Haemaphysalis concinna, H. inermis and H. punctata have been identified as the species of public health relevance. Ticks in Slovakia were found to harbour and transmit zoonotic and/or potentially zoonotic agents such as tick-borne encephalitis virus (TBEV), spirochaetes of the Borrelia burgdorferi sensu lato (s.l.) complex, the relapsing fever sprirochaete Borrelia miyamotoi, bacteria belonging to the orders Rickettsiales (Rickettsia spp., Anaplasma phagocytophilum, Neoehrlichia mikurensis), Legionellales (Coxiella burnetii), and Thiotrichales (Francisella tularensis), and Babesia spp. parasites (order Piroplasmida). Ixodes ricinus is the principal vector of the largest variety of microorganisms including viruses, bacteria and piroplasms. TBEV, B. burgdorferi s.l., rickettsiae of the spotted fever group, C. burnetii and F. tularensis have been found to cause serious diseases in humans, whereas B. miyamotoi, A. phagocytophilum, N. mikurensis, Babesia microti, and B. venatorum pose lower or potential risk to humans. Distribution of TBEV has a focal character. During the last few decades, new tick-borne encephalitis (TBE) foci and their spread to new areas have been registered and TBE incidence rates have increased. Moreover, Slovakia reports the highest rates of alimentary TBE infections among the European countries. Lyme borreliosis (LB) spirochaetes are spread throughout the distribution range of I. ricinus. Incidence rates of LB have shown a slightly increasing trend since 2010. Only a few sporadic cases of human rickettsiosis, anaplasmosis and babesiosis have been confirmed thus far in Slovakia. The latest large outbreaks of Q fever and tularaemia were recorded in 1993 and 1967, respectively. Since then, a few human cases of Q fever have been reported almost each year. Changes in the epidemiological characteristics and clinical forms of tularaemia have been observed during the last few decades. Global changes and development of modern molecular tools led to the discovery and identification of emerging or new tick-borne microorganisms and symbionts with unknown zoonotic potential. In this review, we provide a historical overview of research on ticks and tick-borne pathogens in Slovakia with the most important milestones and recent findings, and outline future directions in the investigation of ticks as ectoparasites and vectors of zoonotic agents and in the study of tick-borne diseases.
Collapse
Affiliation(s)
- Michal Stanko
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia
| | - Markéta Derdáková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia
| | - Eva Špitalská
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia
| |
Collapse
|
7
|
Opalińska P, Wierzbicka A, Asman M, Rączka G, Dyderski MK, Nowak-Chmura M. Fivefold higher abundance of ticks (Acari: Ixodida) on the European roe deer (Capreolus capreolus L.) forest than field ecotypes. Sci Rep 2021; 11:10649. [PMID: 34017054 PMCID: PMC8137867 DOI: 10.1038/s41598-021-90234-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 01/08/2023] Open
Abstract
The European roe deer (Capreolus capreolus) is the most common deer species in Europe. The species can be a reservoir of some tick-borne diseases but it is primarily recognized for its contribution as an amplifier host. In Central Europe, two roe deer ecotypes are living in adjacent areas: field and forest. We investigated differences in tick load and species composition on these two ecotypes. We collected ticks from 160 (80 the forest ecotype and 80 the field ecotype) roe deer culled in Wielkopolska Region (West-Central Poland). The most common was Ixodes ricinus (n = 1610; 99%) followed by Ixodes hexagonus (n = 22; 1%). The dominant life stage of the ticks was female. Prevalence was higher for forest roe deer. Mean number of ticks found on the forest ecotype was almost fivefold higher than on the field ecotype (3.75 ± 0.83 vs. 0.77 ± 0.20 ticks). The mean probability of tick occurrence was threefold higher in the forest (0.915 ± 0.050) than the field ecotype (0.279 ± 0.125). The most infested body parts of roe deer from both ecotypes were the neck and the head.
Collapse
Affiliation(s)
- Patrycja Opalińska
- Department of Game Management and Forest Protection, Poznań University of Life Sciences, Wojska Polskiego 71d, 60-625, Poznań, Poland
| | - Anna Wierzbicka
- Department of Game Management and Forest Protection, Poznań University of Life Sciences, Wojska Polskiego 71d, 60-625, Poznań, Poland.
| | - Marek Asman
- Department of Parasitology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jedności 8, 41-218, Sosnowiec, Poland
| | - Grzegorz Rączka
- Department of Forest Management Planning, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625, Poznań, Poland
| | - Marcin K Dyderski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Magdalena Nowak-Chmura
- Department of Invertebrate Zoology and Parasitology, Institute of Biology, Pedagogical University of Cracov, Podbrzezie Str. 3, 31-054, Kraków, Poland
| |
Collapse
|
8
|
Takumi K, Hofmeester TR, Sprong H. Red and fallow deer determine the density of Ixodes ricinus nymphs containing Anaplasma phagocytophilum. Parasit Vectors 2021; 14:59. [PMID: 33468215 PMCID: PMC7814456 DOI: 10.1186/s13071-020-04567-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Background The density of Ixodes ricinus nymphs infected with Anaplasma phagocytophilum is one of the parameters that determines the risk for humans and domesticated animals to contract anaplasmosis. For this, I. ricinus larvae need to take a bloodmeal from free-ranging ungulates, which are competent hosts for A. phagocytophilum. Methods Here, we compared the contribution of four free-ranging ungulate species, red deer (Cervus elaphus), fallow deer (Dama dama), roe deer (Capreolus capreolus), and wild boar (Sus scrofa), to A. phagocytophilum infections in nymphs. We used a combination of camera and live trapping to quantify the relative availability of vertebrate hosts to questing ticks in 19 Dutch forest sites. Additionally, we collected questing I. ricinus nymphs and tested these for the presence of A. phagocytophilum. Furthermore, we explored two potential mechanisms that could explain differences between species: (i) differences in larval burden, which we based on data from published studies, and (ii) differences in associations with other, non-competent hosts. Results Principal component analysis indicated that the density of A. phagocytophilum-infected nymphs (DIN) was higher in forest sites with high availability of red and fallow deer, and to a lesser degree roe deer. Initial results suggest that these differences are not a result of differences in larval burden, but rather differences in associations with other species or other ecological factors. Conclusions These results indicate that the risk for contracting anaplasmosis in The Netherlands is likely highest in the few areas where red and fallow deer are present. Future studies are needed to explore the mechanisms behind this association. Graphical abstract ![]()
Collapse
Affiliation(s)
- Katsuhisa Takumi
- Centre for Zoonoses and Environmental Microbiology Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | - Tim R Hofmeester
- Department of Wildlife Fish and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 7, 907 36, Umeå, Sweden
| | - Hein Sprong
- Centre for Zoonoses and Environmental Microbiology Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
9
|
Poh KC, Skvarla M, Evans JR, Machtinger ET. Collecting Deer Keds (Diptera: Hippoboscidae: Lipoptena Nitzsch, 1818 and Neolipoptena Bequaert, 1942) and Ticks (Acari: Ixodidae) From Hunter-Harvested Deer and Other Cervids. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5948068. [PMID: 33135746 PMCID: PMC7604836 DOI: 10.1093/jisesa/ieaa024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 05/29/2023]
Abstract
Deer keds (Diptera: Hippoboscidae: Lipoptena Nitzsch, 1818 and Neolipoptena Bequaert, 1942) are blood-feeding ectoparasites that primarily attack cervids and occasionally bite humans, while ticks may be found on cervids, but are more generalized in host choice. Recent detection of pathogens such as Anaplasma and Borrelia in deer keds and historical infections of tick-borne diseases provides reason to investigate these ectoparasites as vectors. However, previous methods employed to sample deer keds and ticks vary, making it difficult to standardize and compare ectoparasite burdens on cervids. Therefore, we propose a standardized protocol to collect deer keds and ticks from hunter-harvested deer, which combines previous methods of sampling, including timing of collections, dividing sections of the deer, and materials used in the collection process. We tested a three-section and a five-section sampling scheme in 2018 and 2019, respectively, and found that dividing the deer body into five sections provided more specificity in identifying where deer keds and ticks may be found on deer. Data from 2018 suggested that deer keds and ticks were found on all three sections (head, anterior, posterior), while data from 2019 suggested that more Ixodes scapularis were found on the head and deer keds were found on all body sections (head, dorsal anterior, dorsal posterior, ventral anterior, and ventral posterior). The protocol provides an efficient way to sample deer for deer keds and ticks and allows researchers to compare ectoparasite burdens across geographical regions. Furthermore, this protocol can be used to collect other ectoparasites from deer or other cervids.
Collapse
Affiliation(s)
- Karen C Poh
- Department of Entomology, Penn State University, University Park, PA
| | - Michael Skvarla
- Department of Entomology, Penn State University, University Park, PA
| | - Jesse R Evans
- Department of Entomology, Penn State University, University Park, PA
| | | |
Collapse
|
10
|
Roden-Reynolds P, Machtinger ET, Li AY, Mullinax JM. Trapping White-Tailed Deer (Artiodactyla: Cervidae) in Suburbia for Study of Tick-Host Interaction. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5948076. [PMID: 33135754 PMCID: PMC7604841 DOI: 10.1093/jisesa/ieaa044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Indexed: 06/11/2023]
Abstract
Live capture of white-tailed deer (Odocoileus virginianus) (Zimmermann, 1780) is often necessary for research, population control, disease monitoring, and parasite surveillance. We provide our deer trapping protocol used in a tick-host vector ecology research project and recommendations to improve efficiency of deer trapping programs using drop nets in suburban areas. We captured 125 deer across two trapping seasons. Generally, lower daily minimum temperatures were related to increased capture probability, along with the presence of snow. Our most successful trapping sites were less forested, contained more fragmentation, and greater proportion of human development (buildings, roads, recreational fields). To improve future suburban deer trapping success, trapping efforts should include areas dominated by recreational fields and should not emphasize remote, heavily forested, less fragmented parks. Concurrently, our study illustrated the heterogeneous nature of tick distributions, and we collected most ticks from one trapping site with moderate parameter values between the extremes of the most developed and least developed trapping sites. This emphasized the need to distribute trapping sites to not only increase your capture success but to also trap in areas across varying levels of urbanization and fragmentation to increase the probability of parasite collection.
Collapse
Affiliation(s)
- Patrick Roden-Reynolds
- Department of Environmental Science and Technology, University of Maryland, College Park, MD
| | - Erika T Machtinger
- Agriculture Research Service, Invasive Insect Biocontrol and Behavior Laboratory, Office of National Programs, United States Department of Agriculture, Beltsville, MD
- Department of Entomology, 4 Chemical Ecology Laboratory, Pennsylvania State University, University Park, PA
| | - Andrew Y Li
- Agriculture Research Service, Invasive Insect Biocontrol and Behavior Laboratory, Office of National Programs, United States Department of Agriculture, Beltsville, MD
| | - Jennifer M Mullinax
- Department of Environmental Science and Technology, University of Maryland, College Park, MD
| |
Collapse
|
11
|
Król N, Chitimia-Dobler L, Dobler G, Karliuk Y, Birka S, Obiegala A, Pfeffer M. Tick burden on European roe deer (Capreolus capreolus) from Saxony, Germany, and detection of tick-borne encephalitis virus in attached ticks. Parasitol Res 2020; 119:1387-1392. [PMID: 32211989 DOI: 10.1007/s00436-020-06637-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/25/2020] [Indexed: 12/30/2022]
Abstract
Southern Germany is known as tick-borne encephalitis (TBE) risk area; however, the north of the country is almost free of human TBE cases. Due to its location in the transition zone between TBE risk areas and areas with only sporadic cases, Saxony is of importance in the surveillance of TBE. Roe deer (Capreolus capreolus), showing high seroprevalence of TBE virus (TBEV) antibodies, are considered to be sentinels for TBE risk assessment. Thus, roe deer could be used as indicators helping to better understand the focality of the TBEV in nature and as a possible source to isolate TBEV. Therefore, the aims of this study were to examine roe deer coats for the presence of ticks to establish the tick burden and to detect the TBEV in attached ticks. One hundred thirty-four roe deer coats were provided by hunters from the Hunting Association in Saxony (August 2017-January 2019). The coats were frozen at - 80 °C and after de-freezing examined on both sides-inside and outside. Attached and nonattached ticks were collected, morphologically identified and tested using real-time RT-PCR for the presence of TBEV. In total, 1279 ticks were found on 48 coats. The predominant species was Ixodes ricinus (99.76%; n = 1276). Three remaining specimens were Ixodes spp. (0.16%, 1 female and 1 nymph) and Dermacentor reticulatus (0.08%, 1 male). The average infestation rate was 26.7 (SD = 69.5), with maximum of 439 ticks per animal. Females were the dominant life stage of ticks (n = 536; 42%), followed by nymphs (n = 397; n = 31.1%), males (n = 175; 13.7%), and larvae (n = 168; 13.2%). Only half of collected ticks were attached (n = 662; 51.8%). TBEV was detected only in one tick out of 1279 tested ticks. It was a female infesting a roe deer from Saxon Switzerland-East Ore Mountain. The results show that the method used in this study is not sufficient as a sentinel marker to predict TBEV spreading in nature. Although previous studies demonstrated the usefulness of serological testing of roe deer in order to trace TBE-endemic regions, using ticks attached to them to get virus isolates is not productive.
Collapse
Affiliation(s)
- Nina Król
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany.
| | - Lidia Chitimia-Dobler
- Institute of Microbiology of the Bundeswehr, Neuherbergstraße 11, 80937, Munich, Germany
| | - Gerhard Dobler
- Institute of Microbiology of the Bundeswehr, Neuherbergstraße 11, 80937, Munich, Germany
| | - Yauhen Karliuk
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Stefan Birka
- Institute of Food Hygiene, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| |
Collapse
|
12
|
Gillingham EL, Hansford KM, Meadows S, Henney J, Wieckowski F, Hernández-Triana LM, Muscat I, Muscat J, Beckert C, Nikolova NI, Cull B, Medlock JM. Ticks on the Channel Islands and implications for public health. Ticks Tick Borne Dis 2020; 11:101405. [PMID: 32046929 DOI: 10.1016/j.ttbdis.2020.101405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 12/19/2022]
Abstract
The Channel Islands are British Crown dependencies located in the English Channel to the west of the Normandy coast in northern France. Whilst there have been studies investigating tick occurrence and distribution in different habitats on the mainland of the UK and in France, the Channel Islands have been relatively understudied. As such, little is known about whether the sheep tick, Ixodes ricinus, is present, and whether there is a potential risk of Lyme borreliosis on the Channel Islands. To ascertain the presence of I. ricinus on the three largest islands in the archipelago: Jersey, Guernsey and Alderney, surveys of ticks questing in the vegetation and ticks feeding on hosts were undertaken during April and May 2016. Across all three islands, the highest numbers of ticks were found in woodland habitats. Ixodes ricinus was the predominant questing tick species found on Jersey, and Ixodes ventalloi the most common questing tick species on Alderney and Guernsey, with little or no evidence of questing I. ricinus on either island. During field studies on small mammals, I. ricinus was the predominant tick species feeding on Jersey bank voles (Myodes glareolus caesarius), with Ixodes hexagonus the most common species infesting hedgehogs on Guernsey. We propose that the greater diversity of small mammals on Jersey may be important in supporting immature stages of I. ricinus, in contrast to Guernsey and Alderney. Morphological identification of tick species was confirmed by PCR sequencing based on amplification of the cytochrome c oxidase subunit one (cox1) gene (COI DNA barcoding). To date, there have been few records of human tick bites in the Channel Islands, suggesting that the current risk from tick-borne disease may be low, but continued reporting of any human tick bites, along with reporting of cases of Lyme borreliosis will be important for continued assessment of the impact of tick-borne diseases in the Channel Islands.
Collapse
Affiliation(s)
- Emma L Gillingham
- Medical Entomology and Zoonoses Ecology, Emergency Response Department, Public Health England, Porton Down, Salisbury, SP4 0JG, UK; NIHR Health Protection Research Unit in Environmental Change and Health, UK.
| | - Kayleigh M Hansford
- Medical Entomology and Zoonoses Ecology, Emergency Response Department, Public Health England, Porton Down, Salisbury, SP4 0JG, UK; NIHR Health Protection Research Unit in Environmental Change and Health, UK
| | - Scott Meadows
- Howard Davis Farm, la Route de la Trinité, Trinity, JE3 5JP, Jersey
| | - Julia Henney
- Environment Guernsey Ltd, The Old Tobacco Factory, Route De La Ramee, St. Peter Port, GY1 2ET, Guernsey
| | - Filip Wieckowski
- Alderney Wildlife Trust, 51 Victoria Street, St Anne, Alderney, GY93TA, Guernsey
| | - Luis M Hernández-Triana
- Wildlife Zoonoses and Vector-Borne Research Group, Department of Virology, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK
| | - Ivan Muscat
- Jersey General Hospital, The Parade, St Helier, JE1 3QS, Jersey
| | - Joseph Muscat
- Charles University, Opletalova 38, 110 00, Staré Město, Czechia
| | - Clara Beckert
- Charles University, Opletalova 38, 110 00, Staré Město, Czechia
| | - Nadya I Nikolova
- Biodiversity Institute of Ontario, University of Guelph, Ontario, N1G 2W1, Canada
| | - Ben Cull
- Medical Entomology and Zoonoses Ecology, Emergency Response Department, Public Health England, Porton Down, Salisbury, SP4 0JG, UK
| | - Jolyon M Medlock
- Medical Entomology and Zoonoses Ecology, Emergency Response Department, Public Health England, Porton Down, Salisbury, SP4 0JG, UK; NIHR Health Protection Research Unit in Environmental Change and Health, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, UK
| |
Collapse
|
13
|
Lydecker HW, Banks PB, Hochuli DF. Counting Ticks (Acari: Ixodida) on Hosts Is Complex: A Review and Comparison of Methods. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1527-1533. [PMID: 31237338 DOI: 10.1093/jme/tjz094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Indexed: 06/09/2023]
Abstract
Locating and counting parasites on a host is a fundamental aspect of ecological research and basic veterinary and clinical practice. Variability in the biology and behavior of both hosts and parasites creates many methodological, logistical, and ethical considerations that must be made to collect this deceptively simple measurement. We identified methods that are used to count ticks (Acari: Ixodida, Leach 1815) on hosts by reviewing the methods sections of relevant published studies. Unfortunately, there is no best method agreed upon by scientists to collect ticks from hosts. In general, we suggest that studies focusing purely on counting ticks on hosts should use more sensitive methods to determine patterns of tick distribution on the surfaces of unconscious or deceased hosts in order to provide host body regions to target in future studies to maximize tick detection ability and limit the costs of research for researchers and the host animals involved. As ticks are counted on hosts for many different reasons, researchers must be goal oriented and chose methods that are appropriate for addressing their specific aims.
Collapse
Affiliation(s)
- Henry W Lydecker
- School of Life and Environmental Sciences, the University of Sydney, Sydney, NSW, Australia
- Marie Bashir Institute for Infectious Disease and Biosecurity, Westmead Institute for Medical Research, Westmead NSW, Australia
| | - Peter B Banks
- School of Life and Environmental Sciences, the University of Sydney, Sydney, NSW, Australia
| | - Dieter F Hochuli
- School of Life and Environmental Sciences, the University of Sydney, Sydney, NSW, Australia
- Sydney Policy Lab, the University of Sydney, NSW, Australia
| |
Collapse
|
14
|
Stigum VM, Jaarsma RI, Sprong H, Rolandsen CM, Mysterud A. Infection prevalence and ecotypes of Anaplasma phagocytophilum in moose Alces alces, red deer Cervus elaphus, roe deer Capreolus capreolus and Ixodes ricinus ticks from Norway. Parasit Vectors 2019; 12:1. [PMID: 30606222 PMCID: PMC6318929 DOI: 10.1186/s13071-018-3256-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/04/2018] [Indexed: 01/16/2023] Open
Abstract
Background The geographical expansion of the tick Ixodes ricinus in northern Europe is a serious concern for animal and human health. The pathogen Anaplasma phagocytophilum is transmitted by ticks and causes emergences of tick-borne fever (anaplasmosis) in livestock. The transmission dynamics of the different ecotypes of A. phagocytophilum in the ecosystems is only partly determined. Red deer and roe deer contribute to circulation of different ecotypes of A. phagocytophilum in continental Europe, while the role of moose for circulation of different ecotypes is not fully established but an important issue in northern Europe. Methods We determined infection prevalence and ecotypes of A. phagocytophilum in moose (n = 111), red deer (n = 141), roe deer (n = 28) and questing ticks (n = 9241) in Norway. Results As previously described, red deer was exclusively linked to circulation of ecotype I, while roe deer was exclusively linked to circulation of ecotype II. Surprisingly, we found 58% ecotype I (n = 19) and 42% of ecotype II (n = 14) in moose. Both ecotypes were found in questing ticks in areas with multiple cervid species present, while only ecotype I was found in ticks in a region with only red deer present. Hence, the geographical distribution of ecotypes in ticks followed the distribution of cervid species present in a given region and their link to ecotype I and II. Conclusions Moose probably function as reservoirs for both ecotype I and II, indicating that the ecotypes of A. phagocytophilum are not entirely host-specific and have overlapping niches. The disease hazard depends also on both host abundance and the number of immature ticks fed by each host. Our study provides novel insights in the northern distribution and expansion of tick-borne fever.
Collapse
Affiliation(s)
- Vetle M Stigum
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway
| | - Ryanne I Jaarsma
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hein Sprong
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Christer M Rolandsen
- Norwegian Institute for Nature Research, PO Box 5685, Sluppen, NO-7485, Trondheim, Norway
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway. .,Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
15
|
Kazimírová M, Hamšíková Z, Špitalská E, Minichová L, Mahríková L, Caban R, Sprong H, Fonville M, Schnittger L, Kocianová E. Diverse tick-borne microorganisms identified in free-living ungulates in Slovakia. Parasit Vectors 2018; 11:495. [PMID: 30176908 PMCID: PMC6122462 DOI: 10.1186/s13071-018-3068-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/20/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Free-living ungulates are hosts of ixodid ticks and reservoirs of tick-borne microorganisms in central Europe and many regions around the world. Tissue samples and engorged ticks were obtained from roe deer, red deer, fallow deer, mouflon, and wild boar hunted in deciduous forests of south-western Slovakia. DNA isolated from these samples was screened for the presence of tick-borne microorganisms by PCR-based methods. RESULTS Ticks were found to infest all examined ungulate species. The principal infesting tick was Ixodes ricinus, identified on 90.4% of wildlife, and included all developmental stages. Larvae and nymphs of Haemaphysalis concinna were feeding on 9.6% of wildlife. Two specimens of Dermacentor reticulatus were also identified. Ungulates were positive for A. phagocytophilum and Theileria spp. Anaplasma phagocytophilum was found to infect 96.1% of cervids, 88.9% of mouflon, and 28.2% of wild boar, whereas Theileria spp. was detected only in cervids (94.6%). Importantly, a high rate of cervids (89%) showed mixed infections with both these microorganisms. In addition to A. phagocytophilum and Theileria spp., Rickettsia helvetica, R. monacensis, unidentified Rickettsia sp., Coxiella burnetii, "Candidatus Neoehrlichia mikurensis", Borrelia burgdorferi (s.l.) and Babesia venatorum were identified in engorged I. ricinus. Furthermore, A. phagocytophilum, Babesia spp. and Theileria spp. were detected in engorged H. concinna. Analysis of 16S rRNA and groEL gene sequences revealed the presence of five and two A. phagocytophilum variants, respectively, among which sequences identified in wild boar showed identity to the sequence of the causative agent of human granulocytic anaplasmosis (HGA). Phylogenetic analysis of Theileria 18S rRNA gene sequences amplified from cervids and engorged I. ricinus ticks segregated jointly with sequences of T. capreoli isolates into a moderately supported monophyletic clade. CONCLUSIONS The findings indicate that free-living ungulates are reservoirs for A. phagocytophilum and Theileria spp. and engorged ixodid ticks attached to ungulates are good sentinels for the presence of agents of public and veterinary concern. Further analyses of the A. phagocytophilum genetic variants and Theileria species and their associations with vector ticks and free-living ungulates are required.
Collapse
Affiliation(s)
- Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia
| | - Zuzana Hamšíková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia
| | - Eva Špitalská
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Lenka Minichová
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Lenka Mahríková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia
| | | | - Hein Sprong
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment, 9 Antonie van Leeuwenhoeklaan, P.O. Box 1, Bilthoven, The Netherlands
| | - Manoj Fonville
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment, 9 Antonie van Leeuwenhoeklaan, P.O. Box 1, Bilthoven, The Netherlands
| | - Leonhard Schnittger
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Prov. de Buenos Aires Argentina
- CONICET, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
| | - Elena Kocianová
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|
16
|
Fletcher K, Baines D. The effects of acaricide treatment of sheep on red grouse Lagopus lagopus scotica tick burdens and productivity in a multi-host system. MEDICAL AND VETERINARY ENTOMOLOGY 2018; 32:235-243. [PMID: 29194726 DOI: 10.1111/mve.12282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/14/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
Ixodes ricinus (Ixodida: Ixodidae) ticks are of economic and pathogenic importance across Europe. Within the uplands of the U.K., management to reduce ticks is undertaken to benefit red grouse Lagopus lagopus scotica (Galliformes: Phasianidae). Management strategies focus on the acaricide treatment of domestic sheep Ovis aries (Artiodactyla: Bovidae), but the effectiveness of this is less certain in the presence of wild hosts, particularly red deer Cervus elaphus (Artiodactyla: Cervidae) and mountain hare Lepus timidus (Lagomorpha: Leporidae). This study examines the effects of sheep management on grouse tick burdens and productivity using sites with a range of wild host densities. Sites at which applications of acaricide were more frequent had lower tick burdens; this relationship was similar on sites with a range of deer densities. However, no direct link was detected between acaricide treatment interval and grouse productivity. Sites with higher deer densities had higher grouse tick burdens and lower productivity [mean ± standard error (SE) young : adult ratio: 1.2 ± 0.2] compared with sites with lower deer densities (mean ± SE young : adult ratio: 1.8 ± 0.1). Sites with higher grouse brood sizes and higher proportions of hens with broods were also those with higher mountain hare abundance indices. This study highlights the importance of the frequent treatment of sheep with acaricide to reduce tick burdens on grouse, even in the presence of wild hosts.
Collapse
Affiliation(s)
- K Fletcher
- Game and Wildlife Conservation Trust, Perth, U.K
| | - D Baines
- Game and Wildlife Conservation Trust, Eggleston, U.K
| |
Collapse
|
17
|
Abstract
Background Ticks and tick-borne pathogens are a global problem for the health of humans and their livestock. Wood ants are important ecosystem engineers in forests worldwide. Although both taxa are well studied, little is known about their interactions under natural conditions. The purpose of the present field study was to test whether European red wood ants (Formica polyctena) influence the abundance of Ixodes tick populations in temperate forests. Methods Data collection took place in 130 sampling plots located at 26 ant nest sites paired with 26 control sites in northwestern Switzerland. At each sampling plot, tick abundance, ant abundance, ant nest volume and habitat variables (describing litter, vegetation and microclimate) were measured. We used linear mixed-effect models to analyze the abundance of questing ticks as a function of ant abundance and habitat variables. Results Ant nest volume, rather than the presence of ants, had a significant negative effect on tick abundance. The number of ticks decreased from 11.2 to 3.5 per 100 m2 if the volume of the adjacent ant nest increased from 0.1 m3 to 0.5 m3. Additionally, high vegetation cover and litter depth had negative and positive relationships with tick abundance, respectively. Conclusions We showed that the number of questing ticks was negatively correlated with the size of red wood ant nests. Further studies are needed to identify the mechanisms that drive the relationship. Possible mechanisms include the repellent effect of ant formic acid, and the predatory behavior of wood ants. The present field study suggests that red wood ants provide a new ecosystem service by reducing the local abundance of Ixodes ticks. Electronic supplementary material The online version of this article (10.1186/s13071-018-2712-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Silvia Zingg
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, 3052, Zollikofen, Switzerland.
| | - Patrick Dolle
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, 3052, Zollikofen, Switzerland
| | | | - Maren Kern
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, 3052, Zollikofen, Switzerland
| |
Collapse
|
18
|
Neglected vector-borne zoonoses in Europe: Into the wild. Vet Parasitol 2017; 251:17-26. [PMID: 29426471 DOI: 10.1016/j.vetpar.2017.12.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 11/22/2022]
Abstract
Wild vertebrates are involved in the transmission cycles of numerous pathogens. Additionally, they can affect the abundance of arthropod vectors. Urbanization, landscape and climate changes, and the adaptation of vectors and wildlife to human habitats represent complex and evolving scenarios, which affect the interface of vector, wildlife and human populations, frequently with a consequent increase in zoonotic risk. While considerable attention has focused on these interrelations with regard to certain major vector-borne pathogens such as Borrelia burgdorferi s.l. and tick-borne encephalitis virus, information regarding many other zoonotic pathogens is more dispersed. In this review, we discuss the possible role of wildlife in the maintenance and spread of some of these neglected zoonoses in Europe. We present case studies on the role of rodents in the cycles of Bartonella spp., of wild ungulates in the cycle of Babesia spp., and of various wildlife species in the life cycle of Leishmania infantum, Anaplasma phagocytophilum and Rickettsia spp. These examples highlight the usefulness of surveillance strategies focused on neglected zoonotic agents in wildlife as a source of valuable information for health professionals, nature managers and (local) decision-makers. These benefits could be further enhanced by increased collaboration between researchers and stakeholders across Europe and a more harmonised and coordinated approach for data collection.
Collapse
|
19
|
Honig V, Carolan HE, Vavruskova Z, Massire C, Mosel MR, Crowder CD, Rounds MA, Ecker DJ, Ruzek D, Grubhoffer L, Luft BJ, Eshoo MW. Broad-range survey of vector-borne pathogens and tick host identification of Ixodes ricinus from Southern Czech Republic. FEMS Microbiol Ecol 2017; 93:4331634. [PMID: 29029144 PMCID: PMC5812510 DOI: 10.1093/femsec/fix129] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/02/2017] [Indexed: 11/15/2022] Open
Abstract
Ixodes ricinus ticks are vectors of numerous human and animal pathogens. They are host generalists able to feed on more than 300 vertebrate species. The prevalence of tick-borne pathogens is influenced by host-vector-pathogen interactions that results in spatial distribution of infection risk. Broad-range polymerase chain reaction electrospray ionization mass spectrometry (PCR/ESI-MS) was used to analyze 435 I. ricinus nymphs from four localities in the south of the Czech Republic for the species identification of tick-borne pathogens. Borrelia burgdorferi sensu lato spirochetes were the most common pathogen detected in the ticks; 21% of ticks were positive for a single genospecies and 2% were co-infected with two genospecies. Other tick-borne pathogens detected included Rickettsia helvetica (3.9%), R. monacensis (0.2%), Anaplasma phagocytophilum (2.8%), Babesia venatorum (0.9%), and Ba. microti (0.5%). The vertebrate host of the ticks was determined using PCR followed by reverse line blot hybridization from the tick's blood-meal remnants. The host was identified for 61% of ticks. DNA of two hosts was detected in 16% of samples with successful host identification. The majority of ticks had fed on artiodactyls (50.7%) followed by rodents (28.6%) and birds (7.8%). Other host species were wild boar, deer, squirrels, field mice and voles.
Collapse
Affiliation(s)
- Vaclav Honig
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05, Ceske Budejovice, Czech Republic
- Department of Virology, Veterinary Research Institute, Hudcova 70, Brno, Czech Republic
| | - Heather E. Carolan
- Ibis Biosciences Inc., Abbott Laboratories, 2251 Faraday Ave, Ste 150, Carlsbad, CA 92008, USA
| | - Zuzana Vavruskova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05, Ceske Budejovice, Czech Republic
| | - Christian Massire
- Ibis Biosciences Inc., Abbott Laboratories, 2251 Faraday Ave, Ste 150, Carlsbad, CA 92008, USA
| | - Michael R. Mosel
- Ibis Biosciences Inc., Abbott Laboratories, 2251 Faraday Ave, Ste 150, Carlsbad, CA 92008, USA
| | - Christopher D. Crowder
- Ibis Biosciences Inc., Abbott Laboratories, 2251 Faraday Ave, Ste 150, Carlsbad, CA 92008, USA
| | - Megan A. Rounds
- Ibis Biosciences Inc., Abbott Laboratories, 2251 Faraday Ave, Ste 150, Carlsbad, CA 92008, USA
| | - David J. Ecker
- Ibis Biosciences Inc., Abbott Laboratories, 2251 Faraday Ave, Ste 150, Carlsbad, CA 92008, USA
| | - Daniel Ruzek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
- Department of Virology, Veterinary Research Institute, Hudcova 70, Brno, Czech Republic
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05, Ceske Budejovice, Czech Republic
| | - Benjamin J. Luft
- Department of Medicine, State University of New York, Stony Brook, NY 11794-8166, USA
| | - Mark W. Eshoo
- Ibis Biosciences Inc., Abbott Laboratories, 2251 Faraday Ave, Ste 150, Carlsbad, CA 92008, USA
| |
Collapse
|
20
|
Effects of acaricide treatment and host intrinsic factors on tick acquisition and mortality in Boran cattle. Parasitol Res 2017; 116:3163-3173. [PMID: 28983669 DOI: 10.1007/s00436-017-5633-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/22/2017] [Indexed: 10/18/2022]
Abstract
Ticks and associated pathogens pose serious threats to the health of livestock. To assess the efficacy of acaricide dip treatment (cypermethrin, chlorpyrifos, piperonyl butoxide, citronella), we assessed post-treatment tick acquisition and tick mortality of free-ranging Boran cattle inhabiting a wildlife-cattle ranch in Northern Tanzania. Because host intrinsic variables and exposure to ticks may substantially affect tick acquisition, we incorporated host sex, body mass, health condition, and distance traveled in models of tick acquisition. Using generalized linear mixed models that accounted for non-independence of individuals, we found that tick species richness increased with host body mass but was not significantly related to other factors. In contrast, tick abundance increased with time since acaricide treatment, was positively correlated with host body mass, and was higher in female than male cattle. Distance traveled and health condition did not predict tick acquisition. Overall, these patterns were similar when separately analyzing acquisition of the more common tick species (Rhipicephalus pulchellus, R. sanguineus sensu lato, and R. praetextatus). Logistic regression models suggested that tick mortality was high for a few days after acaricide dip treatment but declined steeply post-treatment; 3.5 days after treatment, only 50% of ticks were dead, and mortality declined further thereafter. Our results provide new information regarding tick acquisition patterns in this system including female-biased tick parasitism and support for the hypothesis that increased host body mass provides greater resources and thus supports higher ectoparasite abundance and species richness. The limited acaricide duration of action and effectiveness on all tick species calls for adjusting tick management practices.
Collapse
|
21
|
Chastagner A, Pion A, Verheyden H, Lourtet B, Cargnelutti B, Picot D, Poux V, Bard É, Plantard O, McCoy KD, Leblond A, Vourc'h G, Bailly X. Host specificity, pathogen exposure, and superinfections impact the distribution of Anaplasma phagocytophilum genotypes in ticks, roe deer, and livestock in a fragmented agricultural landscape. INFECTION GENETICS AND EVOLUTION 2017; 55:31-44. [PMID: 28807858 DOI: 10.1016/j.meegid.2017.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
Anaplasma phagocytophilum is a bacterial pathogen mainly transmitted by Ixodes ricinus ticks in Europe. It infects wild mammals, livestock, and, occasionally, humans. Roe deer are considered to be the major reservoir, but the genotypes they carry differ from those that are found in livestock and humans. Here, we investigated whether roe deer were the main source of the A. phagocytophilum genotypes circulating in questing I. ricinus nymphs in a fragmented agricultural landscape in France. First, we assessed pathogen prevalence in 1837 I. ricinus nymphs (sampled along georeferenced transects) and 79 roe deer. Prevalence was dramatically different between ticks and roe deer: 1.9% versus 76%, respectively. Second, using high-throughput amplicon sequencing, we characterized the diversity of the A. phagocytophilum genotypes found in 22 infected ticks and 60 infected roe deer; the aim was to determine the frequency of co-infections. Only 22.7% of infected ticks carried genotypes associated with roe deer. This finding fits with others suggesting that cattle density is the major factor explaining infected tick density. To explore epidemiological scenarios capable of explaining these patterns, we constructed compartmental models that focused on how A. phagocytophilum exposure and infection dynamics affected pathogen prevalence in roe deer. At the exposure levels predicted by the results of this study and the literature, the high prevalence in roe deer was only seen in the model in which superinfections could occur during all infection phases and when the probability of infection post exposure was above 0.43. We then interpreted these results from the perspective of livestock and human health.
Collapse
Affiliation(s)
- Amélie Chastagner
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France; Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Angélique Pion
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France
| | - Hélène Verheyden
- CEFS, UR0035, Comportement et Ecologie de la Faune Sauvage, Université de Toulouse, INRA, 24 chemin de Borde-Rouge, F-31326 Castanet-Tolosan, France
| | - Bruno Lourtet
- CEFS, UR0035, Comportement et Ecologie de la Faune Sauvage, Université de Toulouse, INRA, 24 chemin de Borde-Rouge, F-31326 Castanet-Tolosan, France
| | - Bruno Cargnelutti
- CEFS, UR0035, Comportement et Ecologie de la Faune Sauvage, Université de Toulouse, INRA, 24 chemin de Borde-Rouge, F-31326 Castanet-Tolosan, France
| | - Denis Picot
- CEFS, UR0035, Comportement et Ecologie de la Faune Sauvage, Université de Toulouse, INRA, 24 chemin de Borde-Rouge, F-31326 Castanet-Tolosan, France
| | - Valérie Poux
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France
| | - Émilie Bard
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France
| | - Olivier Plantard
- BIOEPAR, UMR 1300, Biologie, Epidemiologie et Analyse de Risque, INRA, UNAM Université, Oniris, Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation Nantes-Atlantique, Atlanpôle, la Chantrerie, F-44307, Nantes, France
| | - Karen D McCoy
- MIVEGEC (UMR 5290), Maladie Infectieuses et Vecteurs: Ecologie, Génétique Evolution et Contrôle, Centre National de la Recherche Scientifique, Université de Montpellier, Institut de Recherche pour le Développement (UR224), 911 Avenue d'Agropolis, BP 64501, F-34394 Cedex 5, Montpellier, France
| | - Agnes Leblond
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France
| | - Gwenaël Vourc'h
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France
| | - Xavier Bailly
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France.
| |
Collapse
|
22
|
Europe-Wide Meta-Analysis of Borrelia burgdorferi Sensu Lato Prevalence in Questing Ixodes ricinus Ticks. Appl Environ Microbiol 2017; 83:AEM.00609-17. [PMID: 28550059 DOI: 10.1128/aem.00609-17] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/16/2017] [Indexed: 02/07/2023] Open
Abstract
Lyme borreliosis is the most common zoonotic disease transmitted by ticks in Europe and North America. Despite having multiple tick vectors, the causative agent, Borrelia burgdorferisensu lato, is vectored mainly by Ixodes ricinus in Europe. In the present study, we aimed to review and summarize the existing data published from 2010 to 2016 concerning the prevalence of B. burgdorferi sensu lato spirochetes in questing I. ricinus ticks. The primary focus was to evaluate the infection rate of these bacteria in ticks, accounting for tick stage, adult tick gender, region, and detection method, as well as to investigate any changes in prevalence over time. The data obtained were compared to the findings of a previous metastudy. The literature search identified data from 23 countries, with 115,028 ticks, in total, inspected for infection with B. burgdorferi sensu lato We showed that the infection rate was significantly higher in adults than in nymphs and in females than in males. We found significant differences between European regions, with the highest infection rates in Central Europe. The most common genospecies were B. afzelii and B. garinii, despite a negative correlation of their prevalence rates. No statistically significant differences were found among the prevalence rates determined by conventional PCR, nested PCR, and real-time PCR.IMPORTANCEBorrelia burgdorferisensu lato is a pathogenic bacterium whose clinical manifestations are associated with Lyme borreliosis. This vector-borne disease is a major public health concern in Europe and North America and may lead to severe arthritic, cardiovascular, and neurological complications if left untreated. Although pathogen prevalence is considered an important predictor of infection risk, solitary isolated data have only limited value. Here we provide summarized information about the prevalence of B. burgdorferi sensu lato spirochetes among host-seeking Ixodes ricinus ticks, the principal tick vector of borreliae in Europe. We compare the new results with previously published data in order to evaluate any changing trends in tick infection.
Collapse
|
23
|
Verdugo C, Jiménez O, Hernández C, Álvarez P, Espinoza A, González-Acuña D. Infection with Borrelia chilensis in Ixodes stilesi ticks collected from Pudu puda deer. Ticks Tick Borne Dis 2017; 8:733-740. [PMID: 28549720 DOI: 10.1016/j.ttbdis.2017.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 11/29/2022]
Abstract
Lyme borreliosis is a vector-borne zoonosis caused by Borrelia burgdorferi sensu lato species complex spirochetes, which are maintained in transmission cycles among vertebrates and Ixodes ticks. Recently, a new genospecies within this complex, Borrelia chilensis, was described in Ixodes stilesi collected from the environment and from rodents in Chile. This tick also infests the native Southern pudu deer (Pudu puda). The objectives of this study were to investigate the prevalence, intensity of infestation, and aggregation of hard ticks on this deer species, and to determine the presence of borrelial pathogens in the ticks. Sixty-six deer were examined over a two-year period. A total of 179 ticks of two species, I. stilesi and Ixodes taglei, were collected. Of those, 100 were adults, 78 were nymphs, and one was a larva. Ixodes stilesi was the most prevalent tick (47%) and was highly aggregated (D=0.77) on the deer. Deer body weight was positively associated with tick burden. Borrelia spirochetes were detected in two (6.45%) of the examined I. stilesi ticks. Phylogenetic analyses of 16S and flaB gene sequences positioned these samples in the same clade with Borrelia chilensis VA1 previously described from Chile. These findings suggest that I. stilesi may play a role in the local persistence of B. chilensis. Further studies are required to fully understand the mechanisms of natural transmission of B. chilensis and the risk of infection in humans.
Collapse
Affiliation(s)
- Claudio Verdugo
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Av. Los Laureles s/n, Valdivia, Chile; Programa de Investigación Aplicada en Fauna Silvestre, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Av. Los Laureles s/n, Valdivia, Chile.
| | - Omar Jiménez
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Av. Los Laureles s/n, Valdivia, Chile
| | - Carlos Hernández
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Av. Los Laureles s/n, Valdivia, Chile
| | - Pedro Álvarez
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Av. Los Laureles s/n, Valdivia, Chile
| | - Angelo Espinoza
- Programa de Investigación Aplicada en Fauna Silvestre, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Av. Los Laureles s/n, Valdivia, Chile; Centro de Rehabilitación de Fauna Silvestre, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Av. Los Laureles s/n, Valdivia, Chile
| | - Daniel González-Acuña
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Av. Vicente Méndez 595, Chillán, Chile
| |
Collapse
|
24
|
Opalińska P, Wierzbicka A, Asman M. The PCR and nested PCR detection of Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Babesia microti in Dermacentor reticulatus F. collected in a new location in Poland (Trzciel, Western Poland). Acta Parasitol 2016; 61:849-854. [PMID: 27787203 DOI: 10.1515/ap-2016-0117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/05/2016] [Indexed: 11/15/2022]
Abstract
The study was performed in the Trzciel Forest Districts which is located in the west part of Poland. The Scots pine is the main tree species creating forest landscape there. Dermacentor reticulatus, usually found in wet, boggy and damp habitat, in this case was discovered in fresh mixed coniferous forest and fresh coniferous forest. In Central Europe the Dermacentor reticulatus is after Ixodes ricinus the second most important vector for tick-borne diseases in Europe. The ticks were collected by flagging from lower vegetation during the autumn peak of their activity. All Dermacentor reticulatus were checked for presence of tickborne pathogens using PCR and nested PCR. In total 125 Dermacentor reticulatus ticks were collected. Among the pathogens examined, only Babesia microti has been found in 4% of them whereas Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum have not been found. In this research the presence of Babesia. microti in Dermacentor reticulatus has been proved. It should be stressed that it is a new focus for the Dermacentor reticulatus tick in Western Poland.
Collapse
|
25
|
Kazimírová M, Hamšíková Z, Kocianová E, Marini G, Mojšová M, Mahríková L, Berthová L, Slovák M, Rosá R. Relative density of host-seeking ticks in different habitat types of south-western Slovakia. EXPERIMENTAL & APPLIED ACAROLOGY 2016; 69:205-24. [PMID: 26926874 DOI: 10.1007/s10493-016-0025-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/21/2016] [Indexed: 05/10/2023]
Abstract
Ixodes ricinus is a vector of microbial pathogens of medical and veterinary importance in Europe. Recently, increasing abundance of ticks has been observed in urban and suburban areas. The aim of this study was to investigate the tick species composition and examine correlations between local environmental variables and the relative density of host-seeking I. ricinus in two habitat types. Questing ticks were collected along six 100 m(2) transects in urban/suburban locations of Bratislava town, and in a non-fragmented deciduous forest in the Small Carpathians Mountains (south-western Slovakia) during 2011-2013. In total, 6015 I. ricinus were collected (3435 and 2580 in the urban/suburban and natural habitat, respectively), out of which over 80 % were nymphs. Haemaphysalis concinna comprised 1.3 % of the tick collections. Peak I. ricinus nymph and adult host-seeking activities were registered in April-June. Spatial and temporal variation in tick relative density and differences in the subadult/adult ratio were observed between habitats and between locations within the same habitat type. The relative density of questing I. ricinus nymphs correlated negatively with altitude, geographical aspect and saturation deficit in a 64-day period comprising the 8-day period including the date of tick sampling and previous 56 days. No significant correlation was found between roe deer density and questing nymph density. The study revealed the presence of abundant I. ricinus populations in green areas of Bratislava, suggesting a risk of exposure of town dwellers and domestic and companion animals to potentially infected ticks.
Collapse
Affiliation(s)
- Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Zuzana Hamšíková
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Elena Kocianová
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Giovanni Marini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, TN, Italy
| | - Michala Mojšová
- Department of Zoology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Lenka Mahríková
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lenka Berthová
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mirko Slovák
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Roberto Rosá
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, TN, Italy
| |
Collapse
|
26
|
Valcárcel F, González J, Tercero Jaime JM, Olmeda AS. Long term study of ixodid ticks feeding on red deer (Cervus elaphus) in a meso-Mediterranean climate. EXPERIMENTAL & APPLIED ACAROLOGY 2016; 69:61-72. [PMID: 26715543 DOI: 10.1007/s10493-015-0008-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 12/18/2015] [Indexed: 06/05/2023]
Abstract
Red deer (Cervus elaphus L.) are very valuable in trophy-hunting but also contribute to the preservation of natural areas. They are affected by many parasites and pathogens, including hard ticks that are not only important parasites themselves but can also act as vectors and/or reservoirs of pathogens. Tick phenology is complex insofar as population dynamics depend on environmental conditions, vegetation, host availability and their own intrinsic characteristic. Ticks were collected monthly from January 2007 to December 2014 from red deer on a natural reserve located in a meso-Mediterranean environment in Central Spain. A total of 8978 specimens of ixodid ticks were recovered with a mean Parasitization Index of 65.06 ticks/deer. Red deer were infected the whole year round with a summer-spring pattern and two secondary peaks in February and October. The main species was Hyalomma lusitanicum Koch followed by Rhipicephalus bursa Canestrini and Fanzago, Rhipicephalus pusillus Gil Collado, Dermacentor marginatus Sulzer and Ixodes ricinus L. Hyalomma lusitanicum has a complex life cycle in which several generations initiate their cycle at different times throughout the year, most probably lasting more than 1 year. We also describe the ability of nymphs to feed on large ungulates even though their habitual host is wild rabbit.
Collapse
Affiliation(s)
- F Valcárcel
- Grupo de Parasitología, Centro de Investigación en Sanidad Animal Center (INIA-CISA), 28130, Valdeolmos, Madrid, Spain.
| | - J González
- Finca "La Garganta", Villamagna, SA, Italy
| | | | - A S Olmeda
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| |
Collapse
|
27
|
Gilbert L. Louping ill virus in the UK: a review of the hosts, transmission and ecological consequences of control. EXPERIMENTAL & APPLIED ACAROLOGY 2016; 68:363-374. [PMID: 26205612 DOI: 10.1007/s10493-015-9952-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/14/2015] [Indexed: 05/26/2023]
Abstract
Louping ill virus (LIV) is a tick-borne flavivirus that is part of the tick-borne encephalitis complex of viruses (TBEV) and has economic and welfare importance by causing illness and death in livestock, especially sheep, Ovies aries, and red grouse, Lagopus lagopus scoticus, an economically valuable gamebird. Unlike Western TBEV which is found primarily in woodlands and is reservoired by small rodents, LIV is not generally transmitted by small rodents but instead by sheep, red grouse and mountain hares and, therefore, is associated with upland heather moorland and rough grazing land. Red grouse are a particularly interesting transmission host because they may acquire most of their LIV infections through eating ticks rather than being bitten by ticks. Furthermore, the main incentive for the application of LIV control methods is not to protect sheep, but to protect red grouse, which is an economically important gamebird. The widespread intensive culling of mountain hares which has been adopted in several areas of Scotland to try to control ticks and LIV has become an important issue in Scotland in recent years. This review outlines the reservoir hosts and transmission cycles of LIV in the UK, then describes the various control methods that have been tried or modelled, with far-reaching implications for conservation and public opinion.
Collapse
Affiliation(s)
- Lucy Gilbert
- James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| |
Collapse
|
28
|
Vourc'h G, Abrial D, Bord S, Jacquot M, Masséglia S, Poux V, Pisanu B, Bailly X, Chapuis JL. Mapping human risk of infection with Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis, in a periurban forest in France. Ticks Tick Borne Dis 2016; 7:644-652. [PMID: 26897396 DOI: 10.1016/j.ttbdis.2016.02.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 01/22/2016] [Accepted: 02/05/2016] [Indexed: 12/19/2022]
Abstract
Lyme borreliosis is a major zoonosis in Europe, with estimates of over 26,000 cases per year in France alone. The etiological agents are spirochete bacteria that belong to the Borrelia burgdorferi sensu lato (s. l.) complex and are transmitted by hard ticks among a large range of vertebrate hosts. In Europe, the tick Ixodes ricinus is the main vector. In the absence of a vaccine and given the current difficulties to diagnose and treat chronic Lyme syndromes, there is urgent need for prevention. In this context, accurate information on the spatial patterns of risk of exposure to ticks is of prime importance for public health. The objective of our study was to provide a snapshot map of the risk of human infection with B. burgdorferi s. l. pathogens in a periurban forest at a high resolution, and to analyze the factors that contribute to variation in this risk. Field monitoring took place over three weeks in May 2011 in the suburban Sénart forest (3,200ha; southeast of Paris), which receives over 3 million people annually. We sampled ticks over the entire forest area (from 220 forest stands with a total area of 35,200m(2)) and quantified the density of questing nymphs (DON), the prevalence of infection among nymphs (NIP), and the density of infected nymphs (DIN), which is the most important predictor of the human risk of Lyme borreliosis. For each of these response variables, we explored the relative roles of weather (saturation deficit), hosts (abundance indices of ungulates and Tamias sibiricus, an introduced rodent species), vegetation and forest cover, superficial soil composition, and the distance to forest roads. In total, 19,546 questing nymphs were collected and the presence of B. burgdorferi s. l. was tested in 3,903 nymphs by qPCR. The mean DON was 5.6 nymphs per 10m(2) (standard deviation=10.4) with an average NIP of 10.1% (standard deviation=0.11). The highest DIN was 8.9 infected nymphs per 10m(2), with a mean of 0.59 (standard deviation=0.6). Our mapping and modeling revealed a strong heterogeneity of risk within the forest. The highest risk was found in the eastern part of the forest and localized patches in the northwestern part. Lyme borreliosis risk was positively associated with stands of deciduous trees (mainly oaks) and roe deer abundance. Contrary to expectations, DIN actually increased with distance from the point of introduction of T. sibiricus (i.e., DIN was higher in areas with potentially lower abundances of T. sibiricus). Thus, despite the fact that T. sibiricus is an important reservoir host for B. burgdorferi s. l., our study found that other explanatory factors played a more important role in determining the density of infected ticks. Precise mapping of the risk of exposure to Lyme borreliosis in a highly visited forest represents an important tool for targeting prevention and control measures, as well as making the general public and local health officials aware of the risks.
Collapse
Affiliation(s)
- G Vourc'h
- INRA, UR0346 Unité d'Epidémiologie Animale, 63122 Saint Genès Champanelle, France.
| | - D Abrial
- INRA, UR0346 Unité d'Epidémiologie Animale, 63122 Saint Genès Champanelle, France
| | - S Bord
- INRA, UR0346 Unité d'Epidémiologie Animale, 63122 Saint Genès Champanelle, France
| | - M Jacquot
- INRA, UR0346 Unité d'Epidémiologie Animale, 63122 Saint Genès Champanelle, France
| | - S Masséglia
- INRA, UR0346 Unité d'Epidémiologie Animale, 63122 Saint Genès Champanelle, France
| | - V Poux
- INRA, UR0346 Unité d'Epidémiologie Animale, 63122 Saint Genès Champanelle, France
| | - B Pisanu
- MNHN, Centre d'Ecologie et des Sciences de la Conservation (UMR7204), Sorbonne Universités, MNHN, CNRS, UPMC, CP51, 61 rue Buffon, 75231 Paris Cedex 05, France
| | - X Bailly
- INRA, UR0346 Unité d'Epidémiologie Animale, 63122 Saint Genès Champanelle, France
| | - J-L Chapuis
- MNHN, Centre d'Ecologie et des Sciences de la Conservation (UMR7204), Sorbonne Universités, MNHN, CNRS, UPMC, CP51, 61 rue Buffon, 75231 Paris Cedex 05, France
| |
Collapse
|
29
|
Perez G, Bastian S, Agoulon A, Bouju A, Durand A, Faille F, Lebert I, Rantier Y, Plantard O, Butet A. Effect of landscape features on the relationship between Ixodes ricinus ticks and their small mammal hosts. Parasit Vectors 2016; 9:20. [PMID: 26767788 PMCID: PMC4714450 DOI: 10.1186/s13071-016-1296-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 01/05/2016] [Indexed: 11/22/2022] Open
Abstract
Background The consequences of land use changes are among the most cited causes of emerging infectious diseases because they can modify the ecology and transmission of pathogens. This is particularly true for vector-borne diseases which depend on abiotic (e.g. climate) and biotic conditions (i.e. hosts and vectors). In this study, we investigated how landscape features affect the abundances of small mammals and Ixodes ricinus ticks, and how they influence their relationship. Methods From 2012 to 2014, small mammals and questing I. ricinus ticks were sampled in spring and autumn in 24 sites located in agricultural and forest landscapes in Brittany, France. We tested the effects of landscape features (composition and configuration) on the abundances of small mammal species and immature ticks and their relationship. Additionally, we quantified the larval tick burden of small mammals in 2012 to better describe this relationship. Results The nymph abundance was positively influenced by the larval occurrence and the wood mouse Apodemus sylvaticus abundance the previous spring because they hosted tenfold more larvae than the bank vole Myodes glareolus. The bank vole abundance in spring and autumn had a negative and positive effect, respectively, on the nymph abundance. In agricultural landscapes, wood mice were positively influenced by woodland cover and woodland/hedgerow-grassland ecotone, whereas bank voles showed the opposite or non-significant responses to these landscape variables. The woodland cover had a positive effect on immature ticks. Conclusion The landscape configuration, likely by affecting the landscape connectivity, influences the small mammal communities in permanent habitats. Our study showed that the wood mouse, due to its dominance and to its tolerance to ticks, feeds a substantial proportion of larvae. The acquired resistance to ticks in the bank vole can reduce its role as a trophic resource over time. The nymph abundance seems indirectly influenced by landscape features via their effects on the small mammal community. To enhance our understanding of the epidemiology of tick-borne diseases within landscapes, further studies will integrate data on pathogen prevalence and investigate explicitly the effect of landscape connectivity on host-vector-pathogen systems.
Collapse
Affiliation(s)
- Grégoire Perez
- UMR 6553 Ecosystème, Biodiversité, Evolution, Centre National de la Recherche Scientifique-Université de Rennes 1, Avenue du Général Leclerc, Rennes, 35042, France. .,UMR1300 Biologie, Epidémiologie et Analyse de Risque, Institut National de la Recherche Agronomique-LUNAM Université, Oniris, Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation Nantes-Atlantique, Atlanpole, la Chantrerie, Nantes, 44307, France.
| | - Suzanne Bastian
- UMR1300 Biologie, Epidémiologie et Analyse de Risque, Institut National de la Recherche Agronomique-LUNAM Université, Oniris, Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation Nantes-Atlantique, Atlanpole, la Chantrerie, Nantes, 44307, France.
| | - Albert Agoulon
- UMR1300 Biologie, Epidémiologie et Analyse de Risque, Institut National de la Recherche Agronomique-LUNAM Université, Oniris, Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation Nantes-Atlantique, Atlanpole, la Chantrerie, Nantes, 44307, France.
| | - Agnès Bouju
- UMR1300 Biologie, Epidémiologie et Analyse de Risque, Institut National de la Recherche Agronomique-LUNAM Université, Oniris, Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation Nantes-Atlantique, Atlanpole, la Chantrerie, Nantes, 44307, France.
| | - Axelle Durand
- UMR1300 Biologie, Epidémiologie et Analyse de Risque, Institut National de la Recherche Agronomique-LUNAM Université, Oniris, Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation Nantes-Atlantique, Atlanpole, la Chantrerie, Nantes, 44307, France.
| | - Frédéric Faille
- UMR1300 Biologie, Epidémiologie et Analyse de Risque, Institut National de la Recherche Agronomique-LUNAM Université, Oniris, Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation Nantes-Atlantique, Atlanpole, la Chantrerie, Nantes, 44307, France.
| | - Isabelle Lebert
- UR0346 Epidémiologie Animale, Institut National de la Recherche Agronomique, Route de Theix, Saint-Genès-Champanelle, 63122, France.
| | - Yann Rantier
- UMR 6553 Ecosystème, Biodiversité, Evolution, Centre National de la Recherche Scientifique-Université de Rennes 1, Avenue du Général Leclerc, Rennes, 35042, France.
| | - Olivier Plantard
- UMR1300 Biologie, Epidémiologie et Analyse de Risque, Institut National de la Recherche Agronomique-LUNAM Université, Oniris, Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation Nantes-Atlantique, Atlanpole, la Chantrerie, Nantes, 44307, France.
| | - Alain Butet
- UMR 6553 Ecosystème, Biodiversité, Evolution, Centre National de la Recherche Scientifique-Université de Rennes 1, Avenue du Général Leclerc, Rennes, 35042, France.
| |
Collapse
|
30
|
Duscher GG, Wetscher M, Baumgartner R, Walder G. Roe deer sera used for TBE surveillance in Austria. Ticks Tick Borne Dis 2015; 6:489-93. [DOI: 10.1016/j.ttbdis.2015.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/19/2015] [Accepted: 03/21/2015] [Indexed: 11/25/2022]
|
31
|
Pacilly FCA, Benning ME, Jacobs F, Leidekker J, Sprong H, Van Wieren SE, Takken W. Blood feeding on large grazers affects the transmission of Borrelia burgdorferi sensu lato by Ixodes ricinus. Ticks Tick Borne Dis 2014; 5:810-7. [PMID: 25113977 DOI: 10.1016/j.ttbdis.2014.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 05/28/2014] [Accepted: 06/12/2014] [Indexed: 12/11/2022]
Abstract
The presence of Ixodes ricinus and their associated Borrelia infections on large grazers was investigated. Carcases of freshly shot red deer, mouflon and wild boar were examined for the presence of any stage of I. ricinus. Questing ticks were collected from locations where red deer and wild boar are known to occur. Presence of Borrelia burgdorferi s.l. DNA was examined in a fraction of the collected ticks. Larvae, nymphs and adult ticks were found on the three large grazers. Red deer had the highest tick burden, with many of the nymphs and adult females attached for engorgement. Most larvae had not attached. The mean number of ticks on the animals varied from 13 to 67. Ticks were highly aggregated amongst the animals: some animals had no ticks, while others had high numbers. Larvae and nymphs were mostly found on the ears, while adult ticks were attached to the axillae. The Borrelia infection rate of questing nymphs was 8.5%. Unengorged wandering nymphs on deer had a Borrelia infection rate of 12.5%, while only 0.9% of feeding nymphs carried a Borrelia infection. The infection rate of unengorged adult male ticks was 4.5%, and that of feeding female ticks was 0.7%. The data suggest that ticks feeding on red deer and wild boar lose their Borrelia infections. The implications of the results are discussed with respect to Borrelia epidemiology and maintenance of a Borrelia reservoir as well as the role of reproductive hosts for Ixodes ricinus.
Collapse
Affiliation(s)
- F C A Pacilly
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH Wageningen, The Netherlands
| | - M E Benning
- Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands
| | - F Jacobs
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH Wageningen, The Netherlands
| | - J Leidekker
- National Park de Hoge Veluwe, Apeldoornseweg 250, 7351 TA Hoenderloo, The Netherlands
| | - H Sprong
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH Wageningen, The Netherlands; Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment (RIVM), Antonie van Leeuwenhoeklaan 9, PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - S E Van Wieren
- Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands
| | - W Takken
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH Wageningen, The Netherlands.
| |
Collapse
|
32
|
Wodecka B, Rymaszewska A, Skotarczak B. Host and pathogen DNA identification in blood meals of nymphal Ixodes ricinus ticks from forest parks and rural forests of Poland. EXPERIMENTAL & APPLIED ACAROLOGY 2014; 62:543-55. [PMID: 24352572 PMCID: PMC3933768 DOI: 10.1007/s10493-013-9763-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/04/2013] [Indexed: 05/13/2023]
Abstract
DNA analysis of blood meals from unfed nymphal Ixodes ricinus allows for the identification of tick host and tick-borne pathogens in the host species. The recognition of host species for tick larvae and the reservoirs of Borrelia, Rickettsia and Anaplasma species were simultaneously carried out by analysis of the blood meals of 880 questing nymphal I. ricinus ticks collected in forest parks of Szczecin city and rural forests in northwestern Poland that are endemic areas for Lyme borreliosis. The results obtained from the study indicate that I. ricinus larvae feed not only on small or medium animals but also on large animals and they (i.e. roe deer, red deer and wild boars) were the most prevalent in all study areas as the essential hosts for larvae of I. ricinus. The composition of medium and small vertebrates (carnivores, rodents, birds and lizards) provided a more diverse picture depending on study site. The reservoir species that contain the most pathogens are the European roe deer Capreolus capreolus, in which two species of Rickettsia and two species of Borrelia were identified, and Sus scrofa, in which one Rickettsia and three Borrelia species were identified. Rickettsia helvetica was the most common pathogen detected, and other included species were the B. burgdorferi s.l. group and B. miyamotoi related to relapsing fever group. Our results confirmed a general association of B. garinii with birds but also suggested that such associations may be less common in the transmission cycle in natural habitats than what was thought previously.
Collapse
Affiliation(s)
- Beata Wodecka
- Department of Genetics, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland
| | - Anna Rymaszewska
- Department of Genetics, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland
| | - Bogumila Skotarczak
- Department of Genetics, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland
| |
Collapse
|
33
|
Impacts of deer management practices on the spatial dynamics of the tick Ixodes ricinus: A scenario analysis. Ecol Modell 2014. [DOI: 10.1016/j.ecolmodel.2013.12.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Climate and environmental change drives Ixodes ricinus geographical expansion at the northern range margin. Parasit Vectors 2014; 7:11. [PMID: 24401487 PMCID: PMC3895670 DOI: 10.1186/1756-3305-7-11] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/31/2013] [Indexed: 11/10/2022] Open
Abstract
Background Global environmental change is causing spatial and temporal shifts in the distribution of species and the associated diseases of humans, domesticated animals and wildlife. In the on-going debate on the influence of climate change on vectors and vector-borne diseases, there is a lack of a comprehensive interdisciplinary multi-factorial approach utilizing high quality spatial and temporal data. Methods We explored biotic and abiotic factors associated with the latitudinal and altitudinal shifts in the distribution of Ixodes ricinus observed during the last three decades in Norway using antibodies against Anaplasma phagocytophilum in sheep as indicators for tick presence. Samples obtained from 2963 sheep from 90 farms in 3 ecologically different districts during 1978 – 2008 were analysed. We modelled the presence of antibodies against A. phagocytophilum to climatic-, environmental and demographic variables, and abundance of wild cervids and domestic animals, using mixed effect logistic regressions. Results Significant predictors were large diurnal fluctuations in ground surface temperature, spring precipitation, duration of snow cover, abundance of red deer and farm animals and bush encroachment/ecotones. The length of the growth season, mean temperature and the abundance of roe deer were not significant in the model. Conclusions Our results highlight the need to consider climatic variables year-round to disentangle important seasonal variation, climatic threshold changes, climate variability and to consider the broader environmental change, including abiotic and biotic factors. The results offer novel insight in how tick and tick-borne disease distribution might be modified by future climate and environmental change.
Collapse
|
35
|
|
36
|
Pfäffle M, Littwin N, Muders SV, Petney TN. The ecology of tick-borne diseases. Int J Parasitol 2013; 43:1059-77. [DOI: 10.1016/j.ijpara.2013.06.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 12/30/2022]
|
37
|
Qviller L, Risnes-Olsen N, Bærum KM, Meisingset EL, Loe LE, Ytrehus B, Viljugrein H, Mysterud A. Landscape level variation in tick abundance relative to seasonal migration in red deer. PLoS One 2013; 8:e71299. [PMID: 23951125 PMCID: PMC3739797 DOI: 10.1371/journal.pone.0071299] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/26/2013] [Indexed: 12/01/2022] Open
Abstract
Partial migration is common among northern ungulates, typically involving an altitudinal movement for seasonally migratory individuals. The main driving force behind migration is the benefit of an extended period of access to newly emerged, high quality forage along the green up gradient with increasing altitude; termed the forage maturation hypothesis. Any other limiting factor spatially correlated with this gradient may provide extra benefits or costs to migration, without necessarily being the cause of it. A common ectoparasite on cervids in Europe is the sheep tick (Ixodes ricinus), but it has not been tested whether migration may lead to the spatial separation from these parasites and thus potentially provide an additional benefit to migration. Further, if there is questing of ticks in winter ranges in May before spring migration, deer migration may also play a role for the distribution of ticks. We quantified the abundance of questing sheep tick within winter and summer home ranges of migratory (n = 42) and resident red deer (Cervus elaphus) individuals (n = 32) in two populations in May and August 2009–2012. Consistent with predictions, there was markedly lower abundance of questing ticks in the summer areas of migrating red deer (0.6/20 m2), both when compared to the annual home range of resident deer (4.9/20 m2) and the winter home ranges of migrants (5.8/20 m2). The reduced abundances within summer home ranges of migrants were explained by lower abundance of ticks with increasing altitude and distance from the coast. The lower abundance of ticks in summer home ranges of migratory deer does not imply that ticks are the main driver of migration (being most likely the benefits expected from forage maturation), but it suggests that ticks may add to the value of migration in some ecosystems and that it may act to spread ticks long distances in the landscape.
Collapse
Affiliation(s)
- Lars Qviller
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Nina Risnes-Olsen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kim Magnus Bærum
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Erling L. Meisingset
- Norwegian Institute for Agricultural and Environmental Research, Organic food and farming Division, Tingvoll, Norway
| | - Leif Egil Loe
- Norwegian University of Life Science, Department of Ecology and Natural Resource Management, Aas, Norway
| | | | - Hildegunn Viljugrein
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
- Norwegian Veterinary Institute, Oslo, Norway
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
38
|
Affiliation(s)
- Lucy Gilbert
- The James Hutton Institute Craigiebuckler Aberdeen AB15 8QH UK
| |
Collapse
|
39
|
Rodríguez-Vivas RI, Ojeda-Chi MM, Rosado-Aguilar JA, Trinidad-Martínez IC, Torres-Acosta JFJ, Ticante-Perez V, Castro-Marín JM, Tapia-Moo CA, Vázquez-Gómez G. Red deer (Cervus elaphus) as a host for the cattle tick Rhipicephalus microplus (Acari: Ixodidae) in Yucatan, Mexico. EXPERIMENTAL & APPLIED ACAROLOGY 2013; 60:543-552. [PMID: 23423423 DOI: 10.1007/s10493-013-9672-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/01/2013] [Indexed: 06/01/2023]
Abstract
Rhipicephalus microplus is the most economically important cattle tick in the Mexican tropics. Wild ungulate species, including red deer (Cervus elaphus), are gaining popularity in diversified livestock ranching operations in Mexico. However, there is no information available on the susceptibility of red deer to infestation with the cattle tick, R. microplus, under hot, subhumid tropical conditions in Mexico. Biological data on R. microplus as an ectoparasite of cattle and red deer in a farm in the Mexican tropics are presented here. Ticks collected from red deer were identified as R. microplus (97 %) and Amblyomma cajennense (3 %), and tick species infesting cattle included R. microplus (95 %) and A. cajennense (5 %). Standard counts of R. microplus engorged females on red deer were 11 times higher than on cattle (428 ± 43 vs. 40 ± 18; p < 0.001). The reproductive efficiency index and larval hatching of R. microplus collected from cattle and red deer were similar (p > 0.05). Hemolymph samples of R. microplus collected from cattle were positive for Babesia spp. (10 %, 2/50) and all the samples from ticks infesting red deer were negative. Seventeen and ten percent of the blood samples from cattle and red deer were positive for Anaplasma marginale, respectively. The role of red deer as a host of R. microplus in Yucatan, Mexico and the importance of this host-parasite relationship relative to the epidemiology of R. microplus-borne diseases are discussed.
Collapse
Affiliation(s)
- R I Rodríguez-Vivas
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km 15.5 Carretera Mérida-Xmatkuil, Mérida, Yucatán, Mexico.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gassner F, Takken W, Plas CLVD, Kastelein P, Hoetmer AJ, Holdinga M, van Overbeek LS. Rodent species as natural reservoirs of Borrelia burgdorferi sensu lato in different habitats of Ixodes ricinus in The Netherlands. Ticks Tick Borne Dis 2013; 4:452-8. [PMID: 23891104 DOI: 10.1016/j.ttbdis.2012.11.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 05/15/2013] [Accepted: 05/18/2013] [Indexed: 11/18/2022]
Abstract
Rodents are natural reservoirs for human pathogenic spirochaetes of the Borrelia burgdorferi complex [B. burgdorferi sensu lato (s.l.)], and the pathogens are transmitted by Ixodes ricinus ticks to humans in The Netherlands. B. burgdorferi s.l. infection prevalence in questing ticks, rodents, and ticks feeding on these rodents, all sampled within the same short time span of five days in three different areas in The Netherlands, were compared in order to establish the relationship between ticks, reservoir hosts, and B. burgdorferi s.l. Questing nymphs were found in all 3 areas and numbers differed per area and even per site within areas. Infection prevalence in questing nymphs ranged between 0 and 20%. Apodemus sylvaticus and Myodes glareolus were the dominant rodents captured, and their numbers differed per area. Infection prevalence, determined by ear biopsies, ranged between 0 and 33.3% for both rodent species. Larvae were most frequently found feeding on these rodents, and their Borrelia infection prevalence ranged between 0 and 6.3% (A. sylvaticus) and between 0 and 29.4% (M. glareolus). The burden of nymphs feeding on rodents was low and varied per area with only 2 of 42 nymphs infected. Comparisons made on the basis of infection prevalence indicated that there was no clear relationship between rodents and questing nymphs when sampled within the same short time span. However, a possible relationship was present when questing ticks were sampled over longer periods in time (months) within or near the same areas (range of infection prevalence between 3.7 and 39.4). Confounding factors thus play a role in the interaction between rodents, ticks, and B. burgdorferi s.l., and it is very likely that other reservoir host species are responsible for the observed fluctuations. It is concluded that the local variations in rodent-Borrelia-tick interactions only partially explain the Lyme borreliosis risk in the sites studied and that other ecological determinants, notably vertebrate hosts and vegetation structure, should be incorporated in future studies of Lyme borreliosis risk.
Collapse
Affiliation(s)
- Fedor Gassner
- Laboratory of Entomology, Wageningen University and Research Centre, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
41
|
Sprong H, Hofhuis A, Gassner F, Takken W, Jacobs F, van Vliet AJH, van Ballegooijen M, van der Giessen J, Takumi K. Circumstantial evidence for an increase in the total number and activity of Borrelia-infected Ixodes ricinus in the Netherlands. Parasit Vectors 2012; 5:294. [PMID: 23244453 PMCID: PMC3562265 DOI: 10.1186/1756-3305-5-294] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 12/09/2012] [Indexed: 11/15/2022] Open
Abstract
Background Between 1994 and 2009, a threefold increase has been observed in consultations of general practitioners for tick bites and Lyme disease in The Netherlands. The objective of this study was to determine whether an increase in the number of questing ticks infected with B. burgdorferi sensu lato is a potential cause of the rise in Lyme disease incidence. Methods Historic data on land usage, temperature and wildlife populations were collected and analyzed together with data from two longitudinal field studies on density of questing ticks. Effective population sizes of Borrelia burgdorferi s.l. were calculated. Results Long-term trend analyses indicated that the length of the annual tick questing season increased as well as the surface area of tick-suitable habitats in The Netherlands. The overall abundances of feeding and reproductive hosts also increased. Mathematical analysis of the data from the field studies demonstrated an increase in mean densities/activities of questing ticks, particularly of larvae between 2006 and 2009. No increase in infection rate of ticks with Borrelia burgdorferi sensu lato was found. Population genetic analysis of the collected Borrelia species points to an increase in B. afzelii and B. garinii populations. Conclusions Together, these findings indicate an increase in the total number of Borrelia-infected ticks, providing circumstantial evidence for an increase in the risk of acquiring a bite of a tick infected with B. burgdorferi s.l. Due to the high spatiotemporal variation of tick densities/activities, long-term longitudinal studies on population dynamics of I. ricinus are necessary to observe significant trends.
Collapse
Affiliation(s)
- Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tick infestation patterns in free ranging African buffalo (Syncercus caffer): Effects of host innate immunity and niche segregation among tick species. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2012; 2:1-9. [PMID: 24533310 PMCID: PMC3862501 DOI: 10.1016/j.ijppaw.2012.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/30/2012] [Accepted: 11/01/2012] [Indexed: 11/24/2022]
Abstract
Ticks are of vast importance to livestock health, and contribute to conflicts between wildlife conservation and agricultural interests; but factors driving tick infestation patterns on wild hosts are not well understood. We studied tick infestation patterns on free-ranging African buffalo (Syncercus caffer), asking (i) is there evidence for niche segregation among tick species?; and (ii) how do host characteristics affect variation in tick abundance among hosts? We identified ticks and estimated tick burdens on 134 adult female buffalo from two herds at Kruger National Park, South Africa. To assess niche segregation, we evaluated attachment site preferences and tested for correlations between abundances of different tick species. To investigate which host factors may drive variability in tick abundance, we measured age, body condition, reproductive and immune status in all hosts, and examined their effects on tick burdens. Two tick species were abundant on buffalo, Amblyomma hebraeum and Rhipicephalus evertsi evertsi. A. hebraeum were found primarily in the inguinal and axillary regions; R. e. evertsi attached exclusively in the perianal area. Abundances of A. hebraeum and R. e. evertsi on the host were unrelated. These results suggest spatial niche segregation between A. hebraeum and R. e. evertsi on the buffalo. Buffalo with stronger innate immunity, and younger buffalo, had fewer ticks. Buffalo with low body condition scores, and pregnant buffalo, had higher tick burdens, but these effects varied between the two herds we sampled. This study is one of the first to link ectoparasite abundance patterns and immunity in a free-ranging mammalian host population. Based on independent abundances of A. hebraeum and R. e. evertsi on individual buffalo, we would expect no association between the diseases these ticks transmit. Longitudinal studies linking environmental variability with host immunity are needed to understand tick infestation patterns and the dynamics of tick-borne diseases in wildlife.
Collapse
|
43
|
Baer-Lehman ML, Light T, Fuller NW, Barry-Landis KD, Kindlin CM, Stewart RL. Evidence for competition between Ixodes scapularis and Dermacentor albipictus feeding concurrently on white-tailed deer. EXPERIMENTAL & APPLIED ACAROLOGY 2012; 58:301-314. [PMID: 22644381 DOI: 10.1007/s10493-012-9574-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 05/13/2012] [Indexed: 06/01/2023]
Abstract
Competition among ticks, and among ectoparasites generally, has rarely been demonstrated. Ixodes scapularis and Dermacentor albipictus are both hard ticks commonly found feeding on deer harvested at Letterkenny Army Depot, in south central Pennsylvania, USA. The two species have contrasting life histories resulting in D. albipictus spending notably more time on the shared host. We hypothesized that this would give D. albipictus an advantage in locating and occupying optimal attachment sites (highly vascularized areas like the head and ears). Ticks were collected from 224 hunter-killed deer in December 2005 and November 2006 to determine if there is evidence of competition for attachment sites when these two species concurrently infest deer. A timed sample (3 min per region) of representative ticks was collected from the head (ears, face and neck regions) and body (axillae regions). Ixodes scapularis was more abundant and prevalent overall than D. albipictus. Dermacentor albipictus was found almost exclusively on the head, whereas I. scapularis was more evenly distributed, but somewhat more abundant on the body than on the head. The proportion of I. scapularis on the head was reduced at high D. albipictus abundances, but I. scapularis abundance did not alter the distribution of D. albipictus. This study supports the hypothesis of competition for preferred attachment sites between these two species of ticks, and suggests that D. albipictus may be competitively dominant over I. scapularis on the head region of concurrently infested white-tailed deer.
Collapse
Affiliation(s)
- Marcie L Baer-Lehman
- Department of Biology, Shippensburg University, 1871 Old Main Drive, Shippensburg, PA 17257, USA
| | | | | | | | | | | |
Collapse
|
44
|
Environmental determinants of Ixodes ricinus ticks and the incidence of Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis, in Scotland. Parasitology 2012; 140:237-46. [PMID: 23036286 DOI: 10.1017/s003118201200145x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Lyme borreliosis (LB) is the most common arthropod-borne disease of humans in the Northern hemisphere. In Europe, the causative agent, Borrelia burgdorferi sensu lato complex, is principally vectored by Ixodes ricinus ticks. The aim of this study was to identify environmental factors influencing questing I. ricinus nymph abundance and B. burgdorferi s.l. infection in questing nymphs using a large-scale survey across Scotland. Ticks, host dung and vegetation were surveyed at 25 woodland sites, and climatic variables from a Geographical Information System (GIS) were extracted for each site. A total of 2397 10 m2 transect surveys were conducted and 13 250 I. ricinus nymphs counted. Questing nymphs were assayed for B. burgdorferi s.l. and the average infection prevalence was 5·6% (range 0·8-13·9%). More questing nymphs and higher incidence of B. burgdorferi s.l. infection were found in areas with higher deer abundance and in mixed/deciduous compared to coniferous forests, as well as weaker correlations with season, altitude, rainfall and ground vegetation. No correlation was found between nymph abundance and infection prevalence within the ranges encountered. An understanding of the environmental conditions associated with tick abundance and pathogen prevalence may be used to reduce risk of exposure and to predict future pathogen prevalence and distributions under environmental changes.
Collapse
|
45
|
Eradication and control of livestock ticks: biological, economic and social perspectives. Parasitology 2012; 138:945-59. [PMID: 21733257 DOI: 10.1017/s0031182011000709] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Comparisons of successful and failed attempts to eradicate livestock ticks reveal that the social context of farming and management of the campaigns have greater influence than techniques of treatment. The biology of ticks is considered principally where it has contributed to control of ticks as practiced on farms. The timing of treatments by life cycle and season can be exploited to reduce numbers of treatments per year. Pastures can be managed to starve and desiccate vulnerable larvae questing on vegetation. Immunity to ticks acquired by hosts can be enhanced by livestock breeding. The aggregated distribution of ticks on hosts with poor immunity can be used to select animals for removal from the herd. Models of tick population dynamics required for predicting outcomes of control methods need better understanding of drivers of distribution, aggregation, stability, and density-dependent mortality. Changing social circumstances, especially of land-use, has an influence on exposure to tick-borne pathogens that can be exploited for disease control.
Collapse
|
46
|
Cagnacci F, Bolzoni L, Rosà R, Carpi G, Hauffe H, Valent M, Tagliapietra V, Kazimirova M, Koci J, Stanko M, Lukan M, Henttonen H, Rizzoli A. Effects of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. I: Empirical assessment. Int J Parasitol 2012; 42:365-72. [DOI: 10.1016/j.ijpara.2012.02.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 02/02/2012] [Accepted: 02/16/2012] [Indexed: 11/16/2022]
|
47
|
Bolzoni L, Rosà R, Cagnacci F, Rizzoli A. Effect of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. II: population and infection models. Int J Parasitol 2012; 42:373-81. [PMID: 22429768 DOI: 10.1016/j.ijpara.2012.02.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/01/2012] [Accepted: 02/16/2012] [Indexed: 11/18/2022]
Abstract
Tick-borne encephalitis is an emerging vector-borne zoonotic disease reported in several European and Asiatic countries with complex transmission routes that involve various vertebrate host species other than a tick vector. Understanding and quantifying the contribution of the different hosts involved in the TBE virus cycle is crucial in estimating the threshold conditions for virus emergence and spread. Some hosts, such as rodents, act both as feeding hosts for ticks and reservoirs of the infection. Other species, such as deer, provide important sources of blood for feeding ticks but they do not support TBE virus transmission, acting instead as dead-end (i.e., incompetent) hosts. Here, we introduce an eco-epidemiological model to explore the dynamics of tick populations and TBE virus infection in relation to the density of two key hosts. In particular, our aim is to validate and interpret in a robust theoretical framework the empirical findings regarding the effect of deer density on tick infestation on rodents and thus TBE virus occurrence from selected European foci. Model results show hump-shaped relationships between deer density and both feeding ticks on rodents and the basic reproduction number for TBE virus. This suggests that deer may act as tick amplifiers, but may also divert tick bites from competent hosts, thus diluting pathogen transmission. However, our model shows that the mechanism responsible for the dilution effect is more complex than the simple reduction of tick burden on competent hosts. Indeed, while the number of feeding ticks on rodents may increase with deer density, the proportion of blood meals on competent compared with incompetent hosts may decrease, triggering a decline in infection. As a consequence, using simply the number of ticks per rodent as a predictor of TBE transmission potential could be misleading if competent hosts share habitats with incompetent hosts.
Collapse
Affiliation(s)
- L Bolzoni
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre - Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy.
| | | | | | | |
Collapse
|
48
|
Kiffner C, Vor T, Hagedorn P, Niedrig M, Rühe F. Determinants of tick-borne encephalitis virus antibody presence in roe deer (Capreolus capreolus) sera. MEDICAL AND VETERINARY ENTOMOLOGY 2012; 26:18-25. [PMID: 21592155 DOI: 10.1111/j.1365-2915.2011.00961.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In order to identify variables associated with the presence of the tick-borne encephalitis (TBE) virus, we conducted a serological survey of roe deer [Capreolus capreolus (Artiodactyla: Cervidae, Linnaeus 1758)] in three forest districts of southern Hesse, Germany. Overall, 24 out of 105 (22.9%) of the sera were positive (≥1 : 10 plaque reduction neutralization test). Using a logistic regression approach, we found that unexplained spatial variation, indexed roe deer density (positive correlation), hind foot length of the tested roe deer (positive correlation) and infestation with female Ixodes spp. ticks (negative correlation) predicted the probability of TBE virus antibody presence in individual roe deer sera. Spring temperature increase and host sex were rejected as explanatory variables. We found considerable differences in TBE virus antibody seroprevalence (50.0% vs. 17.6%) between two forest districts located in the same county; this finding questions the current county-resolution of public health recordings. Given the high seroprevalence of roe deer and the considerable explanatory power of our model, our approach appears suitable to delineate science-based risk maps at a smaller spatial scale and to abandon the current human incidence per county criterion. Importantly, using roe deer as sentinels would eliminate the inherent bias of risk maps based on human incidence (varying levels of immunization and exposure of humans).
Collapse
Affiliation(s)
- C Kiffner
- Department of Forest Zoology and Forest Conservation incl. Wildlife Biology and Game Management, Büsgen-Institute, Georg-August-University Göttingen, Busgenweg 3, Göttingen, Germany.
| | | | | | | | | |
Collapse
|
49
|
Gilbert L, Maffey GL, Ramsay SL, Hester AJ. The effect of deer management on the abundance of Ixodes ricinus in Scotland. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2012; 22:658-667. [PMID: 22611862 DOI: 10.1890/11-0458.1] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The management of wildlife hosts for controlling parasites and disease has a history of mixed success. Deer can be important hosts for ticks, such as Ixodes ricinus, which is the primary vector of disease-causing zoonotic pathogens in Europe. Deer are generally managed by culling and fencing for forestry protection, habitat conservation, and commercial hunting, and in this study we test whether these deer management methods can be useful for controlling ticks, with implications for tick-borne pathogens. At different spatial scales and habitats we tested the hypotheses that tick abundance is reduced by (1) culling deer and (2) deer exclusion using fencing. We compared abundance indices of hosts and questing I. ricinus nymphs using a combination of small-scale fencing experiments on moorland, a large-scale natural experiment of fenced and unfenced pairs of forests, and cross-sectional surveys of forest and moorland areas with varying deer densities. As predicted, areas with fewer deer had fewer ticks, and fenced exclosures had dramatically fewer ticks in both large-scale forest and small-scale moorland plots. Fencing and reducing deer density were also associated with higher ground vegetation. The implications of these results on other hosts, pathogen prevalence, and disease risk are discussed. This study provides evidence of how traditional management methods of a keystone species can reduce a generalist parasite, with implications for disease risk mitigation.
Collapse
Affiliation(s)
- L Gilbert
- James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom.
| | | | | | | |
Collapse
|
50
|
Kiffner C, Lödige C, Alings M, Vor T, Rühe F. Body-mass or sex-biased tick parasitism in roe deer (Capreolus capreolus)? A GAMLSS approach. MEDICAL AND VETERINARY ENTOMOLOGY 2011; 25:39-45. [PMID: 21118286 DOI: 10.1111/j.1365-2915.2010.00929.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Macroparasites feeding on wildlife hosts follow skewed distributions for which basic statistical approaches are of limited use. To predict Ixodes spp. tick burden on roe deer, we applied Generalized Additive Models for Location, Scale and Shape (GAMLSS) which allow incorporating a variable dispersion. We analysed tick burden of 78 roe deer, sampled in a forest region of Germany over a period of 20 months. Assuming a negative binomial error distribution and controlling for ambient temperature, we analysed whether host sex and body mass affected individual tick burdens. Models for larval and nymphal tick burden included host sex, with male hosts being more heavily infested than female ones. However, the influence of host sex on immature tick burden was associated with wide standard errors (nymphs) or the factor was marginally significant (larvae). Adult tick burden was positively correlated with host body mass. Thus, controlled for host body mass and ambient temperature, there is weak support for sex-biased parasitism in this system. Compared with models which assume linear relationships, GAMLSS provided a better fit. Adding a variable dispersion term improved only one of the four models. Yet, the potential of modelling dispersion as a function of variables appears promising for larger datasets.
Collapse
Affiliation(s)
- C Kiffner
- Department of Forest Zoology and Forest Conservation incl. Wildlife Biology and Game Management, Büsgen-Institute, Georg-August-University Göttingen, Göttingen, Germany.
| | | | | | | | | |
Collapse
|