1
|
Stimpson CD, Smaers JB, Raghanti MA, Phillips KA, Jacobs B, Hopkins WD, Hof PR, Sherwood CC. Evolutionary scaling and cognitive correlates of primate frontal cortex microstructure. Brain Struct Funct 2024; 229:1823-1838. [PMID: 37889302 DOI: 10.1007/s00429-023-02719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Investigating evolutionary changes in frontal cortex microstructure is crucial to understanding how modifications of neuron and axon distributions contribute to phylogenetic variation in cognition. In the present study, we characterized microstructural components of dorsolateral prefrontal cortex, orbitofrontal cortex, and primary motor cortex from 14 primate species using measurements of neuropil fraction and immunohistochemical markers for fast-spiking inhibitory interneurons, large pyramidal projection neuron subtypes, serotonergic innervation, and dopaminergic innervation. Results revealed that the rate of evolutionary change was similar across these microstructural variables, except for neuropil fraction, which evolves more slowly and displays the strongest correlation with brain size. We also found that neuropil fraction in orbitofrontal cortex layers V-VI was associated with cross-species variation in performance on experimental tasks that measure self-control. These findings provide insight into the evolutionary reorganization of the primate frontal cortex in relation to brain size scaling and its association with cognitive processes.
Collapse
Affiliation(s)
- Cheryl D Stimpson
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Kimberley A Phillips
- Department of Psychology, Trinity University, San Antonio, TX, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Bob Jacobs
- Department of Psychology, Laboratory of Quantitative Neuromorphology, Colorado College, Colorado Springs, CO, USA
| | - William D Hopkins
- Department of Comparative Medicine, Michale E Keeling Center for Comparative Medicine and Research, M D Anderson Cancer Center, Bastrop, TX, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Center for Discovery and Innovation, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA.
| |
Collapse
|
2
|
Twyman H, Heywood I, Barros M, Zeredo J, Mundy NI, Santangelo AM. Evolution of threat response-related polymorphisms at the SLC6A4 locus in callitrichid primates. Biol Lett 2024; 20:20240024. [PMID: 39013428 PMCID: PMC11251774 DOI: 10.1098/rsbl.2024.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/03/2024] [Accepted: 06/09/2024] [Indexed: 07/18/2024] Open
Abstract
Variation in an upstream repetitive region at the SLC6A4 locus, which encodes the serotonin transporter, is associated with anxiety-related behaviour in a few primate species, including humans and rhesus macaques, and has been suggested to be related to ecological adaptability among macaques. In this study, we investigate evolution of SLC6A4 polymorphisms associated with anxiety-related behaviour in common marmosets (Callithrix jacchus). Assaying variation in the SLC6A4 repeat region across 14 species in eight genera of callitrichid primates (marmosets and tamarins), we find large interspecific variation in the number of repeats present (24-43). The black tufted-ear marmoset (C. penicillata) has sequence polymorphisms similar to those found in the common marmoset, which is its sister species, and no other species has intraspecific variation at these sites. We conclude that, similar to humans and macaques, the functional polymorphism at SLC6A4 in common marmosets has a recent evolutionary origin, and that the anxiety-related allele is evolutionarily derived. Common/black tufted-ear marmosets and rhesus/bonnet macaques share high ecological adaptability and behavioural flexibility that we propose may be related to the maintenance of the polymorphism.
Collapse
Affiliation(s)
- Hanlu Twyman
- Department of Zoology, Downing Street, CambridgeCB2 3EJ, UK
| | - India Heywood
- Department of Zoology, Downing Street, CambridgeCB2 3EJ, UK
| | - Marília Barros
- Departamento de Farmácia, Universidade de Brasília, Campus Universitário - Asa Norte, Brasília, Brazil
| | - Jorge Zeredo
- Graduate Program in Health Sciences and Technologies, Universidade de Brasília, Campus Ceilândia – Ceilândia Sul, Brasília, DFCEP 72.220-275, Brazil
| | | | - Andrea M. Santangelo
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, CambridgeCB2 7EF, UK
| |
Collapse
|
3
|
Alonso L, Peeva P, Stasko S, Bader M, Alenina N, Winter Y, Rivalan M. Constitutive depletion of brain serotonin differentially affects rats' social and cognitive abilities. iScience 2023; 26:105998. [PMID: 36798444 PMCID: PMC9926123 DOI: 10.1016/j.isci.2023.105998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 09/30/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Central serotonin appears a promising transdiagnostic marker of psychiatric disorders and a modulator of some of their key behavioral symptoms. In adult male Tph2 -/- rats, constitutively lacking central serotonin, we tested individual's cognitive, social and non-social abilities and characterized group's social organization under classical and ethological testing conditions. Using unsupervised machine learning, we identified the functions most dependent on serotonin. Although serotonin depletion did not affect cognitive performances in classical testing, in the home-cage it induced compulsive aggression and sexual behavior, hyperactive and hypervigilant stereotyped behavior, reduced self-care and exacerbated corticosterone levels. This profile recalled symptoms of impulse control and anxiety disorders. Serotonin appeared essential for behavioral adaptation to dynamic social environments. Our animal model challenges the essential role of serotonin in decision-making, flexibility, impulsivity, and risk-taking. These findings highlight the importance of studying everyday life functions within the dynamic social living environment to model complexity in animal models.
Collapse
Affiliation(s)
- Lucille Alonso
- Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Polina Peeva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Michael Bader
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - York Winter
- Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marion Rivalan
- Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
4
|
Badawy AAB, Guillemin GJ. Species Differences in Tryptophan Metabolism and Disposition. Int J Tryptophan Res 2022; 15:11786469221122511. [PMID: 36325027 PMCID: PMC9620070 DOI: 10.1177/11786469221122511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/20/2022] [Indexed: 11/06/2022] Open
Abstract
Major species differences in tryptophan (Trp) metabolism and disposition exist
with important physiological, functional and toxicity implications. Unlike
mammalian and other species in which plasma Trp exists largely bound to albumin,
teleosts and other aquatic species possess little or no albumin, such that Trp
entry into their tissues is not hampered, neither is that of environmental
chemicals and toxins, hence the need for strict measures to safeguard their
aquatic environments. In species sensitive to toxicity of excess Trp, hepatic
Trp 2,3-dioxygenase (TDO) lacks the free apoenzyme and its glucocorticoid
induction mechanism. These species, which are largely herbivorous, however,
dispose of Trp more rapidly and their TDO is activated by smaller doses of Trp
than Trp-tolerant species. In general, sensitive species may possess a higher
indoleamine 2,3-dioxygenase (IDO) activity which equips them to resist immune
insults up to a point. Of the enzymes of the kynurenine pathway beyond TDO and
IDO, 2-amino-3-carboxymuconic acid-6-semialdehyde decarboxylase (ACMSD)
determines the extent of progress of the pathway towards NAD+
synthesis and its activity varies across species, with the domestic cat
(Felis catus) being the leading species possessing the
highest activity, hence its inability to utilise Trp for NAD+
synthesis. The paucity of current knowledge of Trp metabolism and disposition in
wild carnivores, invertebrates and many other animal species described here
underscores the need for further studies of the physiology of these species and
its interaction with Trp metabolism.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- Formerly School of Health Sciences,
Cardiff Metropolitan University, Cardiff, Wales, UK,Abdulla A-B Badawy, Formerly School of
Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff,
Wales, CF5 2YB, UK.
| | - Gilles J Guillemin
- Neuroinflammation Group, MND Research
Centre, Macquarie Medical School, Macquarie University, NSW, Australia
| |
Collapse
|
5
|
Thierry B. Where do we stand with the covariation framework in primate societies? AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 178 Suppl 74:5-25. [PMID: 36787776 DOI: 10.1002/ajpa.24441] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/21/2021] [Accepted: 11/04/2021] [Indexed: 12/17/2022]
Abstract
Comparative study of the social systems of macaques has revealed correlated variations between species in multiple social traits such as the asymmetry of dominance relationships, preferential treatment of kin, patterns of aggression and reconciliation, modes of socialization, and access to food resources. Macaques can be classified on a scale of four categories of social styles, ranging from the least to the most tolerant species. This led to the development of the covariation framework, which addresses the constraints responsible for the linkages between social traits, and their consequences on the evolution of primate social systems. Decades of research have provided a wealth of information that supports, complements, expands, or challenges the covariation framework. In this article, I review this body of knowledge and consider covariation in its two aspects, that is, as a pattern and as a hypothesis. I first consider the extent to which social styles can be invariant, the strength of correlations between traits, and the possible extension of the framework to nonhuman primates other than macaques. I then discuss how to formulate hypotheses, identify sources of linkage between traits, make predictions about the effects of social constraints, assess the tolerance dimension of social styles, and consider the breaking of linkages between traits. Whereas socioecological studies aim to understand how adaptation to the ecological environment determines the shape of social systems, the covariation framework is a complementary research program that seeks to unravel the internal processes that restrict or channel change in social behavior.
Collapse
Affiliation(s)
- Bernard Thierry
- Physiologie de la Reproduction et des Comportements, Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université de Tours, Nouzilly, France
| |
Collapse
|
6
|
Hunter JN, Wood EK, Roberg BL, Neville L, Schwandt ML, Fairbanks LA, Barr C, Lindell SG, Goldman D, Suomi SJ, Higley JD. Mismatches in resident and stranger serotonin transporter genotypes lead to escalated aggression, and the target for aggression is mediated by sex differences in male and female rhesus monkeys (Macaca mulatta). Horm Behav 2022; 140:105104. [PMID: 35180497 PMCID: PMC9380749 DOI: 10.1016/j.yhbeh.2021.105104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 11/04/2022]
Abstract
A variety of studies show that the s-allele of the serotonin transporter genotype (5-HTT) is related to aggression. However, influences of sex and 5-HTT genotype of both subject and opponent have not received as much attention in aggression research. Using a nonhuman primate model, the present study explores differences in rates of aggression exhibited by 201 group-housed male and female rhesus monkeys (Macaca mulatta; 122 females; 79 males) exposed to an unfamiliar age- and sex-matched stranger while in the presence of other same-sex members of their social group. The study also assesses whether the rates of aggression increase when the home-cage resident, the unfamiliar stimulus animal, or both possess the short (s) allele of the 5-HTT. Results showed that, when compared to females, males exhibited higher rates of physical aggression toward the stranger, and when both the male resident and the male stranger possessed the s-allele, rates of physical aggression toward the stranger increased five-fold. Resident females also engaged in higher rates of physical aggression when they possessed the s-allele, although unlike the males, their physical aggression was directed toward familiar same-sex members of their social group. The findings of this study indicate that rates of physical aggression are modulated by 5-HTT resident and stranger suggest a role of sexual competition in the phenotype of the 5-HTT genotype. Importantly, when two males with impulse deficits, as a function of the s-allele, are placed together, rates of violence exhibited by the dyad escalate substantially.
Collapse
Affiliation(s)
- Jacob N Hunter
- Neuroscience Department, Brigham Young University, Provo, UT, USA.
| | - Elizabeth K Wood
- Psychology Department, Brigham Young University, Provo, UT, USA.
| | | | - Leslie Neville
- Neuroscience Department, Brigham Young University, Provo, UT, USA.
| | - Melanie L Schwandt
- Laboratory of Clinical and Translational Studies, National Institutes of Health/National Institute on Alcohol Abuse and Alcoholism (NIH/NIAAA), Poolesville, MD, USA.
| | - Lynn A Fairbanks
- Department of Psychiatry & Biobehavioral Sciences, Semel Institute, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Christina Barr
- Laboratory of Clinical and Translational Studies, National Institutes of Health/National Institute on Alcohol Abuse and Alcoholism (NIH/NIAAA), Poolesville, MD, USA.
| | - Stephen G Lindell
- Laboratory of Clinical and Translational Studies, National Institutes of Health/National Institute on Alcohol Abuse and Alcoholism (NIH/NIAAA), Poolesville, MD, USA.
| | - David Goldman
- Laboratory of Neurogenetics, National Institutes of Health/National Institute on Alcohol Abuse and Alcoholism (NIH/NIAAA), Rockville, MD, USA.
| | - Stephen J Suomi
- Laboratory of Comparative Ethology, NIH, National Institute of Child Health and Development, Poolesville, MD, USA.
| | - J Dee Higley
- Neuroscience Department, Brigham Young University, Provo, UT, USA; Columbia VA Health Care System, Columbia, SC, USA.
| |
Collapse
|
7
|
Ghamari R, Yazarlou F, Khosravizadeh Z, Moradkhani A, Abdollahi E, Alizadeh F. Serotonin transporter functional polymorphisms potentially increase risk of schizophrenia separately and as a haplotype. Sci Rep 2022; 12:1336. [PMID: 35079035 PMCID: PMC8789837 DOI: 10.1038/s41598-022-05206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/10/2022] [Indexed: 11/10/2022] Open
Abstract
Schizophrenia is a severe, disabling psychiatric disorder with unclear etiology. Family-based, twins, and adoption studies have shown that genetic factors have major contributions in schizophrenia occurrence. Until now, many studies have discovered the association of schizophrenia and its comorbid symptoms with functional polymorphisms that lie within serotonin reuptake pathway genes. Here, we aimed to investigate the association of three variable number tandem repeats (VNTR) functional polymorphisms in MAOA and SLC6A4 with schizophrenia in the Iranian population. Two hundred and forty-one subjects with schizophrenia and three hundred and seventy age and sex-matched healthy controls were genotyped for MAOA promoter uVNTR, 5-HTTLPR, and STin2 polymorphisms. Genotyping was performed by polymerase chain reaction (PCR) with locus-specific primers and running the PCR product on agarose 2.5% gel electrophoresis. Finally, the statistical inference was performed using R programming language and Haploview software. MAOA promoter uVNTR analysis of allele frequency showed no differences between schizophrenia subjects and healthy controls in both males and females and no significant differences were observed between female cases and female controls in MAOA promoter uVNTR 4 repeat frequency. Also, there were no differences between Schizophrenia and healthy control groups in 5-HTTLPR allele and genotype frequency but, 5-HTTLPR S allele carriers are significantly more frequent among cases. In addition, STin2.12 repeats were significantly more frequent among schizophrenia patients. Genotype comparison suggested that 5-HTTLPR S allele and STin2.12 repeat carriers were significantly more frequent among schizophrenia cases and being STin2.12 repeat carrier significantly increase the risk of schizophrenia occurrence. Besides, analysis of haplotype showed stronger linkage disequilibrium between 5-HTTLPR and STin2 haplotype block in cases than controls. These results suggest that SLC6A4 functional polymorphisms potentially could play a possible role as risk factors for the incidence of schizophrenia.
Collapse
Affiliation(s)
- Rana Ghamari
- Department of Genetics, Faculty of Biology, Kharazmi University, Tehran, Iran
| | - Fatemeh Yazarlou
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Khosravizadeh
- Clinical Research Development Unit, Infertility treatment clinic, Amiralmomenin Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Atefeh Moradkhani
- Department of Biology, Faculty of Science, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Elaheh Abdollahi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Alizadeh
- Department of Genomic Psychiatry and Behavioral Genomics (DGPBG), Roozbeh Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Chatterjee SK, Yadav S, Saraswathy KN, Mondal PR. Genetic polymorphism of dopamine receptor D4 (DRD4) gene in ten Indian rhesus macaques (Macaca mulatta mulatta). Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
Molecular evolution and genetic variation of exon 3 inside the dopamine receptor D4 (DRD4) gene sequences among the non-human primates. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2020.101003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Kolla NJ, Bortolato M. The role of monoamine oxidase A in the neurobiology of aggressive, antisocial, and violent behavior: A tale of mice and men. Prog Neurobiol 2020; 194:101875. [PMID: 32574581 PMCID: PMC7609507 DOI: 10.1016/j.pneurobio.2020.101875] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/20/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022]
Abstract
Over the past two decades, research has revealed that genetic factors shape the propensity for aggressive, antisocial, and violent behavior. The best-documented gene implicated in aggression is MAOA (Monoamine oxidase A), which encodes the key enzyme for the degradation of serotonin and catecholamines. Congenital MAOA deficiency, as well as low-activity MAOA variants, has been associated with a higher risk for antisocial behavior (ASB) and violence, particularly in males with a history of child maltreatment. Indeed, the interplay between low MAOA genetic variants and early-life adversity is the best-documented gene × environment (G × E) interaction in the pathophysiology of aggression and ASB. Additional evidence indicates that low MAOA activity in the brain is strongly associated with a higher propensity for aggression; furthermore, MAOA inhibition may be one of the primary mechanisms whereby prenatal smoke exposure increases the risk of ASB. Complementary to these lines of evidence, mouse models of Maoa deficiency and G × E interactions exhibit striking similarities with clinical phenotypes, proving to be valuable tools to investigate the neurobiological mechanisms underlying antisocial and aggressive behavior. Here, we provide a comprehensive overview of the current state of the knowledge on the involvement of MAOA in aggression, as defined by preclinical and clinical evidence. In particular, we show how the convergence of human and animal research is proving helpful to our understanding of how MAOA influences antisocial and violent behavior and how it may assist in the development of preventative and therapeutic strategies for aggressive manifestations.
Collapse
Affiliation(s)
- Nathan J Kolla
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH) Research Imaging Centre, Toronto, ON, Canada; Violence Prevention Neurobiological Research Unit, CAMH, Toronto, ON, Canada; Waypoint Centre for Mental Health Care, Penetanguishene, ON, Canada; Translational Initiative on Antisocial Personality Disorder (TrIAD); Program of Research on Violence Etiology, Neurobiology, and Treatment (PReVENT).
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA; Translational Initiative on Antisocial Personality Disorder (TrIAD); Program of Research on Violence Etiology, Neurobiology, and Treatment (PReVENT).
| |
Collapse
|
11
|
Monoamine oxidase polymorphisms in rhesus and Japanese macaques (Macaca mulatta and M. fuscata). J Chem Neuroanat 2020; 103:101726. [DOI: 10.1016/j.jchemneu.2019.101726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022]
|
12
|
Sato DX, Ishii Y, Nagai T, Ohashi K, Kawata M. Human-specific mutations in VMAT1 confer functional changes and multi-directional evolution in the regulation of monoamine circuits. BMC Evol Biol 2019; 19:220. [PMID: 31791232 PMCID: PMC6889191 DOI: 10.1186/s12862-019-1543-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/15/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Neurochemicals like serotonin and dopamine play crucial roles in human cognitive and emotional functions. Vesicular monoamine transporter 1 (VMAT1) transports monoamine neurotransmitters, and its variant (136Thr) is associated with various psychopathological symptoms and reduced monoamine uptake relative to 136Ile. We previously showed that two human-specific amino acid substitutions (Glu130Gly and Asn136Thr/Ile) of VMAT1 were subject to positive natural selection. However, the potential functional alterations caused by these substitutions (Glu130Gly and Asn136Thr) remain unclear. To assess functional changes in VMAT1 from an evolutionary perspective, we reconstructed ancestral residues and examined the role of these substitutions in monoamine uptake in vitro using fluorescent false neurotransmitters (FFN), which are newly developed substances used to quantitatively assay VMATs. RESULTS Immunoblotting confirmed that all the transfected YFP-VMAT1 variants are properly expressed in HEK293T cells at comparable levels, and no significant difference was seen in the density and the size of vesicles among them. Our fluorescent assays revealed a significant difference in FFN206 uptake among VMAT1 variants: 130Glu/136Asn, 130Glu/136Thr, and 130Gly/136Ile showed significantly higher levels of FFN206 uptake than 130Gly/136Asn and 130Gly/136Thr, indicating that both 130Glu and 136Ile led to increased neurotransmitter uptake, for which 136Thr and 136Asn were comparable by contrast. CONCLUSIONS These findings suggest that monoamine uptake by VMAT1 initially declined (from 130Glu/136Asn to 130Gly/136Thr) in human evolution, possibly resulting in higher susceptibility to the external environment of our ancestors.
Collapse
Affiliation(s)
- Daiki X Sato
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Yuu Ishii
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Tomoaki Nagai
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Kazumasa Ohashi
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Masakado Kawata
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
13
|
Eusebi PG, Sevane N, Cortés O, Contreras E, Cañon J, Dunner S. Aggressive behavior in cattle is associated with a polymorphism in the MAOA gene promoter. Anim Genet 2019; 51:14-21. [PMID: 31633208 DOI: 10.1111/age.12867] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 12/17/2022]
Abstract
Molecular mechanisms underlying aggressive behavior are primitive and similar among the subphylum Vertebrata. In humans, a primary goal in the study of aggression is to determine the neurobehavioral molecular factors triggering violence. Although several species have been used to study agonistic responses, researchers are limited by the difficulty of artificially inducing aggression in animals not selected for it. Conversely, the Lidia cattle breed has been selected since the eighteenth century to display agonistic responses based on traits such as aggressiveness, ferocity and mobility, all of them showing significant heritability values. This intensive selection may have driven shifts in specific allele frequencies. In a previous analysis across the autosomes, we revealed long-term selection regions including genes involved in behavioral development. In the present study, we focus on mapping recent signatures of selection associated with aggressiveness at chromosome X, by comparing Lidia cattle samples with two non-specialized Spanish breeds showing tamed behavior. The most significant markers peaked around the monoamine oxidase A (MAOA) gene, and thus the associations of three functionally important regions located near the promoter of this gene were further investigated. A polymorphism consisting of a variable number of tandem repeats of the nucleotide 'C' (BTX:105,462,494) and displaying lower number of repetitions in the Lidia breed when compared with the tamed breeds was detected. In silico analyses predicted that the g.105,462,494delsinsC variant may code for the Sp1 binding motif, one of the major transcription factors controlling the core promoter and expression of the MAOA gene in humans.
Collapse
Affiliation(s)
- P G Eusebi
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.,VELOGEN.SL., Servicio de Genética, Facultad de Veterinaria, Universidad Complutense, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - N Sevane
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - O Cortés
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - E Contreras
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - J Cañon
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - S Dunner
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| |
Collapse
|
14
|
Weinberg-Wolf H, Chang SWC. Differences in how macaques monitor others: Does serotonin play a central role? WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2019; 10:e1494. [PMID: 30775852 PMCID: PMC6570566 DOI: 10.1002/wcs.1494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 01/22/2023]
Abstract
Primates must balance the need to monitor other conspecifics to gain social information while not losing other resource opportunities. We consolidate evidence across the fields of primatology, psychology, and neuroscience to examine individual, population, and species differences in how primates, particularly macaques, monitor conspecifics. We particularly consider the role of serotonin in mediating social competency via social attention, aggression, and dominance behaviors. Finally, we consider how the evolution of variation in social tolerance, aggression, and social monitoring might be explained by differences in serotonergic function in macaques. This article is categorized under: Economics > Interactive Decision-Making Psychology > Comparative Psychology Neuroscience > Behavior Cognitive Biology > Evolutionary Roots of Cognition.
Collapse
Affiliation(s)
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, Connecticut
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
15
|
Madrid JE, Mandalaywala TM, Coyne SP, Ahloy-Dallaire J, Garner JP, Barr CS, Maestripieri D, Parker KJ. Adaptive developmental plasticity in rhesus macaques: the serotonin transporter gene interacts with maternal care to affect juvenile social behaviour. Proc Biol Sci 2019; 285:rspb.2018.0541. [PMID: 29925616 DOI: 10.1098/rspb.2018.0541] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/24/2018] [Indexed: 12/25/2022] Open
Abstract
Research has increasingly highlighted the role that developmental plasticity-the ability of a particular genotype to produce variable phenotypes in response to different early environments-plays as an adaptive mechanism. One of the most widely studied genetic contributors to developmental plasticity in humans and rhesus macaques is a serotonin transporter gene-linked polymorphic region (5-HTTLPR), which determines transcriptional efficiency of the serotonin transporter gene in vitro and modifies the availability of synaptic serotonin in these species. A majority of studies to date have shown that carriers of a loss-of-function variant of the 5-HTTLPR, the short (s) allele, develop a stress-reactive phenotype in response to adverse early environments compared with long (l) allele homozygotes, leading to the prevalent conceptualization of the s-allele as a vulnerability allele. However, this framework fails to address the independent evolution of these loss-of-function mutations in both humans and macaques as well as the high population prevalence of s-alleles in both species. Here we show in free-ranging rhesus macaques that s-allele carriers benefit more from supportive early social environments than l-allele homozygotes, such that s-allele carriers which receive higher levels of maternal protection during infancy demonstrate greater social competence later in life. These findings provide, to our knowledge, the first empirical support for the assertion that the s-allele grants high undirected biological sensitivity to context in primates and suggest a mechanism through which the 5-HTTLPR s-allele is maintained in primate populations.
Collapse
Affiliation(s)
- Jesus E Madrid
- Neurosciences Program, Stanford University, Stanford, CA 94305, USA .,Department of Psychiatry and Behavioural Sciences, Stanford University, Stanford, CA 94305, USA
| | - Tara M Mandalaywala
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sean P Coyne
- Department of Psychology, Notre Dame of Maryland University, Baltimore, MD 21210, USA
| | - Jamie Ahloy-Dallaire
- Department of Comparative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Joseph P Garner
- Department of Psychiatry and Behavioural Sciences, Stanford University, Stanford, CA 94305, USA.,Department of Comparative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Christina S Barr
- National Institute of Alcohol Abuse and Alcoholism, National Institute of Health, Bethesda, MD 20892, USA
| | - Dario Maestripieri
- Department of Comparative Human Development, The University of Chicago, Chicago, IL 60637, USA.,Institute for Mind and Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Karen J Parker
- Department of Psychiatry and Behavioural Sciences, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Krause ET, Kjaer JB, Dudde A, Schrader L, Phi-van L. Fear but not social behaviour is affected by a polymorphism in the 5'-flanking region of the serotonin transporter (5-HTT) gene in adult hens. Behav Brain Res 2019; 361:50-53. [PMID: 30562569 DOI: 10.1016/j.bbr.2018.12.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/29/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022]
Abstract
The serotonin transporter gene (5-HTT) is involved in the regulation of the neural serotonin. Polymorphisms in the 5-HTT gene have been described in many species to be involved in physiological processes and emotions. A functional polymorphism in the 5´-flanking region of the 5-HTT gene is known from chickens, with a deletion-allele (D), which is associated with an increased 5-HTT expression, in comparison to the wild-type-allele (W). In domestic populations, the majority of hens carry the W-allele. The regulatory changes of the 5-HTT are accompanied in chickens, as in humans, by modulations of fear. Beside these effects on fear, the understanding of potential functional consequences on the social behaviour in the gregarious chicken is lacking. Thus, we here investigated whether the 5-HTT polymorphism with three genotypes (WW, WD, DD), is not only linked to fear-related behaviour, but affects also socio-positive and -negative behaviours of adult hens. Our data confirmed the effects on fear-related behaviour. WW hens showed highest levels of fear. Interestingly, no differences in the social behaviours were present between the hens of the different 5-HTT genotypes. We further discuss implications for potential evolutionary pathways via natural selection and / or artificial selection through domestication of the 5-HTT polymorphism, which might have enabled a stable social lifestyle in the wild ancestors of modern chickens.
Collapse
Affiliation(s)
- E Tobias Krause
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Dörnbergstraße 25/27, 29223 Celle, Germany.
| | - Joergen B Kjaer
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Dörnbergstraße 25/27, 29223 Celle, Germany
| | - Anissa Dudde
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Dörnbergstraße 25/27, 29223 Celle, Germany; Department of Animal Behaviour, University of Bielefeld, Konsequenz 45, 33615 Bielefeld, Germany
| | - Lars Schrader
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Dörnbergstraße 25/27, 29223 Celle, Germany
| | - Loc Phi-van
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Dörnbergstraße 25/27, 29223 Celle, Germany.
| |
Collapse
|
17
|
Abstract
Aggression is a heritable trait and genetically related to neurotransmitter-related genes. Behavioural characteristics of some pig breeds are different. To compare the genetic differences between breeds, backtest and aggressive behaviour assessments, and genotyped using Sequenom iPLEX platform were performed in 50 Chinese indigenous Mi pigs and 100 landrace-large white (LLW) cross pigs with 32 SNPs localized in 11 neurotransmitter-related genes. The genetic polymorphisms of 26 SNPs had notable differences (P < 0.05) between Mi and LLW. The most frequent haplotypes were different in DBH, HTR2A, GAD1, HTR2B,MAOA and MAOB genes between Mi and LLW. The mean of backtest scores was significantly lower (P < 0.001) for Mi than LLW pigs. Skin lesion scores were greater (P < 0.01) in LLW pigs than Mi pigs. In this study, we have confirmed that Chinese Mi pigs are less active and less aggressive than European LLW pigs, and the genetic polymorphisms of neurotransmitter-related genes, which have been proved previously associated with aggressive behaviour, have considerable differences between Mi and LLW pigs.
Collapse
|
18
|
Comasco E, Rangmar J, Eriksson UJ, Oreland L. Neurological and neuropsychological effects of low and moderate prenatal alcohol exposure. Acta Physiol (Oxf) 2018; 222. [PMID: 28470828 DOI: 10.1111/apha.12892] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/17/2017] [Accepted: 04/27/2017] [Indexed: 01/18/2023]
Abstract
Several explanations for the diverse results in research on foetal alcohol spectrum disorders or alcohol-related neurodevelopmental disorder might be at hand: timing, amount and patterns of alcohol exposure, as well as complex epigenetic responses. The genetic background of the offspring and its interaction with other prenatal and post-natal environmental cues are likely also of importance. In the present report, key findings about the possible effects of low and moderate doses of maternal alcohol intake on the neuropsychological development of the offspring are reviewed and plausible mechanisms discussed. Special focus is put on the serotonergic system within developmental and gene-environment frameworks. The review also suggests guidelines for future studies and also summarizes some of to-be-answered questions of relevance to clinical practice. Contradictory findings and paucity of studies on the effects of exposure to low alcohol levels during foetal life for the offspring's neuropsychological development call for large prospective studies, as well as for studies including neuroimaging and multi-omics analyses to dissect the neurobiological underpinnings of alcohol exposure-related phenotypes and to identify biomarkers. Finally, it remains to be investigated whether any safe threshold of alcohol drinking during pregnancy can be identified.
Collapse
Affiliation(s)
- E. Comasco
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| | - J. Rangmar
- Department of Psychology; University of Gothenburg; Gothenburg Sweden
| | - U. J. Eriksson
- Department of Medical Cell Biology; Uppsala University; Uppsala Sweden
| | - L. Oreland
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| |
Collapse
|
19
|
Abstract
When individuals are exposed to stressful environmental challenges, the response varies widely in one or more of three components: psychology, behavior and physiology. This variability among individuals can be defined as temperament. In recent years, an increasing large body of evidence suggests that the dimensions of temperament, as well as personality, psychological disorders and behavioral traits, are influenced by genetic factors, and much of the variation appears to involve variation in genes or gene polymorphisms in the hypothalamic-pituitary-adrenocortical (HPA) axis and the behavior-controlling neurotransmitter networks. Here, we review our current understanding of the probabilistic impact of a number of candidate gene polymorphisms that control temperament, psychological disorders and behavioral traits in animals and human, including the gene polymorphisms related to corticotrophin-releasing hormone (CRH) production and adrenal cortisol production involved in the HPA axis, and a large number of gene polymorphisms in the dopaminergic and serotonergic neurotransmitter networks. It will very likely to assist in diagnosis and treatment of human relevant disorders, and provide useful contributions to our understanding of evolution, welfare and conservation, for animals in the wild and in production systems. Additionally, investigations of gene-gene and gene-environment complex interactions in humans and animals need further clear illustration.
Collapse
Affiliation(s)
- Xiaoyan Qiu
- a College of Animal Science and Technology, Southwest University , Chong Qing , PR China.,b UWA Institute of Agriculture and School of Animal Biology M082, Faculty of Sciences , University of Western Australia , Crawley , WA , Australia
| | - Graeme B Martin
- b UWA Institute of Agriculture and School of Animal Biology M082, Faculty of Sciences , University of Western Australia , Crawley , WA , Australia.,c Nuffield Department of Obstetrics and Gynecology , University of Oxford , Oxford , UK
| | - Dominique Blache
- b UWA Institute of Agriculture and School of Animal Biology M082, Faculty of Sciences , University of Western Australia , Crawley , WA , Australia
| |
Collapse
|
20
|
Kalbitzer U, Roos C, Kopp GH, Butynski TM, Knauf S, Zinner D, Fischer J. Insights into the genetic foundation of aggression in Papio and the evolution of two length-polymorphisms in the promoter regions of serotonin-related genes (5-HTTLPR and MAOALPR) in Papionini. BMC Evol Biol 2016; 16:121. [PMID: 27287312 PMCID: PMC4901440 DOI: 10.1186/s12862-016-0693-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 05/25/2016] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Aggressive behaviors are an integral part of competitive interactions. There is considerable variation in aggressiveness among individuals both within and among species. Aggressiveness is a quantitative trait that is highly heritable. In modern humans and macaques (Macaca spp.), variation in aggressiveness among individuals is associated with polymorphisms in the serotonergic (5-HT) neurotransmitter system. To further investigate the genetics underlying interspecific variation in aggressiveness, 123 wild individuals from five baboon species (Papio papio, P. hamadryas, P. anubis, P. cynocephalus, and P. ursinus) were screened for two polymorphisms in promoter regions of genes relevant for the 5-HT system (5-HTTLPR and MAOALPR). RESULTS Surprisingly, despite considerable interspecific variation in aggressiveness, baboons are monomorphic in 5-HTTLPR, except for P. hamadryas, which carries one additional allele. Accordingly, this locus cannot be linked to behavioral variation among species. A comparison among 19 papionin species, including nine species of macaques, shows that the most common baboon allele is similar to the one described for Barbary macaques (Macaca sylvanus), probably representing the ancestral allele in this tribe. It should be noted that (almost) all baboons live in Africa, but within Macaca only M. sylvanus lives on this continent. Baboons are, however, highly polymorphic in the so-called 'warrior gene' MAOALPR, carrying three alleles. Due to considerable variation in allele frequencies among populations of the same species, this genotype cannot be invoked to explain variation in aggressiveness at the species level. CONCLUSIONS This study provides another indication that 5-HTTLPR is not related to aggressiveness in primates per se, but may have been under differential selective pressures among taxa and potentially among populations in different geographic regions. The results on MAOALPR alleles in Papio indicate that variation in the metabolism of monoamine neurotransmitters and associated behaviors is more important among populations than among species. We, therefore, propose to compile behavioral data from additional populations of Papio to obtain further insight into the genetics underlying behavioral differences among primate species.
Collapse
Affiliation(s)
- Urs Kalbitzer
- Cognitive Ethology Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada.
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Gisela H Kopp
- Cognitive Ethology Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Department of Biology, University of Konstanz, 78457, Constance, Germany
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Am Obstberg 1, 78315, Radolfzell, Germany
| | - Thomas M Butynski
- Lolldaiga Hills Research Programme, Sustainability Centre Eastern Africa, P. O. Box 149, Nanyuki, 10400, Kenya
| | - Sascha Knauf
- Work Group Neglected Tropical Diseases, Pathology Unit, German Primate Center (DPZ), Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Julia Fischer
- Cognitive Ethology Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| |
Collapse
|
21
|
Association of DNA methylation and monoamine oxidase A gene expression in the brains of different dog breeds. Gene 2016; 580:177-182. [DOI: 10.1016/j.gene.2016.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/11/2015] [Accepted: 01/13/2016] [Indexed: 11/21/2022]
|
22
|
Ramasubbu R, Burgess A, Gaxiola-Valdez I, Cortese F, Clark D, Kemp A, Goodyear B, Macqueen G, Bech-Hansen NT, Foster J, Diwadkar VA. Amygdala responses to quetiapine XR and citalopram treatment in major depression: the role of 5-HTTLPR-S/Lg polymorphisms. Hum Psychopharmacol 2016; 31:144-55. [PMID: 26879101 DOI: 10.1002/hup.2521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/27/2015] [Accepted: 12/18/2015] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Genotype and drug pharmacology may contribute to variations in brain response to antidepressants. We examined the impact of two antidepressants with differential actions on serotonin transporter and the 5-HHTLPR-S/Lg polymorphisms on amygdala responses in major depressive disorder (MDD). METHODS Caucasians with MDD were given either citalopram or quetiapine extended release for 8 weeks. Patients were genotyped for 5-HTTLPR. Clinical efficacy was assessed using the Hamilton Depression Rating Scale. fMRI responses to negative emotional faces were acquired at baseline, week 1 and week 8. The outcome measure was change in amygdala responses at week 8. RESULTS Citalopram had no effect on amygdala responses in MDD patients with S/Lg alleles at weeks 1 and 8 compared with baseline, whereas it induced changes in amygdala responses in LL homozygotes. By contrast, quetiapine decreased amygdala responses at both time points in S/Lg carriers, and changes in amygdala responses at week 8 correlated with a reduction in depression scores. The small number of LL homozygotes in quetiapine group was a limitation. Efficacy of both treatments was comparable. CONCLUSIONS These preliminary data suggest that pharmacological mechanisms and genetics need to be considered in the development of neuroimaging markers for the evaluation of antidepressant treatments.
Collapse
Affiliation(s)
- Rajamannar Ramasubbu
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Ashley Burgess
- Brain Imaging Research Division, Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | | | - Filomeno Cortese
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Darren Clark
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Anne Kemp
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada
| | - Bradley Goodyear
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Glenda Macqueen
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | | | - Jane Foster
- Neuroscience and Behavioral Neurosciences Program, McMaster University, Hamilton, ON, Canada
| | - Vaibhav A Diwadkar
- Brain Imaging Research Division, Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
23
|
Golub MS, Hogrefe CE, Bulleri AM. Peer social interaction is facilitated in juvenile rhesus monkeys treated with fluoxetine. Neuropharmacology 2016; 105:553-560. [PMID: 26905291 DOI: 10.1016/j.neuropharm.2016.02.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 10/22/2022]
Abstract
Fluoxetine improves social interactions in children with autism, social anxiety and social phobia. It is not known whether this effect is mediated directly or indirectly by correcting the underlying pathology. Genetics may also influence the drug effect. Polymorphisms of the MAOA (monoamine oxidase A) gene interact with fluoxetine to influence metabolic profiles in juvenile monkeys. Juvenile nonhuman primates provide an appropriate model for studying fluoxetine effects and drug*gene interactions in children. Male rhesus monkeys 1-3 years of age living in permanent social pairs were treated daily with a therapeutic dose of fluoxetine or vehicle (n = 16/group). Both members of each social pair were assigned to the same treatment group. They were observed for social interactions with their familiar cagemate over a 2-year dosing period. Subjects were genotyped for MAOA variable number of tandem repeats (VNTR) polymorphisms categorized for high or low transcription rates (hi-MAOA, low-MAOA). Fluoxetine-treated animals spent 30% more time in social interaction than vehicle controls. Fluoxetine significantly increased the duration of quiet interactions, the most common type of interaction, and also of immature sexual behavior typical of rhesus in this age group. Specific behaviors affected depended on MAOA genotype of the animal and its social partner. When given fluoxetine, hi-MOAO monkeys had more social invitation and initiation behaviors and low-MAOA subjects with low-MAOA partners had more grooming and an increased frequency of some facial and vocal expressive behaviors. Fluoxetine may facilitate social interaction in children independent of remediation of psychopathology. Common genetic variants may modify this effect.
Collapse
Affiliation(s)
- Mari S Golub
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA.
| | - Casey E Hogrefe
- California National Primate Research Center, University of California Davis, Davis, CA 95616, USA
| | - Alicia M Bulleri
- California National Primate Research Center, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
24
|
Pflüger LS, Gutleb DR, Hofer M, Fieder M, Wallner B, Steinborn R. Allelic variation of the COMT gene in a despotic primate society: A haplotype is related to cortisol excretion in Macaca fuscata. Horm Behav 2016; 78:220-30. [PMID: 26657779 DOI: 10.1016/j.yhbeh.2015.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 11/26/2015] [Accepted: 11/28/2015] [Indexed: 11/26/2022]
Abstract
Sequence variations in genes of the monoamine neurotransmitter system and their common function in human and non-human primate species are an ongoing issue of investigation. However, the COMT gene, coding for the catechol-O-methyltransferase, has not yet attracted much scientific attention regarding its functional role in non-human primates. Considering that a polymorphism of the human COMT gene affects the enzyme activity and cortisol level in response to a social stressor, this study investigated the impact of COMT on endocrine stress and behavioural parameters in Japanese macaques (Macaca fuscata). The species exemplifies a despotic hierarchy in which males' social rank positions require an adaptation of behaviour strategies. During the mating period steroid secretion and the frequency of aggressive encounters between males increase. We addressed i) whether this species exhibits potential functional COMT variants, ii) whether these variants are associated with faecal cortisol excretion of males, iii) how they are distributed among different social rank positions and iv) whether they are associated with behavioural strategies during times of mate competition. By genotyping 26 males we identified three COMT haplotypes (HT), including a putative splice mutant (HT3). This variant was associated with increased cortisol excretion. Given the observed inverse correlation between cortisol and physical aggression, we assume that different COMT haplotypes may predispose individuals to pursue more or less aggressive strategies. How these gene-stress effects might favour a specific social role is discussed. Our study of non-invasive genotyping in combination with behavioural and endocrine parameters represents an important step towards the understanding of gene-stress effects in a hierarchically organised primate society.
Collapse
Affiliation(s)
- Lena S Pflüger
- Department of Anthropology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria; Genomics Core Facility, VetCore, University of Veterinary Medicine, A-1210 Vienna, Austria.
| | - Daria R Gutleb
- Department of Anthropology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria; Genomics Core Facility, VetCore, University of Veterinary Medicine, A-1210 Vienna, Austria
| | - Martin Hofer
- Genomics Core Facility, VetCore, University of Veterinary Medicine, A-1210 Vienna, Austria
| | - Martin Fieder
- Department of Anthropology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria
| | - Bernard Wallner
- Department of Anthropology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria; Department of Behavioural Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria
| | - Ralf Steinborn
- Genomics Core Facility, VetCore, University of Veterinary Medicine, A-1210 Vienna, Austria
| |
Collapse
|
25
|
Trumble BC, Jaeggi AV, Gurven M. Evolving the neuroendocrine physiology of human and primate cooperation and collective action. Philos Trans R Soc Lond B Biol Sci 2015; 370:20150014. [PMID: 26503687 PMCID: PMC4633850 DOI: 10.1098/rstb.2015.0014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2015] [Indexed: 12/25/2022] Open
Abstract
While many hormones play vital roles in facilitating or reinforcing cooperative behaviour, the neurohormones underlying competitive and cooperative behaviours are largely conserved across all mammals. This raises the question of how endocrine mechanisms have been shaped by selection to produce different levels of cooperation in different species. Multiple components of endocrine physiology--from baseline hormone concentrations, to binding proteins, to the receptor sensitivity and specificity--can evolve independently and be impacted by current socio-ecological conditions or individual status, thus potentially generating a wide range of variation within and between species. Here, we highlight several neurohormones and variation in hormone receptor genes associated with cooperation, focusing on the role of oxytocin and testosterone in contexts ranging from parenting and pair-bonding to reciprocity and territorial defence. While the studies reviewed herein describe the current state of the literature with regard to hormonal modulators of cooperation and collective action, there is still a paucity of research on hormonal mechanisms that help facilitate large-scale collective action. We end by discussing several potential areas for future research.
Collapse
Affiliation(s)
- Benjamin C Trumble
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Adrian V Jaeggi
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Michael Gurven
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
26
|
Stimpson CD, Barger N, Taglialatela JP, Gendron-Fitzpatrick A, Hof PR, Hopkins WD, Sherwood CC. Differential serotonergic innervation of the amygdala in bonobos and chimpanzees. Soc Cogn Affect Neurosci 2015; 11:413-22. [PMID: 26475872 DOI: 10.1093/scan/nsv128] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 10/07/2015] [Indexed: 01/18/2023] Open
Abstract
Humans' closest living relatives are bonobos (Pan paniscus) and chimpanzees (Pan troglodytes), yet these great ape species differ considerably from each other in terms of social behavior. Bonobos are more tolerant of conspecifics in competitive contexts and often use sexual behavior to mediate social interactions. Chimpanzees more frequently employ aggression during conflicts and actively patrol territories between communities. Regulation of emotional responses is facilitated by the amygdala, which also modulates social decision-making, memory and attention. Amygdala responsiveness is further regulated by the neurotransmitter serotonin. We hypothesized that the amygdala of bonobos and chimpanzees would differ in its neuroanatomical organization and serotonergic innervation. We measured volumes of regions and the length density of serotonin transporter-containing axons in the whole amygdala and its lateral, basal, accessory basal and central nuclei. Results showed that accessory basal nucleus volume was larger in chimpanzees than in bonobos. Of particular note, the amygdala of bonobos had more than twice the density of serotonergic axons than chimpanzees, with the most pronounced differences in the basal and central nuclei. These findings suggest that variation in serotonergic innervation of the amygdala may contribute to mediating the remarkable differences in social behavior exhibited by bonobos and chimpanzees.
Collapse
Affiliation(s)
- Cheryl D Stimpson
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052,
| | - Nicole Barger
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA 95616
| | - Jared P Taglialatela
- Department of Ecology, Evolution and Organismal Biology, Kennesaw State University, Kennesaw, GA 30144
| | | | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - William D Hopkins
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, GA 30302, and Department of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30322
| | - Chet C Sherwood
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052
| |
Collapse
|
27
|
Driscoll CA, Barr CS. Studying longitudinal trajectories in animal models of psychiatric illness and their translation to the human condition. Neurosci Res 2015; 102:67-77. [PMID: 26276350 DOI: 10.1016/j.neures.2015.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
Abstract
Many forms of psychopathology and/or psychiatric illness can occur through the pathways of altered environmental sensitivity, impulsivity, social functioning, and anxious responding. While these traits are also heritable, environmental conditions are known to play a critical role. The genetic factors that contribute to these traits may be adaptive in certain contexts, but can - under the environmental conditions commonly faced among modern humans - also be key moderators of risk for psychopathological outcomes. This article will discuss how animal studies inform us of the various environmental mechanisms through which prenatal or early postnatal environmental challenge can produce long-term effects on behavior and will briefly address how pre-copulatory, pre-natal and early postnatal epigenetic effects can contribute to persistent alterations in offspring behavior. Its main focus will be how nonhuman primate studies have helped us to understand how genetic vulnerability factors can moderate responses to early environmental factors, suggesting pathways through which early stress might produce long-term effects, thus pointing to systems that might moderate risk for psychiatric illnesses in humans.
Collapse
Affiliation(s)
- Carlos A Driscoll
- Section of Comparative Behavioral Genomics, NIH/NIAAA/LNG, 5625 Fishers Lane, 3S-32, Bethesda, MD 20852, USA
| | - Christina S Barr
- Section of Comparative Behavioral Genomics, NIH/NIAAA/LNG, 5625 Fishers Lane, 3S-32, Bethesda, MD 20852, USA.
| |
Collapse
|
28
|
Choi Y, Jung YD, Ayarpadikannan S, Koga A, Imai H, Hirai H, Roos C, Kim HS. Novel variable number of tandem repeats of gibbon MAOA gene and its evolutionary significance. Genome 2015; 57:427-32. [PMID: 25360715 DOI: 10.1139/gen-2014-0065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Variable number of tandem repeats (VNTRs) are scattered throughout the primate genome, and genetic variation of these VNTRs have been accumulated during primate radiation. Here, we analyzed VNTRs upstream of the monoamine oxidase A (MAOA) gene in 11 different gibbon species. An abundance of truncated VNTR sequences and copy number differences were observed compared to those of human VNTR sequences. To better understand the biological role of these VNTRs, a luciferase activity assay was conducted and results indicated that selected VNTR sequences of the MAOA gene from human and three different gibbon species (Hylobates klossii, Hylobates lar, and Nomascus concolor) showed silencing ability. Together, these data could be useful for understanding the evolutionary history and functional significance of MAOA VNTR sequences in gibbon species.
Collapse
Affiliation(s)
- Yuri Choi
- a Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Dettmer AM, Suomi SJ. Nonhuman primate models of neuropsychiatric disorders: influences of early rearing, genetics, and epigenetics. ILAR J 2015; 55:361-70. [PMID: 25225312 DOI: 10.1093/ilar/ilu025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This report reviews the scientific literature from the past several decades that focuses on nonhuman primates (NHPs) as models of neuropsychiatric disorders, including anxiety, and alcoholism. In particular, we highlight the approaches, advantages, and disadvantages of the rearing, genetic, and epigenetic methodologies behind these studies as a means of evaluating the application of these methods in assessing disorders in NHPs as models of human disease. Finally, we describe the contributions the NHP studies have made to neuropsychiatric research and areas for future research.
Collapse
|
30
|
Yokoyama C, Onoe H. Positron emission tomography imaging of the social brain of common marmosets. Neurosci Res 2015; 93:82-90. [DOI: 10.1016/j.neures.2014.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 01/07/2023]
|
31
|
Parker MO, Annan LV, Kanellopoulos AH, Brock AJ, Combe FJ, Baiamonte M, Teh MT, Brennan CH. The utility of zebrafish to study the mechanisms by which ethanol affects social behavior and anxiety during early brain development. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:94-100. [PMID: 24690524 PMCID: PMC4186787 DOI: 10.1016/j.pnpbp.2014.03.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/07/2014] [Accepted: 03/21/2014] [Indexed: 01/31/2023]
Abstract
Exposure to moderate levels of ethanol during brain development has a number of effects on social behavior but the molecular mechanisms that mediate this are not well understood. Gaining a better understanding of these factors may help to develop therapeutic interventions in the future. Zebrafish offer a potentially useful model in this regard. Here, we introduce a zebrafish model of moderate prenatal ethanol exposure. Embryos were exposed to 20mM ethanol for seven days (48hpf-9dpf) and tested as adults for individual social behavior and shoaling. We also tested their basal anxiety with the novel tank diving test. We found that the ethanol-exposed fish displayed reductions in social approach and shoaling, and an increase in anxiety in the novel tank test. These behavioral differences corresponded to differences in hrt1aa, slc6a4 and oxtr expression. Namely, acute ethanol caused a spike in oxtr and ht1aa mRNA expression, which was followed by down-regulation at 7dpf, and an up-regulation in slc6a4 at 72hpf. This study confirms the utility of zebrafish as a model system for studying the molecular basis of developmental ethanol exposure. Furthermore, it proposes a putative developmental mechanism characterized by ethanol-induced OT inhibition leading to suppression of 5-HT and up-regulation of 5-HT1A, which leads, in turn, to possible homeostatic up-regulation of 5-HTT at 72hpf and subsequent imbalance of the 5-HT system.
Collapse
Affiliation(s)
- Matthew O Parker
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Leonette V Annan
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Alexandros H Kanellopoulos
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Alistair J Brock
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Fraser J Combe
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Matteo Baiamonte
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Muy-Teck Teh
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, United Kingdom
| | - Caroline H Brennan
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom.
| |
Collapse
|
32
|
Patterns of genetic variation and the role of selection in HTR1A and HTR1B in macaques (Macaca). BMC Genet 2014; 15:116. [PMID: 25376878 PMCID: PMC4228068 DOI: 10.1186/s12863-014-0116-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/22/2014] [Indexed: 12/01/2022] Open
Abstract
Background Research has increasingly highlighted the role of serotonin in behavior. However, few researchers have examined serotonin in an evolutionary context, although such research could provide insight into the evolution of important behaviors. The genus Macaca represents a useful model to address this, as this genus shows a wide range of behavioral variation. In addition, many genetic features of the macaque serotonin system are similar to those of humans, and as common models in biomedical research, knowledge of the genetic variation and evolution of serotonin functioning in macaques are particularly relevant for studies of human evolution. Here, we examine the role of selection in the macaque serotonin system by comparing patterns of genetic variation for two genes that code for two types of serotonin receptors – HTR1A and HTR1B – across five species of macaques. Results The pattern of variation is significantly different for HTR1A compared to HTR1B. Specifically, there is an increase in between-species variation compared to within-species variation for HTR1A. Phylogenetic analyses indicate that portions of HTR1A show an elevated level of nonsynonymous substitutions. Together these analyses are indicative of positive selection acting on HTR1A, but not HTR1B. Furthermore, the haplotype network for HTR1A is inconsistent with the species tree, potentially due to both deep coalescence and selection. Conclusions The results of this study indicate distinct evolutionary histories for HTR1A and HTR1B, with HTR1A showing evidence of selection and a high level of divergence among species, a factor which may have an impact on biomedical research that uses these species as models. The wide genetic variation of HTR1A may also explain some of the species differences in behavior, although further studies on the phenotypic effect of the sequenced polymorphisms are needed to confirm this. Electronic supplementary material The online version of this article (doi:10.1186/s12863-014-0116-5) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Escitalopram efficacy in depression: a cross-ethnicity examination of the serotonin transporter promoter polymorphism. J Clin Psychopharmacol 2014; 34:645-8. [PMID: 24943391 DOI: 10.1097/jcp.0000000000000165] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Current evidence suggests that polymorphism in the serotonin transporter gene (5-HTTLPR) predicts antidepressant efficacy in whites but less so in Asians. However, it is not clear whether this effect can be observed for specific types of antidepressant drugs. White (n = 47) and Korean (n = 118) participants with major depressive disorder were treated with escitalopram and assessed over 8 weeks. Among those with the l/l but not l/s or s/s genotypes, whites had greater depression score reductions, response rates, and remission rates compared with Koreans. Our results suggest that 5-HTTLPR predicts escitalopram efficacy in an ethnicity-dependent manner.
Collapse
|
34
|
Abstract
Because of their strong similarities to humans across physiologic, developmental, behavioral, immunologic, and genetic levels, nonhuman primates are essential models for a wide spectrum of biomedical research. But unlike other animal models, nonhuman primates possess substantial outbred genetic variation, reducing statistical power and potentially confounding interpretation of results in research studies. Although unknown genetic variation is a hindrance in studies that allocate animals randomly, taking genetic variation into account in study design affords an opportunity to transform the way that nonhuman primates are used in biomedical research. New understandings of how the function of individual genes in rhesus macaques mimics that seen in humans are greatly advancing the rhesus macaques utility as research models, but epistatic interaction, epigenetic regulatory mechanisms, and the intricacies of gene networks limit model development. We are now entering a new era of nonhuman primate research, brought on by the proliferation and rapid expansion of genomic data. Already the cost of a rhesus macaque genome is dwarfed by its purchase and husbandry costs, and complete genomic datasets will inevitably encompass each rhesus macaque used in biomedical research. Advancing this outcome is paramount. It represents an opportunity to transform the way animals are assigned and used in biomedical research and to develop new models of human disease. The genetic and genomic revolution brings with it a paradigm shift for nonhuman primates and new mandates on how nonhuman primates are used in biomedical research.
Collapse
|
35
|
Conway CC, Slavich GM, Hammen C. Daily stress reactivity and serotonin transporter gene (5-HTTLPR) variation: internalizing responses to everyday stress as a possible transdiagnostic phenotype. BIOLOGY OF MOOD & ANXIETY DISORDERS 2014; 4:2. [PMID: 24461074 PMCID: PMC3933324 DOI: 10.1186/2045-5380-4-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/10/2014] [Indexed: 12/27/2022]
Abstract
Background Recent studies examining the interaction between the 5-HTTLPR locus in the serotonin transporter gene and life stress in predicting depression have yielded equivocal results, leading some researchers to question whether 5-HTTLPR variation indeed regulates depressive responses to stress. Two possible sources of inconsistent data in this literature are imprecise stress assessment methodologies and a restricted focus on depression phenotypes as the outcome of interest, as opposed to transdiagnostic emotional symptoms such as internalizing and externalizing dimensions. The present study aimed to address these critical limitations in prior research by examining how 5-HTTLPR acts in concert with idiographically assessed daily life stress to predict transdiagnostic emotional outcomes. Results One hundred and four healthy young adults genotyped for 5-HTTLPR reported on their life stress exposure and internalizing and externalizing experiences for 14 consecutive days. As hypothesized, daily stress levels were associated with severity of internalizing symptoms, but only for 5-HTTLPR S allele carriers. Additional analyses revealed that these interactive effects of 5-HTTLPR and daily life stress on internalizing symptoms extended to both the distress and fear subdomains of internalizing symptoms. Conclusions Considered together, these results support the validity of the 5-HTTLPR stress sensitivity hypothesis and suggest for the first time that variation at 5-HTTLPR moderates the effects of daily life stress on broadband symptom profiles.
Collapse
Affiliation(s)
- Christopher C Conway
- Department of Psychology, University of California, Los Angeles, Box 951563, Los Angeles, CA 90095-1563, USA.
| | | | | |
Collapse
|
36
|
AVPR1A Variation in Chimpanzees (Pan troglodytes): Population Differences and Association with Behavioral Style. INT J PRIMATOL 2014. [DOI: 10.1007/s10764-013-9747-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Shattuck MR, Satkoski-Trask J, Deinard A, Tito RY, Smith DG, Malhi RS. The evolutionary history of SLC6A4 and the role of plasticity in Macaca. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 153:605-16. [PMID: 24375078 DOI: 10.1002/ajpa.22460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 12/03/2013] [Indexed: 11/07/2022]
Abstract
Serotonin has been repeatedly indicated as a biological marker of behavior. In particular, the serotonin transporter gene, SLC6A4, has been the focus of a large body of research. Interestingly, both rhesus macaques (Macaca mulatta) and humans have independently evolved a number of shared polymorphisms for this gene, which is indicative of parallel evolution between the two species. However, little is known about the evolution of this gene, particularly within macaques. Although there are several hypotheses as to the adaptive values of various polymorphisms, few authors have gone beyond theoretical discussion. Here, we examined the genetic variation in SLC6A4 within and between several species of macaques and investigate whether selection has played a significant role in its evolutionary history. In addition, we assayed the promoter region polymorphism, 5-HTTLPR, which is known to play a significant role in regulating both serotonin turnover and behavior. In examining the distribution of the 5-HTTLPR polymorphism, we identified significant differences between Indian and Chinese populations of Macaca mulatta; furthermore, we discovered its presence in Macaca cyclopis, which has not been described before. In regard to the evolutionary history of SLC6A4, we found little evidence for selection and conclude that SLC6A4 largely evolved through neutral processes, possibly due to its potential role in regulating behavioral plasticity. However, we also found very low levels of linkage between the coding regions and 5-HTTLPR. Because we limited evolutionary analyses to the coding regions, it is possible that the promoter region shows a distinct evolutionary history from SLC6A4.
Collapse
Affiliation(s)
- Milena R Shattuck
- Department of Anthropology, University of Illinois, Urbana, IL, 61801
| | | | | | | | | | | |
Collapse
|
38
|
How the cerebral serotonin homeostasis predicts environmental changes: a model to explain seasonal changes of brain 5-HTT as intermediate phenotype of the 5-HTTLPR. Psychopharmacology (Berl) 2013; 230:333-43. [PMID: 24150247 DOI: 10.1007/s00213-013-3308-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 09/30/2013] [Indexed: 12/23/2022]
Abstract
Molecular imaging studies with positron emission tomography have revealed that the availability of serotonin transporter (5-HTT) in the human brain fluctuates over the course of the year. This effect is most pronounced in carriers of the short allele of the 5-HTT promoter region (5-HTTLPR), which has in several previous studies been linked to an increased risk to develop mood disorders. We argue that long-lasting fluctuations in the cerebral serotonin transmission, which is regulated via the 5-HTT, are responsible for mediating responses to environmental changes based on an assessment of the expected "safety" of the environment; this response is obtained in part through serotonergic modulation of the hypothalamic-pituitary-adrenal (HPA) axis. We posit that the intermediate phenotype of the s-allele may properly be understood as mediating a trade-off, wherein increased responsiveness of cerebral serotonin transmission to seasonal and other forms of environmental change imparts greater behavioral flexibility, at the expense of increased vulnerability to stress. This model may explain the somewhat higher prevalence of the s-allele in some human populations dwelling at geographic latitudes with pronounced seasonal climatic changes, while this hypothesis does not rule out that genetic drift plays an additional or even exclusive role. We argue that s-allele manifests as an intermediate phenotype in terms of an increased responsiveness of the 5-HTT expression to number of daylight hours, which may serve as a stable surrogate marker of other environmental factors, such as availability of food and safety of the environment in populations that live closer to the geographic poles.
Collapse
|
39
|
Dobson SD, Brent LJN. On the evolution of the serotonin transporter linked polymorphic region (5-HTTLPR) in primates. Front Hum Neurosci 2013; 7:588. [PMID: 24312034 PMCID: PMC3832783 DOI: 10.3389/fnhum.2013.00588] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 10/28/2013] [Indexed: 11/28/2022] Open
Abstract
Some allelic variants of the serotonin transporter linked polymorphic region (5-HTTLPR) result in lower levels of expression of the serotonin transporter gene (SLC6A4). These low-expressing (LE) alleles are associated with mental-health disorders in a minority of humans that carry them. Humans are not the only primates that exhibit this polymorphism; other species, including some monkeys, also have LE and high-expressing (HE) variants of 5-HTTLPR. We propose a behavioral genetic framework to explain the adaptive evolution of this polymorphism in primates, including humans. We hypothesize that both LE and HE alleles are maintained by balancing selection in species characterized by short-term fluctuations in social competition levels. More specifically, we propose that LE carriers benefit from their hypervigilant tendencies during periods of elevated competition, whereas HE homozygotes cope best when competition levels do not deviate from the norm. Thus, both alleles have long-term benefits when competition levels tend to vary substantially over relatively short timescales within a social group. We describe this hypothesis in detail and outline a series of predictions to test it. Some of these predictions are supported by findings in the current literature, while others remain areas of future research.
Collapse
Affiliation(s)
- Seth D Dobson
- Department of Anthropology, Dartmouth College Hanover, NH, USA
| | | |
Collapse
|
40
|
Juárez P, Valdovinos MG, May ME, Lloyd BP, Couppis MH, Kennedy CH. Serotonin2A/C receptors mediate the aggressive phenotype of TLX gene knockout mice. Behav Brain Res 2013; 256:354-61. [DOI: 10.1016/j.bbr.2013.07.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 07/23/2013] [Accepted: 07/25/2013] [Indexed: 01/31/2023]
|
41
|
Goswami DB, Ogawa LM, Ward JM, Miller GM, Vallender EJ. Large-scale polymorphism discovery in macaque G-protein coupled receptors. BMC Genomics 2013; 14:703. [PMID: 24119066 PMCID: PMC3907043 DOI: 10.1186/1471-2164-14-703] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/04/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND G-protein coupled receptors (GPCRs) play an inordinately large role in human health. Variation in the genes that encode these receptors is associated with numerous disorders across the entire spectrum of disease. GPCRs also represent the single largest class of drug targets and associated pharmacogenetic effects are modulated, in part, by polymorphisms. Recently, non-human primate models have been developed focusing on naturally-occurring, functionally-parallel polymorphisms in candidate genes. This work aims to extend those studies broadly across the roughly 377 non-olfactory GPCRs. Initial efforts include resequencing 44 Indian-origin rhesus macaques (Macaca mulatta), 20 Chinese-origin rhesus macaques, and 32 cynomolgus macaques (M. fascicularis). RESULTS Using the Agilent target enrichment system, capture baits were designed for GPCRs off the human and rhesus exonic sequence. Using next generation sequencing technologies, nearly 25,000 SNPs were identified in coding sequences including over 14,000 non-synonymous and more than 9,500 synonymous protein-coding SNPs. As expected, regions showing the least evolutionary constraint show greater rates of polymorphism and greater numbers of higher frequency polymorphisms. While the vast majority of these SNPs are singletons, roughly 1,750 non-synonymous and 2,900 synonymous SNPs were found in multiple individuals. CONCLUSIONS In all three populations, polymorphism and divergence is highly concentrated in N-terminal and C-terminal domains and the third intracellular loop region of GPCRs, regions critical to ligand-binding and signaling. SNP frequencies in macaques follow a similar pattern of divergence from humans and new polymorphisms in primates have been identified that may parallel those seen in humans, helping to establish better non-human primate models of disease.
Collapse
Affiliation(s)
- Dharmendra B Goswami
- New England Primate Research Center, Harvard Medical School, One Pine Hill Drive, Southborough, MA 01772, USA.
| | | | | | | | | |
Collapse
|
42
|
Chang SWC, Brent LJN, Adams GK, Klein JT, Pearson JM, Watson KK, Platt ML. Neuroethology of primate social behavior. Proc Natl Acad Sci U S A 2013; 110 Suppl 2:10387-94. [PMID: 23754410 PMCID: PMC3690617 DOI: 10.1073/pnas.1301213110] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A neuroethological approach to human and nonhuman primate behavior and cognition predicts biological specializations for social life. Evidence reviewed here indicates that ancestral mechanisms are often duplicated, repurposed, and differentially regulated to support social behavior. Focusing on recent research from nonhuman primates, we describe how the primate brain might implement social functions by coopting and extending preexisting mechanisms that previously supported nonsocial functions. This approach reveals that highly specialized mechanisms have evolved to decipher the immediate social context, and parallel circuits have evolved to translate social perceptual signals and nonsocial perceptual signals into partially integrated social and nonsocial motivational signals, which together inform general-purpose mechanisms that command behavior. Differences in social behavior between species, as well as between individuals within a species, result in part from neuromodulatory regulation of these neural circuits, which itself appears to be under partial genetic control. Ultimately, intraspecific variation in social behavior has differential fitness consequences, providing fundamental building blocks of natural selection. Our review suggests that the neuroethological approach to primate behavior may provide unique insights into human psychopathology.
Collapse
Affiliation(s)
- Steve W. C. Chang
- Departments of Neurobiology and
- Duke Institute for Brain Sciences, Center for Cognitive Neuroscience and
| | - Lauren J. N. Brent
- Departments of Neurobiology and
- Duke Institute for Brain Sciences, Center for Cognitive Neuroscience and
| | - Geoffrey K. Adams
- Departments of Neurobiology and
- Duke Institute for Brain Sciences, Center for Cognitive Neuroscience and
| | - Jeffrey T. Klein
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599
| | - John M. Pearson
- Departments of Neurobiology and
- Neurosurgery, Duke University School of Medicine, Durham, NC 27710
- Duke Institute for Brain Sciences, Center for Cognitive Neuroscience and
| | - Karli K. Watson
- Departments of Neurobiology and
- Duke Institute for Brain Sciences, Center for Cognitive Neuroscience and
| | - Michael L. Platt
- Departments of Neurobiology and
- Duke Institute for Brain Sciences, Center for Cognitive Neuroscience and
- Departments of Psychology and Neurosciences and
- Evolutionary Anthropology, Duke University, Durham, NC 27708; and
| |
Collapse
|
43
|
Thierry B. Identifying constraints in the evolution of primate societies. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120342. [PMID: 23569290 PMCID: PMC3638445 DOI: 10.1098/rstb.2012.0342] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The evolutionary study of social systems in non-human primates has long been focused on ecological determinants. The predictive value of socio-ecological models remains quite low, however, in particular because such equilibrium models cannot integrate the course of history. The use of phylogenetic methods indicates that many patterns of primate societies have been conserved throughout evolutionary history. For example, the study of social relations in macaques revealed that their social systems are made of sets of correlated behavioural traits. Some macaque species are portrayed by marked social intolerance, a steep dominance gradient and strong nepotism, whereas others display a higher level of social tolerance, relaxed dominance and a weaker influence of kinship. Linkages between behavioural traits occur at different levels of organization, and act as constraints that limit evolutionary responses to external pressures. Whereas these constraints can exert strong stabilizing selection that opposes the potential changes required by the ecological environment, selective mechanisms may have the potential to switch the whole social system from one state to another by acting primarily on some key behavioural traits that could work as pacemakers.
Collapse
Affiliation(s)
- Bernard Thierry
- Centre National de la Recherche Scientifique, Département Ecologie, Physiologie et Ethologie, Strasbourg 67000, France.
| |
Collapse
|
44
|
The serotonin transporter gene is a substrate for age and stress dependent epigenetic regulation in rhesus macaque brain: potential roles in genetic selection and gene × environment interactions. Dev Psychopathol 2013; 24:1391-400. [PMID: 23062305 DOI: 10.1017/s0954579412000788] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In humans, it has been demonstrated that the serotonin transporter linked polymorphic region (5-HTTLPR) genotype moderates risk in the face of adversity. One mechanism by which stress could interact with genotype is via epigenetic modifications. We wanted to examine whether stress interacted with genotype to predict binding of a histone 3 protein trimethylated at lysine 3 (H3K4me3) that marks active promoters. The brains (N = 61) of male rhesus macaques that had been reared in the presence or absence of stress were archived and the hippocampusi dissected. Chromatin immunoprecipitation was performed with an antibody against H3K4me3 followed by sequencing on a SolexaG2A. The effects of age, genotype (5-HTTLPR long/long vs. short), and stress exposure (peer-reared vs. mother-reared) on levels of H3K4me3 binding were determined. We found effects of age and stress exposure. There was a decline in H3K4me3 from preadolescence to postadolescence and lower levels in peer-reared monkeys and no effects of genotype. When we controlled for age, however, we found that there were effects of 5-HTTLPR genotype and rearing condition on H3K4me3 binding. In a larger sample, we observed that cerebrospinal fluid 5-hydroxyindoleacetic acid levels were subject to interactive effects among age, rearing history, and genotype. Genes containing both genetic selection and epigenetic regulation may be particularly important in stress adaptation and development. We find evidence for selection at the solute carrier family C6 member 4 gene and observe epigenetic reorganization according to genotype, stress, and age. These data suggest that developmental stage may moderate effects of stress and serotonin transporter genotype in the emergence of alternative adaptation strategies and in the vulnerability to developmental or psychiatric disorders.
Collapse
|
45
|
Brent LJN, Heilbronner SR, Horvath JE, Gonzalez-Martinez J, Ruiz-Lambides A, Robinson AG, Skene JHP, Platt ML. Genetic origins of social networks in rhesus macaques. Sci Rep 2013; 3:1042. [PMID: 23304433 PMCID: PMC3540398 DOI: 10.1038/srep01042] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/06/2012] [Indexed: 01/19/2023] Open
Abstract
Sociality is believed to have evolved as a strategy for animals to cope with their environments. Yet the genetic basis of sociality remains unclear. Here we provide evidence that social network tendencies are heritable in a gregarious primate. The tendency for rhesus macaques, Macaca mulatta, to be tied affiliatively to others via connections mediated by their social partners - analogous to friends of friends in people - demonstrated additive genetic variance. Affiliative tendencies were predicted by genetic variation at two loci involved in serotonergic signalling, although this result did not withstand correction for multiple tests. Aggressive tendencies were also heritable and were related to reproductive output, a fitness proxy. Our findings suggest that, like humans, the skills and temperaments that shape the formation of multi-agent relationships have a genetic basis in nonhuman primates, and, as such, begin to fill the gaps in our understanding of the genetic basis of sociality.
Collapse
Affiliation(s)
- Lauren J N Brent
- Duke Institute for Brain Sciences and Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Stephens MAC, McCaul ME, Weerts EM, Wand G. Serotonin transporter-linked polymorphic region (5-HTTLPR) genotype is associated with cortisol responsivity to naloxone challenge. Psychopharmacology (Berl) 2012; 224:223-30. [PMID: 22623017 DOI: 10.1007/s00213-012-2742-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 05/05/2012] [Indexed: 12/16/2022]
Abstract
RATIONALE The serotonergic and opioidergic neurotransmitter systems are critical regulators of the hypothalamic-pituitary-adrenal (HPA) axis through their respective excitatory and inhibitory inputs. Serotonin transporter (5-HTT) genotype has been studied as a marker of HPA axis dysregulation and for predicting risk of psychopathology, with mixed findings. OBJECTIVES We stimulated the HPA axis with naloxone, an opioid receptor antagonist, to examine cortisol reactivity based on 5-HTT-linked polymorphic region (5-HTTLPR) genotypes. METHODS Healthy community volunteers (N = 78) received intravenous (IV) placebo followed by sequential doses of IV naloxone (50, 100, 200, and 400 μg/kg) every 30 min. Plasma cortisol was measured every 15 min. Participants were genotyped for the long (L) and short (S) alleles of the 5-HTT gene and for rs25531 (A/G) in the 5-HTTLPR repetitive element and compared by the 5-HTTLPR/rs25531 genotype (triallele) and by the 5-HTTLPR genotype (biallele) classification. RESULTS In triallele analyses, individuals with one or more L(A) alleles showed higher cortisol response to naloxone compared with individuals with no L(A) alleles. In biallele analyses, less robust effects were found, although individuals with two L alleles showed a higher cortisol response compared with other genotypes. CONCLUSIONS Naloxone blockade leads to a greater activation of the HPA axis among individuals with the L(A) allele. Including rs25531 in the analysis with the 5-HTTLPR genotype appears more sensitive in detecting genetic differences in naloxone-induced cortisol than when using only the 5-HTTLPR genotype. Future research should investigate the interactive effects between the serotonergic and opioidergic systems on HPA axis dysregulation and psychopathophysiology.
Collapse
Affiliation(s)
- Mary Ann C Stephens
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, 550 N. Broadway, Ste. 115, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
47
|
PASCALE ESTERINA, LUCARELLI MARCO, PASSARELLI FRANCESCA, BUTLER RICHARDH, TAMELLINI ANDREA, ADDESSI ELSA, VISALBERGHI ELISABETTA, MANCIOCCO ARIANNA, VITALE AUGUSTO, LAVIOLA GIOVANNI. Monomorphic Region of the Serotonin Transporter Promoter Gene in New World Monkeys. Am J Primatol 2012; 74:1028-34. [DOI: 10.1002/ajp.22056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 06/11/2012] [Accepted: 06/17/2012] [Indexed: 12/31/2022]
Affiliation(s)
- ESTERINA PASCALE
- Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche; Sapienza Università di Roma; Roma; Italy
| | - MARCO LUCARELLI
- Dipartimento di Biotecnologie Cellulari ed Ematologia; Sapienza Università di Roma; Roma; Italy
| | | | | | | | - ELSA ADDESSI
- Istituto di Scienze e Tecnologie della Cognizione; CNR; Roma; Italy
| | | | - ARIANNA MANCIOCCO
- Dipartimento Scienze Chimiche e Tecnologie dei Materiali; Consiglio Nazionale delle Ricerche; Roma; Italy
| | - AUGUSTO VITALE
- Dipartimento di Biologia Cellulare e Neuroscienze; Istituto Superiore di Sanità; Roma; Italy
| | - GIOVANNI LAVIOLA
- Dipartimento di Biologia Cellulare e Neuroscienze; Istituto Superiore di Sanità; Roma; Italy
| |
Collapse
|
48
|
Conway CC, Keenan-Miller D, Hammen C, Lind PA, Najman JM, Brennan PA. Coaction of stress and serotonin transporter genotype in predicting aggression at the transition to adulthood. JOURNAL OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY 2012; 41:53-63. [PMID: 22233245 DOI: 10.1080/15374416.2012.632351] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Despite consistent evidence that serotonin functioning affects stress reactivity and vulnerability to aggression, research on serotonin gene-stress interactions (G × E) in the development of aggression remains limited. The present study investigated variation in the promoter region of the serotonin transporter gene (5-HTTLPR) as a moderator of the stress-aggression association at the transition to adulthood. Multiple informants and multiple measures were used to assess aggression in a cohort of 381 Australian youth (61% female, 93% Caucasian) interviewed at ages 15 and 20. At age 20, semistructured interviews assessed acute and chronic stressors occurring in the past 12 months. Structural equation modeling analyses revealed a significant main effect of chronic stress, but not 5-HTTLPR or acute stress, on increases in aggression at age 20. Consistent with G × E hypotheses, 5-HTTLPR short allele carriers demonstrated greater increments in aggression following chronic stress relative to long allele homozygotes. The strength of chronic stress G × E did not vary according to sex. Variation at 5-HTTLPR appears to contribute to individual differences in aggressive reactions to chronic stress at the transition to adulthood.
Collapse
|
49
|
Abstract
The human serotonin transporter (SERT) gene possesses a 43-base pair (bp) insertion-deletion promoter polymorphism, the h5-HTTLPR. Genotype at this locus correlates with variation in anxiety-related personality traits and risk for major depressive disorder in many studies. Yet, the complex effects of the h5-HTTLPR, in combination with closely associated single-nucleotide polymorphisms (SNPs), continue to be debated. Moreover, although SERT is of high clinical significance, transporter function in vivo remains difficult to assess. Rhesus express a promoter polymorphism related to the h5-HTTLPR. The rh5-HTTLPR has been linked to differences in stress-related behavior and cognitive flexibility, although allelic variations in serotonin uptake have not been investigated. We studied the serotonin system as it relates to the 5-HTTLPR in rhesus peripheral blood cells. Sequencing of the rh5-HTTLPR revealed a 23-bp insertion, which is somewhat longer than originally reported. Consistent with previous reports, no SNPs in the rh5-HTTLPR and surrounding genomic regions were detected in the individuals studied. Reductions in serotonin uptake rates, cell surface SERT binding, and 5-hydroxyindoleacetic acid/serotonin ratios, but not SERT mRNA levels, were associated with the rh5-HTTLPR short allele. Thus, serotonin uptake rates are differentiable with respect to the 5-HTTLPR in an easily accessible native peripheral tissue. In light of these findings, we foresee that primary blood cells, in combination with high sensitivity functional measurements enabled by chronoamperometry, will be important for investigating alterations in serotonin uptake associated with genetic variability and antidepressant responsiveness in humans.
Collapse
|
50
|
Paredes UM, Bubb VJ, Haddley K, Macho GA, Quinn JP. Intronic tandem repeat in the serotonin transporter gene in Old World monkeys: a new transcriptional regulator? J Mol Neurosci 2011; 47:401-7. [PMID: 22038691 DOI: 10.1007/s12031-011-9664-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 10/12/2011] [Indexed: 11/28/2022]
Abstract
The serotonin transporter gene (SLC6A4) is heavily involved in the regulation of social behaviour of primates. Old World monkeys (e.g. macaques, baboons) have been used to study interactions between variation in the SLC6A4 gene and behaviour. Correlations of variation at one polymorphism located in the promoter region (known as 5HTTLPR) and variation at SLC6A4 expression levels, serotonin turnover and behaviour has been widely studied. In Old World monkeys, the third intron of the SLC6A4 gene also presents a tandem repeat, which sequence varies across species by a few point substitutions. We predict that in these species, this repeated region also acts as transcriptional regulatory domain and that sequence variation at this polymorphic locus might result in differential levels of expression in gene-environment interactions. For testing these hypotheses, the tandem repeat of Mandrillus sphinx and Cercopithecus aethiops from the third intron were cloned into a reporter gene vector and delivered to either primary cultures of rat neonate frontal cortex or the human cell line (JAr) to analyse their transcriptional activities. These repeated sequences supported significantly different levels of gene expression only when delivered into frontal cortex cultures. Furthermore, we tested in silico if such substitutions could have an effect on their binding profile to RNA- and DNA-binding proteins and on splicing. Taken together our results suggest that the tandem repeat in the third intron of the SLC6A4 gene of Old World monkeys could constitute a second transcriptional regulator as suggested for the 5HTTLPR and therefore contribute to diversification of serotonin-related behaviour in these primates.
Collapse
Affiliation(s)
- Ursula M Paredes
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | | | | | | | | |
Collapse
|