1
|
Bederska-Łojewska D, Szczepanik K, Turek J, Machaczka A, Gąsior Ł, Pochwat B, Piotrowska J, Rospond B, Szewczyk B. Dietary Zinc Restriction and Chronic Restraint Stress Affect Mice Physiology, Immune Organ Morphology, and Liver Function. Nutrients 2024; 16:3934. [PMID: 39599720 PMCID: PMC11597199 DOI: 10.3390/nu16223934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Preclinical and clinical studies suggest that zinc deficiency and chronic stress contribute to depressive symptoms. Our study explores the intricate relationship between these factors by examining their physiological and biochemical effects across various organs in C57Bl/6J mice. METHODS The mice were divided into four groups: control, chronic restraint stress for 3 weeks, a zinc-restricted diet (<3 mg/kg) for 4 weeks, and a combination of stress and zinc restriction. Mice spleen and thymus weights were measured, and hematoxylin-eosin staining was conducted for liver and intestinal morphometry. Moreover, metallothionein (MT-1, MT-2, and MT-3), zinc transporter (ZnT-1), oxidative stress markers (TBARS, SOD, and GSH-Px), and zinc, iron, and copper concentrations in the liver were evaluated. Immunohistochemical analysis of the jejunum for ZIP1 and ZIP4 was also performed. CONCLUSIONS Our findings reveal that dietary zinc restriction and chronic stress induce structural changes in the intestines and immune organs and impact metallothionein expression, oxidative stress, and liver iron and copper homeostasis.
Collapse
Affiliation(s)
- Dorota Bederska-Łojewska
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| | - Kinga Szczepanik
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, ul. Krakowska 1, 32-083 Balice, Poland;
| | - Justyna Turek
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| | - Agata Machaczka
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| | - Łukasz Gąsior
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| | - Bartłomiej Pochwat
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| | - Joanna Piotrowska
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland
| | - Bartłomiej Rospond
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| |
Collapse
|
2
|
Jamerson LE, Bradshaw PC. The Roles of White Adipose Tissue and Liver NADPH in Dietary Restriction-Induced Longevity. Antioxidants (Basel) 2024; 13:820. [PMID: 39061889 PMCID: PMC11273496 DOI: 10.3390/antiox13070820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Dietary restriction (DR) protocols frequently employ intermittent fasting. Following a period of fasting, meal consumption increases lipogenic gene expression, including that of NADPH-generating enzymes that fuel lipogenesis in white adipose tissue (WAT) through the induction of transcriptional regulators SREBP-1c and CHREBP. SREBP-1c knockout mice, unlike controls, did not show an extended lifespan on the DR diet. WAT cytoplasmic NADPH is generated by both malic enzyme 1 (ME1) and the pentose phosphate pathway (PPP), while liver cytoplasmic NADPH is primarily synthesized by folate cycle enzymes provided one-carbon units through serine catabolism. During the daily fasting period of the DR diet, fatty acids are released from WAT and are transported to peripheral tissues, where they are used for beta-oxidation and for phospholipid and lipid droplet synthesis, where monounsaturated fatty acids (MUFAs) may activate Nrf1 and inhibit ferroptosis to promote longevity. Decreased WAT NADPH from PPP gene knockout stimulated the browning of WAT and protected from a high-fat diet, while high levels of NADPH-generating enzymes in WAT and macrophages are linked to obesity. But oscillations in WAT [NADPH]/[NADP+] from feeding and fasting cycles may play an important role in maintaining metabolic plasticity to drive longevity. Studies measuring the WAT malate/pyruvate as a proxy for the cytoplasmic [NADPH]/[NADP+], as well as studies using fluorescent biosensors expressed in the WAT of animal models to monitor the changes in cytoplasmic [NADPH]/[NADP+], are needed during ad libitum and DR diets to determine the changes that are associated with longevity.
Collapse
Affiliation(s)
| | - Patrick C. Bradshaw
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
3
|
Jové M, Mota-Martorell N, Fernàndez-Bernal A, Portero-Otin M, Barja G, Pamplona R. Phenotypic molecular features of long-lived animal species. Free Radic Biol Med 2023; 208:728-747. [PMID: 37748717 DOI: 10.1016/j.freeradbiomed.2023.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
One of the challenges facing science/biology today is uncovering the molecular bases that support and determine animal and human longevity. Nature, in offering a diversity of animal species that differ in longevity by more than 5 orders of magnitude, is the best 'experimental laboratory' to achieve this aim. Mammals, in particular, can differ by more than 200-fold in longevity. For this reason, most of the available evidence on this topic derives from comparative physiology studies. But why can human beings, for instance, reach 120 years whereas rats only last at best 4 years? How does nature change the longevity of species? Longevity is a species-specific feature resulting from an evolutionary process. Long-lived animal species, including humans, show adaptations at all levels of biological organization, from metabolites to genome, supported by signaling and regulatory networks. The structural and functional features that define a long-lived species may suggest that longevity is a programmed biological property.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Anna Fernàndez-Bernal
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), E28040, Madrid, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain.
| |
Collapse
|
4
|
Gómez J, Mota-Martorell N, Jové M, Pamplona R, Barja G. Mitochondrial ROS production, oxidative stress and aging within and between species: Evidences and recent advances on this aging effector. Exp Gerontol 2023; 174:112134. [PMID: 36849000 DOI: 10.1016/j.exger.2023.112134] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/01/2023]
Abstract
Mitochondria play a wide diversity of roles in cell physiology and have a key functional implication in cell bioenergetics and biology of free radicals. As the main cellular source of oxygen radicals, mitochondria have been postulated as the mediators of the cellular decline associated with the biological aging. Recent evidences have shown that mitochondrial free radical production is a highly regulated mechanism contributing to the biological determination of longevity which is species-specific. This mitochondrial free radical generation rate induces a diversity of adaptive responses and derived molecular damage to cell components, highlighting mitochondrial DNA damage, with biological consequences that influence the rate of aging of a given animal species. In this review, we explore the idea that mitochondria play a fundamental role in the determination of animal longevity. Once the basic mechanisms are discerned, molecular approaches to counter aging may be designed and developed to prevent or reverse functional decline, and to modify longevity.
Collapse
Affiliation(s)
- José Gómez
- Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Rey Juan Carlos University, E28933 Móstoles, Madrid, Spain
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), E25198 Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), E25198 Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), E25198 Lleida, Spain.
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), E28040 Madrid, Spain.
| |
Collapse
|
5
|
Sharma V, Mehdi MM. Oxidative stress, inflammation and hormesis: The role of dietary and lifestyle modifications on aging. Neurochem Int 2023; 164:105490. [PMID: 36702401 DOI: 10.1016/j.neuint.2023.105490] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Oxidative stress (OS) is primarily caused by the formation of free radicals and reactive oxygen species; it is considered as one of the prominent factors in slowing down and degrading cellular machinery of an individual, and it eventually leads to aging and age-related diseases by its continuous higher state. The relation between molecular damage and OS should be particularized to understand the beginning of destruction at the cellular levels, extending outwards to affect tissues, organs, and ultimately to the organism. Several OS biomarkers, which are established at the biomolecular level, are useful in investigating the disease susceptibility during aging. Slowing down the aging process is a matter of reducing the rate of oxidative damage to the cellular machinery over time. The breakdown of homeostasis, the mild overcompensation, the reestablishment of homeostasis, and the adaptive nature of the process are the essential features of hormesis, which incorporates several factors, including calorie restriction, nutrition and lifestyle modifications that play an important role in reducing the OS. In the current review, along with the concept and theories of aging (with emphasis on free radical theory), various manifestations of OS with special attention on mitochondrial dysfunction and age-related diseases have been discussed. To alleviate the OS, hormetic approaches including caloric restriction, exercise, and nutrition have also been discussed.
Collapse
Affiliation(s)
- Vinita Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144401, India
| | - Mohammad Murtaza Mehdi
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144401, India.
| |
Collapse
|
6
|
Fluid Inclusions and Stable Isotope Geochemistry of Gold Mineralization Associated with Fine-Grained Granite: A Case Study of the Xiawolong Gold Deposit, Jiaodong Peninsula, China. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Xiawolong gold deposit, located in the Muping–Rushan gold metallogenic belt (eastern Jiaodong Peninsula), is a newly discovered deposit that developed in the late Early Cretaceous as fine-grained granite. Gold mineralization, which mainly occurs in the middle of fresh fine-grained granite dikes, consists of stockwork-style and disseminated ores. They are characterized by middle-high-temperature mineral assemblages, such as molybdenite and magnetite, associated with gold-bearing pyrite. Four types of primary fluid inclusions, contained within the quartz grains from the gold-bearing disseminated and stockwork-style fine-grained granitic ores, were identified based on microthermometry and Raman spectroscopy. The types identified were type 1 aqueous inclusions with middle-high temperature (201 to 480 °C) and middle-low salinity of 0.18 to 17.00 wt.% NaCl equiv.; type 2 H2O–CO2 inclusions, which show middle-high temperatures (218 to 385 °C), middle-low salinities (1.23 to 13.26 wt.% equiv. NaCl), and variable XCO2 (0.031 to 0.044); type 3 daughter mineral-bearing inclusions with high temperature (416 to 446 °C) and relatively constant and high salinity (28.59 to 32.87 wt.% NaCl equiv.); and type 4 CO2 fluid inclusions, which possess a bulk density of 0.405 to 0.758 g/cm3 and a constant XCO2 (0.952 to 0.990) (according to the decreasing abundance of fluid inclusions). The δ18Owater range is between 3.4 and 5.9‰, and the range of the δD is from −97.1 to −77.4‰, which indicates that the ore-forming process is of a magmatic water origin. The δ34S values possess a narrow range between 4.5 and 9.3‰, indicating the source of the Mesozoic Kunyushan granitoids. The Pb isotopic compositions of pyrite show that the Mesozoic Kunyushan granitoids are the main lead source for pyrites. Types 1, 2, and 3 fluid inclusions coexist in the same view field of the quartz grain, which are suggested to occur as the result of fluid immiscibility because of the boiling of a single homogeneous NaCl-CaCl2-KCl-CO2-H2O system. The fluid immiscibility, rather the fluid mixing and wall-rock sulfidation, is the mechanism of gold precipitation in the Xiawolong deposit. Compared with both the “Linglong-type” and “Jiaojia-type” gold deposits in the Jiaodong Peninsula in terms of geological–petrographic evidence and all of the available geochemical data, it can be concluded the Xiawolong gold deposit is of magmatic hydrothermal origin, having a genetic relation to the fine-grained granite.
Collapse
|
7
|
Mitigation of Iron Irradiation-Induced Genotoxicity and Genomic Instability by Postexposure Dietary Restriction in Mice. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2888393. [PMID: 34926683 PMCID: PMC8677402 DOI: 10.1155/2021/2888393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022]
Abstract
Background and Purpose. Postexposure onset of dietary restriction (DR) is expected to provide therapeutic nutritional approaches to reduce health risk from exposure to ionizing radiation (IR) due to such as manned space exploration, radiotherapy, or nuclear accidents as IR could alleviate radiocarcinogenesis in animal models. However, the underlying mechanisms remain largely unknown. This study is aimed at investigating the effect from postexposure onset of DR on genotoxicity and genomic instability (GI) induced by total body irradiation (TBI) in mice. Materials and Methods. Mice were exposed to 2.0 Gy of accelerated iron particles with an initial energy of 500 MeV/nucleon and a linear energy transfer (LET) value of about 200 keV/μm. After TBI, mice were either allowed to free access to a standard laboratory chow or treated under DR (25% cut in diet). Using micronucleus frequency (MNF) in bone marrow erythrocytes, induction of acute genotoxicity and GI in the hematopoietic system was, respectively, determined 1 and 2 months after TBI. Results and Conclusions. TBI alone caused a significant increase in MNF while DR alone did not markedly influence the MNF. DR induced a significant decrease in MNF compared to the treatment by TBI alone. Results demonstrated that postexposure onset of DR could relieve the elevated MNF induced by TBI with high-LET iron particles. These findings indicated that reduction in acute genotoxicity and late GI may be at least a part of the mechanisms underlying decreased radiocarcinogenesis by DR.
Collapse
|
8
|
Mehdi MM, Solanki P, Singh P. Oxidative stress, antioxidants, hormesis and calorie restriction: The current perspective in the biology of aging. Arch Gerontol Geriatr 2021; 95:104413. [PMID: 33845417 DOI: 10.1016/j.archger.2021.104413] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/25/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
Aging, in a large measure, has long been defined as the resultant of oxidative stress acting on the cells. The cellular machinery eventually malfunctions at the basic level by the damage from the processes of oxidation and the system starts slowing down because of intrinsic eroding. To understand the initial destruction at the cellular level spreading outward to affect tissues, organs and the organism, the relationship between molecular damage and oxidative stress is required to understand. Retarding the aging process is a matter of cumulatively decreasing the rate of oxidative damage to the cellular machinery. Along with the genetic reasons, the decrease of oxidative stress is somehow a matter of lifestyle and importantly of diet. In the current review, the theories of aging and the understanding of various levels of molecular damage by oxidative stress have been emphasized. A broader understanding of mechanisms of aging have been elaborated in terms of effects of oxidative at molecular, mitochondrial, cellular and organ levels. The antioxidants supplementation, hormesis and calorie restriction as the prominent anti-aging strategies have also been discussed. The relevance and the efficacy of the antiaging strategies at system level have also been presented.
Collapse
Affiliation(s)
- Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bio-engineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Preeti Solanki
- Multidisciplinary Research Unit, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, 124001, Haryana, India
| | - Prabhakar Singh
- Department of Biochemistry, Veer Bahadur Singh Purvanchal University, Jaunpur, 222003, Uttar Pradesh, India
| |
Collapse
|
9
|
Pamplona R, Jové M, Mota-Martorell N, Barja G. Is the NDUFV2 subunit of the hydrophilic complex I domain a key determinant of animal longevity? FEBS J 2021; 288:6652-6673. [PMID: 33455045 DOI: 10.1111/febs.15714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/02/2020] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
Complex I, a component of the electron transport chain, plays a central functional role in cell bioenergetics and the biology of free radicals. The structural and functional N module of complex I is one of the main sites of the generation of free radicals. The NDUFV2 subunit/N1a cluster is a component of this module. Furthermore, the rate of free radical production is linked to animal longevity. In this review, we explore the hypothesis that NDUFV2 is the only conserved core subunit designed with a regulatory function to ensure correct electron transfer and free radical production, that low gene expression and protein abundance of the NDUFV2 subunit is an evolutionary adaptation needed to achieve a longevity phenotype, and that these features are determinants of the lower free radical generation at the mitochondrial level and a slower rate of aging of long-lived animals.
Collapse
Affiliation(s)
- Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Natalia Mota-Martorell
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
10
|
The Advanced Lipoxidation End-Product Malondialdehyde-Lysine in Aging and Longevity. Antioxidants (Basel) 2020; 9:antiox9111132. [PMID: 33203089 PMCID: PMC7696601 DOI: 10.3390/antiox9111132] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 01/03/2023] Open
Abstract
The nonenzymatic adduction of malondialdehyde (MDA) to the protein amino groups leads to the formation of malondialdehyde-lysine (MDALys). The degree of unsaturation of biological membranes and the intracellular oxidative conditions are the main factors that modulate MDALys formation. The low concentration of this modification in the different cellular components, found in a wide diversity of tissues and animal species, is indicative of the presence of a complex network of cellular protection mechanisms that avoid its cytotoxic effects. In this review, we will focus on the chemistry of this lipoxidation-derived protein modification, the specificity of MDALys formation in proteins, the methodology used for its detection and quantification, the MDA-lipoxidized proteome, the metabolism of MDA-modified proteins, and the detrimental effects of this protein modification. We also propose that MDALys is an indicator of the rate of aging based on findings which demonstrate that (i) MDALys accumulates in tissues with age, (ii) the lower the concentration of MDALys the greater the longevity of the animal species, and (iii) its concentration is attenuated by anti-aging nutritional and pharmacological interventions.
Collapse
|
11
|
Jové M, Mota-Martorell N, Pradas I, Galo-Licona JD, Martín-Gari M, Obis È, Sol J, Pamplona R. The Lipidome Fingerprint of Longevity. Molecules 2020; 25:molecules25184343. [PMID: 32971886 PMCID: PMC7570520 DOI: 10.3390/molecules25184343] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Lipids were determinants in the appearance and evolution of life. Recent studies disclose the existence of a link between lipids and animal longevity. Findings from both comparative studies and genetics and nutritional interventions in invertebrates, vertebrates, and exceptionally long-lived animal species—humans included—demonstrate that both the cell membrane fatty acid profile and lipidome are a species-specific optimized evolutionary adaptation and traits associated with longevity. All these emerging observations point to lipids as a key target to study the molecular mechanisms underlying differences in longevity and suggest the existence of a lipidome profile of long life.
Collapse
|
12
|
Pomatto LCD, Dill T, Carboneau B, Levan S, Kato J, Mercken EM, Pearson KJ, Bernier M, de Cabo R. Deletion of Nrf2 shortens lifespan in C57BL6/J male mice but does not alter the health and survival benefits of caloric restriction. Free Radic Biol Med 2020; 152:650-658. [PMID: 31953150 PMCID: PMC7382945 DOI: 10.1016/j.freeradbiomed.2020.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 12/18/2022]
Abstract
Caloric restriction (CR) is the leading non-pharmaceutical dietary intervention to improve health- and lifespan in most model organisms. A wide array of cellular pathways is induced in response to CR and CR-mimetics, including the transcriptional activator Nuclear factor erythroid-2-related factor 2 (Nrf2), which is essential in the upregulation of multiple stress-responsive and mitochondrial enzymes. Nrf2 is necessary in tumor protection but is not essential for the lifespan extending properties of CR in outbred mice. Here, we sought to study Nrf2-knockout (KO) mice and littermate controls in male C57BL6/J, an inbred mouse strain. Deletion of Nrf2 resulted in shortened lifespan compared to littermate controls only under ad libitum conditions. CR-mediated lifespan extension and physical performance improvements did not require Nrf2. Metabolic and protein homeostasis and activation of tissue-specific cytoprotective proteins were dependent on Nrf2 expression. These results highlight an important contribution of Nrf2 for normal lifespan and stress response.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA; National Institute on General Medical Sciences, National Institute of Health, Bethesda, MD, 20892, USA
| | - Theresa Dill
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Bethany Carboneau
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Sophia Levan
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Jonathan Kato
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Evi M Mercken
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Kevin J Pearson
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
13
|
Mota-Martorell N, Jove M, Pradas I, Sanchez I, Gómez J, Naudi A, Barja G, Pamplona R. Low abundance of NDUFV2 and NDUFS4 subunits of the hydrophilic complex I domain and VDAC1 predicts mammalian longevity. Redox Biol 2020; 34:101539. [PMID: 32353747 PMCID: PMC7191849 DOI: 10.1016/j.redox.2020.101539] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 01/14/2023] Open
Abstract
Mitochondrial reactive oxygen species (ROS) production, specifically at complex I (Cx I), has been widely suggested to be one of the determinants of species longevity. The present study follows a comparative approach to analyse complex I in heart tissue from 8 mammalian species with a longevity ranging from 3.5 to 46 years. Gene expression and protein content of selected Cx I subunits were analysed using droplet digital PCR (ddPCR) and western blot, respectively. Our results demonstrate: 1) the existence of species-specific differences in gene expression and protein content of Cx I in relation to longevity; 2) the achievement of a longevity phenotype is associated with low protein abundance of subunits NDUFV2 and NDUFS4 from the matrix hydrophilic domain of Cx I; and 3) long-lived mammals show also lower levels of VDAC (voltage-dependent anion channel) amount. These differences could be associated with the lower mitochondrial ROS production and slower aging rate of long-lived animals and, unexpectedly, with a low content of the mitochondrial permeability transition pore in these species. There are species-specific differences in gene expression and protein content of Cx I. The achievement of a longevity phenotype is associated with low protein abundance of subunits NDUFV2 and NDUFS4 from the matrix hydrophilic domain of Cx I. Long-lived mammals show also lower levels of VDAC (voltage-dependent anion channel) amount. These differences can be causally associated with the aging rate of long-lived animals.
Collapse
Affiliation(s)
- Natalia Mota-Martorell
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Catalonia, Spain.
| | - Mariona Jove
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Catalonia, Spain.
| | - Irene Pradas
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Catalonia, Spain.
| | - Isabel Sanchez
- Proteomics and Genomics Unit, University of Lleida, Lleida, Catalonia, Spain.
| | - José Gómez
- Department of Biology and Geology, Physics and Inorganic Chemistry, University Rey Juan Carlos I, ESCET-Campus de Móstoles, Móstoles, Madrid, Spain.
| | - Alba Naudi
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Catalonia, Spain.
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, Madrid, Spain.
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Catalonia, Spain.
| |
Collapse
|
14
|
Hoekstra LA, Schwartz TS, Sparkman AM, Miller DAW, Bronikowski AM. The untapped potential of reptile biodiversity for understanding how and why animals age. Funct Ecol 2020; 34:38-54. [PMID: 32921868 PMCID: PMC7480806 DOI: 10.1111/1365-2435.13450] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
1. The field of comparative aging biology has greatly expanded in the past 20 years. Longitudinal studies of populations of reptiles with a range of maximum lifespans have accumulated and been analyzed for evidence of mortality senescence and reproductive decline. While not as well represented in studies of amniote senescence, reptiles have been the subjects of many recent demographic and mechanistic studies of the biology of aging. 2. We review recent literature on reptile demographic senescence, mechanisms of senescence, and identify unanswered questions. Given the ecophysiological and demographic diversity of reptiles, what is the expected range of reptile senescence rates? Are known mechanisms of aging in reptiles consistent with canonical hallmarks of aging in model systems? What are the knowledge gaps in our understanding of reptile aging? 3. We find ample evidence of increasing mortality with advancing age in many reptiles. Testudines stand out as slower aging than other orders, but data on crocodilians and tuatara are sparse. Sex-specific analyses are generally not available. Studies of female reproduction suggest that reptiles are less likely to have reproductive decline with advancing age than mammals. 4. Reptiles share many physiological and molecular pathways of aging with mammals, birds, and laboratory model organisms. Adaptations related to stress physiology coupled with reptilian ectothermy suggest novel comparisons and contrasts that can be made with canonical aging phenotypes in mammals. These include stem cell and regeneration biology, homeostatic mechanisms, IIS/TOR signaling, and DNA repair. 5. To overcome challenges to the study of reptile aging, we recommend extending and expanding long-term monitoring of reptile populations, developing reptile cell lines to aid cellular biology, conducting more comparative studies of reptile morphology and physiology sampled along relevant life-history axes, and sequencing more reptile genomes for comparative genomics. Given the diversity of reptile life histories and adaptations, achieving these directives will likely greatly benefit all aging biology.
Collapse
Affiliation(s)
- Luke A Hoekstra
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50010, USA
| | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Amanda M Sparkman
- Department of Biology, Westmont College, Santa Barbara, California, 93108, USA
| | - David A W Miller
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50010, USA
| |
Collapse
|
15
|
Pradas I, Jové M, Cabré R, Ayala V, Mota-Martorell N, Pamplona R. Effects of Aging and Methionine Restriction on Rat Kidney Metabolome. Metabolites 2019; 9:E280. [PMID: 31739579 PMCID: PMC6918429 DOI: 10.3390/metabo9110280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
Methionine restriction (MetR) in animal models extends maximum longevity and seems to promote renoprotection by attenuating kidney injury. MetR has also been proven to affect several metabolic pathways including lipid metabolism. However, there is a lack of studies about the effect of MetR at old age on the kidney metabolome. In view of this, a mass spectrometry-based high-throughput metabolomic and lipidomic profiling was undertaken of renal cortex samples of three groups of male rats-An 8-month-old Adult group, a 26-month-old Aged group, and a MetR group that also comprised of 26-month-old rats but were subjected to an 80% MetR diet for 7 weeks. Additionally, markers of mitochondrial stress and protein oxidative damage were analyzed by mass spectrometry. Our results showed minor changes during aging in the renal cortex metabolome, with less than 59 differential metabolites between the Adult and Aged groups, which represents about 4% of changes in the kidney metabolome. Among the compounds identified are glycerolipids and lipid species derived from arachidonic acid metabolism. MetR at old age preferentially induces lipid changes affecting glycerophospholipids, docosanoids, and eicosanoids. No significant differences were observed between the experimental groups in the markers of mitochondrial stress and tissue protein damage. More than rejuvenation, MetR seems to induce a metabolic reprogramming.
Collapse
Affiliation(s)
| | | | | | | | | | - Reinald Pamplona
- Department of Experimental Medicine, Lleida University-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), 25198 Lleida, Spain; (I.P.); (M.J.); (R.C.); (V.A.); (N.M.-M.)
| |
Collapse
|
16
|
Saldmann F, Viltard M, Leroy C, Friedlander G. The Naked Mole Rat: A Unique Example of Positive Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4502819. [PMID: 30881592 PMCID: PMC6383544 DOI: 10.1155/2019/4502819] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/04/2018] [Accepted: 01/17/2019] [Indexed: 01/02/2023]
Abstract
The oxidative stress theory of aging, linking reactive oxygen species (ROS) to aging, has been accepted for more than 60 years, and numerous studies have associated ROS with various age-related diseases. A more precise version of the theory specifies that mitochondrial oxidative stress is a direct cause of aging. The naked mole rat, a unique animal with exceptional longevity (32 years in captivity), appears to be an ideal model to study successful aging and the role of ROS in this process. Several studies in the naked mole rat have shown that these animals exhibit a remarkable resistance to oxidative stress. At low concentrations, ROS serve as second messengers, and these important intracellular signalling functions are crucial for the regulation of cellular processes. In this review, we examine the literature on ROS and their functions as signal transducers. We focus specifically on the longest-lived rodent, the naked mole rat, which is a perfect example of the paradox of living an exceptionally long life with slow aging despite high levels of oxidative damage from a young age.
Collapse
Affiliation(s)
- Frédéric Saldmann
- 1Fondation pour la Recherche en Physiologie, Brussels, Belgium
- 2Service de Physiologie et Explorations Fonctionnelles, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Melanie Viltard
- 1Fondation pour la Recherche en Physiologie, Brussels, Belgium
| | - Christine Leroy
- 3Université Paris Descartes, Faculté de Médecine, Paris, France
- 4INSERM UMR_S1151 CNRS UMR8253 Institut Necker-Enfants Malades (INEM), Paris, France
| | - Gérard Friedlander
- 2Service de Physiologie et Explorations Fonctionnelles, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
- 3Université Paris Descartes, Faculté de Médecine, Paris, France
- 4INSERM UMR_S1151 CNRS UMR8253 Institut Necker-Enfants Malades (INEM), Paris, France
| |
Collapse
|
17
|
Menezes-Filho SL, Amigo I, Prado FM, Ferreira NC, Koike MK, Pinto IFD, Miyamoto S, Montero EFS, Medeiros MHG, Kowaltowski AJ. Caloric restriction protects livers from ischemia/reperfusion damage by preventing Ca 2+-induced mitochondrial permeability transition. Free Radic Biol Med 2017. [PMID: 28642067 DOI: 10.1016/j.freeradbiomed.2017.06.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Caloric restriction (CR) promotes lifespan extension and protects against many pathological conditions, including ischemia/reperfusion injury to the brain, heart and kidney. In the liver, ischemia/reperfusion damage is related to excessive mitochondrial Ca2+ accumulation, leading to the mitochondrial permeability transition. Indeed, liver mitochondria isolated from animals maintained on CR for 4 months were protected against permeability transition and capable of taking up Ca2+ at faster rates and in larger quantities. These changes were not related to modifications in mitochondrial respiratory activity, but rather to a higher proportion of ATP relative to ADP in CR liver mitochondria. Accordingly, both depletion of mitochondrial adenine nucleotides and loading mitochondria with exogenous ATP abolished the differences between CR and ad libitum (AL) fed groups. The prevention against permeability transition promoted by CR strongly protected against in vivo liver damage induced by ischemia/reperfusion. Overall, our results show that CR strongly protects the liver against ischemia/reperfusion and uncover a mechanism for this protection, through a yet undescribed diet-induced change in liver mitochondrial Ca2+ handling related to elevated intramitochondrial ATP.
Collapse
Affiliation(s)
- Sergio L Menezes-Filho
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Ignacio Amigo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Fernanda M Prado
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Natalie C Ferreira
- Disciplina de Cirurgia Geral e do Trauma, Laboratório de Fisiopatologia Cirúrgica-LIM-62, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil.
| | - Marcia K Koike
- Disciplina de Emergências Clínicas, Laboratório de Emergências Clinicas - LIM-51 - Faculdade de Medicina - Universidade de São Paulo, Brazil.
| | - Isabella F D Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Edna F S Montero
- Disciplina de Cirurgia Geral e do Trauma, Laboratório de Fisiopatologia Cirúrgica-LIM-62, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil.
| | - Marisa H G Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
18
|
Paternal under-nutrition programs metabolic syndrome in offspring which can be reversed by antioxidant/vitamin food fortification in fathers. Sci Rep 2016; 6:27010. [PMID: 27255552 PMCID: PMC4891691 DOI: 10.1038/srep27010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 05/11/2016] [Indexed: 12/31/2022] Open
Abstract
There is an ever increasing body of evidence that demonstrates that paternal over-nutrition prior to conception programs impaired metabolic health in offspring. Here we examined whether paternal under-nutrition can also program impaired health in offspring and if any detrimental health outcomes in offspring could be prevented by micronutrient supplementation (vitamins and antioxidants). We discovered that restricting the food intake of male rodents reduced their body weight, fertility, increased sperm oxidative DNA lesions and reduced global sperm methylation. Under-nourished males then sired offspring with reduced postnatal weight and growth but somewhat paradoxically increased adiposity and dyslipidaemia, despite being fed standard chow. Paternal vitamin/antioxidant food fortification during under-nutrition not only normalised founder oxidative sperm DNA lesions but also prevented early growth restriction, fat accumulation and dyslipidaemia in offspring. This demonstrates that paternal under-nutrition reduces postnatal growth but increases the risk of obesity and metabolic disease in the next generation and that micronutrient supplementation during this period of under-nutrition is capable of restoring offspring metabolic health.
Collapse
|
19
|
Villalba JM, López-Domínguez JA, Chen Y, Khraiwesh H, González-Reyes JA, Del Río LF, Gutiérrez-Casado E, Del Río M, Calvo-Rubio M, Ariza J, de Cabo R, López-Lluch G, Navas P, Hagopian K, Burón MI, Ramsey JJ. The influence of dietary fat source on liver and skeletal muscle mitochondrial modifications and lifespan changes in calorie-restricted mice. Biogerontology 2015; 16:655-70. [PMID: 25860863 DOI: 10.1007/s10522-015-9572-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/03/2015] [Indexed: 12/26/2022]
Abstract
The Membrane Theory of Aging proposes that lifespan is inversely related to the level of unsaturation in membrane phospholipids. Calorie restriction (CR) without malnutrition extends lifespan in many model organisms, which may be related to alterations in membrane phospholipids fatty acids. During the last few years our research focused on studying how altering the predominant fat source affects the outcome of CR in mice. We have established four dietary groups: one control group fed 95 % of a pre-determined ad libitum intake (in order to prevent obesity), and three CR groups fed 40 % less than ad libitum intake. Lipid source for the control and one of the CR groups was soybean oil (high in n-6 PUFA) whereas the two remaining CR groups were fed diets containing fish oil (high in n-3 PUFA), or lard (high in saturated and monounsaturated fatty acids). Dietary intervention periods ranged from 1 to 18 months. We performed a longitudinal lifespan study and a cross-sectional study set up to evaluate several mitochondrial parameters which included fatty acid composition, H(+) leak, activities of electron transport chain enzymes, ROS generation, lipid peroxidation, mitochondrial ultrastructure, and mitochondrial apoptotic signaling in liver and skeletal muscle. These approaches applied to different cohorts of mice have independently indicated that lard as a fat source often maximizes the effects of 40 % CR on mice. These effects could be due to significant increases of monounsaturated fatty acids levels, in accordance with the Membrane Theory of Aging.
Collapse
Affiliation(s)
- José Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus Rabanales, Edificio Severo Ochoa, 3ª planta, Campus de Excelencia Internacional Agroalimentario, ceiA3, 14014, Córdoba, Spain,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jové M, Naudí A, Ramírez‐Núñez O, Portero‐Otín M, Selman C, Withers DJ, Pamplona R. Caloric restriction reveals a metabolomic and lipidomic signature in liver of male mice. Aging Cell 2014; 13:828-37. [PMID: 25052291 PMCID: PMC4331741 DOI: 10.1111/acel.12241] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2014] [Indexed: 12/31/2022] Open
Abstract
Lipid composition, particularly membrane unsaturation, has been proposed as being a lifespan determinant, but it is currently unknown whether caloric restriction (CR), an accepted life-extending intervention, affects cellular lipid profiles. In this study, we employ a liquid chromatography quadrupole time-of-flight-based methodology to demonstrate that CR in the liver of male C57BL/6 mice: (i) induces marked changes in the cellular lipidome, (ii) specifically reduces levels of a phospholipid peroxidation product, 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphatidylcholine, (iii) alters cellular phosphoethanolamine and triglyceride distributional profiles, (iv) affects mitochondrial electron transport chain complexes, increasing complex II and decreasing complex III and (v) is associated with specific changes in liver metabolic pathways. These data demonstrate that CR induces a specific lipidome and metabolome reprogramming event in mouse liver which is associated with lower protein oxidative damage, as assessed by mass spectrometry-based measurements. Such changes may be critical to the increased lifespan and healthspan observed in C57BL/6 mice following CR.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine University of Lleida‐Biomedical Research Institute of Lleida Lleida 25198Spain
| | - Alba Naudí
- Department of Experimental Medicine University of Lleida‐Biomedical Research Institute of Lleida Lleida 25198Spain
| | - Omar Ramírez‐Núñez
- Department of Experimental Medicine University of Lleida‐Biomedical Research Institute of Lleida Lleida 25198Spain
| | - Manuel Portero‐Otín
- Department of Experimental Medicine University of Lleida‐Biomedical Research Institute of Lleida Lleida 25198Spain
| | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQUK
| | - Dominic J. Withers
- Metabolic Signaling Group Medical Research Council Clinical Sciences Centre Imperial College London London W12 0NNUK
| | - Reinald Pamplona
- Department of Experimental Medicine University of Lleida‐Biomedical Research Institute of Lleida Lleida 25198Spain
| |
Collapse
|
21
|
Walsh ME, Shi Y, Van Remmen H. The effects of dietary restriction on oxidative stress in rodents. Free Radic Biol Med 2014; 66:88-99. [PMID: 23743291 PMCID: PMC4017324 DOI: 10.1016/j.freeradbiomed.2013.05.037] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 02/07/2023]
Abstract
Oxidative stress is observed during aging and in numerous age-related diseases. Dietary restriction (DR) is a regimen that protects against disease and extends life span in multiple species. However, it is unknown how DR mediates its protective effects. One prominent and consistent effect of DR in a number of systems is the ability to reduce oxidative stress and damage. The purpose of this review is to comprehensively examine the hypothesis that dietary restriction reduces oxidative stress in rodents by decreasing reactive oxygen species (ROS) production and increasing antioxidant enzyme activity, leading to an overall reduction of oxidative damage to macromolecules. The literature reveals that the effects of DR on oxidative stress are complex and likely influenced by a variety of factors, including sex, species, tissue examined, types of ROS and antioxidant enzymes examined, and duration of DR. Here we present a comprehensive review of the existing literature on the effect of DR on mitochondrial ROS generation, antioxidant enzymes, and oxidative damage. In a majority of studies, dietary restriction had little effect on mitochondrial ROS production or antioxidant activity. On the other hand, DR decreased oxidative damage in the majority of cases. Although the effects of DR on endogenous antioxidants are mixed, we find that glutathione levels are the most likely antioxidant to be increased by dietary restriction, which supports the emerging redox-stress hypothesis of aging.
Collapse
Affiliation(s)
- Michael E Walsh
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA
| | - Yun Shi
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245
| | - Holly Van Remmen
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245; South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
22
|
Naudí A, Jové M, Ayala V, Portero-Otín M, Barja G, Pamplona R. Membrane lipid unsaturation as physiological adaptation to animal longevity. Front Physiol 2013; 4:372. [PMID: 24381560 PMCID: PMC3865700 DOI: 10.3389/fphys.2013.00372] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 11/29/2013] [Indexed: 01/23/2023] Open
Abstract
The appearance of oxygen in the terrestrial atmosphere represented an important selective pressure for ancestral living organisms and contributed toward setting up the pace of evolutionary changes in structural and functional systems. The evolution of using oxygen for efficient energy production served as a driving force for the evolution of complex organisms. The redox reactions associated with its use were, however, responsible for the production of reactive species (derived from oxygen and lipids) with damaging effects due to oxidative chemical modifications of essential cellular components. Consequently, aerobic life required the emergence and selection of antioxidant defense systems. As a result, a high diversity in molecular and structural antioxidant defenses evolved. In the following paragraphs, we analyze the adaptation of biological membranes as a dynamic structural defense against reactive species evolved by animals. In particular, our goal is to describe the physiological mechanisms underlying the structural adaptation of cellular membranes to oxidative stress and to explain the meaning of this adaptive mechanism, and to review the state of the art about the link between membrane composition and longevity of animal species.
Collapse
Affiliation(s)
- Alba Naudí
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Victòria Ayala
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Manuel Portero-Otín
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Gustavo Barja
- Department of Animal Physiology II, Complutense University Madrid, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida) Lleida, Spain
| |
Collapse
|
23
|
Hagopian K, Soo Hoo R, López-Domínguez JA, Ramsey JJ. Calorie restriction influences key metabolic enzyme activities and markers of oxidative damage in distinct mouse liver mitochondrial sub-populations. Life Sci 2013; 93:941-8. [PMID: 24140885 DOI: 10.1016/j.lfs.2013.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/12/2013] [Accepted: 10/07/2013] [Indexed: 11/16/2022]
Abstract
AIMS The purpose of the study was to establish if enzyme activities from key metabolic pathways and levels of markers of oxidative damage to proteins and lipids differed between distinct liver mitochondrial sub-populations, and which specific sub-populations contributed to these differences. MAIN METHODS Male C57BL/6J mice were fed non-purified diet for one month then separated into two groups, control and calorie-restricted (CR). The two groups were fed semi-purified diet (AIN93G), with the CR group receiving 40% less calories than controls. After two months, enzyme activities and markers of oxidative damage in mitochondria were determined. KEY FINDINGS In all mitochondrial sub-populations, enzyme activities and markers of oxidative damage, from control and CR groups, showed a pattern of M1>M3>M10. Higher acyl-CoA dehydrogenase (β-oxidation) and β-hydroxybutyrate dehydrogenase (ketogenesis) activities and lower carbonyl and TBARS levels were observed in M1 and M3 fractions from CR mice. ETC enzyme activities did not show a consistent pattern. In the Krebs cycle, citrate synthase and aconitase activities decreased while succinate dehydrogenase and malate dehydrogenase activities increased in the M1 mitochondria from the CR versus control mice. SIGNIFICANCE CR does not produce uniform changes in enzyme activities or markers of oxidative damage in mitochondrial sub-populations, with changes occurring primarily in the heavy mitochondrial populations. Centrifugation at 10,000 g to isolate mitochondria likely dilutes the mitochondrial populations which show the greatest response to CR. Use of lower centrifugal force (3000 g or lower) may be beneficial for some studies.
Collapse
Affiliation(s)
- Kevork Hagopian
- VM Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
24
|
Mladenović D, Ninković M, Aleksić V, Šljivančanin T, Vučević D, Todorović V, Stanković M, Stanojlović O, Radosavljević T. The effect of calorie restriction on acute ethanol-induced oxidative and nitrosative liver injury in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:296-302. [PMID: 23686010 DOI: 10.1016/j.etap.2013.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 02/05/2023]
Abstract
The aim of our study was to examine the effect of calorie restriction (CR) on oxidative and nitrosative liver injury in rats, induced by acute ethanol intoxication. Male Wistar rats were divided into groups: (1) control; (2) calorie-restricted groups with intake of 60-70% (CR60-70) and 40-50% of daily energy needs (CR40-50); (3) ethanol-treated group (E); (4) calorie-restricted, ethanol-treated groups (E+CR60-70 and E+CR40-50). Ethanol was administered in 5 doses of 2g/kg every 12h, and duration of CR was 5 weeks before ethanol treatment. Malondialdehyde and nitrite and nitrate level were significantly lower in E+CR60-70 and higher in E+CR40-50 vs. E group. Liver reduced glutathione content and activity of both superoxide dismutase izoenzymes were significantly higher in E+CR60-70 and lower in E+CR40-50 vs. E group. Oxidative stress may be a potential mechanism of hormetic effects of CR on acute ethanol-induced liver injury.
Collapse
Affiliation(s)
- Dušan Mladenović
- Institute of Pathophysiology, "Ljubodrag Buba Mihailović", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Ninković
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Vuk Aleksić
- Institute of Pathophysiology, "Ljubodrag Buba Mihailović", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tamara Šljivančanin
- Clinics of Gynecology and Obstetrics, "Narodni front", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Danijela Vučević
- Institute of Pathophysiology, "Ljubodrag Buba Mihailović", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vera Todorović
- Faculty of Dentistry,Pančevo, University of Business Economy, Novi Sad, Serbia
| | - Milena Stanković
- Institute of Pathophysiology, "Ljubodrag Buba Mihailović", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Olivera Stanojlović
- Institute of Medical Physiology, "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tatjana Radosavljević
- Institute of Pathophysiology, "Ljubodrag Buba Mihailović", Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
25
|
The influence of dietary lipid composition on liver mitochondria from mice following 1 month of calorie restriction. Biosci Rep 2012; 33:83-95. [PMID: 23098316 PMCID: PMC3522480 DOI: 10.1042/bsr20120060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To investigate the role mitochondrial membrane lipids play in the actions of CR (calorie restriction), C57BL/6 mice were assigned to four groups (control and three 40% CR groups) and the CR groups were fed diets containing soya bean oil (also in the control diet), fish oil or lard. The fatty acid composition of the major mitochondrial phospholipid classes, proton leak and H2O2 production were measured in liver mitochondria following 1 month of CR. The results indicate that mitochondrial phospholipid fatty acids reflect the PUFA (polyunsaturated fatty acid) profile of the dietary lipid sources. CR significantly decreased the capacity of ROS (reactive oxygen species) production by Complex III but did not markedly alter proton leak and ETC (electron transport chain) enzyme activities. Within the CR regimens, the CR-fish group had decreased ROS production by both Complexes I and III, and increased proton leak when compared with the other CR groups. The CR-lard group showed the lowest proton leak compared with the other CR groups. The ETC enzyme activity measurements in the CR regimens showed that Complex I activity was decreased in both the CR-fish and CR-lard groups. Moreover, the CR-fish group also had lower Complex II activity compared with the other CR groups. These results indicate that dietary lipid composition does influence liver mitochondrial phospholipid composition, ROS production, proton leak and ETC enzyme activities in CR animals.
Collapse
|
26
|
Formation of S-(carboxymethyl)-cysteine in rat liver mitochondrial proteins: effects of caloric and methionine restriction. Amino Acids 2012; 44:361-71. [DOI: 10.1007/s00726-012-1339-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 06/04/2012] [Indexed: 10/28/2022]
|
27
|
Pamplona R, Barja G. An evolutionary comparative scan for longevity-related oxidative stress resistance mechanisms in homeotherms. Biogerontology 2011; 12:409-35. [PMID: 21755337 DOI: 10.1007/s10522-011-9348-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 06/29/2011] [Indexed: 01/09/2023]
Abstract
Key mechanisms relating oxidative stress to longevity from an interespecies comparative approach are reviewed. Long-lived animal species show low rates of reactive oxygen species (ROS) generation and oxidative damage at their mitochondria. Comparative physiology also shows that the specific compositional pattern of tissue macromolecules (proteins, lipids and nucleic acids) in long-lived animal species gives them an intrinsically high resistance to modification that likely contributes to their superior longevity. This is obtained in the case of lipids by decreasing the degree of fatty acid unsaturation, and in the case of proteins by lowering their methionine content. These findings are also substantiated from a phylogenomic approach. Nutritional or/and pharmacological interventions focused to modify some of these molecular traits were translated with modifications in animal longevity. It is proposed that natural selection tends to decrease the mitochondrial ROS generation and to increase the molecular resistance to the oxidative damage in long-lived species.
Collapse
Affiliation(s)
- Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-IRBLleida, Lleida, 25008, Spain.
| | | |
Collapse
|
28
|
Gomez J, Sanchez-Roman I, Gomez A, Sanchez C, Suarez H, Lopez-Torres M, Barja G. Methionine and homocysteine modulate the rate of ROS generation of isolated mitochondria in vitro. J Bioenerg Biomembr 2011; 43:377-86. [PMID: 21748404 DOI: 10.1007/s10863-011-9368-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 06/05/2011] [Indexed: 11/28/2022]
Abstract
Dietary methionine restriction and supplementation in mammals have beneficial (antiaging) and detrimental effects respectively, which have been related to chronic modifications in the rate of mitochondrial ROS generation. However it is not known if methionine or its metabolites can have, in addition, direct effects on the rate of mitochondrial ROS production. This is studied here for the methionine cycle metabolites S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), homocysteine and methionine itself in isolated rat liver, kidney, heart, and brain mitochondria. The results show that methionine increases ROS production in liver and kidney mitochondria, homocysteine increases it in kidney and decreases it in the other three organs, and SAM and SAH have no effects. The variations in ROS production are localized at complexes I or III. These changes add to previously described chronic effects of methionine restriction and supplementation in vivo.
Collapse
Affiliation(s)
- Jose Gomez
- Department of Animal Physiology II, Faculty of Biological Sciences, Complutense University, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Naudí A, Jové M, Ayala V, Portero-Otín M, Barja G, Pamplona R. Regulation of Membrane Unsaturation as Antioxidant Adaptive Mechanism in Long-lived Animal Species. ACTA ACUST UNITED AC 2011. [DOI: 10.5530/ax.2011.3.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Pamplona R. Mitochondrial DNA damage and animal longevity: insights from comparative studies. J Aging Res 2011; 2011:807108. [PMID: 21423601 PMCID: PMC3056244 DOI: 10.4061/2011/807108] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/16/2010] [Accepted: 01/04/2011] [Indexed: 12/22/2022] Open
Abstract
Chemical reactions in living cells are under strict enzyme control and conform to a tightly regulated metabolic program. However, uncontrolled and potentially deleterious endogenous reactions occur, even under physiological conditions. Aging, in this chemical context, could be viewed as an entropic process, the result of chemical side reactions that chronically and cumulatively degrade the function of biological systems. Mitochondria are a main source of reactive oxygen species (ROS) and chemical sidereactions in healthy aerobic tissues and are the only known extranuclear cellular organelles in animal cells that contain their own DNA (mtDNA). ROS can modify mtDNA directly at the sugar-phosphate backbone or at the bases, producing many different oxidatively modified purines and pyrimidines, as well as single and double strand breaks and DNA mutations. In this scenario, natural selection tends to decrease the mitochondrial ROS generation, the oxidative damage to mtDNA, and the mitochondrial mutation rate in long-lived species, in agreement with the mitochondrial oxidative stress theory of aging.
Collapse
Affiliation(s)
- Reinald Pamplona
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida, IRB, Lleida, c/Montserrat Roig-2, 5008 Lleida, Spain
| |
Collapse
|
31
|
Schiff M, Bénit P, Coulibaly A, Loublier S, El-Khoury R, Rustin P. Mitochondrial response to controlled nutrition in health and disease. Nutr Rev 2011; 69:65-75. [PMID: 21294740 DOI: 10.1111/j.1753-4887.2010.00363.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondria exert crucial physiological functions that create complex links among nutrition, health, and disease. While mitochondrial dysfunction with subsequent impairment of oxidative phosphorylation (OXPHOS) is the hallmark of the rare inherited OXPHOS diseases, OXPHOS dysfunction also plays a central role in the pathophysiology of common conditions such as type 2 diabetes and various neurodegenerative disorders. Dietary interventions, especially calorie restriction, have been shown to improve the course of these diseases and to extend the lifespan. Few data are available on the impact of nutraceuticals (macronutrients, vitamins, and cofactors) on primary inherited OXPHOS diseases. This review presents recent knowledge about the impact of nutritional modulation on mitochondria and lifespan regulation and about the development of potential treatments for mitochondrial dysfunction diseases.
Collapse
Affiliation(s)
- Manuel Schiff
- Centre de référence Maladies Métaboliques, Hôpital Robert Debré, APHP, Université Paris 7, Faculté de médecine Denis Diderot, IFR02, INSERM, U676, Paris, France.
| | | | | | | | | | | |
Collapse
|
32
|
Cerqueira FM, Kowaltowski AJ. Commonly adopted caloric restriction protocols often involve malnutrition. Ageing Res Rev 2010; 9:424-30. [PMID: 20493280 DOI: 10.1016/j.arr.2010.05.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 05/10/2010] [Accepted: 05/10/2010] [Indexed: 02/08/2023]
Abstract
Undernutrition without malnutrition is an intervention that enhances laboratory animal life span, and is widely studied to uncover factors limiting longevity. In a search of the literature over a course of four years, we found that most protocols currently adopted as caloric restriction do not meet micronutrient standards set by the National Research Council for laboratory rats and mice. We provide evidence that the most commonly adopted caloric restriction protocol, a 40% restriction of the AIN-93 diet without vitamin or mineral supplementation, leads to malnutrition in both mice and rats. Furthermore, others and we find that every other day feeding, another dietary intervention often referred to as caloric restriction, does not limit the total amount of calories consumed. Altogether, we propose that the term "caloric restriction" should be used specifically to describe diets that decrease calorie intake but not micronutrient availability, and that protocols adopted should be described in detail in order to allow for comparisons and better understanding of the effects of these diets.
Collapse
|
33
|
Blas-García A, Apostolova N, Ballesteros D, Monleón D, Morales JM, Rocha M, Victor VM, Esplugues JV. Inhibition of mitochondrial function by efavirenz increases lipid content in hepatic cells. Hepatology 2010; 52:115-25. [PMID: 20564379 DOI: 10.1002/hep.23647] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
UNLABELLED Efavirenz (EFV) is a non-nucleoside reverse transcriptase inhibitor (NNRTI) widely used in human immunodeficiency virus (HIV) infection therapy. It has been associated with hepatotoxic effects and alterations in lipid and body fat composition. Given the importance of the liver in lipid regulation, we have evaluated the effects of clinically used concentrations of EFV on the mitochondria and lipid metabolism of human hepatic cells in vitro. Mitochondrial function was rapidly undermined by EFV to an extent that varied with the concentration employed; in particular, respiration and intracellular adenosine triphosphate (ATP) levels were reduced whereas reactive oxygen species (ROS) production increased. Results in isolated mitochondria suggest that the mechanism responsible for these actions was a specific inhibition of complex I of the respiratory chain. The reduction in energy production triggered a compensatory mechanism mediated by the enzyme adenosine monophosphate-activated protein kinase (AMPK), the master switch of cellular bioenergetics. Fluorescence and nuclear magnetic resonance demonstrated a rapid intracellular increase of neutral lipids, usually in the form of droplets. This was prevented by the AMPK inhibitor compound C and by removal of fatty acids from the culture medium. These effects were not reproduced by Nevirapine, another NNRTI. EFV is clinically coadministered with two nucleoside reverse transcriptase inhibitors. Evaluation of one of the most common combination, EFV/Lamivudine/Abacavir, revealed that the effects of EFV on ROS production were enhanced. CONCLUSION Clinical concentrations of EFV induce bioenergetic stress in hepatic cells by acutely inhibiting mitochondrial function. This new mechanism of mitochondrial interference leads to an accumulation of lipids in the cytoplasm that is mediated by activation of AMPK.
Collapse
Affiliation(s)
- Ana Blas-García
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia-CIBERehd, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Naudí A, Jové M, Ayala V, Portero-Otín M, Pamplona R. [Glycation of mitochondrial proteins, oxidative stress and aging]. Rev Esp Geriatr Gerontol 2010; 45:156-166. [PMID: 20347183 DOI: 10.1016/j.regg.2010.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 02/03/2010] [Accepted: 02/03/2010] [Indexed: 05/29/2023]
Abstract
Mitochondrial proteins can be modified by glycation reactions from endogenous dicarbonyl compounds such as physiologically generated methylglyoxal and glyoxal. This modification could cause structural and functional changes in the proteins Consequently, dicarbonyl attack of the mitochondrial proteome may be an event leading to mitochondrial dysfunction and thus, to oxidative stress. These protein chemical modifications can play an important role in the physiological aging process and age-associated diseases, where both mitochondrial defects and increased dicarbonyl concentrations have been found. Future research should address the functional changes in mitochondrial proteins that are the targets for dicarbonyl glycation.
Collapse
Affiliation(s)
- Alba Naudí
- Departamento de Medicina Experimental, Institut de Recerca Biomèdica de LLeida (IRBLleida), Universidad de Lleida, Lleida, España
| | | | | | | | | |
Collapse
|
35
|
Caro P, Gomez J, Sanchez I, Naudi A, Ayala V, López-Torres M, Pamplona R, Barja G. Forty percent methionine restriction decreases mitochondrial oxygen radical production and leak at complex I during forward electron flow and lowers oxidative damage to proteins and mitochondrial DNA in rat kidney and brain mitochondria. Rejuvenation Res 2010; 12:421-34. [PMID: 20041736 DOI: 10.1089/rej.2009.0902] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eighty percent dietary methionine restriction (MetR) in rodents (without calorie restriction), like dietary restriction (DR), increases maximum longevity and strongly decreases mitochondrial reactive oxygen species (ROS) production and oxidative stress. Eighty percent MetR also lowers the degree of membrane fatty acid unsaturation in rat liver. Mitochondrial ROS generation and the degree of fatty acid unsaturation are the only two known factors linking oxidative stress with longevity in vertebrates. However, it is unknown whether 40% MetR, the relevant methionine restriction degree to clarify the mechanisms of action of standard (40%) DR can reproduce these effects in mitochondria from vital tissues of strong relevance for aging. Here we study the effect of 40% MetR on ROS production and oxidative stress in rat brain and kidney mitochondria. Male Wistar rats were fed during 7 weeks semipurified diets differing only in their methionine content: control or 40% MetR diets. It was found that 40% MetR decreases mitochondrial ROS production and percent free radical leak (by 62-71%) at complex I during forward (but not during reverse) electron flow in both brain and kidney mitochondria, increases the oxidative phosphorylation capacity of brain mitochondria, lowers oxidative damage to kidney mitochondrial DNA, and decreases specific markers of mitochondrial protein oxidation, lipoxidation, and glycoxidation in both tissues. Forty percent MetR also decreased the amount of respiratory complexes I, III, and IV and apoptosis-inducing factor (AIF) in brain mitochondria and complex IV in kidney mitochondria, without changing the degree of mitochondrial membrane fatty acid unsaturation. Forty percent MetR, differing from 80% MetR, did not inhibit the increase in rat body weight. These changes are very similar to the ones previously found during dietary and protein restriction in rats. We conclude that methionine is the only dietary factor responsible for the decrease in mitochondrial ROS production and oxidative stress, and likely for part of the longevity extension effect, occurring in DR.
Collapse
Affiliation(s)
- Pilar Caro
- Department of Animal Physiology II, Complutense University of Madrid, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Dani D, Shimokawa I, Komatsu T, Higami Y, Warnken U, Schokraie E, Schnölzer M, Krause F, Sugawa MD, Dencher NA. Modulation of oxidative phosphorylation machinery signifies a prime mode of anti-ageing mechanism of calorie restriction in male rat liver mitochondria. Biogerontology 2009; 11:321-34. [PMID: 19894137 DOI: 10.1007/s10522-009-9254-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 10/22/2009] [Indexed: 11/25/2022]
Abstract
Mitochondria being the major source and target of reactive oxygen species (ROS) play a crucial role during ageing. We analyzed ageing and calorie restriction (CR)-induced changes in abundance of rat liver mitochondrial proteins to understand key aspects behind the age-retarding mechanism of CR. The combination of blue-native (BN) gel system with fluorescence Difference Gel Electrophoresis (DIGE) facilitated an efficient analysis of soluble and membrane proteins, existing as monomers or multi-protein assemblies. Changes in abundance of specific key subunits of respiratory chain complexes I, IV and V, critical for activity and/or assembly of the complexes were identified. CR lowered complex I assembly and complex IV activity, which is discussed as a molecular mechanism to minimize ROS production at mitochondria. Notably, the antioxidant system was found to be least affected. The GSH:GSSG couple could be depicted as a rapid mean to handle the fluctuations in ROS levels led by reversible metabolic shifts. We evaluated the relative significance of ROS generation against quenching. We also observed parallel and unidirectional changes as effect of ageing and CR, in subunits of ATP synthase, cytochrome P450 and glutathione S-transferase. This is the first report on such 'putatively hormetic' ageing-analogous effects of CR, besides the age-retarding ones.
Collapse
Affiliation(s)
- Diksha Dani
- Physical Biochemistry, Department of Chemistry, Technische Universität Darmstadt, Petersenstrasse 22, Darmstadt, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Effect of methionine dietary supplementation on mitochondrial oxygen radical generation and oxidative DNA damage in rat liver and heart. J Bioenerg Biomembr 2009; 41:309-21. [PMID: 19633937 DOI: 10.1007/s10863-009-9229-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 06/17/2009] [Indexed: 10/20/2022]
Abstract
Methionine restriction without energy restriction increases, like caloric restriction, maximum longevity in rodents. Previous studies have shown that methionine restriction strongly decreases mitochondrial reactive oxygen species (ROS) production and oxidative damage to mitochondrial DNA, lowers membrane unsaturation, and decreases five different markers of protein oxidation in rat heart and liver mitochondria. It is unknown whether methionine supplementation in the diet can induce opposite changes, which is also interesting because excessive dietary methionine is hepatotoxic and induces cardiovascular alterations. Because the detailed mechanisms of methionine-related hepatotoxicity and cardiovascular toxicity are poorly understood and today many Western human populations consume levels of dietary protein (and thus, methionine) 2-3.3 fold higher than the average adult requirement, in the present experiment we analyze the effect of a methionine supplemented diet on mitochondrial ROS production and oxidative damage in the rat liver and heart mitochondria. In this investigation male Wistar rats were fed either a L-methionine-supplemented (2.5 g/100 g) diet without changing any other dietary components or a control (0.86 g/100 g) diet for 7 weeks. It was found that methionine supplementation increased mitochondrial ROS generation and percent free radical leak in rat liver mitochondria but not in rat heart. In agreement with these data oxidative damage to mitochondrial DNA increased only in rat liver, but no changes were observed in five different markers of protein oxidation in both organs. The content of mitochondrial respiratory chain complexes and AIF (apoptosis inducing factor) did not change after the dietary supplementation while fatty acid unsaturation decreased. Methionine, S-AdenosylMethionine and S-AdenosylHomocysteine concentration increased in both organs in the supplemented group. These results show that methionine supplementation in the diet specifically increases mitochondrial ROS production and mitochondrial DNA oxidative damage in rat liver mitochondria offering a plausible mechanism for its hepatotoxicity.
Collapse
|
38
|
|
39
|
López-Torres M, Barja G. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction. Biochim Biophys Acta Gen Subj 2008; 1780:1337-47. [DOI: 10.1016/j.bbagen.2008.01.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 01/09/2008] [Accepted: 01/14/2008] [Indexed: 12/31/2022]
|
40
|
Pamplona R. Membrane phospholipids, lipoxidative damage and molecular integrity: A causal role in aging and longevity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1249-62. [DOI: 10.1016/j.bbabio.2008.07.003] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 07/16/2008] [Accepted: 07/17/2008] [Indexed: 10/21/2022]
|
41
|
Forty percent and eighty percent methionine restriction decrease mitochondrial ROS generation and oxidative stress in rat liver. Biogerontology 2008; 9:183-96. [DOI: 10.1007/s10522-008-9130-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 02/05/2008] [Indexed: 10/22/2022]
|
42
|
Caro P, Gómez J, López-Torres M, Sánchez I, Naudi A, Portero-Otín M, Pamplona R, Barja G. Effect of Every Other Day Feeding on Mitochondrial Free Radical Production and Oxidative Stress in Mouse Liver. Rejuvenation Res 2008; 11:621-9. [DOI: 10.1089/rej.2008.0704] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Pilar Caro
- Department of Animal Physiology-II, Complutense University, Madrid, Spain
| | - José Gómez
- Department of Animal Physiology-II, Complutense University, Madrid, Spain
| | | | - Inés Sánchez
- Department of Animal Physiology-II, Complutense University, Madrid, Spain
| | - Alba Naudi
- Department of Experimental Medicine, University of Lleida-IRBLLEIDA, Lleida, Spain
| | - Manuel Portero-Otín
- Department of Experimental Medicine, University of Lleida-IRBLLEIDA, Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-IRBLLEIDA, Lleida, Spain
| | - Gustavo Barja
- Department of Animal Physiology-II, Complutense University, Madrid, Spain
| |
Collapse
|