1
|
Lendvai ÁZ, Tóth Z, Mahr K, Pénzes J, Vogel-Kindgen S, Gander BA, Vágási CI. IGF-1 induces sex-specific oxidative damage and mortality in a songbird. Oecologia 2024; 205:561-570. [PMID: 39014256 PMCID: PMC11358184 DOI: 10.1007/s00442-024-05587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/28/2024] [Indexed: 07/18/2024]
Abstract
The insulin-like growth factor 1 (IGF-1) is a pleiotropic hormone that regulates essential life-history traits and is known for its major contribution to determining individual ageing processes. High levels of IGF-1 have been linked to increased mortality and are hypothesised to cause oxidative stress. This effect has been observed in laboratory animals, but whether it pertains to wild vertebrates has not been tested. This is surprising because studying the mechanisms that shape individual differences in lifespan is important to understanding mortality patterns in populations of free-living animals. We tested this hypothesis under semi-natural conditions by simulating elevated IGF-1 levels in captive bearded reedlings, a songbird species with an exceptionally fast pace of life. We subcutaneously injected slow-release biodegradable microspheres loaded with IGF-1 and achieved a systemic 3.7-fold increase of the hormone within the natural range for at least 24 h. Oxidative damage to lipids showed marked sexual differences: it significantly increased the day after the manipulation in treated males and returned to baseline levels four days post-treatment, while no treatment effect was apparent in females. Although there was no overall difference in survival between the treatment groups, high initial (pre-treatment) IGF-1 and low post-treatment plasma malondialdehyde levels were associated with enhanced survival prospects in males. These results suggest that males may be more susceptible to IGF-1-induced oxidative stress than females and quickly restoring oxidative balance may be related to fitness. IGF-1 levels evolve under opposing selection forces, and natural variation in this hormone's level may reflect the outcome of individual optimization.
Collapse
Affiliation(s)
- Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary.
| | - Zsófia Tóth
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
- Pál Juhász-Nagy Doctoral School of Biology Environmental Sciences, University of Debrecen, Debrecen, Hungary
- Department of Biology, Lund University, Lund, Sweden
| | - Katharina Mahr
- Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Konrad Lorenz Institute of Ethology, Vienna, Austria
| | - Janka Pénzes
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | | | - Bruno A Gander
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Csongor I Vágási
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
2
|
Jové M, Mota-Martorell N, Fernàndez-Bernal A, Portero-Otin M, Barja G, Pamplona R. Phenotypic molecular features of long-lived animal species. Free Radic Biol Med 2023; 208:728-747. [PMID: 37748717 DOI: 10.1016/j.freeradbiomed.2023.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
One of the challenges facing science/biology today is uncovering the molecular bases that support and determine animal and human longevity. Nature, in offering a diversity of animal species that differ in longevity by more than 5 orders of magnitude, is the best 'experimental laboratory' to achieve this aim. Mammals, in particular, can differ by more than 200-fold in longevity. For this reason, most of the available evidence on this topic derives from comparative physiology studies. But why can human beings, for instance, reach 120 years whereas rats only last at best 4 years? How does nature change the longevity of species? Longevity is a species-specific feature resulting from an evolutionary process. Long-lived animal species, including humans, show adaptations at all levels of biological organization, from metabolites to genome, supported by signaling and regulatory networks. The structural and functional features that define a long-lived species may suggest that longevity is a programmed biological property.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Anna Fernàndez-Bernal
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), E28040, Madrid, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain.
| |
Collapse
|
3
|
Domínguez-de-Barros A, Sifaoui I, Borecka Z, Dorta-Guerra R, Lorenzo-Morales J, Castro-Fuentes R, Córdoba-Lanús E. An approach to the effects of longevity, sexual maturity, and reproduction on telomere length and oxidative stress in different Psittacidae species. Front Genet 2023; 14:1156730. [PMID: 37021005 PMCID: PMC10067728 DOI: 10.3389/fgene.2023.1156730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Introduction: Aging is a multifactorial process that includes molecular changes such as telomere shortening. Telomeres shorten progressively with age in vertebrates, and their shortening rate has a significant role in determining the lifespan of a species. However, DNA loss can be enhanced by oxidative stress. The need for novel animal models has recently emerged as a tool to gather more information about the human aging process. Birds live longer than other mammals of the same size, and Psittacidae species are the most persevering of them, due to special key traits. Methods: We aimed to determine telomere length by qPCR, and oxidative stress status using colorimetric and fluorescence methods in different species of the order Psittaciformes with different lifespans. Results: We found that telomeres shorten with age for both long- and short-lived birds (p < 0.001 and p = 0.004, respectively), with long-lived birds presenting longer telomeres than short-lived ones (p = 0.001). In addition, short-lived birds accumulated more oxidative stress products than long-lived birds (p = 0.013), who showed a better antioxidant capacity (p < 0.001). Breeding was found related to telomere shortening in all species (p < 0.001 and p = 0.003 for long- and short-lived birds). Short-lived birds, especially breeding females, increased their oxidative stress products when breeding (p = 0.021), whereas long-lived birds showed greater resistance and even increased their antioxidant capacity (p = 0.002). Conclusion: In conclusion, the relationship between age and telomere length in Psittacidae was verified. The influence of breeding increased cumulative oxidative damage in short-lived species, while long-lived species may counteract this damage.
Collapse
Affiliation(s)
- Angélica Domínguez-de-Barros
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Inés Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Zuzanna Borecka
- Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Roberto Dorta-Guerra
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, La Laguna, Tenerife, Spain
- Departamento de Matemáticas, Estadística e Investigación Operativa, Facultad de Ciencias Sección de Matemáticas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Facultad de Ciencias de la Salud, Sección Medicina, Universidad de La Laguna, La Laguna, Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Castro-Fuentes
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud-Sección Medicina, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Elizabeth Córdoba-Lanús
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, La Laguna, Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Elizabeth Córdoba-Lanús,
| |
Collapse
|
4
|
Shilovsky GA, Putyatina TS, Markov AV. Evolution of Longevity as a Species-Specific Trait in Mammals. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1579-1599. [PMID: 36717448 DOI: 10.1134/s0006297922120148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
From the evolutionary point of view, the priority problem for an individual is not longevity, but adaptation to the environment associated with the need for survival, food supply, and reproduction. We see two main vectors in the evolution of mammals. One is a short lifespan and numerous offspring ensuring reproductive success (r-strategy). The other one is development of valuable skills in order compete successfully (K-strategy). Species with the K-strategy should develop and enhance specific systems (anti-aging programs) aimed at increasing the reliability and adaptability, including lifespan. These systems are signaling cascades that provide cell repair and antioxidant defense. Hence, any arbitrarily selected long-living species should be characterized by manifestation to a different extent of the longevity-favoring traits (e.g., body size, brain development, sociality, activity of body repair and antioxidant defense systems, resistance to xenobiotics and tumor formation, presence of neotenic traits). Hereafter, we will call a set of such traits as the gerontological success of a species. Longevity is not equivalent to the evolutionary or reproductive success. This difference between these phenomena reaches its peak in mammals due to the development of endothermy and cephalization associated with the cerebral cortex expansion, which leads to the upregulated production of oxidative radicals by the mitochondria (and, consequently, accelerated aging), increase in the number of non-dividing differentiated cells, accumulation of the age-related damage in these cells, and development of neurodegenerative diseases. The article presents mathematical indicators used to assess the predisposition to longevity in different species (including the standard mortality rate and basal metabolic rate, as well as their derivatives). The properties of the evolution of mammals (including the differences between modern mammals and their ancestral forms) are also discussed.
Collapse
Affiliation(s)
- Gregory A Shilovsky
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - Tatyana S Putyatina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Markov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
5
|
Elovl2-Ablation Leads to Mitochondrial Membrane Fatty Acid Remodeling and Reduced Efficiency in Mouse Liver Mitochondria. Nutrients 2022; 14:nu14030559. [PMID: 35276915 PMCID: PMC8838343 DOI: 10.3390/nu14030559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/02/2023] Open
Abstract
The fatty acid elongase elongation of very long-chain fatty acids protein 2 (ELOVL2) controls the elongation of polyunsaturated fatty acids (PUFA) producing precursors for omega-3, docosahexaenoic acid (DHA), and omega-6, docosapentaenoic acid (DPAn-6) in vivo. Expectedly, Elovl2-ablation drastically reduced the DHA and DPAn-6 in liver mitochondrial membranes. Unexpectedly, however, total PUFAs levels decreased further than could be explained by Elovl2 ablation. The lipid peroxidation process was not involved in PUFAs reduction since malondialdehyde-lysine (MDAL) and other oxidative stress biomarkers were not enhanced. The content of mitochondrial respiratory chain proteins remained unchanged. Still, membrane remodeling was associated with the high voltage-dependent anion channel (VDAC) and adenine nucleotide translocase 2 (ANT2), a possible reflection of the increased demand on phospholipid transport to the mitochondria. Mitochondrial function was impaired despite preserved content of the respiratory chain proteins and the absence of oxidative damage. Oligomycin-insensitive oxygen consumption increased, and coefficients of respiratory control were reduced by 50%. The mitochondria became very sensitive to fatty acid-induced uncoupling and permeabilization, where ANT2 is involved. Mitochondrial volume and number of peroxisomes increased as revealed by transmission electron microscopy. In conclusion, the results imply that endogenous DHA production is vital for the normal function of mouse liver mitochondria and could be relevant not only for mice but also for human metabolism.
Collapse
|
6
|
Ritchie DJ, Friesen CR. Invited review: Thermal effects on oxidative stress in vertebrate ectotherms. Comp Biochem Physiol A Mol Integr Physiol 2021; 263:111082. [PMID: 34571153 DOI: 10.1016/j.cbpa.2021.111082] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Human-induced climate change is occurring rapidly. Ectothermic organisms are particularly vulnerable to these temperature changes due to their reliance on environmental temperature. The extent of ectothermic thermal adaptation and plasticity in the literature is well documented; however, the role of oxidative stress in these processes needs more attention. Oxidative stress occurs when reactive oxygen species, generated mainly through aerobic respiration, overwhelm antioxidant defences and damage crucial biomolecules. The effects of oxidative damage include the alteration of life-history traits and reductions in whole-organism fitness. Here we review the literature addressing experimental temperature effects on oxidative stress in vertebrate ectotherms. Acute and acclimation temperature treatments produce distinctly different results and highlight the role of phylogeny and thermal adaptation in shaping oxidative stress responses. Acute treatments on organisms adapted to stable environments generally produced significant oxidative stress responses, whilst organisms adapted to variable conditions exhibited capacity to cope with temperature changes and mitigate oxidative stress. In acclimation treatments, the temperature treatments higher than optimal temperatures tended to produce significantly less oxidative stress than lower temperatures in reptiles, whilst in some eurythermal fish species, no oxidative stress response was observed. These results highlight the importance of phylogeny and adaptation to past environmental conditions for temperature-dependent oxidative stress responses. We conclude with recommendations on experimental procedures to investigate these phenomena with reference to thermal plasticity, adaptation and biogeographic variation that provide the most significant benefits to adaptable populations. These results have potential conservation ramifications as they may shed light on the physiological effects of temperature alterations in some vertebrate ectotherms.
Collapse
Affiliation(s)
- Daniel J Ritchie
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, 2522 Wollongong, New South Wales, Australia
| | - Christopher R Friesen
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, 2522 Wollongong, New South Wales, Australia; School of Life and Environmental Sciences, University of Sydney, Heydon-Laurence Bldg A08, Science Road, Sydney, NSW 2006, Australia.
| |
Collapse
|
7
|
Plasma methionine metabolic profile is associated with longevity in mammals. Commun Biol 2021; 4:725. [PMID: 34117367 PMCID: PMC8196171 DOI: 10.1038/s42003-021-02254-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 05/20/2021] [Indexed: 01/28/2023] Open
Abstract
Methionine metabolism arises as a key target to elucidate the molecular adaptations underlying animal longevity due to the negative association between longevity and methionine content. The present study follows a comparative approach to analyse plasma methionine metabolic profile using a LC-MS/MS platform from 11 mammalian species with a longevity ranging from 3.5 to 120 years. Our findings demonstrate the existence of a species-specific plasma profile for methionine metabolism associated with longevity characterised by: i) reduced methionine, cystathionine and choline; ii) increased non-polar amino acids; iii) reduced succinate and malate; and iv) increased carnitine. Our results support the existence of plasma longevity features that might respond to an optimised energetic metabolism and intracellular structures found in long-lived species. Mota-Martorell and colleagues use a comparative metabolomics approach to examine plasma metabolite levels associated with methionine metabolism in 11 mammalian species. They identify species specific plasma profiles indicative of a link between lifetime longevity and methionine metabolism.
Collapse
|
8
|
Jové M, Mota-Martorell N, Torres P, Ayala V, Portero-Otin M, Ferrer I, Pamplona R. The Causal Role of Lipoxidative Damage in Mitochondrial Bioenergetic Dysfunction Linked to Alzheimer's Disease Pathology. Life (Basel) 2021; 11:life11050388. [PMID: 33923074 PMCID: PMC8147054 DOI: 10.3390/life11050388] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 01/18/2023] Open
Abstract
Current shreds of evidence point to the entorhinal cortex (EC) as the origin of the Alzheimer’s disease (AD) pathology in the cerebrum. Compared with other cortical areas, the neurons from this brain region possess an inherent selective vulnerability derived from particular oxidative stress conditions that favor increased mitochondrial molecular damage with early bioenergetic involvement. This alteration of energy metabolism is the starting point for subsequent changes in a multitude of cell mechanisms, leading to neuronal dysfunction and, ultimately, cell death. These events are induced by changes that come with age, creating the substrate for the alteration of several neuronal pathways that will evolve toward neurodegeneration and, consequently, the development of AD pathology. In this context, the present review will focus on description of the biological mechanisms that confer vulnerability specifically to neurons of the entorhinal cortex, the changes induced by the aging process in this brain region, and the alterations at the mitochondrial level as the earliest mechanism for the development of AD pathology. Current findings allow us to propose the existence of an altered allostatic mechanism at the entorhinal cortex whose core is made up of mitochondrial oxidative stress, lipid metabolism, and energy production, and which, in a positive loop, evolves to neurodegeneration, laying the basis for the onset and progression of AD pathology.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), 25198 Lleida, Spain; (M.J.); (N.M.-M.); (P.T.); (V.A.); (M.P.-O.)
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), 25198 Lleida, Spain; (M.J.); (N.M.-M.); (P.T.); (V.A.); (M.P.-O.)
| | - Pascual Torres
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), 25198 Lleida, Spain; (M.J.); (N.M.-M.); (P.T.); (V.A.); (M.P.-O.)
| | - Victoria Ayala
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), 25198 Lleida, Spain; (M.J.); (N.M.-M.); (P.T.); (V.A.); (M.P.-O.)
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), 25198 Lleida, Spain; (M.J.); (N.M.-M.); (P.T.); (V.A.); (M.P.-O.)
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Bellvitge University Hospital/Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), ISCIII, 28220 Madrid, Spain
- Correspondence: (I.F.); (R.P.)
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), 25198 Lleida, Spain; (M.J.); (N.M.-M.); (P.T.); (V.A.); (M.P.-O.)
- Correspondence: (I.F.); (R.P.)
| |
Collapse
|
9
|
Kumar SA, Albrecht T, Kauzál O, Tomášek O. No Evidence for Trade-Offs Between Lifespan, Fecundity, and Basal Metabolic Rate Mediated by Liver Fatty Acid Composition in Birds. Front Cell Dev Biol 2021; 9:638501. [PMID: 33869185 PMCID: PMC8045231 DOI: 10.3389/fcell.2021.638501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/23/2021] [Indexed: 01/03/2023] Open
Abstract
The fatty acid composition of biological membranes has been hypothesised to be a key molecular adaptation associated with the evolution of metabolic rates, ageing, and life span – the basis of the membrane pacemaker hypothesis (MPH). MPH proposes that highly unsaturated membranes enhance cellular metabolic processes while being more prone to oxidative damage, thereby increasing the rates of metabolism and ageing. MPH could, therefore, provide a mechanistic explanation for trade-offs between longevity, fecundity, and metabolic rates, predicting that short-lived species with fast metabolic rates and higher fecundity would have greater levels of membrane unsaturation. However, previous comparative studies testing MPH provide mixed evidence regarding the direction of covariation between fatty acid unsaturation and life span or metabolic rate. Moreover, some empirical studies suggest that an n-3/n-6 PUFA ratio or the fatty acid chain length, rather than the overall unsaturation, could be the key traits coevolving with life span. In this study, we tested the coevolution of liver fatty acid composition with maximum life span, annual fecundity, and basal metabolic rate (BMR), using a recently published data set comprising liver fatty acid composition of 106 avian species. While statistically controlling for the confounding effects of body mass and phylogeny, we found no support for long life span evolving with low fatty acid unsaturation and only very weak support for fatty acid unsaturation acting as a pacemaker of BMR. Moreover, our analysis provided no evidence for the previously reported links between life span and n-3 PUFA/total PUFA or MUFA proportion. Our results rather suggest that long life span evolves with long-chain fatty acids irrespective of their degree of unsaturation as life span was positively associated with at least one long-chain fatty acid of each type (i.e., SFA, MUFA, n-6 PUFA, and n-3 PUFA). Importantly, maximum life span, annual fecundity, and BMR were associated with different fatty acids or fatty acid indices, indicating that longevity, fecundity, and BMR coevolve with different aspects of fatty acid composition. Therefore, in addition to posing significant challenges to MPH, our results imply that fatty acid composition does not pose an evolutionary constraint underpinning life-history trade-offs at the molecular level.
Collapse
Affiliation(s)
- Sampath A Kumar
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Tomáš Albrecht
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Ondřej Kauzál
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Oldřich Tomášek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
10
|
Mortz M, Levivier A, Lartillot N, Dufresne F, Blier PU. Long-Lived Species of Bivalves Exhibit Low MT-DNA Substitution Rates. Front Mol Biosci 2021; 8:626042. [PMID: 33791336 PMCID: PMC8005583 DOI: 10.3389/fmolb.2021.626042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/28/2021] [Indexed: 01/21/2023] Open
Abstract
Bivalves represent valuable taxonomic group for aging studies given their wide variation in longevity (from 1–2 to >500 years). It is well known that aging is associated to the maintenance of Reactive Oxygen Species homeostasis and that mitochondria phenotype and genotype dysfunctions accumulation is a hallmark of these processes. Previous studies have shown that mitochondrial DNA mutation rates are linked to lifespan in vertebrate species, but no study has explored this in invertebrates. To this end, we performed a Bayesian Phylogenetic Covariance model of evolution analysis using 12 mitochondrial protein-coding genes of 76 bivalve species. Three life history traits (maximum longevity, generation time and mean temperature tolerance) were tested against 1) synonymous substitution rates (dS), 2) conservative amino acid replacement rates (Kc) and 3) ratios of radical over conservative amino acid replacement rates (Kr/Kc). Our results confirm the already known correlation between longevity and generation time and show, for the first time in an invertebrate class, a significant negative correlation between dS and longevity. This correlation was not as strong when generation time and mean temperature tolerance variations were also considered in our model (marginal correlation), suggesting a confounding effect of these traits on the relationship between longevity and mtDNA substitution rate. By confirming the negative correlation between dS and longevity previously documented in birds and mammals, our results provide support for a general pattern in substitution rates.
Collapse
Affiliation(s)
- Mathieu Mortz
- Institut Des Sciences De La Mer De Rimouski, Université Du Québec à Rimouski, Rimouski, QC, Canada
| | - Aurore Levivier
- Institut Des Sciences De La Mer De Rimouski, Université Du Québec à Rimouski, Rimouski, QC, Canada
| | - Nicolas Lartillot
- Laboratoire De Biométrie et Biologie Evolutive, UMR CNRS, Université Lyon 1, Villeurbanne, France
| | - France Dufresne
- Laboratoire D'écologie Moléculaire, Département De Biologie, Université Du Québec à Rimouski, Rimouski, QC, Canada.,Laboratoire De Physiologie Intégrative Et Evolutive, Département De Biologie, Université Du Québec à Rimouski, Rimouski, QC, Canada
| | - Pierre U Blier
- Laboratoire De Physiologie Intégrative Et Evolutive, Département De Biologie, Université Du Québec à Rimouski, Rimouski, QC, Canada
| |
Collapse
|
11
|
Domingo-Ortí I, Lamas-Domingo R, Ciudin A, Hernández C, Herance JR, Palomino-Schätzlein M, Pineda-Lucena A. Metabolic footprint of aging and obesity in red blood cells. Aging (Albany NY) 2021; 13:4850-4880. [PMID: 33609087 PMCID: PMC7950240 DOI: 10.18632/aging.202693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/08/2021] [Indexed: 12/30/2022]
Abstract
Aging is a physiological process whose underlying mechanisms are still largely unknown. The study of the biochemical transformations associated with aging is crucial for understanding this process and could translate into an improvement of the quality of life of the aging population. Red blood cells (RBCs) are the most abundant cells in humans and are involved in essential functions that could undergo different alterations with age. The present study analyzed the metabolic alterations experienced by RBCs during aging, as well as the influence of obesity and gender in this process. To this end, the metabolic profile of 83 samples from healthy and obese patients was obtained by Nuclear Magnetic Resonance spectroscopy. Multivariate statistical analysis revealed differences between Age-1 (≤45) and Age-2 (>45) subgroups, as well as between BMI-1 (<30) and BMI-2 (≥30) subgroups, while no differences were associated with gender. A general decrease in the levels of amino acids was detected with age, in addition to metabolic alterations of glycolysis, the pentose phosphate pathway, nucleotide metabolism, glutathione metabolism and the Luebering-Rapoport shunt. Obesity also had an impact on the metabolomics profile of RBCs; sometimes mimicking the alterations induced by aging, while, in other cases, its influence was the opposite, suggesting these changes could counteract the adaptation of the organism to senescence.
Collapse
Affiliation(s)
- Inés Domingo-Ortí
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Valencia 46026, Spain
| | - Rubén Lamas-Domingo
- NMR Facility, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
| | - Andreea Ciudin
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Barcelona 08035, Spain.,CIBERDEM (Instituto de Salud Carlos III), Madrid 28029, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Barcelona 08035, Spain.,CIBERDEM (Instituto de Salud Carlos III), Madrid 28029, Spain
| | - José Raúl Herance
- Medical Molecular Imaging Research Group, Vall d'Hebron Research Institute, CIBBIM-Nanomedicine, Barcelona 08035, Spain.,CIBERBBN (Instituto de Salud Carlos III), Madrid 28029, Spain
| | | | - Antonio Pineda-Lucena
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Valencia 46026, Spain.,Medicinal Chemistry Laboratory, Centro de Investigación Médica Aplicada, Pamplona 31008, Spain
| |
Collapse
|
12
|
Pamplona R, Jové M, Mota-Martorell N, Barja G. Is the NDUFV2 subunit of the hydrophilic complex I domain a key determinant of animal longevity? FEBS J 2021; 288:6652-6673. [PMID: 33455045 DOI: 10.1111/febs.15714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/02/2020] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
Complex I, a component of the electron transport chain, plays a central functional role in cell bioenergetics and the biology of free radicals. The structural and functional N module of complex I is one of the main sites of the generation of free radicals. The NDUFV2 subunit/N1a cluster is a component of this module. Furthermore, the rate of free radical production is linked to animal longevity. In this review, we explore the hypothesis that NDUFV2 is the only conserved core subunit designed with a regulatory function to ensure correct electron transfer and free radical production, that low gene expression and protein abundance of the NDUFV2 subunit is an evolutionary adaptation needed to achieve a longevity phenotype, and that these features are determinants of the lower free radical generation at the mitochondrial level and a slower rate of aging of long-lived animals.
Collapse
Affiliation(s)
- Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Natalia Mota-Martorell
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
13
|
Mota-Martorell N, Jové M, Borrás C, Berdún R, Obis È, Sol J, Cabré R, Pradas I, Galo-Licona JD, Puig J, Viña J, Pamplona R. Methionine transsulfuration pathway is upregulated in long-lived humans. Free Radic Biol Med 2021; 162:38-52. [PMID: 33271279 DOI: 10.1016/j.freeradbiomed.2020.11.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/10/2020] [Accepted: 11/23/2020] [Indexed: 01/04/2023]
Abstract
Available evidences point to methionine metabolism as a key target to study the molecular adaptive mechanisms underlying differences in longevity. The plasma methionine metabolic profile was determined using a LC-MS/MS platform to systematically define specific phenotypic patterns associated with genotypes of human extreme longevity (centenarians). Our findings demonstrate the presence of a specific plasma profile associated with human longevity characterized by an enhanced transsulfuration pathway and tricarboxylic acid (TCA) cycle intermediates, as well as a reduced content of specific amino acids. Furthermore, our work reveals that centenarians maintain a strongly correlated methionine metabolism, suggesting an improved network integrity, homeostasis and more tightly regulated metabolism. We have discovered a particular methionine signature related to the condition of extreme longevity, allowing the identification of potential mechanisms and biomarkers of healthy aging.
Collapse
Affiliation(s)
- Natàlia Mota-Martorell
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), Lleida, Catalonia, Spain.
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), Lleida, Catalonia, Spain.
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES, INCLIVA, Valencia, Spain.
| | - Rebeca Berdún
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), Lleida, Catalonia, Spain.
| | - Èlia Obis
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), Lleida, Catalonia, Spain.
| | - Joaquim Sol
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), Lleida, Catalonia, Spain; Institut Català de la Salut, Atenció Primària, Lleida, Spain; Research Support Unit Lleida, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Lleida, Spain.
| | - Rosanna Cabré
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), Lleida, Catalonia, Spain.
| | - Irene Pradas
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), Lleida, Catalonia, Spain.
| | - José Daniel Galo-Licona
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), Lleida, Catalonia, Spain.
| | - Josep Puig
- Department of Radiology (Institut de Diagnòstic per la Imatge, IDI), University Hospital Dr Josep Trueta, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain.
| | - José Viña
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES, INCLIVA, Valencia, Spain.
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), Lleida, Catalonia, Spain.
| |
Collapse
|
14
|
The Advanced Lipoxidation End-Product Malondialdehyde-Lysine in Aging and Longevity. Antioxidants (Basel) 2020; 9:antiox9111132. [PMID: 33203089 PMCID: PMC7696601 DOI: 10.3390/antiox9111132] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 01/03/2023] Open
Abstract
The nonenzymatic adduction of malondialdehyde (MDA) to the protein amino groups leads to the formation of malondialdehyde-lysine (MDALys). The degree of unsaturation of biological membranes and the intracellular oxidative conditions are the main factors that modulate MDALys formation. The low concentration of this modification in the different cellular components, found in a wide diversity of tissues and animal species, is indicative of the presence of a complex network of cellular protection mechanisms that avoid its cytotoxic effects. In this review, we will focus on the chemistry of this lipoxidation-derived protein modification, the specificity of MDALys formation in proteins, the methodology used for its detection and quantification, the MDA-lipoxidized proteome, the metabolism of MDA-modified proteins, and the detrimental effects of this protein modification. We also propose that MDALys is an indicator of the rate of aging based on findings which demonstrate that (i) MDALys accumulates in tissues with age, (ii) the lower the concentration of MDALys the greater the longevity of the animal species, and (iii) its concentration is attenuated by anti-aging nutritional and pharmacological interventions.
Collapse
|
15
|
Nik Mohd Fakhruddin NNI, Shahar S, Ismail IS, Ahmad Azam A, Rajab NF. Urine Untargeted Metabolomic Profiling Is Associated with the Dietary Pattern of Successful Aging among Malaysian Elderly. Nutrients 2020; 12:nu12102900. [PMID: 32977370 PMCID: PMC7597952 DOI: 10.3390/nu12102900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 01/06/2023] Open
Abstract
Food intake biomarkers (FIBs) can reflect the intake of specific foods or dietary patterns (DP). DP for successful aging (SA) has been widely studied. However, the relationship between SA and DP characterized by FIBs still needs further exploration as the candidate markers are scarce. Thus, 1H-nuclear magnetic resonance (1H-NMR)-based urine metabolomics profiling was conducted to identify potential metabolites which can act as specific markers representing DP for SA. Urine sample of nine subjects from each three aging groups, SA, usual aging (UA), and mild cognitive impairment (MCI), were analyzed using the 1H-NMR metabolomic approach. Principal components analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) were applied. The association between SA urinary metabolites and its DP was assessed using the Pearson’s correlation analysis. The urine of SA subjects was characterized by the greater excretion of citrate, taurine, hypotaurine, serotonin, and melatonin as compared to UA and MCI. These urinary metabolites were associated with alteration in “taurine and hypotaurine metabolism” and “tryptophan metabolism” in SA elderly. Urinary serotonin (r = 0.48, p < 0.05) and melatonin (r = 0.47, p < 0.05) were associated with oat intake. These findings demonstrate that a metabolomic approach may be useful for correlating DP with SA urinary metabolites and for further understanding of SA development.
Collapse
Affiliation(s)
- Nik Nur Izzati Nik Mohd Fakhruddin
- Dietetic Programme, Centre for Healthy Aging and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Suzana Shahar
- Dietetic Programme, Centre for Healthy Aging and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
- Correspondence: ; Tel.: +60-3-9289-7602; Fax: +60-3-9289-7161
| | - Intan Safinar Ismail
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (I.S.I.); (A.A.A.)
| | - Amalina Ahmad Azam
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (I.S.I.); (A.A.A.)
| | - Nor Fadilah Rajab
- Biomedical Science Programme, Centre for Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
16
|
Jové M, Mota-Martorell N, Pradas I, Galo-Licona JD, Martín-Gari M, Obis È, Sol J, Pamplona R. The Lipidome Fingerprint of Longevity. Molecules 2020; 25:molecules25184343. [PMID: 32971886 PMCID: PMC7570520 DOI: 10.3390/molecules25184343] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Lipids were determinants in the appearance and evolution of life. Recent studies disclose the existence of a link between lipids and animal longevity. Findings from both comparative studies and genetics and nutritional interventions in invertebrates, vertebrates, and exceptionally long-lived animal species—humans included—demonstrate that both the cell membrane fatty acid profile and lipidome are a species-specific optimized evolutionary adaptation and traits associated with longevity. All these emerging observations point to lipids as a key target to study the molecular mechanisms underlying differences in longevity and suggest the existence of a lipidome profile of long life.
Collapse
|
17
|
Mota-Martorell N, Jove M, Pradas I, Berdún R, Sanchez I, Naudi A, Gari E, Barja G, Pamplona R. Gene expression and regulatory factors of the mechanistic target of rapamycin (mTOR) complex 1 predict mammalian longevity. GeroScience 2020; 42:1157-1173. [PMID: 32578071 PMCID: PMC7434991 DOI: 10.1007/s11357-020-00210-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/01/2020] [Indexed: 01/17/2023] Open
Abstract
Species longevity varies significantly across animal species, but the underlying molecular mechanisms remain poorly understood. Recent studies and omics approaches suggest that phenotypic traits of longevity could converge in the mammalian target of rapamycin (mTOR) signalling pathway. The present study focuses on the comparative approach in heart tissue from 8 mammalian species with a ML ranging from 3.5 to 46 years. Gene expression, protein content, and concentration of regulatory metabolites of the mTOR complex 1 (mTORC1) were measured using droplet digital PCR, western blot, and mass spectrometry, respectively. Our results demonstrate (1) the existence of differences in species-specific gene expression and protein content of mTORC1, (2) that the achievement of a high longevity phenotype correlates with decreased and inhibited mTORC1, (3) a decreased content of mTORC1 activators in long-lived animals, and (4) that these differences are independent of phylogeny. Our findings, taken together, support an important role for mTORC1 downregulation in the evolution of long-lived mammals.
Collapse
Affiliation(s)
- Natalia Mota-Martorell
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), 25198, Lleida, Catalonia, Spain
| | - Mariona Jove
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), 25198, Lleida, Catalonia, Spain
| | - Irene Pradas
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), 25198, Lleida, Catalonia, Spain
| | - Rebeca Berdún
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), 25198, Lleida, Catalonia, Spain
| | - Isabel Sanchez
- Proteomics and Genomics Unit, University of Lleida, 25198, Lleida, Catalonia, Spain
| | - Alba Naudi
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), 25198, Lleida, Catalonia, Spain
| | - Eloi Gari
- Department of Basic Medical Sciences, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), 25198, Lleida, Catalonia, Spain
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid (UCM), 28040, Madrid, Spain.
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), 25198, Lleida, Catalonia, Spain.
| |
Collapse
|
18
|
Lenzhofer N, Ohrnberger SA, Valencak TG. n-3 polyunsaturated fatty acids as modulators of thermogenesis in Ames dwarf mice. GeroScience 2020; 42:897-907. [PMID: 32065332 DOI: 10.1007/s11357-019-00148-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/13/2019] [Indexed: 01/19/2023] Open
Abstract
Lipids, commonly split into saturated and mono- and polyunsaturated fatty acids, are key constituents of all biological membranes, and their exact proportions in different tissues were previously shown to be related to lifespan in mammals. As a mechanism, it was put forward that long-chain and highly unsaturated n-3 fatty acids may act as "pacemakers" in membranes while the n-6 fatty acid class may act as a counterbalance. Previously, long-lived Ames dwarf mice (Prop1 df/df) were found to have lower n-3 fatty acids and higher n-6 throughout their tissues. We exposed 32 adult (8 months old) Ames dwarf mice to three isocaloric diets differing in their fatty acid composition (saturated vs. rich in n-3 and n-6) for 2 months while measuring their body masses, subcutaneous body temperatures and finally membrane fatty acid profiles. Prominently, we found that individuals from all three groups quickly increased their body masses by ca. 20% and had 0.45 °C higher subcutaneous body temperatures than at baseline (F1,12,16 = 22.27; p < 0.001). Conceivably, experimental diets also largely reflected lipid composition found in the tissues with over 50% n-3 fatty acids in heart phospholipids from animals from the n-3-enriched feeding group. Our study indicates that fatty acid-enriched diets well affected body mass, subcutaneous body temperature and membrane fatty acid composition in Ames dwarf mice with no visible adverse effects on their health. Experimental feeding increased subcutaneous body fat and insulation, most likely explaining the higher subcutaneous temperatures.
Collapse
Affiliation(s)
- Nadine Lenzhofer
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, A-1160, Vienna, Austria
| | - Sarah A Ohrnberger
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Veterinärplatz 1, A-1210, Vienna, Austria
| | - Teresa G Valencak
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, A-1160, Vienna, Austria. .,Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Veterinärplatz 1, A-1210, Vienna, Austria. .,College of Animal Sciences, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
19
|
The Effects of Age and Reproduction on the Lipidome of Caenorhabditis elegans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5768953. [PMID: 31249646 PMCID: PMC6532275 DOI: 10.1155/2019/5768953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 02/25/2019] [Indexed: 12/11/2022]
Abstract
Aging is a complex life process, and a unified view is that metabolism plays key roles in all biological processes. Here, we determined the lipidomic profile of Caenorhabditis elegans (C. elegans) using ultraperformance liquid chromatography high-resolution mass spectrometry (UPLC-HRMS). Using a nontargeted approach, we detected approximately 3000 species. Analysis of the lipid metabolic profiles at young adult and ten-day-old ages among wild-type N2, glp-1 defective mutant, and double mutant daf-16;glp-1 uncovered significant age-related differences in the total amount of phosphatidylcholines (PC), sphingomyelins (SM), ceramides (Cer), diglycerides (DG), and triglycerides (TG). In addition, the age-associated lipid profiles were characterized by ratio of polyunsaturated (PUFA) over monounsaturated (MUFA) lipid species. Lipid metabolism modulation plays an important role in reproduction-regulated aging; to identify the variations of lipid metabolites during germ line loss-induced longevity, we investigated the lipidomic profiles of long-lived glp-1/notch receptor mutants, which have reproductive deficiency when grown at nonpermissive temperature. The results showed that there was some age-related lipid variation, including TG 40:2, TG 40:1, and TG 41:1, which contributed to the long-life phenotype. The longevity of glp-1 mutant was daf-16-dependent; the lipidome analysis of daf-16;glp-1 double mutant revealed that the changes of some metabolites in the glp-1 mutant were daf-16-dependent, while other metabolites displayed more complex epistatic patterns. We first conducted a comprehensive lipidome analysis to provide novel insights into the relationships between longevity and lipid metabolism regulated by germ line signals in C. elegans.
Collapse
|
20
|
Owoyele BV, Ayilara OG. Coconut oil protects against light-induced retina degeneration in male Wistar rats. PATHOPHYSIOLOGY 2019; 26:89-95. [DOI: 10.1016/j.pathophys.2018.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 09/25/2018] [Accepted: 10/02/2018] [Indexed: 11/26/2022] Open
|
21
|
Vágási CI, Vincze O, Pătraș L, Osváth G, Pénzes J, Haussmann MF, Barta Z, Pap PL. Longevity and life history coevolve with oxidative stress in birds. Funct Ecol 2019; 33:152-161. [PMID: 34290466 PMCID: PMC8291348 DOI: 10.1111/1365-2435.13228] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 09/30/2018] [Indexed: 01/09/2023]
Abstract
1. The mechanisms that underpin the evolution of ageing and life histories remain elusive. Oxidative stress, which results in accumulated cellular damages, is one of the mechanisms suggested to play a role. 2. In this paper, we set out to test the "oxidative stress theory of ageing" and the "oxidative stress hypothesis of life histories" using a comprehensive phylogenetic comparison based on an unprecedented dataset of oxidative physiology in 88 free-living bird species. 3. We show for the first time that bird species with longer lifespan have higher non-enzymatic antioxidant capacity and suffer less oxidative damage to their lipids. We also found that bird species featuring a faster pace-of-life either have lower non-enzymatic antioxidant capacity or are exposed to higher levels of oxidative damage, while adult annual mortality does not relate to oxidative state. 4. These results reinforce the role of oxidative stress in the evolution of lifespan and also corroborate the role of oxidative state in the evolution of life histories among free-living birds.
Collapse
Affiliation(s)
- Csongor I. Vágási
- Hungarian Department of Biology and Ecology, Evolutionary Ecology Group, Babeş-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology, MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
| | - Orsolya Vincze
- Hungarian Department of Biology and Ecology, Evolutionary Ecology Group, Babeş-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology, MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
| | - Laura Pătraș
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Gergely Osváth
- Hungarian Department of Biology and Ecology, Evolutionary Ecology Group, Babeş-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology, MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
- Museum of Zoology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Janka Pénzes
- Hungarian Department of Biology and Ecology, Evolutionary Ecology Group, Babeş-Bolyai University, Cluj-Napoca, Romania
| | | | - Zoltán Barta
- Department of Evolutionary Zoology, MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
| | - Péter L. Pap
- Hungarian Department of Biology and Ecology, Evolutionary Ecology Group, Babeş-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology, MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
22
|
Almaida-Pagan PF, Ortega-Sabater C, Lucas-Sanchez A, Gonzalez-Silvera D, Martinez-Nicolas A, Rol de Lama MA, Mendiola P, de Costa J. Age-related changes in mitochondrial membrane composition of Nothobranchius furzeri.: comparison with a longer-living Nothobranchius species. Biogerontology 2018; 20:83-92. [PMID: 30306289 DOI: 10.1007/s10522-018-9778-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
Abstract
Membrane compositions, particularly of mitochondria, could be critical factors in the mechanisms of growth and aging, especially during phases of high oxidative stress that result in molecular damage. Changes affecting lipid class or fatty acid (FA) compositions could affect phospholipid (PL) properties and alter mitochondrial function. In the present study, mitochondrial membrane PL compositions were analysed throughout the life-cycle of Nothobranchius furzeri, a species with explosive growth and one of the shortest-lived vertebrates. Mitochondrial PLs showed several changes with age. Proportions of total PLs and PC were reduced while an increase in PS, CL and PE was observed, mainly between the 2.5 and 5 months of fish age, the time during which animals doubled their weight. FA compositions of individual PLs in mitochondria were also significantly affected with age suggesting the existence of increasing damage to mitochondrial lipids during the life-cycle of N. furzeri that could be one of the main contributors to degraded mitochondrial function associated with aging. The peroxidation index values from N. furzeri mitochondrial PLs were significantly lower than those reported in N. rachovii, a species with a twofold longer life span than N. furzeri, which seems to contradict the membrane pacemaker theory of animal metabolism.
Collapse
Affiliation(s)
- Pedro F Almaida-Pagan
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain. .,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain. .,Department of Physiology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain.
| | - Carmen Ortega-Sabater
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Alejandro Lucas-Sanchez
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | | | - Antonio Martinez-Nicolas
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Maria Angeles Rol de Lama
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Pilar Mendiola
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Jorge de Costa
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| |
Collapse
|
23
|
Mota-Martorell N, Pradas I, Jové M, Naudí A, Pamplona R. [De novo biosynthesis of glycerophospholipids and longevity]. Rev Esp Geriatr Gerontol 2018; 54:88-93. [PMID: 30879491 DOI: 10.1016/j.regg.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The glycerophospholipids, synthesised from diacylglycerol (DAG), are one of the main lipid components of cell membranes. The lipid profile is an optimised feature associated with animal longevity. In this context, the hypothesis is presented that the DAG biosynthesis rate, and thus, the glycerophospholipids content, is related to animal longevity. MATERIAL AND METHODS A plasma lipidomic analysis was performed based on the mass spectrometry of 11 mammalian species with a maximum longevity ranging from 3.5 to 120 years. Lipid identification was based on exact mass, retention time, and isotopic distribution. ANOVA test was applied to differentiate the lipids between animal species. The relationship between these lipids and longevity was carried out with a Spearman correlation. Data was analysed using SPSS and MetaboAnalyst. RESULTS Among the 1,061 different lipid molecular species found between species, 47 were defined as DAG. Interestingly, 14 of them showed a negative correlation with mammalian maximum longevity. Multivariate statistics revealed that 14 DAGs were enough to define mammalian species and their maximum longevity. CONCLUSIONS Data suggest that long-lived mammalian species have a lower rate of glycerophospholipids synthesis through the de novo pathway, possibly associated with a lower rate of membrane lipid exchange, which in turn is related to lower energy expenditure.
Collapse
Affiliation(s)
- Natalia Mota-Martorell
- Departament de Medicina Experimental, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (UdL-IRBLleida), Lleida, España
| | - Irene Pradas
- Departament de Medicina Experimental, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (UdL-IRBLleida), Lleida, España
| | - Mariona Jové
- Departament de Medicina Experimental, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (UdL-IRBLleida), Lleida, España
| | - Alba Naudí
- Departament de Medicina Experimental, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (UdL-IRBLleida), Lleida, España
| | - Reinald Pamplona
- Departament de Medicina Experimental, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (UdL-IRBLleida), Lleida, España.
| |
Collapse
|
24
|
Galván I, Møller AP. Dispersal capacity explains the evolution of lifespan variability. Ecol Evol 2018; 8:4949-4957. [PMID: 29876072 PMCID: PMC5980329 DOI: 10.1002/ece3.4073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 02/15/2018] [Accepted: 03/15/2018] [Indexed: 11/10/2022] Open
Abstract
The evolutionary explanation for lifespan variation is still based on the antagonistic pleiotropy hypothesis, which has been challenged by several studies. Alternative models assume the existence of genes that favor aging and group benefits at the expense of reductions in individual lifespans. Here we propose a new model without making such assumptions. It considers that limited dispersal can generate, through reduced gene flow, spatial segregation of individual organisms according to lifespan. Individuals from subpopulations with shorter lifespan could thus resist collapse in a growing population better than individuals from subpopulations with longer lifespan, hence reducing lifespan variability within species. As species that disperse less may form more homogeneous subpopulations regarding lifespan, this may lead to a greater capacity to maximize lifespan that generates viable subpopulations, therefore creating negative associations between dispersal capacity and lifespan across species. We tested our model with individual-based simulations and a comparative study using empirical data of maximum lifespan and natal dispersal distance in 26 species of birds, controlling for the effects of genetic variability, body size, and phylogeny. Simulations resulted in maximum lifespans arising from lowest dispersal probabilities, and comparative analyses resulted in a negative association between lifespan and natal dispersal distance, thus consistent with our model. Our findings therefore suggest that the evolution of lifespan variability is the result of the ecological process of dispersal.
Collapse
Affiliation(s)
- Ismael Galván
- Departamento de Ecología EvolutivaEstación Biológica de DoñanaCSICSevillaSpain
| | - Anders P. Møller
- Ecologie Systématique EvolutionUniversité Paris‐Sud, CNRS, AgroParisTech, Université Paris‐SaclayOrsay CedexFrance
| |
Collapse
|
25
|
Hua X, Bromham L. Darwinism for the Genomic Age: Connecting Mutation to Diversification. Front Genet 2017; 8:12. [PMID: 28224003 PMCID: PMC5293951 DOI: 10.3389/fgene.2017.00012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/19/2017] [Indexed: 12/30/2022] Open
Abstract
A growing body of evidence suggests that rates of diversification of biological lineages are correlated with differences in genome-wide mutation rate. Given that most research into differential patterns of diversification rate have focused on species traits or ecological parameters, a connection to the biochemical processes of genome change is an unexpected observation. While the empirical evidence for a significant association between mutation rate and diversification rate is mounting, there has been less effort in explaining the factors that mediate this connection between genetic change and species richness. Here we draw together empirical studies and theoretical concepts that may help to build links in the explanatory chain that connects mutation to diversification. First we consider the way that mutation rates vary between species. We then explore how differences in mutation rates have flow-through effects to the rate at which populations acquire substitutions, which in turn influences the speed at which populations become reproductively isolated from each other due to the acquisition of genomic incompatibilities. Since diversification rate is commonly measured from phylogenetic analyses, we propose a conceptual approach for relating events of reproductive isolation to bifurcations on molecular phylogenies. As we examine each of these relationships, we consider theoretical models that might shine a light on the observed association between rate of molecular evolution and diversification rate, and critically evaluate the empirical evidence for these links, focusing on phylogenetic comparative studies. Finally, we ask whether we are getting closer to a real understanding of the way that the processes of molecular evolution connect to the observable patterns of diversification.
Collapse
Affiliation(s)
- Xia Hua
- Centre for Macroevolution and Macroecology, Research School of Biology, Australian National University, Canberra ACT, Australia
| | - Lindell Bromham
- Centre for Macroevolution and Macroecology, Research School of Biology, Australian National University, Canberra ACT, Australia
| |
Collapse
|
26
|
Cabré R, Jové M, Naudí A, Ayala V, Piñol-Ripoll G, Gil-Villar MP, Dominguez-Gonzalez M, Obis È, Berdun R, Mota-Martorell N, Portero-Otin M, Ferrer I, Pamplona R. Specific Metabolomics Adaptations Define a Differential Regional Vulnerability in the Adult Human Cerebral Cortex. Front Mol Neurosci 2016; 9:138. [PMID: 28008307 PMCID: PMC5143679 DOI: 10.3389/fnmol.2016.00138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022] Open
Abstract
Brain neurons offer diverse responses to stresses and detrimental factors during development and aging, and as a result of both neurodegenerative and neuropsychiatric disorders. This multiplicity of responses can be ascribed to the great diversity among neuronal populations. Here we have determined the metabolomic profile of three healthy adult human brain regions-entorhinal cortex, hippocampus, and frontal cortex-using mass spectrometry-based technologies. Our results show the existence of a lessened energy demand, mitochondrial stress, and lower one-carbon metabolism (particularly restricted to the methionine cycle) specifically in frontal cortex. These findings, along with the better antioxidant capacity and lower mTOR signaling also seen in frontal cortex, suggest that this brain region is especially resistant to stress compared to the entorhinal cortex and hippocampus, which are more vulnerable regions. Globally, our results show the presence of specific metabolomics adaptations in three mature, healthy human brain regions, confirming the existence of cross-regional differences in cell vulnerability in the human cerebral cortex.
Collapse
Affiliation(s)
- Rosanna Cabré
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Alba Naudí
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Victoria Ayala
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida) Lleida, Spain
| | | | | | | | - Èlia Obis
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Rebeca Berdun
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Natalia Mota-Martorell
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Isidre Ferrer
- Institute of Neuropathology, University of BarcelonaBarcelona, Spain; Center for Biomedical Research on Neurodegenerative Diseases, Instituto de Salud Carlos III - ISCIIIBarcelona, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida) Lleida, Spain
| |
Collapse
|
27
|
Scialò F, Sriram A, Naudí A, Ayala V, Jové M, Pamplona R, Sanz A. Target of rapamycin activation predicts lifespan in fruit flies. Cell Cycle 2016; 14:2949-58. [PMID: 26259964 PMCID: PMC4630862 DOI: 10.1080/15384101.2015.1071745] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aging and age-related diseases are one of the most important health issues that the world will confront during the 21st century. Only by understanding the proximal causes will we be able to find treatments to reduce or delay the onset of degenerative diseases associated with aging. Currently, the prevalent paradigm in the field is the accumulation of damage. However, a new theory that proposes an alternative explanation is gaining momentum. The hyperfunction theory proposes that aging is not a consequence of a wear and tear process, but a result of the continuation of developmental programs during adulthood. Here we use Drosophila melanogaster, where evidence supporting both paradigms has been reported, to identify which parameters that have been previously related with lifespan best predict the rate of aging in wild type flies cultured at different temperatures. We find that mitochondrial function and mitochondrial reactive oxygen species (mtROS) generation correlates with metabolic rate, but not with the rate of aging. Importantly, we find that activation of nutrient sensing pathways (i.e. insulin-PI3K/Target of rapamycin (Tor) pathway) correlates with lifespan, but not with metabolic rate. Our results, dissociate metabolic rate and lifespan in wild type flies and instead link nutrient sensing signaling with longevity as predicted by the hyperfunction theory.
Collapse
Affiliation(s)
- Filippo Scialò
- a Institute for Cell and Molecular Biosciences; Newcastle University Institute for Ageing; Newcastle University ; Newcastle-Upon-Tyne , UK
| | - Ashwin Sriram
- a Institute for Cell and Molecular Biosciences; Newcastle University Institute for Ageing; Newcastle University ; Newcastle-Upon-Tyne , UK
| | - Alba Naudí
- b Department of Experimental Medicine ; University of Lleida-IRB ; Lleida , Spain
| | - Victoria Ayala
- b Department of Experimental Medicine ; University of Lleida-IRB ; Lleida , Spain
| | - Mariona Jové
- b Department of Experimental Medicine ; University of Lleida-IRB ; Lleida , Spain
| | - Reinald Pamplona
- b Department of Experimental Medicine ; University of Lleida-IRB ; Lleida , Spain
| | - Alberto Sanz
- a Institute for Cell and Molecular Biosciences; Newcastle University Institute for Ageing; Newcastle University ; Newcastle-Upon-Tyne , UK
| |
Collapse
|
28
|
Aledo JC, Cantón FR, Veredas FJ. Sulphur Atoms from Methionines Interacting with Aromatic Residues Are Less Prone to Oxidation. Sci Rep 2015; 5:16955. [PMID: 26597773 PMCID: PMC4657052 DOI: 10.1038/srep16955] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/22/2015] [Indexed: 11/25/2022] Open
Abstract
Methionine residues exhibit different degrees of susceptibility to oxidation.
Although solvent accessibility is a relevant factor, oxidation at particular sites
cannot be unequivocally explained by accessibility alone. To explore other possible
structural determinants, we assembled different sets of oxidation-sensitive and
oxidation-resistant methionines contained in human proteins. Comparisons of the
proteins containing oxidized methionines with all proteins in the human proteome led
to the conclusion that the former exhibit a significantly higher mean value of
methionine content than the latter. Within a given protein, an examination of the
sequence surrounding the non-oxidized methionine revealed a preference for
neighbouring tyrosine and tryptophan residues, but not for phenylalanine residues.
However, because the interaction between sulphur atoms and aromatic residues has
been reported to be important for the stabilization of protein structure, we carried
out an analysis of the spatial interatomic distances between methionines and
aromatic residues, including phenylalanine. The results of these analyses uncovered
a new determinant for methionine oxidation: the S-aromatic motif, which decreases
the reactivity of the involved sulphur towards oxidants.
Collapse
Affiliation(s)
- Juan C Aledo
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071-Málaga, Spain
| | - Francisco R Cantón
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071-Málaga, Spain
| | - Francisco J Veredas
- Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga, 29071-Málaga, Spain
| |
Collapse
|
29
|
Abstract
Preclinical Research Idiopathic Pulmonary Fibrosis (IPF) is the most severe fibrotic lung disease and characterized by the accumulation of (myo)fibroblasts and collagen within the alveolar wall resulting in obliteration of the gas-exchange surface. Although the detailed pathogenesis is not understood, recent studies have found that several microRNAs (miRNAs) are associated with the progression of lung diseases including IPF. IPF is a fibrotic disease and, most frequently found in an aged population. In this review, the functional roles of miRNAs that are deregulated in IPF progression are discussed together with how aging affects the miRNA signature, altering the fibroblast phenotype and promoting lung fibrosis. Finally, the possibility of targeting miRNAs as a therapeutic approach for the treatment of IPF is discussed.
Collapse
|
30
|
Galván I, Naudí A, Erritzøe J, Møller AP, Barja G, Pamplona R. Long lifespans have evolved with long and monounsaturated fatty acids in birds. Evolution 2015; 69:2776-84. [PMID: 26294378 DOI: 10.1111/evo.12754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/11/2015] [Indexed: 12/15/2022]
Abstract
The evolution of lifespan is a central question in evolutionary biology, begging the question why there is so large variation among taxa. Specifically, a central quest is to unravel proximate causes of ageing. Here, we show that the degree of unsaturation of liver fatty acids predicts maximum lifespan in 107 bird species. In these birds, the degree of fatty acid unsaturation is positively related to maximum lifespan across species. This is due to a positive effect of monounsaturated fatty acid content, while polyunsaturated fatty acid content negatively correlates with maximum lifespan. Furthermore, fatty acid chain length unsuspectedly increases with maximum lifespan independently of degree of unsaturation. These findings tune theories on the proximate causes of ageing while providing evidence that the evolution of lifespan in birds occurs in association with fatty acid profiles. This suggests that studies of proximate and ultimate questions may facilitate our understanding of these central evolutionary questions.
Collapse
Affiliation(s)
- Ismael Galván
- Departamento de Ecología Evolutiva, Estación Biológica de Doñana - CSIC, c/ Américo Vespucio s/n, 41092, Sevilla, Spain.
| | - Alba Naudí
- Departamento de Medicina Experimental, Universidad de Lleida - Instituto de Investigación Biomédica de Lleida (IRBLleida), 25198, Lleida, Spain
| | | | - Anders P Møller
- Laboratoire d'Ecologie, Systématique et Evolution, Université Paris-Sud 11, Bâtiment 362, 91405, Orsay Cedex, France
| | - Gustavo Barja
- Departamento de Fisiología Animal II, Universidad Complutense de Madrid, c/ José Antonio Novais 2, 28040, Madrid, Spain
| | - Reinald Pamplona
- Departamento de Medicina Experimental, Universidad de Lleida - Instituto de Investigación Biomédica de Lleida (IRBLleida), 25198, Lleida, Spain
| |
Collapse
|
31
|
Abstract
SIGNIFICANCE The molecular mechanism of aging is still vigorously debated, although a general consensus exists that mitochondria are significantly involved in this process. However, the previously postulated role of mitochondrial-derived reactive oxygen species (ROS) as the damaging agents inducing functional loss in aging has fallen out of favor in the recent past. In this review, we critically examine the role of ROS in aging in the light of recent advances on the relationship between mitochondrial structure and function. RECENT ADVANCES The functional mitochondrial respiratory chain is now recognized as a reflection of the dynamic association of respiratory complexes in the form of supercomplexes (SCs). Besides providing kinetic advantage (channeling), SCs control ROS generation by the respiratory chain, thus providing a means to regulate ROS levels in the cell. Depending on their concentration, these ROS are either physiological signals essential for the life of the cell or toxic species that damage cell structure and functions. CRITICAL ISSUES We propose that under physiological conditions the dynamic nature of SCs reversibly controls the generation of ROS as signals involved in mitochondrial-nuclear communication. During aging, there is a progressive loss of control of ROS generation so that their production is irreversibly enhanced, inducing a vicious circle in which signaling is altered and structural damage takes place. FUTURE DIRECTIONS A better understanding on the forces affecting SC association would allow the manipulation of ROS generation, directing these species to their physiological signaling role.
Collapse
Affiliation(s)
- Maria Luisa Genova
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum-Università di Bologna , Bologna, Italy
| | - Giorgio Lenaz
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum-Università di Bologna , Bologna, Italy
| |
Collapse
|
32
|
Jové M, Maté I, Naudí A, Mota-Martorell N, Portero-Otín M, De la Fuente M, Pamplona R. Human Aging Is a Metabolome-related Matter of Gender. J Gerontol A Biol Sci Med Sci 2015; 71:578-85. [DOI: 10.1093/gerona/glv074] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/30/2015] [Indexed: 11/13/2022] Open
|
33
|
Varela-López A, Quiles JL, Cordero M, Giampieri F, Bullón P. Oxidative Stress and Dietary Fat Type in Relation to Periodontal Disease. Antioxidants (Basel) 2015; 4:322-44. [PMID: 26783708 PMCID: PMC4665476 DOI: 10.3390/antiox4020322] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress is one of the main factors studied to explain the pathophysiological mechanisms of inflammatory conditions, such as periodontitis. In this respect, nutrition may be of great importance. Actually, research on nutrients' effects on periodontal diseases has expanded to include those influencing the redox status, which correlates to the inflammatory process. Dietary fat or lipids are often blamed as the major source of excess energy. Consequently, when caloric intake exceeds energy expenditure, the resultant substrate-induced increase in citric acid cycle activity generates an excess of reactive oxygen species (ROS). In addition, dietary fatty acid intake influences in relative fatty acid composition of biological membranes determining its susceptibility to oxidative alterations. From this standpoint, here, we reviewed studies analyzing the dietary fat role in periodontal disease. Research data suggest that periodontal health could be achieved by main dietary strategies which include substitution of saturated fats with monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), particularly n-3 PUFA. Maybe in the future, we should analyze the diet and provide some advice to periodontitis patients to improve treatment outcomes.
Collapse
Affiliation(s)
- Alfonso Varela-López
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center (CIBM), University of Granada, Avda. del Conocimiento s.n., Armilla, Granada 18100, Spain.
| | - José L Quiles
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center (CIBM), University of Granada, Avda. del Conocimiento s.n., Armilla, Granada 18100, Spain.
| | - Mario Cordero
- Department of Periodontology, Dental School, University of Sevilla, C/Avicena s.n., Sevilla 41009, Spain.
| | - Francesca Giampieri
- Department of Clinical Sciences, Marche Polytechnic University, Ancona 60100, Italy.
| | - Pedro Bullón
- Department of Periodontology, Dental School, University of Sevilla, C/Avicena s.n., Sevilla 41009, Spain.
| |
Collapse
|
34
|
Villalba JM, López-Domínguez JA, Chen Y, Khraiwesh H, González-Reyes JA, Del Río LF, Gutiérrez-Casado E, Del Río M, Calvo-Rubio M, Ariza J, de Cabo R, López-Lluch G, Navas P, Hagopian K, Burón MI, Ramsey JJ. The influence of dietary fat source on liver and skeletal muscle mitochondrial modifications and lifespan changes in calorie-restricted mice. Biogerontology 2015; 16:655-70. [PMID: 25860863 DOI: 10.1007/s10522-015-9572-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/03/2015] [Indexed: 12/26/2022]
Abstract
The Membrane Theory of Aging proposes that lifespan is inversely related to the level of unsaturation in membrane phospholipids. Calorie restriction (CR) without malnutrition extends lifespan in many model organisms, which may be related to alterations in membrane phospholipids fatty acids. During the last few years our research focused on studying how altering the predominant fat source affects the outcome of CR in mice. We have established four dietary groups: one control group fed 95 % of a pre-determined ad libitum intake (in order to prevent obesity), and three CR groups fed 40 % less than ad libitum intake. Lipid source for the control and one of the CR groups was soybean oil (high in n-6 PUFA) whereas the two remaining CR groups were fed diets containing fish oil (high in n-3 PUFA), or lard (high in saturated and monounsaturated fatty acids). Dietary intervention periods ranged from 1 to 18 months. We performed a longitudinal lifespan study and a cross-sectional study set up to evaluate several mitochondrial parameters which included fatty acid composition, H(+) leak, activities of electron transport chain enzymes, ROS generation, lipid peroxidation, mitochondrial ultrastructure, and mitochondrial apoptotic signaling in liver and skeletal muscle. These approaches applied to different cohorts of mice have independently indicated that lard as a fat source often maximizes the effects of 40 % CR on mice. These effects could be due to significant increases of monounsaturated fatty acids levels, in accordance with the Membrane Theory of Aging.
Collapse
Affiliation(s)
- José Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus Rabanales, Edificio Severo Ochoa, 3ª planta, Campus de Excelencia Internacional Agroalimentario, ceiA3, 14014, Córdoba, Spain,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Metabolomics of Human Brain Aging and Age-Related Neurodegenerative Diseases. J Neuropathol Exp Neurol 2014; 73:640-57. [DOI: 10.1097/nen.0000000000000091] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
36
|
Munro D, Blier PU. Age, Diet, and Season Do Not Affect Longevity-Related Differences in Peroxidation Index Between Spisula solidissima and Arctica islandica. ACTA ACUST UNITED AC 2014; 70:434-43. [DOI: 10.1093/gerona/glu054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
37
|
Naudí A, Jové M, Ayala V, Portero-Otín M, Barja G, Pamplona R. Membrane lipid unsaturation as physiological adaptation to animal longevity. Front Physiol 2013; 4:372. [PMID: 24381560 PMCID: PMC3865700 DOI: 10.3389/fphys.2013.00372] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 11/29/2013] [Indexed: 01/23/2023] Open
Abstract
The appearance of oxygen in the terrestrial atmosphere represented an important selective pressure for ancestral living organisms and contributed toward setting up the pace of evolutionary changes in structural and functional systems. The evolution of using oxygen for efficient energy production served as a driving force for the evolution of complex organisms. The redox reactions associated with its use were, however, responsible for the production of reactive species (derived from oxygen and lipids) with damaging effects due to oxidative chemical modifications of essential cellular components. Consequently, aerobic life required the emergence and selection of antioxidant defense systems. As a result, a high diversity in molecular and structural antioxidant defenses evolved. In the following paragraphs, we analyze the adaptation of biological membranes as a dynamic structural defense against reactive species evolved by animals. In particular, our goal is to describe the physiological mechanisms underlying the structural adaptation of cellular membranes to oxidative stress and to explain the meaning of this adaptive mechanism, and to review the state of the art about the link between membrane composition and longevity of animal species.
Collapse
Affiliation(s)
- Alba Naudí
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Victòria Ayala
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Manuel Portero-Otín
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Gustavo Barja
- Department of Animal Physiology II, Complutense University Madrid, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida) Lleida, Spain
| |
Collapse
|
38
|
Independent and additive effects of atenolol and methionine restriction on lowering rat heart mitochondria oxidative stress. J Bioenerg Biomembr 2013; 46:159-72. [DOI: 10.1007/s10863-013-9535-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 11/26/2013] [Indexed: 01/09/2023]
|
39
|
Valencak TG, Ruf T. Phospholipid composition and longevity: lessons from Ames dwarf mice. AGE (DORDRECHT, NETHERLANDS) 2013; 35:2303-13. [PMID: 23640425 PMCID: PMC3825011 DOI: 10.1007/s11357-013-9533-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/03/2013] [Indexed: 06/01/2023]
Abstract
Membrane fatty acid (FA) composition is correlated with longevity in mammals. The "membrane pacemaker hypothesis of ageing" proposes that animals which cellular membranes contain high amounts of polyunsaturated FAs (PUFAs) have shorter life spans because their membranes are more susceptible to peroxidation and further oxidative damage. It remains to be shown, however, that long-lived phenotypes such as the Ames dwarf mouse have membranes containing fewer PUFAs and thus being less prone to peroxidation, as would be predicted from the membrane pacemaker hypothesis of ageing. Here, we show that across four different tissues, i.e., muscle, heart, liver and brain as well as in liver mitochondria, Ames dwarf mice possess membrane phospholipids containing between 30 and 60 % PUFAs (depending on the tissue), which is similar to PUFA contents of their normal-sized, short-lived siblings. However, we found that that Ames dwarf mice membrane phospholipids were significantly poorer in n-3 PUFAs. While lack of a difference in PUFA contents is contradicting the membrane pacemaker hypothesis, the lower n-3 PUFAs content in the long-lived mice provides some support for the membrane pacemaker hypothesis of ageing, as n-3 PUFAs comprise those FAs being blamed most for causing oxidative damage. By comparing tissue composition between 1-, 2- and 6-month-old mice in both phenotypes, we found that membranes differed both in quantity of PUFAs and in the prevalence of certain PUFAs. In sum, membrane composition in the Ames dwarf mouse supports the concept that tissue FA composition is related to longevity.
Collapse
Affiliation(s)
- Teresa G Valencak
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160, Vienna, Austria,
| | | |
Collapse
|
40
|
Scialo F, Mallikarjun V, Stefanatos R, Sanz A. Regulation of lifespan by the mitochondrial electron transport chain: reactive oxygen species-dependent and reactive oxygen species-independent mechanisms. Antioxid Redox Signal 2013; 19:1953-69. [PMID: 22938137 DOI: 10.1089/ars.2012.4900] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE Aging is a consequence of the accumulation of cellular damage that impairs the capacity of an aging organism to adapt to stress. The Mitochondrial Free Radical Theory of Aging (MFRTA) has been one of the most influential ideas over the past 50 years. The MFRTA is supported by the accumulation of oxidative damage during aging along with comparative studies demonstrating that long-lived species or individuals produce fewer mitochondrial reactive oxygen species and have lower levels of oxidative damage. RECENT ADVANCES Recently, however, species that combine high oxidative damage with a longer lifespan (i.e., naked mole rats) have been described. Moreover, most of the interventions based on antioxidant supplementation do not increase longevity, as would be predicted by the MFRTA. Studies to date provide a clear understanding that mitochondrial function regulates the rate of aging, but the underlying mechanisms remain unclear. CRITICAL ISSUES Here, we review the reactive oxygen species (ROS)-dependent and ROS-independent mechanisms by which mitochondria can affect longevity. We discuss the role of different ROS (superoxide, hydrogen peroxide, and hydroxyl radical), both as oxidants as well as signaling molecules. We also describe how mitochondria can regulate longevity by ROS-independent mechanisms. We discuss alterations in mitochondrial DNA, accumulation of cellular waste as a consequence of glyco- and lipoxidative damage, and the regulation of DNA maintenance enzymes as mechanisms that can determine longevity without involving ROS. FUTURE DIRECTIONS We also show how the regulation of longevity is a complex process whereby ROS-dependent and ROS-independent mechanisms interact to determine the maximum lifespan of species and individuals.
Collapse
Affiliation(s)
- Filippo Scialo
- 1 Institute of Biomedical Technology and Tampere University Hospital , University of Tampere, Tampere, Finland
| | | | | | | |
Collapse
|
41
|
Jové M, Naudí A, Aledo JC, Cabré R, Ayala V, Portero-Otin M, Barja G, Pamplona R. Plasma long-chain free fatty acids predict mammalian longevity. Sci Rep 2013; 3:3346. [PMID: 24284984 PMCID: PMC3842621 DOI: 10.1038/srep03346] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 11/12/2013] [Indexed: 12/31/2022] Open
Abstract
Membrane lipid composition is an important correlate of the rate of aging of animals and, therefore, the determination of their longevity. In the present work, the use of high-throughput technologies allowed us to determine the plasma lipidomic profile of 11 mammalian species ranging in maximum longevity from 3.5 to 120 years. The non-targeted approach revealed a specie-specific lipidomic profile that accurately predicts the animal longevity. The regression analysis between lipid species and longevity demonstrated that the longer the longevity of a species, the lower is its plasma long-chain free fatty acid (LC-FFA) concentrations, peroxidizability index, and lipid peroxidation-derived products content. The inverse association between longevity and LC-FFA persisted after correction for body mass and phylogenetic interdependence. These results indicate that the lipidomic signature is an optimized feature associated with animal longevity, emerging LC-FFA as a potential biomarker of longevity.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (IRBLleida), E-25198 Lleida, Spain
| | - Alba Naudí
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (IRBLleida), E-25198 Lleida, Spain
| | - Juan Carlos Aledo
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, E-29071 Malaga, Spain
| | - Rosanna Cabré
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (IRBLleida), E-25198 Lleida, Spain
| | - Victoria Ayala
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (IRBLleida), E-25198 Lleida, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (IRBLleida), E-25198 Lleida, Spain
| | - Gustavo Barja
- Department of Animal Physiology II, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (IRBLleida), E-25198 Lleida, Spain
| |
Collapse
|
42
|
Bloomer RJ, Lee SR. Women experience lower postprandial oxidative stress compared to men. SPRINGERPLUS 2013; 2:553. [PMID: 25674404 PMCID: PMC4320247 DOI: 10.1186/2193-1801-2-553] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/14/2013] [Indexed: 11/10/2022]
Abstract
Background Women have enhanced triglyceride (TAG) removal from the circulation following consumption of high-fat loads, potentially leading to decreased reactive oxygen and nitrogen species (RONS) generation. This may have implications related to long-term health outcomes. We examined the oxidative stress response to high-fat feeding between men and women to determine if women are less prone to postprandial oxidative stress as compared to men. Methods A total of 49 women (mean age: 31 ± 12 yrs) and 49 men (mean age: 27 ± 9 yrs) consumed a high-fat meal in the morning hours following a 10–12 hour overnight fast. Blood samples were collected before and at 2 and 4 hours after the meal. Samples were analyzed for TAG, various markers of oxidative stress (malondialdehyde [MDA], hydrogen peroxide [H2O2], Advanced Oxidation Protein Products [AOPP], nitrate/nitrite [NOx]), and Trolox-Equivalent Antioxidant Capacity (TEAC). Area under the curve (AUC) was calculated for each variable. Effect size calculations were performed using Cohen’s d. Data from the total sample of 98 subjects were collected as a part of six previously conducted studies in our lab focused on postprandial oxidative stress, between 2007 and 2012. Results AUC was higher for men compared to women for TAG (249.0 ± 21.5 vs. 145.0 ± 9.8 mg·dL-1·4 hr-1; p < 0.0001; effect size = 0.89), MDA (2.7 ± 0.2 vs. 2.2 ± 0.1 μmol·L-1·4 hr-1; p = 0.009; effect size = 0.47), H2O2 (29.9 ± 2.4 vs. 22.5 ± 1.6 μmol·L-1·4 hr-1; p = 0.001; effect size = 0.55), AOPP (92.8 ± 6.9 vs. 56.4 ± 3.7 μmol·L-1·4 hr-1; p < 0.0001; effect size = 1.38), and TEAC (1.7 ± 0.1 vs. 1.3 ± 0.0 mmol·L-1·4 hr-1; p = 0.002; effect size = 0.91). No significant difference was noted for NOx (42.2 ± 4.6 vs. 38.3 ± 3.5 μmol·L-1·4 hr-1 for men and women, respectively; p = 0.09; effect size = 0.17). Conclusion In the context of the current design, women experienced lower postprandial oxidative stress compared to men. Future work is needed to determine the potential health implications of lower postprandial oxidative stress in women.
Collapse
Affiliation(s)
- Richard J Bloomer
- Cardiorespiratory/Metabolic Laboratory, Department of Health and Sport Sciences, University of Memphis, Memphis, TN USA ; Department of Health and Sport Sciences, The University of Memphis, 106 Roane Field House, Memphis, TN 38152 USA
| | - Sang-Rok Lee
- Cardiorespiratory/Metabolic Laboratory, Department of Health and Sport Sciences, University of Memphis, Memphis, TN USA
| |
Collapse
|
43
|
Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal 2013; 19:1420-45. [PMID: 23642158 PMCID: PMC3791058 DOI: 10.1089/ars.2012.5148] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/11/2013] [Accepted: 05/05/2013] [Indexed: 01/12/2023]
Abstract
An updated version of the mitochondrial free radical theory of aging (MFRTA) and longevity is reviewed. Key aspects of the theory are emphasized. Another main focus concerns common misconceptions that can mislead investigators from other specialties, even to wrongly discard the theory. Those different issues include (i) the main reactive oxygen species (ROS)-generating site in the respiratory chain in relation to aging and longevity: complex I; (ii) the close vicinity or even contact between that site and the mitochondrial DNA, in relation to the lack of local efficacy of antioxidants and to sub-cellular compartmentation; (iii) the relationship between mitochondrial ROS production and oxygen consumption; (iv) recent criticisms on the MFRTA; (v) the widespread assumption that ROS are simple "by-products" of the mitochondrial respiratory chain; (vi) the unnecessary postulation of "vicious cycle" hypotheses of mitochondrial ROS generation which are not central to the free radical theory of aging; and (vii) the role of DNA repair concerning endogenous versus exogenous damage. After considering the large body of data already available, two general characteristics responsible for the high maintenance degree of long-lived animals emerge: (i) a low generation rate of endogenous damage: and (ii) the possession of tissue macromolecules that are highly resistant to oxidative modification.
Collapse
Affiliation(s)
- Gustavo Barja
- Department of Animal Physiology II, Faculty of Biological Sciences, Complutense University , Madrid, Spain
| |
Collapse
|
44
|
Naudí A, Jové M, Ayala V, Cabré R, Portero-Otin M, Ferrer I, Pamplona R. [A study of selective neuronal vulnerability in the human central nervous system]. Rev Esp Geriatr Gerontol 2013; 48:216-223. [PMID: 24011772 DOI: 10.1016/j.regg.2013.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/15/2013] [Accepted: 04/22/2013] [Indexed: 06/02/2023]
Abstract
INTRODUCTION The concept of 'selective neuronal vulnerability' refers to the differential sensitivity of neuronal populations in the nervous system to stresses that cause cell damage and lead to neurodegeneration. Because oxidative stress play a causal role in the physiological aging process, and it is often invoked as an aetiopathogenic and/or pathophysiological mechanism for neurodegeneration, in the present work we propose that the molecular bases of selective neuronal vulnerability is linked with cell adaptations related to oxidative stress. MATERIAL AND METHODS The grey substance of 5 different regions from healthy human subjects (n=7) were selected: i) to evaluate their membrane fatty acid profile by chromatographic methods, ii) to determine their membrane susceptibility to peroxidation, and iii) to recognise potential mechanisms involved in its regulation. RESULTS The results showed significant inter-regional differences in the fatty acid profile, basically due to the content of mono- and highly polyunsaturated fatty acids; changes that, in turn, induce significant differences in theirs susceptibilities to peroxidation, as well as differences that can be ascribed to the desaturase activity. CONCLUSION Thus, the cross-regional comparative approach seems to confirm the idea that the level of cell membrane unsaturation may be a key trait associated with selective neuronal vulnerability.
Collapse
Affiliation(s)
- Alba Naudí
- Departament de Medicina Experimental, Universitat de Lleida-IRBLleida, Lleida, Catalunya, España.
| | | | | | | | | | | | | |
Collapse
|
45
|
Arranz L, Naudí A, De la Fuente M, Pamplona R. Exceptionally old mice are highly resistant to lipoxidation-derived molecular damage. AGE (DORDRECHT, NETHERLANDS) 2013; 35:621-635. [PMID: 22367548 PMCID: PMC3636393 DOI: 10.1007/s11357-012-9391-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/08/2012] [Indexed: 05/31/2023]
Abstract
Membrane unsaturation plays an important role in the aging process and the determination of inter-species animal longevity. Furthermore, the accumulation of oxidation-derived molecular damage to cellular components particularly in the nervous and immune systems over time leads to homeostasis loss, which highly influences age-related morbidity and mortality. In this context, it is of great interest to know and discern the degree of membrane unsaturation and the steady-state levels of oxidative damage in both physiological systems from long-lived subjects. In the present work, adult (28 ± 4 weeks), old (76 ± 4 weeks) and exceptionally old (128 ± 4 weeks) BALB/c female mice were used. Brain and spleen were analysed for membrane fatty acid composition and specific markers of protein oxidation, glycoxidation and lipoxidation damage, i.e. glutamic semialdehyde, aminoadipic semialdehyde, carboxyethyl-lysine, carboxymethyl-lysine and malondialdehyde-lysine, by gas chromatography-mass spectrometry. The results showed significantly lower peroxidizability index in brain and spleen from exceptionally old animals when compared to old specimens. The higher membrane resistance to lipid peroxidation and lower lipoxidation-derived molecular damage found in exceptionally old animals was associated with a significantly lower desaturase activity and peroxisomal β-oxidation. Protein oxidation markers in brain and spleen from adult and exceptionally old animals showed similar levels, which were higher in old mice. In addition, the higher levels of the glycoxidation-derived marker observed in exceptionally old animals, as well as in adult mice, could be considered as a good indicator of a better bioenergetic state of these animals when compared to the old group. In conclusion, low lipid oxidation susceptibility and maintenance of adult-like protein lipoxidative damage could be key mechanisms for longevity achievement.
Collapse
Affiliation(s)
- Lorena Arranz
- />Department of Physiology (Animal Physiology II), Faculty of Biological Sciences, Complutense University of Madrid, Madrid, 28040 Spain
| | - Alba Naudí
- />Department of Experimental Medicine, Faculty of Medicine, University of Lleida-IRBLleida, Street Montserrat Roig-2, 25008 Lleida, Lleida Spain
| | - Mónica De la Fuente
- />Department of Physiology (Animal Physiology II), Faculty of Biological Sciences, Complutense University of Madrid, Madrid, 28040 Spain
| | - Reinald Pamplona
- />Department of Experimental Medicine, Faculty of Medicine, University of Lleida-IRBLleida, Street Montserrat Roig-2, 25008 Lleida, Lleida Spain
| |
Collapse
|
46
|
Lucas-Sánchez A, Almaida-Pagán PF, Tocher DR, Mendiola P, de Costa J. Age-related changes in mitochondrial membrane composition of Nothobranchius rachovii. J Gerontol A Biol Sci Med Sci 2013; 69:142-51. [PMID: 23685767 DOI: 10.1093/gerona/glt066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial membrane composition may be a critical factor in the mechanisms of the aging process by influencing the propagation of reactions involved in mitochondrial function during periods of high stress. Changes affecting either lipid class or fatty acid compositions could affect phospholipid properties and alter mitochondrial function and cell viability. In the present study, mitochondrial membrane phospholipid compositions were analyzed throughout the life cycle of Nothobranchius rachovii. Mitochondrial phospholipids showed several changes with age. Proportions of cardiolipin decreased and those of sphingomyelin increased between 11- and 14-month-old fish. Fatty acid compositions of individual phospholipids in mitochondria were also significantly affected with age. These data suggest increasing damage to mitochondrial lipids during the life cycle of N. rachovii that could be one of the main factors related with and contributing to degraded mitochondrial function associated with the aging process.
Collapse
Affiliation(s)
- Alejandro Lucas-Sánchez
- Department of Physiology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain.
| | | | | | | | | |
Collapse
|
47
|
Sanchez-Roman I, Barja G. Regulation of longevity and oxidative stress by nutritional interventions: role of methionine restriction. Exp Gerontol 2013; 48:1030-42. [PMID: 23454735 DOI: 10.1016/j.exger.2013.02.021] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/17/2013] [Accepted: 02/21/2013] [Indexed: 11/25/2022]
Abstract
Comparative studies indicate that long-lived mammals have low rates of mitochondrial reactive oxygen species production (mtROSp) and oxidative damage in their mitochondrial DNA (mtDNA). Dietary restriction (DR), around 40%, extends the mean and maximum life span of a wide range of species and lowers mtROSp and oxidative damage to mtDNA, which supports the mitochondrial free radical theory of aging (MFRTA). Regarding the dietary factor responsible for the life extension effect of DR, neither carbohydrate nor lipid restriction seems to modify maximum longevity. However protein restriction (PR) and methionine restriction (at least 80% MetR) increase maximum lifespan in rats and mice. Interestingly, only 7weeks of 40% PR (at least in liver) or 40% MetR (in all the studied organs, heart, brain, liver or kidney) is enough to decrease mtROSp and oxidative damage to mtDNA in rats, whereas neither carbohydrate nor lipid restriction changes these parameters. In addition, old rats also conserve the capacity to respond to 7weeks of 40% MetR with these beneficial changes. Most importantly, 40% MetR, differing from what happens during both 40% DR and 80% MetR, does not decrease growth rate and body size of rats. All the available studies suggest that the decrease in methionine ingestion that occurs during DR is responsible for part of the aging-delaying effect of this intervention likely through the decrease of mtROSp and ensuing DNA damage that it exerts. We conclude that lowering mtROS generation is a conserved mechanism, shared by long-lived species and dietary, protein, and methionine restricted animals, that decreases damage to macromolecules situated near the complex I mtROS generator, especially mtDNA. This would decrease the accumulation rate of somatic mutations in mtDNA and maybe finally also in nuclear DNA.
Collapse
Affiliation(s)
- Ines Sanchez-Roman
- Department of Animal Physiology-II, Faculty of Biological Sciences, Complutense University of Madrid (UCM), Spain
| | | |
Collapse
|
48
|
Munro D, Blier PU. The extreme longevity of Arctica islandica is associated with increased peroxidation resistance in mitochondrial membranes. Aging Cell 2012; 11:845-55. [PMID: 22708840 DOI: 10.1111/j.1474-9726.2012.00847.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The deleterious reactive carbonyls released upon oxidation of polyunsaturated fatty acids in biological membranes are believed to foster cellular aging. Comparative studies in mammals and birds have shown that the susceptibility to peroxidation of membrane lipids peroxidation index (PI) is negatively correlated with longevity. Long-living marine molluscs are increasingly studied as longevity models, and the presence of different types of lipids in the membranes of these organisms raises questions on the existence of a PI-longevity relationship. We address this question by comparing the longest living metazoan species, the mud clam Arctica islandica (maximum reported longevity = 507 year) to four other sympatric bivalve molluscs greatly differing in longevity (28, 37, 92, and 106 year). We contrasted the acyl and alkenyl chain composition of phospholipids from the mitochondrial membranes of these species. The analysis was reproduced in parallel for a mix of other cell membranes to investigate whether a different PI-longevity relationship would be found. The mitochondrial membrane PI was found to have an exponential decrease with increasing longevity among species and is significantly lower for A. islandica. The PI of other cell membranes showed a linear decrease with increasing longevity among species and was also significantly lower for A. islandica. These results clearly demonstrate that the PI also decreases with increasing longevity in marine bivalves and that it decreases faster in the mitochondrial membrane than in other membranes in general. Furthermore, the particularly low PI values for A. islandica can partly explain this species' extreme longevity.
Collapse
Affiliation(s)
- Daniel Munro
- Biology Department, Université du Québec à Rimouski, Rimouski, QC, Canada G5L 3A1.
| | | |
Collapse
|
49
|
Mutational bias plays an important role in shaping longevity-related amino acid content in mammalian mtDNA-encoded proteins. J Mol Evol 2012; 74:332-41. [PMID: 22752047 DOI: 10.1007/s00239-012-9510-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
During the course of evolution, amino acid shifts might have resulted in mitochondrial proteomes better endowed to resist oxidative stress. However, owing to the problem of distinguishing between functional constraints/adaptations in protein sequences and mutation-driven biases in the composition of these sequences, the adaptive value of such amino acid shifts remains under discussion. We have analyzed the coding sequences of mtDNA from 173 mammalian species, dissecting the effect of nucleotide composition on amino acid usages. We found remarkable cysteine avoidance in mtDNA-encoded proteins. However, no effect of longevity on cysteine content could be detected. On the other hand, nucleotide compositional shifts fully accounted for threonine usages. In spite of a strong effect of mutational bias on methionine abundances, our results suggest a role of selection in determining the composition of methionine. Whether this selective effect is linked or not to protection against oxidative stress is still a subject of debate.
Collapse
|
50
|
Formation of S-(carboxymethyl)-cysteine in rat liver mitochondrial proteins: effects of caloric and methionine restriction. Amino Acids 2012; 44:361-71. [DOI: 10.1007/s00726-012-1339-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 06/04/2012] [Indexed: 10/28/2022]
|