1
|
Lavarti R, Alvarez-Diaz T, Marti K, Kar P, Raju RP. The context-dependent effect of cellular senescence: From embryogenesis and wound healing to aging. Ageing Res Rev 2025; 109:102760. [PMID: 40318767 DOI: 10.1016/j.arr.2025.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/20/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Aging is characterized by a steady loss of physiological integrity, leading to impaired function and increased vulnerability to death. Cell senescence is a biological process that progresses with aging and is believed to be a key driver of age-related diseases. Senescence, a hallmark of aging, also demonstrates its beneficial physiological aspects as an anti-cancer, pro-regenerative, homeostatic, and developmental mechanism. A transitory response in which the senescent cells are quickly formed and cleared may promote tissue regeneration and organismal fitness. At the same time, senescence-related secretory phenotypes associated with extended senescence can have devastating effects. The fact that the interaction between senescent cells and their surroundings is very context-dependent may also help to explain this seemingly opposing pleiotropic function. Further, mitochondrial dysfunction is an often-unappreciated hallmark of cellular senescence and figures prominently in multiple feedback loops that induce and maintain the senescent phenotype. This review summarizes the mechanism of cellular senescence and the significance of acute senescence. We concisely introduced the context-dependent role of senescent cells and SASP, aspects of mitochondrial biology altered in the senescent cells, and their impact on the senescent phenotype. Finally, we conclude with recent therapeutic advancements targeting cellular senescence, focusing on acute injuries and age-associated diseases. Collectively, these insights provide a future roadmap for the role of senescence in organismal fitness and life span extension.
Collapse
Affiliation(s)
- Rupa Lavarti
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tatiana Alvarez-Diaz
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kyarangelie Marti
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Parmita Kar
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States.
| |
Collapse
|
2
|
Ungvari A, Gulej R, Patai R, Papp Z, Toth A, Szabó AÁ, Podesser BK, Sótonyi P, Benyó Z, Yabluchanskiy A, Tarantini S, Maier AB, Csiszar A, Ungvari Z. Sex-specific mechanisms in vascular aging: exploring cellular and molecular pathways in the pathogenesis of age-related cardiovascular and cerebrovascular diseases. GeroScience 2025; 47:301-337. [PMID: 39754010 PMCID: PMC11872871 DOI: 10.1007/s11357-024-01489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/17/2024] [Indexed: 03/04/2025] Open
Abstract
Aging remains the foremost risk factor for cardiovascular and cerebrovascular diseases, surpassing traditional factors in epidemiological significance. This review elucidates the cellular and molecular mechanisms underlying vascular aging, with an emphasis on sex differences that influence disease progression and clinical outcomes in older adults. We discuss the convergence of aging processes at the macro- and microvascular levels and their contributions to the pathogenesis of vascular diseases. Critical analysis of both preclinical and clinical studies reveals significant sex-specific variations in these mechanisms, which could be pivotal in understanding the disparity in disease morbidity and mortality between sexes. The review highlights key molecular pathways, including oxidative stress, inflammation, and autophagy, and their differential roles in the vascular aging of males and females. We argue that recognizing these sex-specific differences is crucial for developing targeted therapeutic strategies aimed at preventing and managing age-related vascular pathologies. The implications for personalized medicine and potential areas for future research are also explored, emphasizing the need for a nuanced approach to the study and treatment of vascular aging.
Collapse
Affiliation(s)
- Anna Ungvari
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Attila Toth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Attila Á Szabó
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | - Péter Sótonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN , Semmelweis University, 1094, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Institute of Preventive Medicine and Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
- Reynolds Section of Geriatrics and Palliative Medicine, Department of Medicine, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Institute of Preventive Medicine and Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andrea B Maier
- Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
- Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore, Singapore
- @AgeSingapore, Healthy Longevity Program, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Institute of Preventive Medicine and Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
3
|
Hunt M, Torres M, Bachar-Wikstrom E, Wikstrom JD. Cellular and molecular roles of reactive oxygen species in wound healing. Commun Biol 2024; 7:1534. [PMID: 39562800 DOI: 10.1038/s42003-024-07219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024] Open
Abstract
Wound healing is a highly coordinated spatiotemporal sequence of events involving several cell types and tissues. The process of wound healing requires strict regulation, and its disruption can lead to the formation of chronic wounds, which can have a significant impact on an individual's health as well as on worldwide healthcare expenditure. One essential aspect within the cellular and molecular regulation of wound healing pathogenesis is that of reactive oxygen species (ROS) and oxidative stress. Wounding significantly elevates levels of ROS, and an array of various reactive species are involved in modulating the wound healing process, such as through antimicrobial activities and signal transduction. However, as in many pathologies, ROS play an antagonistic pleiotropic role in wound healing, and can be a pathogenic factor in the formation of chronic wounds. Whilst advances in targeting ROS and oxidative stress have led to the development of novel pre-clinical therapeutic methods, due to the complex nature of ROS in wound healing, gaps in knowledge remain concerning the specific cellular and molecular functions of ROS in wound healing. In this review, we highlight current knowledge of these functions, and discuss the potential future direction of new studies, and how these pathways may be targeted in future pre-clinical studies.
Collapse
Affiliation(s)
- Matthew Hunt
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Monica Torres
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Etty Bachar-Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Jakob D Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden.
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
4
|
Xiang X, Xie L, Lin J, Pare R, Huang G, Huang J, Wang Y, Song S, Ruan Y. Estrogen receptor alpha mediates 17β-estradiol, up-regulates autophagy and alleviates hydrogen peroxide-induced vascular senescence. Biogerontology 2023; 24:783-799. [PMID: 36683095 DOI: 10.1007/s10522-023-10015-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023]
Abstract
Atherosclerosis threatens human health by developing cardiovascular diseases, the deadliest disease world widely. The major mechanism contributing to the formation of atherosclerosis is mainly due to vascular endothelial cell (VECs) senescence. We have shown that 17β-estradiol (17β-E2) may protect VECs from senescence by upregulating autophagy. However, little is known about how 17β-E2 activates the autophagy pathway to alleviate cellular senescence. Therefore, the aim of this study is to determine the role of estrogen receptor (ER) α and β in the effects of 17β-E2 on vascular autophagy and aging through in vitro and in vivo models. Hydrogen peroxide (H2O2) was used to establish Human Umbilical Vein Endothelial Cells (HUVECs) senescence. Autophagy activity was measured through immunofluorescence and immunohistochemistry staining of light chain 3 (LC3) expression. Inhibition of ER activity was established using shRNA gene silencing and ER antagonist. Compared with ER-β knockdown, we found that knockdown of ER-α resulted in a significant increase in the extent of HUVEC senescence and senescence-associated secretory phenotype (SASP) secretion. ER-α-specific shRNA was found to reduce 17β-E2-induced autophagy, promote HUVEC senescence, disrupt the morphology of HUVECs, and increase the expression of Rb dephosphorylation and SASP. These in vitro findings were found consistent with the in vivo results. In conclusion, our data suggest that 17β-E2 activates the activity of ER-α and then increases the formation of autophagosomes (LC3 high expression) and decreases the fusion of lysosomes with autophagic vesicles (P62 low expression), which in turn serves to decrease the secretion of SASP caused by H2O2 and consequently inhibit H2O2-induced senescence in HUVEC cells.
Collapse
Affiliation(s)
- Xiuting Xiang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - LiangZhen Xie
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jieqi Lin
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Rahmawati Pare
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Guanshen Huang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jianming Huang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuyan Wang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shicong Song
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yunjun Ruan
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
5
|
Lima C, Andrade-Barros AI, Carvalho FF, Falcão MAP, Lopes-Ferreira M. Inflammasome Coordinates Senescent Chronic Wound Induced by Thalassophryne nattereri Venom. Int J Mol Sci 2023; 24:ijms24098453. [PMID: 37176162 PMCID: PMC10179710 DOI: 10.3390/ijms24098453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Thalassophryne nattereri toadfish (niquim) envenomation, common in the hands and feet of bathers and fishermen in the north and northeast regions of Brazil, is characterized by local symptoms such as immediate edema and intense pain. These symptoms progress to necrosis that lasts for an extended period of time, with delayed healing. Wound healing is a complex process characterized by the interdependent role of keratinocytes, fibroblasts, and endothelial and innate cells such as neutrophils and macrophages. Macrophages and neutrophils are actively recruited to clear debris during the inflammatory phase of wound repair, promoting the production of pro-inflammatory mediators, and in the late stage, macrophages promote tissue repair. Our hypothesis is that injury caused by T. nattereri venom (VTn) leads to senescent wounds. In this study, we provide valuable information about the mechanism(s) behind the dysregulated inflammation in wound healing induced by VTn. We demonstrate in mouse paws injected with the venom the installation of γH2AX/p16Ink4a-dependent senescence with persistent neutrophilic inflammation in the proliferation and remodeling phases. VTn induced an imbalance of M1/M2 macrophages by maintaining a high number of TNF-α-producing M1 macrophages in the wound but without the ability to eliminate the persistent neutrophils. Chronic neutrophilic inflammation and senescence were mediated by cytokines such as IL-1α and IL-1β in a caspase-1- and caspase-11-dependent manner. In addition, previous blocking with anti-IL-1α and anti-IL-β neutralizing antibodies and caspase-1 (Ac YVAD-CMK) and caspase-11 (Wedelolactone) inhibitors was essential to control the pro-inflammatory activity of M1 macrophages induced by VTn injection, skewing towards an anti-inflammatory state, and was sufficient to block neutrophil recruitment and senescence.
Collapse
Affiliation(s)
- Carla Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, São Paulo 05503-009, Brazil
| | - Aline Ingrid Andrade-Barros
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, São Paulo 05503-009, Brazil
| | - Fabiana Franco Carvalho
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, São Paulo 05503-009, Brazil
| | - Maria Alice Pimentel Falcão
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, São Paulo 05503-009, Brazil
| | - Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, São Paulo 05503-009, Brazil
| |
Collapse
|
6
|
Shirawachi S, Takeda K, Naruse T, Takahasi Y, Nakanishi J, Shindo S, Shiba H. Oxidative stress impairs the calcification ability of human dental pulp cells. BMC Oral Health 2022; 22:437. [PMID: 36192671 PMCID: PMC9531526 DOI: 10.1186/s12903-022-02467-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background The relationship between internal root resorption and oxidative stress has not yet been reported. This study aimed to add molecular insight into internal root resorption. The present study was conducted to investigate the effect of hydrogen peroxide (H2O2) as an inducer of oxidative stress on the calcification ability of human dental pulp cells (hDPCs) and the involvement of inositol 1, 4, 5-trisphosphate (IP3). Material and methods hDPCs (Lonza, Basel, Switzerland) were exposed to H2O2. Cell viability and reactive oxygen species (ROS) production were then evaluated. To investigate the effect of H2O2 on the calcification ability of hDPCs, real-time PCR for alkaline phosphatase (ALP) mRNA expression, ALP staining, and Alizarin red staining were performed. Data were compared with those of hDPCs pretreated with 2-aminoethyldiphenylborate (2-APB), which is an IP3 receptor inhibitor. Results H2O2 at concentrations above 250 µM significantly reduced cell viability (P < 0.01). More ROS production occurred in 100 µM H2O2-treated hDPCs than in control cells (P < 0.01). 2-APB significantly decreased the production (P < 0.05). H2O2-treated hDPCs showed significant reductions in ALP mRNA expression (P < 0.01), ALP activity (P < 0.01), and mineralized nodule deposition compared with negative control cells (P < 0.01). 2-APB significantly inhibited these reductions (P < 0.01, P < 0.05 and P < 0.01, respectively). Data are representative of three independent experiments with three replicates for each treatment and values are expressed as means ± SD. Conclusion To the best of our knowledge, this is the first study documenting the involvement of IP3 signaling in the calcification ability of human dental pulp cells impaired by H2O2.
Collapse
Affiliation(s)
- Satomi Shirawachi
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Katsuhiro Takeda
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan.
| | - Tomoya Naruse
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Yohei Takahasi
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Jun Nakanishi
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Satoru Shindo
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Hideki Shiba
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| |
Collapse
|
7
|
Aspalathus linearis (Rooibos) and Agmatine May Act Synergistically to Beneficially Modulate Intestinal Tight Junction Integrity and Inflammatory Profile. Pharmaceuticals (Basel) 2022; 15:ph15091097. [PMID: 36145318 PMCID: PMC9501288 DOI: 10.3390/ph15091097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022] Open
Abstract
In order to promote gastrointestinal health, significant increases in the prevalence of gastrointestinal disorders should be paralleled by similar surges in therapeutics research. Nutraceutical interventions may play a significant role in patient management. The current study aimed to determine the potential of Aspalathus linearis (rooibos) to prevent gastrointestinal dysregulation resulting from high-dose trace-amine (TA) exposure. Considering the substantial female bias in functional gastrointestinal disorders, and the suggested phytoestrogenicity of rooibos, the study design allowed for a comparison between the effects of an ethanol extract of green rooibos and 17β-estradiol (E2). High levels of ρ-tyramine (TYR) and agmatine (AGM), but not β-phenethylamine (PEA) or tryptamine (TRP), resulted in prostaglandin E2 (PGE2) hypersecretion, increased tight-junction protein (TJP; occludin and ZO-1) secretion and (dissimilarly) disrupted the TJP cellular distribution profile. Modulating benefits of rooibos and E2 were TA-specific. Rooibos pre-treatment generally reduced IL-8 secretion across all TA conditions and prevented PGE2 hypersecretion after exposure to both TYR and AGM, but was only able to normalise TJP levels and the distribution profile in AGM-exposed cells. In contrast, E2 pre-treatment prevented only TYR-associated PGE2 hypersecretion and TJP dysregulation. Together, the data suggest that the antioxidant and anti-inflammatory effects of rooibos, rather than phytoestrogenicity, affect benefits illustrated for rooibos.
Collapse
|
8
|
Mahbubfam S, Rezaie J, Nejati V. Crosstalk between exosomes signaling pathway and autophagy flux in senescent human endothelial cells. Tissue Cell 2022; 76:101803. [DOI: 10.1016/j.tice.2022.101803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 12/19/2022]
|
9
|
Wei X, Li M, Zheng Z, Ma J, Gao Y, Chen L, Peng Y, Yu S, Yang L. Senescence in chronic wounds and potential targeted therapies. BURNS & TRAUMA 2022; 10:tkab045. [PMID: 35187179 PMCID: PMC8853744 DOI: 10.1093/burnst/tkab045] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/15/2021] [Accepted: 11/19/2021] [Indexed: 01/10/2023]
Abstract
Chronic wounds (e.g. diabetic wounds, pressure wounds, vascular ulcers, etc.) do not usually heal in a timely and orderly manner but rather last for years and may lead to irreversible adverse events, resulting in a substantial financial burden for patients and society. Recently, a large amount of evidence has proven that cellular senescence has a crucial influence on chronic nonhealing wounds. As a defensive mechanism, cell senescence is a manner of cell-cycle arrest with increased secretory phenotype to resist death, preventing cells from stress-induced damage in cancer and noncancer diseases. A growing amount of research has advanced the perception of cell senescence in various chronic wounds and focuses on pathological and physiological processes and therapies targeting senescent cells. However, previous reviews have failed to sum up novel understandings of senescence in chronic wounds and emerging strategies targeting senescence. Herein, we discuss the characteristics and mechanisms of cellular senescence and the link between senescence and chronic wounds as well as some novel antisenescence strategies targeting other diseases that may be applied for chronic wounds.
Collapse
Affiliation(s)
- Xuerong Wei
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Minxiong Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Yujie Peng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| |
Collapse
|
10
|
Ye L, Huang J, Xiang X, Song S, Huang G, Ruan Y, Wu S. 17β-Estradiol alleviates cardiac aging induced by d-galactose by downregulating the methylation of autophagy-related genes. Steroids 2021; 170:108829. [PMID: 33811924 DOI: 10.1016/j.steroids.2021.108829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/23/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Intrinsic cardiac aging increases cardiovascular mortality and morbidity in the elderly. Estrogen helps reduce the risk of cardiovascular disease in women, with 17β-estradiol (17β-E2) activating the autophagy pathway and inhibiting vascular aging, mainly through estrogen receptor alpha (ER α) to prevent atherosclerosis. Abnormal methylation of autophagy-related genes can impact autophagic regulation. We hypothesized that 17β-E2, specifically 17β-E2 α, downregulates the methylation of autophagy factors and delays cardiac aging. Here, we used d-galactose, 17β-E2, and ER α receptor antagonist methyl-piperidino-pyrazole (MPP) to establish different aging models in mice divided into four groups, namely negative control, D.gal, D.gal + 17β-E2, and D.gal + 17β-E2 + MPP groups. Echocardiography showed that compared with the D.gal group group, the D.gal + 17β-E2 showed substantially increased cardiac function. The level of cardiac aging markers in mice in the D.gal + 17β-E2 group was lower than that in mice in the D.gal group. Beclin1, LC3, and Atg5 mRNA and protein expression levels in mice in the D.gal + 17β-E2 group were significantly increased compared with those in the D.gal group. Additionally, Beclin1, LC3, and Atg5 methylation levels were significantly decreased in the D.gal + 17β-E2 group. All the above values of the D.gal + 17β-E2 + MPP group were between those of the D.gal and D.gal + 17β-E2 groups. The expression of Dnmt1, Dnmt2, and Dnmt3A genes was the highest in the D.gal group. In summary, our results suggest that 17β-E2, specifically 17β-E2 α, promotes autophagy by downregulating the methylation of autophagy factors, thereby inhibiting galactose-induced cardiac aging in mice. 17β-E2 may be a potential therapeutic target to mitigate the effects of cardiac aging.
Collapse
Affiliation(s)
- Lili Ye
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Cardiology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Guangzhou, Guangdong 510700, China
| | - Jianming Huang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiuting Xiang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shicong Song
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guanshen Huang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yunjun Ruan
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Saizhu Wu
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
11
|
Wang L, Zuo X, Ouyang Z, Qiao P, Wang F. A Systematic Review of Antiaging Effects of 23 Traditional Chinese Medicines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5591573. [PMID: 34055012 PMCID: PMC8143881 DOI: 10.1155/2021/5591573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Aging is an inevitable stage of body development. At the same time, aging is a major cause of cancer, cardiovascular disease, and neurodegenerative diseases. Chinese herbal medicine is a natural substance that can effectively delay aging and is expected to be developed as antiaging drugs in the future. Aim of the review. This paper reviews the antiaging effects of 23 traditional Chinese herbal medicines or their active components. Materials and methods. We reviewed the literature published in the last five years on Chinese herbal medicines or their active ingredients and their antiaging role obtained through the following databases: PubMed, EMBASE, Scopus, and Web of Science. RESULTS A total of 2485 papers were found, and 212 papers were screened after removing the duplicates and reading the titles. Twenty-three studies met the requirements of this review and were included. Among these studies, 13 articles used Caenorhabditis elegans as the animal model, and 10 articles used other animal models or cell lines. CONCLUSION Chinese herbal medicines or their active components play an antiaging role by regulating genes related to aging through a variety of signaling pathways. Chinese herbal medicines are expected to be developed as antiaging drugs or used in the medical cosmetology industry.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xu Zuo
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Zhuoer Ouyang
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ping Qiao
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
12
|
Estradiol deficiency and skeletal muscle apoptosis: Possible contribution of microRNAs. Exp Gerontol 2021; 147:111267. [PMID: 33548486 PMCID: PMC9897888 DOI: 10.1016/j.exger.2021.111267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Menopause leads to estradiol (E2) deficiency that is associated with decreases in muscle mass and strength. Here we studied the effect of E2 deficiency on microRNA (miR) signaling that targets apoptotic pathways. METHODS C57BL6 mice were divided into control (normal estrous cycle, n = 8), OVX (E2 deficiency, n = 7) and OVX + E2 groups (E2-pellet, n = 4). Six weeks following the OVX surgery, mice were sacrificed and RNA isolated from gastrocnemius muscles. miR-profiles were studied with Next-Generation Sequencing (NGS) and candidate miRs verified using qPCR. The target proteins of the miRs were found using in silico analysis and measured at mRNA (qPCR) and protein levels (Western blot). RESULTS Of the apoptosis-linked miRs present, eleven (miRs-92a-3p, 122-5p, 133a-3p, 214-3p, 337-3p, 381-3p, 483-3p, 483-5p, 491-5p, 501-5p and 652-3p) indicated differential expression between OVX and OVX + E2 mice in NGS analysis. In qPCR verification, muscle from OVX mice had lower expression of all eleven miRs compared with OVX + E2 (p < 0.050). Accordingly, OVX had higher expression of cytochrome C and caspases 6 and 9 compared with OVX + E2 at the mRNA level (p < 0.050). At the protein level, OVX also had lower anti-apoptotic BCL-W and greater pro-apoptotic cytochrome C and active caspase 9 compared with OVX + E2 (p < 0.050). CONCLUSION E2 deficiency downregulated several miRs related to apoptotic pathways thus releasing their targets from miR-mediated suppression, which may lead to increased apoptosis and contribute to reduced skeletal muscle mass.
Collapse
|
13
|
FK866 Protects Human Dental Pulp Cells against Oxidative Stress-Induced Cellular Senescence. Antioxidants (Basel) 2021; 10:antiox10020271. [PMID: 33578781 PMCID: PMC7916510 DOI: 10.3390/antiox10020271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 01/12/2023] Open
Abstract
FK866 possesses various functional properties, such as anti-angiogenic, anti-cancer, and anti-inflammatory activities. We previously demonstrated that premature senescence of human dental pulp cells (hDPCs) was induced by hydrogen peroxide (H2O2). The present study aimed to investigate whether H2O2-induced premature senescence of hDPCs is affected by treatment with FK866. We found that FK866 markedly inhibited the senescent characteristics of hDPCs after exposure to H2O2, as revealed by an increase in the number of senescence-associated β-galactosidase (SA-β-gal)-positive hDPCs and the upregulation of the p21 and p53 proteins, which acts as molecular indicators of cellular senescence. Moreover, the stimulatory effects of H2O2 on cellular senescence are associated with oxidative stress induction, such as excessive ROS production and NADPH consumption, telomere DNA damage induction, and upregulation of senescence-associated secretory phenotype factors (IL-1β, IL-6, IL-8, COX-2, and TNF-α) as well as NF-κB activation, which were all blocked by FK866. Thus, FK866 might antagonize H2O2-induced premature senescence of hDPCs, acting as a potential therapeutic antioxidant by attenuating oxidative stress-induced pathologies in dental pulp, including inflammation and cellular senescence.
Collapse
|
14
|
Chehaitly A, Vessieres E, Guihot AL, Henrion D. Flow-mediated outward arterial remodeling in aging. Mech Ageing Dev 2020; 194:111416. [PMID: 33333130 DOI: 10.1016/j.mad.2020.111416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
The present review focuses on the effect of aging on flow-mediated outward remodeling (FMR) via alterations in estrogen metabolism, oxidative stress and inflammation. In ischemic disorders, the ability of the vasculature to adapt or remodel determines the quality of the recovery. FMR, which has a key role in revascularization, is a complex phenomenon that recruits endothelial and smooth muscle cells as well as the immune system. FMR becomes progressively less with age as a result of an increase in inflammation and oxidative stress, in part of mitochondrial origin. The alteration in FMR is greater in older individuals with risk factors and thus the therapy cannot merely amount to exercise with or without a mild vasodilating drug. Interestingly, the reduction in FMR occurs later in females. Estrogen and its alpha receptor (ERα) play a key role in FMR through the control of dilatory pathways including the angiotensin II type 2 receptor, thus providing possible tools to activate FMR in older subjects although only experimental data is available. Indeed, the main issue is the reversibility of the vascular damage induced over time, and to date promoting prevention and limiting exposure to the risk factors remain the best options in this regard.
Collapse
Affiliation(s)
- Ahmad Chehaitly
- MITOVASC Laboratory and CARFI Facility, INSERM U1083, CNRS UMR 6015, University of Angers, Angers, France
| | - Emilie Vessieres
- MITOVASC Laboratory and CARFI Facility, INSERM U1083, CNRS UMR 6015, University of Angers, Angers, France
| | - Anne-Laure Guihot
- MITOVASC Laboratory and CARFI Facility, INSERM U1083, CNRS UMR 6015, University of Angers, Angers, France
| | - Daniel Henrion
- MITOVASC Laboratory and CARFI Facility, INSERM U1083, CNRS UMR 6015, University of Angers, Angers, France.
| |
Collapse
|
15
|
Wilkinson HN, Hardman MJ. Senescence in Wound Repair: Emerging Strategies to Target Chronic Healing Wounds. Front Cell Dev Biol 2020; 8:773. [PMID: 32850866 PMCID: PMC7431694 DOI: 10.3389/fcell.2020.00773] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a fundamental stress response that restrains tumour formation. Yet, senescence cells are also present in non-cancerous states, accumulating exponentially with chronological age and contributing to age- and diabetes-related cellular dysfunction. The identification of hypersecretory and phagocytic behaviours in cells that were once believed to be non-functional has led to a recent explosion of senescence research. Here we discuss the profound, and often opposing, roles identified for short-lived vs. chronic tissue senescence. Transiently induced senescence is required for development, regeneration and acute wound repair, while chronic senescence is widely implicated in tissue pathology. We recently demonstrated that sustained senescence contributes to impaired diabetic healing via the CXCR2 receptor, which when blocked promotes repair. Further studies have highlighted the beneficial effects of targeting a range of senescence-linked processes to fight disease. Collectively, these findings hold promise for developing clinically viable strategies to tackle senescence in chronic wounds and other cutaneous pathologies.
Collapse
Affiliation(s)
- Holly N Wilkinson
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Matthew J Hardman
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, United Kingdom
| |
Collapse
|
16
|
Zheng Z, Wang M, Cheng C, Liu D, Wu L, Zhu J, Qian X. Ginsenoside Rb1 reduces H2O2‑induced HUVEC dysfunction by stimulating the sirtuin‑1/AMP‑activated protein kinase pathway. Mol Med Rep 2020; 22:247-256. [PMID: 32377712 PMCID: PMC7248484 DOI: 10.3892/mmr.2020.11096] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/01/2020] [Indexed: 12/16/2022] Open
Abstract
Endothelial dysfunction and senescence are closely associated with cardiovascular diseases including atherosclerosis and hypertension. Ginsenoside Rb1 (Rb1), the major active constituent of ginseng, has been investigated intensively because of its anti-obesity and anti-inflammatory effects. In a previous study, hydrogen peroxide (H2O2) was applied to induce human umbilical vein endothelial cell (HUVEC) aging. It was demonstrated that Sirtuin-1 (SIRT1) was activated by Rb1 to protect HUVECs from H2O2-induced senescence. However, the mechanisms are not fully understood. The present study examined the role of AMP-activated protein kinase (AMPK), an energy sensor of cellular metabolism, in the signaling pathway of SIRT1 during H2O2-stimulated HUVEC aging. It was identified that Rb1 restored the H2O2-induced reduction of SIRT1 expression, which was consistent with our previous study, together with the activation of AMPK phosphorylation. Using compound C, an AMPK inhibitor, the role of AMPK in the protective effect of Rb1 against H2O2-induced HUVEC senescence was examined. It was identified that the induction of phosphorylated AMPK by Rb1 markedly increased endothelial nitric oxide synthase expression and nitric oxide production, and suppressed PAI-1 expression, which were abrogated in HUVECs pretreated with compound C. Further experiments demonstrated that nicotinamide, a SIRT1 inhibitor, downregulated the phosphorylation of AMPK and reduced the protective effects of Rb1 against H2O2-induced endothelial aging. Taken together, these results provide new insights into the possible molecular mechanisms by which Rb1 protects against H2O2-induced HUVEC senescence via the SIRT1/AMPK pathway.
Collapse
Affiliation(s)
- Zhenda Zheng
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Min Wang
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Cailian Cheng
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat‑sen University, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Dinghui Liu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Lin Wu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jieming Zhu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiaoxian Qian
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
17
|
Zheng S, Zheng H, Huang A, Mai L, Huang X, Hu Y, Huang Y. Piwi-interacting RNAs play a role in vitamin C-mediated effects on endothelial aging. Int J Med Sci 2020; 17:946-952. [PMID: 32308548 PMCID: PMC7163353 DOI: 10.7150/ijms.42586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
The underlying mechanisms that mediate the effects of vitamin C on endothelial cell aging are widely unknown. To investigate whether Piwi-interacting RNAs (piRNAs) are involved in this process, an endothelial aging model was induced in vitro using H2O2 in human umbilical vein endothelial cells (HUVECs) and then treated with vitamin C (VC). Untreated HUVECs without H2O2 exposure were used to serve as the negative control group. Cell cycle, cell viability, and aging-associated protein expression were assessed, and RNA sequencing was performed to reveal the piRNA profile. Functional and regulatory networks of the different piRNA target genes were predicted by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) analysis. H2O2 induced G1 phase cell arrest, decreased cell viability, and upregulated the senescence marker p16 in HUVECs. We found that VC treatment inhibited G1 phase cell arrest, increased the number of cells in the S and G2/M phases, increased cell viability, and decreased p16 expression. The piRNA expression profiles revealed that a large proportion of piRNAs that were differentially expressed in H2O2-treated HUVECs were partly normalized by VC. Furthermore, a number of piRNAs associated with the response to VC in H2O2-treated HUVECs were linked with senescence and cell cycle-related pathways and networks. These results indicate that the ability of VC to attenuate H2O2-mediated endothelial cell senescence may be associated with changes in expression of piRNAs that are linked to the cell cycle.
Collapse
Affiliation(s)
- Sulin Zheng
- Department of cardiology, Shunde hospital, Southern Medical University (The first people's hospital of Shunde, Foshan), Guangdong, China
| | - Haoxiao Zheng
- Department of cardiology, Shunde hospital, Southern Medical University (The first people's hospital of Shunde, Foshan), Guangdong, China
- Second Medical College of Southern Medical University, Guangzhou, China
| | - Anqing Huang
- Department of cardiology, Shunde hospital, Southern Medical University (The first people's hospital of Shunde, Foshan), Guangdong, China
| | - Linlin Mai
- Department of cardiology, Shunde hospital, Southern Medical University (The first people's hospital of Shunde, Foshan), Guangdong, China
| | - Xiaohui Huang
- Department of cardiology, Shunde hospital, Southern Medical University (The first people's hospital of Shunde, Foshan), Guangdong, China
| | - Yunzhao Hu
- Department of cardiology, Shunde hospital, Southern Medical University (The first people's hospital of Shunde, Foshan), Guangdong, China
| | - Yuli Huang
- Department of cardiology, Shunde hospital, Southern Medical University (The first people's hospital of Shunde, Foshan), Guangdong, China
| |
Collapse
|
18
|
Xiang X, Huang J, Song S, Wang Y, Zeng Y, Wu S, Ruan Y. 17β-estradiol inhibits H2O2-induced senescence in HUVEC cells through upregulating SIRT3 expression and promoting autophagy. Biogerontology 2020; 21:549-557. [DOI: 10.1007/s10522-020-09868-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022]
|
19
|
Clement M, Luo L. Organismal Aging and Oxidants beyond Macromolecules Damage. Proteomics 2020; 20:e1800400. [DOI: 10.1002/pmic.201800400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/20/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Marie‐Veronique Clement
- Department of BiochemistryYong Loo Lin School of MedicineNational University of Singapore Singapore 117596 Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering Singapore 117456 Singapore
| | - Le Luo
- Department of BiochemistryYong Loo Lin School of MedicineNational University of Singapore Singapore 117596 Singapore
| |
Collapse
|
20
|
Wu M, Shu Y, Song L, Liu B, Zhang L, Wang L, Liu Y, Bi J, Xiong C, Cao Z, Xu S, Xia W, Li Y, Wang Y. Prenatal exposure to thallium is associated with decreased mitochondrial DNA copy number in newborns: Evidence from a birth cohort study. ENVIRONMENT INTERNATIONAL 2019; 129:470-477. [PMID: 31158593 DOI: 10.1016/j.envint.2019.05.053] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/29/2019] [Accepted: 05/20/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Prenatal exposure to thallium is related to adverse birth outcomes. However, little is known about the effects of prenatal exposure to thallium on the mitochondrial DNA copy number (mtDNAcn) in newborns; such knowledge might reveal a potential mechanism linking maternal thallium exposure and adverse birth outcomes. OBJECTIVE To investigate the trimester-specific associations of maternal thallium exposure with cord blood leukocyte mtDNAcn. METHODS A total of 746 pregnant women with trimester-specific urinary samples and cord blood samples were recruited from Wuhan Children Hospital between November 2013 and March 2015 in Wuhan City, China. The concentration of thallium in maternal urine was quantified using inductively coupled plasma mass spectrometry (ICP-MS). Cord blood leukocyte mtDNAcn was measured by real-time quantitative polymerase chain reaction (qPCR). Trimester-specific associations of specific gravity (SG)-adjusted urinary thallium concentrations with mtDNAcn were estimated using a multiple informant model. RESULTS The geometric mean value of maternal urinary thallium was 0.34 μg/L, 0.36 μg/L, and 0.34 μg/L for the first, second, and third trimesters, respectively. Prenatal exposure to thallium during the first trimester, rather than during the second or the third trimester, was identified as negatively related to mtDNAcn. The multiple informant model showed a 10.4% lower level of mtDNAcn with each doubling increase of thallium levels (95% CI, -16.4%, -3.9%; P = 0.002). The observed associations were stronger among female newborns and among newborns born to older mothers. CONCLUSIONS The present study revealed a significant negative association between maternal thallium exposure during early pregnancy and cord blood leukocyte mtDNAcn in Chinese newborns, pointing to the important role of mitochondria as a target of thallium toxicity in early pregnancy.
Collapse
Affiliation(s)
- Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanling Shu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bingqing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lina Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulin Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunyun Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Xiong
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongqiang Cao
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
21
|
Collins BC, Laakkonen EK, Lowe DA. Aging of the musculoskeletal system: How the loss of estrogen impacts muscle strength. Bone 2019; 123:137-144. [PMID: 30930293 PMCID: PMC6491229 DOI: 10.1016/j.bone.2019.03.033] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
Skeletal muscle weakness occurs with aging and in females this is compounded by the loss of estrogen with ovarian failure. Estrogen deficiency mediates decrements in muscle strength from both inadequate preservation of skeletal muscle mass and decrements in the quality of the remaining skeletal muscle. Processes and components of skeletal muscle that are affected by estrogens are beginning to be identified. This review focuses on mechanisms that contribute to the loss of muscle force generation when estrogen is low in females, and conversely the maintenance of strength by estrogen. Evidence is accumulating that estrogen deficiency induces apoptosis in skeletal muscle contributing to loss of mass and thus strength. Estrogen sensitive processes that affect quality, i.e., force generating capacity of muscle, include myosin phosphorylation and satellite cell function. Further detailing these mechanisms and identifying additional mechanisms that underlie estrogenic effects on skeletal muscle is important foundation for the design of therapeutic strategies to minimize skeletal muscle pathologies, such as sarcopenia and dynapenia.
Collapse
Affiliation(s)
- Brittany C Collins
- Department of Human Genetics, Medical School, University of Utah, United States of America
| | - Eija K Laakkonen
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Finland
| | - Dawn A Lowe
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, United States of America.
| |
Collapse
|
22
|
Du L, Chen E, Wu T, Ruan Y, Wu S. Resveratrol attenuates hydrogen peroxide-induced aging through upregulation of autophagy in human umbilical vein endothelial cells. Drug Des Devel Ther 2019; 13:747-755. [PMID: 30863014 PMCID: PMC6391141 DOI: 10.2147/dddt.s179894] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Resveratrol (RESV; trans-3,5,4'-trihydroxystilbene) has emerged as a potential new therapeutic for age-related atherosclerotic diseases. However, the effect of RESV on cellular aging and its underlying mechanisms remain unknown. Therefore, the aim of this study was to examine whether RESV can delay cellular aging through upregulation of autophagy. MATERIALS AND METHODS Human umbilical endothelial vein cells (HUVECs) were divided into four groups: the control group, and the hydrogen peroxide (H2O2) alone, H2O2 + RESV pretreatment, and H2O2 + 3-methyladenine (3-MA) + RESV pretreatment intervention groups. The cell viability was evaluated by a cell counting kit-8 assay. Superoxide dismutase (SOD) activity and intracellular reactive oxygen species (ROS) levels were tested using commercial kits. Senescence-related β-galactosidase activities were detected by immunohistochemical staining. The expression levels of aging-related and autophagy-related markers, including phosphorylated Rb (p-Rb), LC3, and p62, with or without RESV were measured by Western blotting. RESULTS Pretreatment with 10 µM RESV increased the cell viability and SOD levels. The remarkably higher positive rate of senescence-associated β-galactosidase and increased intracellular ROS levels in the H2O2 treatment group were reversed by treatment with 10 µM RESV. As compared to the H2O2 treatment group, 10 µM RESV could upregulate autophagy through the regulation of p-Rb, LC3, and p62 levels. The anti-aging effect of RESV via an autophagy regulation mechanism was further confirmed by the suppression of these effects with 3-MA treatment. CONCLUSION RESV may reverse and delay the aging process of HUVECs via upregulation of autophagy and could be a candidate therapeutic for age-related atherosclerotic diseases.
Collapse
Affiliation(s)
- Ligen Du
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China, ;
- Department of Cardiology, The Second People's Hospital of Longgang District, Shenzhen, Guangdong, China
- Department of Cardiology, Longgang District People's Hospital of Shenzhen, Guangdong, China
| | - Enping Chen
- Department of Cardiology, The Second People's Hospital of Longgang District, Shenzhen, Guangdong, China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunjun Ruan
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China, ;
| | - Saizhu Wu
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China, ;
| |
Collapse
|
23
|
Song S, Wu S, Wang Y, Wang Z, Ye C, Song R, Song D, Ruan Y. 17β-estradiol inhibits human umbilical vascular endothelial cell senescence by regulating autophagy via p53. Exp Gerontol 2018; 114:57-66. [PMID: 30399406 DOI: 10.1016/j.exger.2018.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022]
Abstract
Vascular endothelial cell (VEC) senescence is an initiating factor in numerous cardiovascular diseases. Recent studies showed that 17β-estradiol (17β-E2), an estrogen with numerous biological activities such as inhibition of atherosclerosis, protects VECs from senescence. However, the effects of 17β-E2 on human umbilical VECs (HUVECs) remain unknown. This study investigated the anti-senescent effect of 17β-E2 on HUVECs and explored the underlying mechanism with respect to autophagy and p53 activity. First, rapamycin and 3-methyladenine were used to clarify the relationship between autophagy and senescence in HUVECs, and an inverse relationship was demonstrated. Next, the effect of 17β-E2 on H2O2-induced senescence of HUVECs was examined. Increased autophagy induced by 17β-E2 inhibited H2O2-induced senescence of HUVECs, increased cell viability, and maintained HUVEC morphology. 17β-E2 pre-treatment also decreased cell cycle arrest, decreased the dephosphorylation of Rb, decreased the production of ET-1, and increased the production of NO. Most importantly, 17β-E2 pre-treatment increased autophagy by activating p53 and its downstream effector p53-upregulated modulator of apoptosis (PUMA). Overall, our data indicate the critical role of autophagy in the anti-senescent effect of 17β-E2 on HUVECs.
Collapse
Affiliation(s)
- Shicong Song
- Department of Gerontology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Saizhu Wu
- Department of Gerontology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuyan Wang
- Department of Gerontology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiwei Wang
- Department of Gerontology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changxiong Ye
- Department of Gerontology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Song
- Department of Gerontology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dongqing Song
- Department of Gerontology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunjun Ruan
- Department of Gerontology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
24
|
Li P, Gan Y, Xu Y, Wang L, Ouyang B, Zhang C, Luo L, Zhao C, Zhou Q. 17beta-estradiol Attenuates TNF-α-Induced Premature Senescence of Nucleus Pulposus Cells through Regulating the ROS/NF-κB Pathway. Int J Biol Sci 2017; 13:145-156. [PMID: 28255267 PMCID: PMC5332869 DOI: 10.7150/ijbs.16770] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/19/2016] [Indexed: 12/28/2022] Open
Abstract
Background: Accelerated cellular senescence within the nucleus pulposus (NP) region is a common feature of disc degeneration. Our previous work indicated that TNF-α promoted NP cell senescence. Although the intervertebral disc has been reported to be an estrogen-sensitive tissue, it is unclear whether estrogen can inhibit premature senescence of NP cells. Objective: To investigate whether 17beta-estradiol (E2) can attenuate TNF-α-induced premature senescence of NP cells and the potential mechanism behind this regulatory process. Methods: Isolated NP cells and intact intervertebral discs from healthy rats were cultured with or without TNF-α, E2 or their combination. The pan estrogen receptor (ER) antagonist ICI 182780 was used to investigate the role of ER. Direct and indirect indicators including cell proliferation, SA-β-Gal activity, telomerase activity, cell cycle, and the expression of matrix macromolecules (aggrecan and collagen II) and senescence markers (p16 and p53) were used to evaluate the premature senescence of NP cells. Additionally, intracellular reactive oxygen species (ROS) and NF-κB/p65 activity were also detected in the NP cell cultures. Results: In the NP cell cultures, E2 significantly increased cell proliferation potency, telomerase activity and the expression of matrix macromolecules but attenuated SA-β-Gal activity, senescence marker (p53 and p16) expression and G1 cycle arrest in TNF-α-treated NP cells. Furthermore, E2 inhibited ROS generation and phospho-NF-κB/p65 expression in the TNF-α-treated NP cells. However, the ER antagonist ICI 182780 abolished the effects of E2 on TNF-α-treated NP cells. In the disc organ cultures, E2 also significantly increased matrix synthesis, whereas it decreased senescence marker (p53 and p16) expression, which could be abolished by the ER antagonist ICI 182780. Conclusion: The interaction between E2 and ER can attenuate TNF-α-induced premature senescence of rat NP cells through interfering with the ROS/NF-κB pathway.
Collapse
Affiliation(s)
- Pei Li
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yibo Gan
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yuan Xu
- Department of Orthopedic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Liyuan Wang
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Bin Ouyang
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Chengmin Zhang
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Lei Luo
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Chen Zhao
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Qiang Zhou
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
25
|
Zhao Z, Zhang J, Wang H, Liu ZP, Liu M, Zhang Y, Sun L, Zhang H. Mutation rate estimation for 15 autosomal STR loci in a large population from Mainland China. Meta Gene 2015; 5:150-6. [PMID: 26273562 PMCID: PMC4532769 DOI: 10.1016/j.mgene.2015.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/16/2015] [Accepted: 07/12/2015] [Indexed: 11/15/2022] Open
Abstract
STR, short tandem repeats, are well known as a type of powerful genetic marker and widely used in studying human population genetics. Compared with the conventional genetic markers, the mutation rate of STR is higher. Additionally, the mutations of STR loci do not lead to genetic inconsistencies between the genotypes of parents and children; therefore, the analysis of STR mutation is more suited to assess the population mutation. In this study, we focused on 15 autosomal STR loci. DNA samples from a total of 42,416 unrelated healthy individuals (19,037 trios) from the population of Mainland China collected between Jan 2012 and May 2014 were successfully investigated. In our study, the allele frequencies, paternal mutation rates, maternal mutation rates and average mutation rates were detected. Furthermore, we also investigated the relationship between paternal ages, maternal ages, area, the time of pregnancy and average mutation rate. We found that the paternal mutation rate was higher than the maternal mutation rate and the paternal, maternal, and average mutation rates had a positive correlation with paternal age, maternal age and the time of pregnancy respectively. Additionally, the average mutation rate of coastal areas was higher than that of inland areas. 15 autosomal STR loci were analyzed in a large scale population in Mainland China. With increases of repeat units the event of loss is more than that of gain. The paternal mutation rate is higher than the maternal mutation rate. There is a positive correlation between mutation rates and age and pregnancy time. The average mutation rates of coastal areas are higher than that of inland areas.
Collapse
Affiliation(s)
- Zhuo Zhao
- Technical Center for Safety of Industrial Products, Tianjin Entry-Exit Inspection Quarantine Bureau, No. 2 Dong Wu Road Airport Economics Area Tianjin, 300308 Tianjin, China
| | - Jie Zhang
- Beijing Entry-Exit Inspection Quarantine Bureau, No. 6 Tian Shui Yuan Street Chaoyang District Beijing, 100026 Beijing, China
| | - Hua Wang
- Technical Center for Safety of Industrial Products, Tianjin Entry-Exit Inspection Quarantine Bureau, No. 2 Dong Wu Road Airport Economics Area Tianjin, 300308 Tianjin, China
| | - Zhi-Peng Liu
- Technical Center for Safety of Industrial Products, Tianjin Entry-Exit Inspection Quarantine Bureau, No. 2 Dong Wu Road Airport Economics Area Tianjin, 300308 Tianjin, China
| | - Ming Liu
- Technical Center for Safety of Industrial Products, Tianjin Entry-Exit Inspection Quarantine Bureau, No. 2 Dong Wu Road Airport Economics Area Tianjin, 300308 Tianjin, China
| | - Yuan Zhang
- Technical Center for Safety of Industrial Products, Tianjin Entry-Exit Inspection Quarantine Bureau, No. 2 Dong Wu Road Airport Economics Area Tianjin, 300308 Tianjin, China
| | - Li Sun
- Technical Center for Safety of Industrial Products, Tianjin Entry-Exit Inspection Quarantine Bureau, No. 2 Dong Wu Road Airport Economics Area Tianjin, 300308 Tianjin, China
| | - Hui Zhang
- Technical Center for Safety of Industrial Products, Tianjin Entry-Exit Inspection Quarantine Bureau, No. 2 Dong Wu Road Airport Economics Area Tianjin, 300308 Tianjin, China
| |
Collapse
|
26
|
Ma Y, Li W, Yin Y, Li W. AST IV inhibits H₂O₂-induced human umbilical vein endothelial cell apoptosis by suppressing Nox4 expression through the TGF-β1/Smad2 pathway. Int J Mol Med 2015; 35:1667-74. [PMID: 25891879 DOI: 10.3892/ijmm.2015.2188] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/08/2015] [Indexed: 11/06/2022] Open
Abstract
Endothelial cell apoptosis plays an important role in the pathophysiological mechanisms of vascular complications in diabetes mellitus (DM). NADPH oxidase 4 (Nox4)-dependent reactive oxygen species (ROS) aggregation is the main cause of vascular endothelial cell apoptosis. The transforming growth factor-β1 (TGF-β1)/Smad2 signaling pathway is involved in the apoptosis of several types of cells. However, the association between vascular endothelial cell apoptosis and Nox4, and the involvement of the TGF-β1/Smad2 signaling pathway in vascular endothelial cell apoptosis remain unclear. In the present study, we aimed to investigate the role of Nox4-dependent ROS production and to determine the involvement of the TGF-β1/Smad2 signaling pathway in endothelial cell apoptosis induced by oxidative stress which causes vascular injury in DM. We demonstrated that hydrogen peroxide (H2O2) increased Nox4-dependent-ROS aggregation, as well as the expression of TGF-β1, Smad2, Bax and caspase-3, decreased Bcl-2 expression and increased the apoptosis of human umbilical vein endothelial cells (HUVECs). Treatment with diphenyliodonium (DPI), a specific inhibitor of Nox4 or astragaloside IV (AST IV), a monomer located in an extract of astragaloside, decreased Nox4 expression and the levels of ROS, decreased TGF-β1 and Smad2 expression, altered the expression of apoptosis-related genes and decreased the apoptosis of HUVECs. Treatment with LY2109761, a selective inhibitor of the TGF-β1/Smad2 pathway, produced results similar to those of DPI; however, LY2109761 had no effect on Nox4 expression and ROS levels. Taken together, the findings of the present study suggest that H2O2 contributes to HUVEC apoptosis by inducing Nox4-dependent ROS aggregation and activating the TGF-β1/Smad2 signaling pathway. Our data indicate that the protective effects of AST IV against vascular endothelial cell apoptosis in DM are mainly associated with the decrease in Nox4 expression through the TGF-β1/Smad2 signaling pathway. Furthermore, the inhibition of the activation of the TGF-β1/Smad2 signaling pathway may be another potential therapeutic strategy in the treatment of DM.
Collapse
Affiliation(s)
- Yuhong Ma
- Department of Pharmacology, College of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Weizu Li
- Department of Pharmacology, College of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yanyan Yin
- Department of Pharmacology, College of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Weiping Li
- Department of Pharmacology, College of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|