1
|
Silva WJ, Cruz A, Duque G. MicroRNAs and their Modulatory Effect on the Hallmarks of Osteosarcopenia. Curr Osteoporos Rep 2024; 22:458-470. [PMID: 39162945 DOI: 10.1007/s11914-024-00880-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
PURPOSE OF THE REVIEW Osteosarcopenia is a geriatric syndrome associated with disability and mortality. This review summarizes the key microRNAs that regulate the hallmarks of sarcopenia and osteoporosis. Our objective was to identify components similarly regulated in the pathology and have therapeutic potential by influencing crucial cellular processes in both bone and skeletal muscle. RECENT FINDINGS The simultaneous decline in bone and muscle in osteosarcopenia involves a complex crosstalk between these tissues. Recent studies have uncovered several key mechanisms underlying this condition, including the disruption of cellular signaling pathways that regulate bone remodeling and muscle function and regeneration. Accordingly, emerging evidence reveals that dysregulation of microRNAs plays a significant role in the development of each of these hallmarks of osteosarcopenia. Although the recent recognition of osteosarcopenia as a single diagnosis of bone and muscle deterioration has provided new insights into the mechanisms of these underlying age-related diseases, several knowledge gaps have emerged, and a deeper understanding of the role of common microRNAs is still required. In this study, we summarize current evidence on the roles of microRNAs in the pathogenesis of osteosarcopenia and identify potential microRNA targets for treating this condition. Among these, microRNAs-29b and -128 are upregulated in the disease and exert adverse effects by inhibiting IGF-1 and SIRT1, making them potential targets for developing inhibitors of their activity. MicroRNA-21 is closely associated with the occurrence of muscle and bone loss. Conversely, microRNA-199b is downregulated in the disease, and its reduced activity may be related to increased myostatin and GSK3β activity, presenting it as a target for developing analogues that restore its function. Finally, microRNA-672 stands out for its ability to protect skeletal muscle and bone when expressed in the disease, highlighting its potential as a possible therapy for osteosarcopenia.
Collapse
Affiliation(s)
- William J Silva
- Department of Research and Development, Mirscience Therapeutics, São Paulo, Brazil
| | - André Cruz
- Department of Research and Development, Mirscience Therapeutics, São Paulo, Brazil
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group. Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
- Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Lombardo M, Aiello G, Fratantonio D, Karav S, Baldelli S. Functional Role of Extracellular Vesicles in Skeletal Muscle Physiology and Sarcopenia: The Importance of Physical Exercise and Nutrition. Nutrients 2024; 16:3097. [PMID: 39339697 PMCID: PMC11435357 DOI: 10.3390/nu16183097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Extracellular vesicles (EVs) play a key role in intercellular communication by transferring miRNAs and other macromolecules between cells. Understanding how diet and exercise modulate the release and content of skeletal muscle (SM)-derived EVs could lead to novel therapeutic strategies to prevent age-related muscle decline and other chronic diseases, such as sarcopenia. This review aims to provide an overview of the role of EVs in muscle function and to explore how nutritional and physical interventions can optimise their release and function. METHODS A literature review of studies examining the impact of exercise and nutritional interventions on MS-derived EVs was conducted. Major scientific databases, including PubMed, Scopus and Web of Science, were searched using keywords such as 'extracellular vesicles', 'muscle', 'exercise', 'nutrition' and 'sarcopenia'. The selected studies included randomised controlled trials (RCTs), clinical trials and cohort studies. Data from these studies were synthesised to identify key findings related to the release of EVs, their composition and their potential role as therapeutic targets. RESULTS Dietary patterns, specific foods and supplements were found to significantly modulate EV release and composition, affecting muscle health and metabolism. Exercise-induced changes in EV content were observed after both acute and chronic interventions, with a marked impact on miRNAs and proteins related to muscle growth and inflammation. Nutritional interventions, such as the Mediterranean diet and omega-3 fatty acids, have also shown the ability to alter EV profiles, suggesting their potential to improve cardiovascular health and reduce inflammation. CONCLUSIONS EVs are emerging as critical mediators of the beneficial effects of diet and exercise on muscle health. Both exercise and nutritional interventions can modulate the release and content of MS-derived EVs, offering promising avenues for the development of novel therapeutic strategies targeting sarcopenia and other muscle diseases. Future research should focus on large-scale RCT studies with standardised methodologies to better understand the role of EVs as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy
| | - Gilda Aiello
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy
| | - Deborah Fratantonio
- Department of Medicine and Surgery, LUM University, S.S. 100 Km 18, 70100 Casamassima, Italy
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye
| | - Sara Baldelli
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| |
Collapse
|
3
|
Du J, Wu Q, Bae EJ. Epigenetics of Skeletal Muscle Atrophy. Int J Mol Sci 2024; 25:8362. [PMID: 39125931 PMCID: PMC11312722 DOI: 10.3390/ijms25158362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Skeletal muscle atrophy, characterized by diminished muscle strength and mass, arises from various causes, including malnutrition, aging, nerve damage, and disease-related secondary atrophy. Aging markedly escalates the prevalence of sarcopenia. Concurrently, the incidence of muscle atrophy significantly rises among patients with chronic ailments such as heart failure, diabetes, and chronic obstructive pulmonary disease (COPD). Epigenetics plays a pivotal role in skeletal muscle atrophy. Aging elevates methylation levels in the promoter regions of specific genes within muscle tissues. This aberrant methylation is similarly observed in conditions like diabetes, neurological disorders, and cardiovascular diseases. This study aims to explore the relationship between epigenetics and skeletal muscle atrophy, thereby enhancing the understanding of its pathogenesis and uncovering novel therapeutic strategies.
Collapse
Affiliation(s)
- Jiacheng Du
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Qian Wu
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Eun Ju Bae
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
4
|
Islam MA, Sehar U, Sultana OF, Mukherjee U, Brownell M, Kshirsagar S, Reddy PH. SuperAgers and centenarians, dynamics of healthy ageing with cognitive resilience. Mech Ageing Dev 2024; 219:111936. [PMID: 38657874 DOI: 10.1016/j.mad.2024.111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Graceful healthy ageing and extended longevity is the most desired goal for human race. The process of ageing is inevitable and has a profound impact on the gradual deterioration of our physiology and health since it triggers the onset of many chronic conditions like dementia, osteoporosis, diabetes, arthritis, cancer, and cardiovascular disease. However, some people who lived/live more than 100 years called 'Centenarians" and how do they achieve their extended lifespans are not completely understood. Studying these unknown factors of longevity is important not only to establish a longer human lifespan but also to manage and treat people with shortened lifespans suffering from age-related morbidities. Furthermore, older adults who maintain strong cognitive function are referred to as "SuperAgers" and may be resistant to risk factors linked to cognitive decline. Investigating the mechanisms underlying their cognitive resilience may contribute to the development of therapeutic strategies that support the preservation of cognitive function as people age. The key to a long, physically, and cognitively healthy life has been a mystery to scientists for ages. Developments in the medical sciences helps us to a better understanding of human physiological function and greater access to medical care has led us to an increase in life expectancy. Moreover, inheriting favorable genetic traits and adopting a healthy lifestyle play pivotal roles in promoting longer and healthier lives. Engaging in regular physical activity, maintaining a balanced diet, and avoiding harmful habits such as smoking contribute to overall well-being. The synergy between positive lifestyle choices, access to education, socio-economic factors, environmental determinants and genetic supremacy enhances the potential for a longer and healthier life. Our article aims to examine the factors associated with healthy ageing, particularly focusing on cognitive health in centenarians. We will also be discussing different aspects of ageing including genomic instability, metabolic burden, oxidative stress and inflammation, mitochondrial dysfunction, cellular senescence, immunosenescence, and sarcopenia.
Collapse
Affiliation(s)
- Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Upasana Mukherjee
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Malcolm Brownell
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA.
| |
Collapse
|
5
|
Bahat G, Ozkok S. The Current Landscape of Pharmacotherapies for Sarcopenia. Drugs Aging 2024; 41:83-112. [PMID: 38315328 DOI: 10.1007/s40266-023-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
Sarcopenia is a skeletal muscle disorder characterized by progressive and generalized decline in muscle mass and function. Although it is mostly known as an age-related disorder, it can also occur secondary to systemic diseases such as malignancy or organ failure. It has demonstrated a significant relationship with adverse outcomes, e.g., falls, disabilities, and even mortality. Several breakthroughs have been made to find a pharmaceutical therapy for sarcopenia over the years, and some have come up with promising findings. Yet still no drug has been approved for its treatment. The key factor that makes finding an effective pharmacotherapy so challenging is the general paradigm of standalone/single diseases, traditionally adopted in medicine. Today, it is well known that sarcopenia is a complex disorder caused by multiple factors, e.g., imbalance in protein turnover, satellite cell and mitochondrial dysfunction, hormonal changes, low-grade inflammation, senescence, anorexia of aging, and behavioral factors such as low physical activity. Therefore, pharmaceuticals, either alone or combined, that exhibit multiple actions on these factors simultaneously will likely be the drug of choice to manage sarcopenia. Among various drug options explored throughout the years, testosterone still has the most cumulated evidence regarding its effects on muscle health and its safety. A mas receptor agonist, BIO101, stands out as a recent promising pharmaceutical. In addition to the conventional strategies (i.e., nutritional support and physical exercise), therapeutics with multiple targets of action or combination of multiple therapeutics with different targets/modes of action appear to promise greater benefit for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Gulistan Bahat
- Division of Geriatrics, Department of Internal Medicine, Istanbul Medical School, Istanbul University, Capa, 34390, Istanbul, Turkey.
| | - Serdar Ozkok
- Division of Geriatrics, Department of Internal Medicine, Hatay Training and Research Hospital, Hatay, 31040, Turkey
| |
Collapse
|
6
|
Shin YJ, Kwon KS, Suh Y, Lee KP. The role of non-coding RNAs in muscle aging: regulatory mechanisms and therapeutic potential. Front Mol Biosci 2024; 10:1308274. [PMID: 38264571 PMCID: PMC10803457 DOI: 10.3389/fmolb.2023.1308274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Muscle aging is a complex physiological process that leads to the progressive decline in muscle mass and function, contributing to debilitating conditions in the elderly such as sarcopenia. In recent years, non-coding RNAs (ncRNAs) have been increasingly recognized as major regulators of muscle aging and related cellular processes. Here, we comprehensively review the emerging role of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in the regulation of muscle aging. We also discuss how targeting these ncRNAs can be explored for the development of novel interventions to combat age-related muscle decline. The insights provided in this review offer a promising avenue for future research and therapeutic strategies aimed at improving muscle health during aging.
Collapse
Affiliation(s)
- Yeo Jin Shin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ki-Sun Kwon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioscience, KRIBB School, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
- Aventi Inc., Daejeon, Republic of Korea
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, United States
- Department of Genetics and Development, Columbia University, New York, NY, United States
| | - Kwang-Pyo Lee
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioscience, KRIBB School, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
7
|
Kharaz YA, Zamboulis DE, Fang Y, Welting TJM, Peffers MJ, Comerford EJ. Small RNA signatures of the anterior cruciate ligament from patients with knee joint osteoarthritis. Front Mol Biosci 2023; 10:1266088. [PMID: 38187089 PMCID: PMC10768046 DOI: 10.3389/fmolb.2023.1266088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction: The anterior cruciate ligament (ACL) is susceptible to degeneration, resulting in joint pain, reduced mobility, and osteoarthritis development. There is currently a paucity of knowledge on how anterior cruciate ligament degeneration and disease leads to osteoarthritis. Small non-coding RNAs (sncRNAs), such as microRNAs and small nucleolar RNA (snoRNA), have diverse roles, including regulation of gene expression. Methods: We profiled the sncRNAs of diseased osteoarthritic ACLs to provide novel insights into osteoarthritis development. Small RNA sequencing from the ACLs of non- or end-stage human osteoarthritic knee joints was performed. Significantly differentially expressed sncRNAs were defined, and bioinformatics analysis was undertaken. Results and Discussion: A total of 184 sncRNAs were differentially expressed: 68 small nucleolar RNAs, 26 small nuclear RNAs (snRNAs), and 90 microRNAs. We identified both novel and recognized (miR-206, -365, and -29b and -29c) osteoarthritis-related microRNAs and other sncRNAs (including SNORD72, SNORD113, and SNORD114). Significant pathway enrichment of differentially expressed miRNAs includes differentiation of the muscle, inflammation, proliferation of chondrocytes, and fibrosis. Putative mRNAs of the microRNA target genes were associated with the canonical pathways "hepatic fibrosis signaling" and "osteoarthritis." The establishing sncRNA signatures of ACL disease during osteoarthritis could serve as novel biomarkers and potential therapeutic targets in ACL degeneration and osteoarthritis development.
Collapse
Affiliation(s)
- Yalda A. Kharaz
- Department of Musculoskeletal Ageing Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Danae E. Zamboulis
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Tim J. M. Welting
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Mandy J. Peffers
- Department of Musculoskeletal Ageing Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Eithne J. Comerford
- Department of Musculoskeletal Ageing Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
8
|
Dai H, Luo J, Deng L, Song C, Deng Z, Wu Y, Gu S, Xu J. Hierarchically Injectable Hydrogel Sequentially Delivers AntagomiR-467a-3p-Loaded and AntagomiR-874-5p-Loaded Satellite-Cell-Targeting Bioengineered Extracellular Vesicles Attenuating Sarcopenia. Adv Healthc Mater 2023; 12:e2203056. [PMID: 36782053 PMCID: PMC11468726 DOI: 10.1002/adhm.202203056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/06/2023] [Indexed: 02/15/2023]
Abstract
Sarcopenia is a geriatric disease characterized by reduced muscle function and mass. The capacity to self-renew and myogenesis of satellite cells (SCs) declines with age, resulting in age-related sarcopenia. MicroRNAs (miRNAs) can regulate the proliferation and myogenesis of SCs. In this study, it is identified that miR-467a-3p and miR-874-5p could respectively mediate the stemness and myogenesis of SCs by performing bioinformatics analysis. AntagomiR-467a-3p (ant-467a) and antagomiR-874-5p (ant-874) improve the stemness and myogenesis of SCs, respectively. SC-targeting extracellular vesicles (EVs) are constructed by overexpressing TSG101 on the surface of EVs isolated from bone marrow mesenchymal stem cells. Ant-467a loaded EVs (EVs-467a) and ant-874 loaded EVs (EVs-874) are prepared by transferring ant-467a and ant-874 into SC-targeting EVs. EVs-467a and EVs-874 are more effective than ant-467a and ant-874 in promoting the stemness and myogenesis of SCs. Sequentially intermuscular injection of EVs-467a and EVs-874 significantly improve sarcopenia in ovariectomy mice. The effects of multiple injections of EVs-467a and EVs-874 in the treatment of sarcopenia could be achieved by using a hierarchically injectable hydrogel to sustainedly release EVs-467a and EVs-874 in vivo. The findings provide an EV-based SC-targeting antagomiRNAs controlled release strategy as a novel therapy against sarcopenia.
Collapse
Affiliation(s)
- Hanhao Dai
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350000China
| | - Jun Luo
- Department of OrthopedicsFujian Provincial HospitalFujian Medical UniversityFuzhou350000China
| | - Lili Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Chao Song
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350000China
| | - Zhibo Deng
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350000China
| | - Yijing Wu
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350000China
| | - Song Gu
- Trauma CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Jie Xu
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350000China
- Department of OrthopedicsFujian Provincial HospitalFujian Medical UniversityFuzhou350000China
| |
Collapse
|
9
|
Ghafouri-Fard S, Askari A, Mahmud Hussen B, Taheri M, Kiani A. Sarcopenia and noncoding RNAs: A comprehensive review. J Cell Physiol 2023. [PMID: 37183312 DOI: 10.1002/jcp.31031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023]
Abstract
Sarcopenia is an elderly disease and is related to frailty and loss of muscle mass (atrophy) of older adults. The exact molecular mechanisms contributing to the pathogenesis of disease are yet to be discovered. In recent years, the role of noncoding RNAs in the pathogenesis of almost every kind of malignant and nonmalignant conditions is pinpointed. Regarding their regulatory function, there have been an increased number of studies on the role of noncoding RNAs in the progress of sarcopenia. In this manuscript, we review the role of microRNAs and long noncoding RNAs in development and progression of disease. We also discuss their potential as therapeutic targets in this condition.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Arda Kiani
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Matai L, Slack FJ. MicroRNAs in Age-Related Proteostasis and Stress Responses. Noncoding RNA 2023; 9:26. [PMID: 37104008 PMCID: PMC10143298 DOI: 10.3390/ncrna9020026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/28/2023] Open
Abstract
Aging is associated with the accumulation of damaged and misfolded proteins through a decline in the protein homeostasis (proteostasis) machinery, leading to various age-associated protein misfolding diseases such as Huntington's or Parkinson's. The efficiency of cellular stress response pathways also weakens with age, further contributing to the failure to maintain proteostasis. MicroRNAs (miRNAs or miRs) are a class of small, non-coding RNAs (ncRNAs) that bind target messenger RNAs at their 3'UTR, resulting in the post-transcriptional repression of gene expression. From the discovery of aging roles for lin-4 in C. elegans, the role of numerous miRNAs in controlling the aging process has been uncovered in different organisms. Recent studies have also shown that miRNAs regulate different components of proteostasis machinery as well as cellular response pathways to proteotoxic stress, some of which are very important during aging or in age-related pathologies. Here, we present a review of these findings, highlighting the role of individual miRNAs in age-associated protein folding and degradation across different organisms. We also broadly summarize the relationships between miRNAs and organelle-specific stress response pathways during aging and in various age-associated diseases.
Collapse
Affiliation(s)
| | - Frank J. Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Pedraza-Vázquez G, Mena-Montes B, Hernández-Álvarez D, Gómez-Verjan JC, Toledo-Pérez R, López-Teros MT, Königsberg M, Gómez-Quiroz LE, Luna-López A. A low-intensity lifelong exercise routine changes miRNA expression in aging and prevents osteosarcopenic obesity by modulating inflammation. Arch Gerontol Geriatr 2023; 105:104856. [PMID: 36399890 DOI: 10.1016/j.archger.2022.104856] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
Osteosarcopenic obesity (OSO) has been associated with increase immobility, falls, fractures, and other dysfunctions, which could increase mortality risk during aging. However, its etiology remains unknown. Recent studies revealed that sedentarism, fat gain, and epigenetic regulators are critical in its development. One effective intervention to prevent and treat OSO is exercise. Therefore, in the present study, by keeping rats in conditions of sedentarism and others under a low-intensity exercise routine, we established an experimental model of OSO. We determined the degree of sarcopenia, obesity, and osteopenia at different ages and analyzed the miRNA expression during the lifespan using miRNA microarrays from gastrocnemius muscle. Interestingly microarrays results showed that there is a set of miRNAs that changed their expression with exercise. The pathway enrichment analysis showed that these miRNAs are strongly associated with immune regulation. Further inflammatory profiles with IL-6/IL-10 and TNF-α/IL-10 ratios showed that exercised rats presented a lower pro-inflammatory profile than sedentary rats. Also, the body fat gain in the sedentary group increased the inflammatory profile, ultimately leading to muscle dysfunction. Exercise prevented strength loss over time and maintained skeletal muscle functionality over time. Differential expression of miRNAs suggests that they might participate in this process by regulating the inflammatory response associated with aging, thus preventing the development of OSO.
Collapse
Affiliation(s)
- Gibrán Pedraza-Vázquez
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico; Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City 10200, Mexico
| | - Beatriz Mena-Montes
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico; Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City 10200, Mexico
| | - David Hernández-Álvarez
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | | | - Rafael Toledo-Pérez
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | | | - Mina Königsberg
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Luis E Gómez-Quiroz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Armando Luna-López
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City 10200, Mexico.
| |
Collapse
|
12
|
Elangovan A, Venkatesan D, Selvaraj P, Pasha MY, Babu HWS, Iyer M, Narayanasamy A, Subramaniam MD, Valsala Gopalakrishnan A, Kumar NS, Vellingiri B. miRNA in Parkinson's disease: From pathogenesis to theranostic approaches. J Cell Physiol 2023; 238:329-354. [PMID: 36502506 DOI: 10.1002/jcp.30932] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is an age associated neurological disorder which is specified by cardinal motor symptoms such as tremor, stiffness, bradykinesia, postural instability, and non-motor symptoms. Dopaminergic neurons degradation in substantia nigra region and aggregation of αSyn are the classic signs of molecular defects noticed in PD pathogenesis. The discovery of microRNAs (miRNA) predicted to have a pivotal part in various processes regarding regularizing the cellular functions. Studies on dysregulation of miRNA in PD pathogenesis has recently gained the concern where our review unravels the role of miRNA expression in PD and its necessity in clinical validation for therapeutic development in PD. Here, we discussed how miRNA associated with ageing process in PD through molecular mechanistic approach of miRNAs on sirtuins, tumor necrosis factor-alpha and interleukin-6, dopamine loss, oxidative stress and autophagic dysregulation. Further we have also conferred the expression of miRNAs affected by SNCA gene expression, neuronal differentiation and its therapeutic potential with PD. In conclusion, we suggest more rigorous studies should be conducted on understanding the mechanisms and functions of miRNA in PD which will eventually lead to discovery of novel and promising therapeutics for PD.
Collapse
Affiliation(s)
- Ajay Elangovan
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Dhivya Venkatesan
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Priyanka Selvaraj
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Md Younus Pasha
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Harysh Winster Suresh Babu
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India.,Department of Zoology, Disease Proteomics Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Mahalaxmi Iyer
- Livestock Farming, & Bioresources Technology, Tamil Nadu, India
| | - Arul Narayanasamy
- Department of Zoology, Disease Proteomics Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Mohana Devi Subramaniam
- Department of Genetics and Molecular Biology, Vision Research Foundation, Tamil Nadu, Chennai, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, India
| | | | - Balachandar Vellingiri
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India.,Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Punjab, Bathinda, India
| |
Collapse
|
13
|
Shintani-Ishida K, Tsurumi R, Ikegaya H. Decrease in the expression of muscle-specific miRNAs, miR-133a and miR-1, in myoblasts with replicative senescence. PLoS One 2023; 18:e0280527. [PMID: 36649291 PMCID: PMC9844915 DOI: 10.1371/journal.pone.0280527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
Muscles that are injured or atrophied by aging undergo myogenic regeneration. Although myoblasts play a pivotal role in myogenic regeneration, their function is impaired with aging. MicroRNAs (miRNAs) are also involved in myogenic regeneration. MiRNA (miR)-1 and miR-133a are muscle-specific miRNAs that control the proliferation and differentiation of myoblasts. In this study, we determined whether miR-1 and miR-133a expression in myoblasts is altered with cellular senescence and involved in senescence-impaired myogenic differentiation. C2C12 murine skeletal myoblasts were converted to a replicative senescent state by culturing to a high passage number. Although miR-1 and miR-133a expression was largely induced during myogenic differentiation, expression was suppressed in cells at high passage numbers (passage 10 and/or passage 20). Although the senescent myoblasts exhibited a deterioration of myogenic differentiation, transfection of miR-1 or miR-133a into myoblasts ameliorated cell fusion. Treatment with the glutaminase 1 inhibitor, BPTES, removed senescent cells from C2C12 myoblasts with a high passage number, whereas myotube formation and miR-133a expression was increased. In addition, primary cultured myoblasts prepared from aged C57BL/6J male mice (20 months old) exhibited a decrease in miR-1 and miR-133a levels compared with younger mice (3 months old). The results suggest that replicative senescence suppresses muscle-specific miRNA expression in myoblasts, which contributes to the senescence-related dysfunction of myogenic regeneration.
Collapse
Affiliation(s)
- Kaori Shintani-Ishida
- Department of Forensic Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Riko Tsurumi
- Department of Forensic Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Ikegaya
- Department of Forensic Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
14
|
Ageing at Molecular Level: Role of MicroRNAs. Subcell Biochem 2023; 102:195-248. [PMID: 36600135 DOI: 10.1007/978-3-031-21410-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The progression of age triggers a vast number of diseases including cardiovascular, cancer, and neurodegenerative disorders. Regardless of our plentiful knowledge about age-related diseases, little is understood about molecular pathways that associate the ageing process with various diseases. Several cellular events like senescence, telomere dysfunction, alterations in protein processing, and regulation of gene expression are common between ageing and associated diseases. Accumulating information on the role of microRNAs (miRNAs) suggests targeting miRNAs can aid our understanding of the interplay between ageing and associated diseases. In the present chapter, we have attempted to explore the information available on the role of miRNAs in ageing of various tissues/organs and diseases and understand the molecular mechanism of ageing.
Collapse
|
15
|
Kolodziej F, McDonagh B, Burns N, Goljanek-Whysall K. MicroRNAs as the Sentinels of Redox and Hypertrophic Signalling. Int J Mol Sci 2022; 23:ijms232314716. [PMID: 36499053 PMCID: PMC9737617 DOI: 10.3390/ijms232314716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022] Open
Abstract
Oxidative stress and inflammation are associated with skeletal muscle function decline with ageing or disease or inadequate exercise and/or poor diet. Paradoxically, reactive oxygen species and inflammatory cytokines are key for mounting the muscular and systemic adaptive responses to endurance and resistance exercise. Both ageing and lifestyle-related metabolic dysfunction are strongly linked to exercise redox and hypertrophic insensitivity. The adaptive inability and consequent exercise intolerance may discourage people from physical training resulting in a vicious cycle of under-exercising, energy surplus, chronic mitochondrial stress, accelerated functional decline and increased susceptibility to serious diseases. Skeletal muscles are malleable and dynamic organs, rewiring their metabolism depending on the metabolic or mechanical stress resulting in a specific phenotype. Endogenous RNA silencing molecules, microRNAs, are regulators of these metabolic/phenotypic shifts in skeletal muscles. Skeletal muscle microRNA profiles at baseline and in response to exercise have been observed to differ between adult and older people, as well as trained vs. sedentary individuals. Likewise, the circulating microRNA blueprint varies based on age and training status. Therefore, microRNAs emerge as key regulators of metabolic health/capacity and hormetic adaptability. In this narrative review, we summarise the literature exploring the links between microRNAs and skeletal muscle, as well as systemic adaptation to exercise. We expand a mathematical model of microRNA burst during adaptation to exercise through supporting data from the literature. We describe a potential link between the microRNA-dependent regulation of redox-signalling sensitivity and the ability to mount a hypertrophic response to exercise or nutritional cues. We propose a hypothetical model of endurance exercise-induced microRNA "memory cloud" responsible for establishing a landscape conducive to aerobic as well as anabolic adaptation. We suggest that regular aerobic exercise, complimented by a healthy diet, in addition to promoting mitochondrial health and hypertrophic/insulin sensitivity, may also suppress the glycolytic phenotype and mTOR signalling through miRNAs which in turn promote systemic metabolic health.
Collapse
Affiliation(s)
- Filip Kolodziej
- Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland
| | - Brian McDonagh
- Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland
| | - Nicole Burns
- Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland
| | - Katarzyna Goljanek-Whysall
- Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland
- Institute of Life Course and Medical Science, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
16
|
Wu S, Lin S, Zhang X, Alizada M, Wang L, Zheng Y, Ke Q, Xu J. Recent advances in cell-based and cell-free therapeutic approaches for sarcopenia. FASEB J 2022; 36:e22614. [PMID: 36250337 DOI: 10.1096/fj.202200675r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/02/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022]
Abstract
Sarcopenia is a progressive loss of muscle mass and function that is connected with increased hospital expenditures, falls, fractures, and mortality. Although muscle loss has been related to aging, injury, hormonal imbalances, and diseases such as malignancies, chronic obstructive pulmonary disease, heart failure, and kidney failure, the underlying pathogenic mechanisms of sarcopenia are unclear. Exercise-based interventions and multimodal strategies are currently being considered as potential therapeutic approaches to prevent or treat these diseases. Although drug therapy research is ongoing, no drug has yet been proven to have a substantial safety and clinical value to be the first drug therapy to be licensed for sarcopenia. To better understand the molecular alterations underlying sarcopenia and effective treatments, we review leading research and available findings from the systemic change to the muscle-specific microenvironment. Furthermore, we explore possible mechanisms of sarcopenia and provide new knowledge for the development of novel cell-free and cell-based therapeutics. This review will assist researchers in developing better therapies to improve muscle health in the elderly.
Collapse
Affiliation(s)
- Shiqiang Wu
- Department of Orthopedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Xiaolu Zhang
- Department of Orthopedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Mujahid Alizada
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Liangmin Wang
- Department of Orthopedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yiqiang Zheng
- Department of Orthopedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qingfeng Ke
- Department of Orthopedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jie Xu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.,Department of Orthopedic, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
17
|
Kharaz YA, Goljanek‐Whysall K, Nye G, Hurst JL, McArdle A, Comerford EJ. Age-related changes in microRNAs expression in cruciate ligaments of wild-stock house mice. Physiol Rep 2022; 10:e15426. [PMID: 35993414 PMCID: PMC9393909 DOI: 10.14814/phy2.15426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023] Open
Abstract
Cruciate ligaments (CL) of the knee joint are injured following trauma or aging. MicroRNAs (miRs) are potential therapeutic targets in musculoskeletal disorders, but there is little known about the role of miRs and their expression ligaments during aging. This study aimed to (1) identify if mice with normal physical activity, wild-stock house mice are an appropriate model to study age-related changes in the knee joint and (2) investigate the expression of miRs in aging murine cruciate ligaments. Knee joints were collected from 6 and 24 months old C57BL/6 and wild-stock house mice (Mus musculus domesticus) for ligament and cartilage (OARSI) histological analysis. Expression of miR targets in CLs was determined in 6-, 12-, 24-, and 30-month-old wild-stock house mice, followed by the analysis of predicted mRNA target genes and Ingenuity Pathway Analysis. Higher CL and knee OARSI histological scores were found in 24-month-old wild-stock house mice compared with 6- and 24-month-old C57BL/6 and 6-month-old wild-stock house mice (p < 0.05). miR-29a and miR-34a were upregulated in 30-month-old wild-stock house mice in comparison with 6-, 12-, and 24-month-old wild-stock house mice (p < 0.05). Ingenuity Pathway Analysis on miR-29a and 34a targets was associated with inflammation through interleukins, TGFβ and Notch genes, and p53 signaling. Collagen type I alpha 1 chain (COL1A1) correlated negatively with both miR-29a (r = -0.35) and miR-34a (r = -0.33). The findings of this study support wild-stock house mice as an appropriate aging model for the murine knee joint. This study also indicated that miR-29a and miR-34a may be potential regulators of COL1A1 gene expression in murine CLs.
Collapse
Affiliation(s)
- Yalda A. Kharaz
- Department of Musculoskeletal Ageing Sciences, Institute of Life Course and Medical SciencesUniversity of Liverpool, William Duncan BuildingLiverpoolUK
- The MRC‐Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA)LiverpoolUK
| | - Katarzyna Goljanek‐Whysall
- Department of Musculoskeletal Ageing Sciences, Institute of Life Course and Medical SciencesUniversity of Liverpool, William Duncan BuildingLiverpoolUK
- The MRC‐Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA)LiverpoolUK
- School of MedicineIRC Laureate, Physiology, Human Biology Building, NUI GalwayGalwayIreland
| | - Gareth Nye
- Chester Medical SchoolUniversity of ChesterChesterUK
| | - Jane L. Hurst
- Institute of Infection, Veterinary and Ecological Sciences, Leahurst CampusUniversity of LiverpoolNestonUK
| | - Anne McArdle
- Department of Musculoskeletal Ageing Sciences, Institute of Life Course and Medical SciencesUniversity of Liverpool, William Duncan BuildingLiverpoolUK
- The MRC‐Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA)LiverpoolUK
| | - Eithne J. Comerford
- Department of Musculoskeletal Ageing Sciences, Institute of Life Course and Medical SciencesUniversity of Liverpool, William Duncan BuildingLiverpoolUK
- The MRC‐Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA)LiverpoolUK
- Institute of Infection, Veterinary and Ecological Sciences, Leahurst CampusUniversity of LiverpoolNestonUK
| |
Collapse
|
18
|
Role of MicroRNAs and Long Non-Coding RNAs in Sarcopenia. Cells 2022; 11:cells11020187. [PMID: 35053303 PMCID: PMC8773898 DOI: 10.3390/cells11020187] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Sarcopenia is an age-related pathological process characterized by loss of muscle mass and function, which consequently affects the quality of life of the elderly. There is growing evidence that non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play a key role in skeletal muscle physiology. Alterations in the expression levels of miRNAs and lncRNAs contribute to muscle atrophy and sarcopenia by regulating various signaling pathways. This review summarizes the recent findings regarding non-coding RNAs associated with sarcopenia and provides an overview of sarcopenia pathogenesis promoted by multiple non-coding RNA-mediated signaling pathways. In addition, we discuss the impact of exercise on the expression patterns of non-coding RNAs involved in sarcopenia. Identifying non-coding RNAs associated with sarcopenia and understanding the molecular mechanisms that regulate skeletal muscle dysfunction during aging will provide new insights to develop potential treatment strategies.
Collapse
|
19
|
MicroRNAs associated with signaling pathways and exercise adaptation in sarcopenia. Life Sci 2021; 285:119926. [PMID: 34480932 DOI: 10.1016/j.lfs.2021.119926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 01/06/2023]
Abstract
Considering the expansion of human life-span over the past few decades; sarcopenia, a physiological consequence of aging process characterized with a diminution in mass and strength of skeletal muscle, has become more frequent. Thus, there is a growing need for expanding our knowledge on the molecular mechanisms of muscle atrophy in sarcopenia which are complex and involve many signaling pathways associated with protein degradation and synthesis. MicroRNAs (miRNAs) as evolutionary conserved small RNAs, could complementarily bind to their target mRNAs and post-transcriptionally inhibit their translation. Aberrant expression of miRNAs contributes to the development of sarcopenia by regulating the expression of critical genes involved in age-related skeletal muscle mass loss. Here we have a review on the signaling pathways along with the miRNAs controlling their components expression and subsequently we provide a brief overview on the effects of exercise on expression pattern of miRNAs in sarcopenia.
Collapse
|
20
|
Archacka K, Ciemerych MA, Florkowska A, Romanczuk K. Non-Coding RNAs as Regulators of Myogenesis and Postexercise Muscle Regeneration. Int J Mol Sci 2021; 22:ijms222111568. [PMID: 34768999 PMCID: PMC8583994 DOI: 10.3390/ijms222111568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/21/2022] Open
Abstract
miRNAs and lncRNAs do not encode proteins, but they play an important role in the regulation of gene expression. They differ in length, biogenesis, and mode of action. In this work, we focus on the selected miRNAs and lncRNAs involved in the regulation of myogenesis and muscle regeneration. We present selected miRNAs and lncRNAs that have been shown to control myogenic differentiation and show that manipulation of their levels could be used to improve myogenic differentiation of various types of stem and progenitor cells. Finally, we discuss how physical activity affects miRNA and lncRNA expression and how it affects muscle well-being.
Collapse
|
21
|
Zia A, Sahebdel F, Farkhondeh T, Ashrafizadeh M, Zarrabi A, Hushmandi K, Samarghandian S. A review study on the modulation of SIRT1 expression by miRNAs in aging and age-associated diseases. Int J Biol Macromol 2021; 188:52-61. [PMID: 34364937 DOI: 10.1016/j.ijbiomac.2021.08.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/15/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
Sirtuin-1 (SIRT1) as a NAD + -dependent Class III protein deacetylase, involves in longevity and various cellular physiological processes. SIRT1 via deacetylating transcription factors regulates cell growth, inflammation, metabolism, hypoxic responses, cell survival, senescence, and aging. MicroRNAs (miRNAs) are short non-coding RNAs that modulate the expression of target genes in a post-transcriptional manner. Recent investigations have exhibited that miRNAs have an important role in regulating cell growth, development, stress responses, tumor formation and suppression, cell death, and aging. In the present review, we summarize recent findings about the roles of miRNAs in regulating SIRT1 and SIRT1-associated signaling cascade and downstream effects, like apoptosis and aging. Here we introduce and discuss how activity and expression of SIRT1 are modulated by miRNAs and further review the therapeutic potential of targeting miRNAs for age-associated diseases that involve SIRT1 dysfunction. Although at its infancy, research on the roles of miRNAs in aging and their function through modulating SIRT1 may provide new insights in deciphering the key molecular pathways related to aging and age-associated disorders.
Collapse
Affiliation(s)
- Aliabbas Zia
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Faezeh Sahebdel
- Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran; Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Ali Zarrabi
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey
| | - Kiavash Hushmandi
- Faculty of Veterinary Medicine, Department of Food Hygiene and Quality Control, Division of epidemiology, University of Tehran, Tehran, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
22
|
Zia A, Farkhondeh T, Sahebdel F, Pourbagher-Shahri AM, Samarghandian S. Key miRNAs in Modulating Aging and Longevity: A Focus on Signaling Pathways and Cellular Targets. Curr Mol Pharmacol 2021; 15:736-762. [PMID: 34533452 DOI: 10.2174/1874467214666210917141541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/02/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
Aging is a multifactorial procedure accompanied by gradual deterioration of most biological procedures of cells. MicroRNAs (miRNAs) are a class of short non-coding RNAs that post-transcriptionally regulate the expression of mRNAs through sequence-specific binding, and contributing to many crucial aspects of cell biology. Several miRNAs are expressed differently in various organisms through aging. The function of miRNAs in modulating aging procedures has been disclosed recently with the detection of miRNAs that modulate longevity in the invertebrate model organisms, through the IIS pathway. In these model organisms, several miRNAs have been detected to both negatively and positively regulate lifespan via commonly aging pathways. miRNAs modulate age-related procedures and disorders in different mammalian tissues by measuring their tissue-specific expression in older and younger counterparts, including heart, skin, bone, brain, and muscle tissues. Moreover, several miRNAs have been contributed to modulating senescence in different human cells, and the roles of these miRNAs in modulating cellular senescence have allowed illustrating some mechanisms of aging. The review discusses the available data on miRNAs through the aging process and we highlight the roles of miRNAs as aging biomarkers and regulators of longevity in cellular senescence, tissue aging, and organism lifespan.
Collapse
Affiliation(s)
- Aliabbas Zia
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Faezeh Sahebdel
- Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
23
|
Two distinct skeletal muscle microRNA signatures revealing the complex mechanism of sporadic ALS. Acta Neurol Belg 2021; 122:1499-1509. [PMID: 34241798 DOI: 10.1007/s13760-021-01743-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Skeletal muscle pathology is thought to have an important role in the onset and/or progression of amyotrophic lateral sclerosis (ALS), which is a neurodegenerative disorder characterized by progressive muscle weakness. Since miRNAs are recognized as important regulatory factors of essential biological processes, we aimed to identify differentially expressed miRNAs in the skeletal muscle of sporadic ALS patients through the combination of molecular-omic technologies and bioinformatic tools. We analyzed the miRnome profiles of skeletal muscle biopsies acquired from ten sALS patients and five controls with Affymetrix GeneChip miRNA 4.0 Array. To find out differentially expressed miRNAs in patients, data were analyzed by The Institute for Genomic Research-Multi Experiment Viewer (MeV) and miRNAs whose expression difference were statistically significant were identified as candidates. The potential target genes of these miRNAs were predicted by miRWalk 2.0 and were functionally enriched by gene ontology (GO) analysis. The expression level of priority candidates was validated by quantitative real-time PCR (qRT-PCR) analysis. We identified ten differentially expressed miRNAs in patients with a fold change threshold ≥ 2.0, FDR = 0. We identified ten differentially expressed miRNAs in patients with a fold change threshold ≥ 2.0, FDR = 0. Nine out of the ten miRNAs were found to be related to top three enriched ALS-related terms. Based on the qRT-PCR validation of candidate miRNAs, patients were separated into two groups: those with upregulated miR-4429 and miR-1825 expression and those with downregulated miR-638 expression. The different muscle-specific miRNA profiles in sALS patients may indicate the involvement of etiologic heterogeneity, which may allow the development of novel therapeutic strategies.
Collapse
|
24
|
He N, Zhang Y, Zhang Y, Feng B, Zheng Z, Wang D, Zhang S, Ye H. Increasing Fracture Risk Associates With Plasma Circulating MicroRNAs in Aging People's Sarcopenia. Front Physiol 2021; 12:678610. [PMID: 34163374 PMCID: PMC8215392 DOI: 10.3389/fphys.2021.678610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022] Open
Abstract
Aging generally coincides with a gradual decline in mass and strength of muscles and bone mineral density (BMD). Sarcopenia is closely linked to osteoporosis in the elderly, which can lead to abnormal gait, balance disorders, and dysfunctions, as well as increase in the risks of falls, fractures, weakness, and death. MicroRNAs (miRNAs, miRs) are a kind of short and non-coding RNA molecules but can regulate posttranscriptional protein expression. However, we have known little about their participation in age-associated osteoporosis and sarcopenia. The current study aims to confirm those miRNAs as biomarkers for age-related reduction in muscular atrophy associated with human blood fractures. In our study, 10 fracture-risk-related miRNAs (miR-637, miR-148a-3p, miR-125b-5p, miR-124-3p, miR-122-5p, miR-100-5p, miR-93-5p, miR-21-5p, miR-23a-3p, and miR-24-3p) were analyzed. For the initial screening, we determined the abundance of fracture-risk-associated miRNAs by RT-PCR most frequently detected in enrolled 93 elderly with sarcopenia and non-sarcopenia, respectively. Statistically, the relative expression levels of plasma miR-23a-3p, miR-93-5p, and miR-637 in the sarcopenia group were significantly lower than that in the non-sarcopenia group, while the levels of other miRNAs did not change significantly. Moreover, we showed that the levels of ASM/height2, handgrip strength, and 4-m velocity in the sarcopenia group were significantly lower than in the non-sarcopenia group. Whereafter, we expanded the sample for further detection and analysis and revealed that the levels of plasma miR-23a-3p, miR-93-5p, and miR-637 in the sarcopenia group were significantly lower than that in the non-sarcopenia group, which is consistent with the initial screening experiment. From our analysis, changes in levels of plasma miR-93-5p and miR-637 were dramatically related to ASM/height2. Furthermore, changes in miR-23a and miR-93-5p were significantly affected by ASM/height2 in female individuals, with no significant correlations between miRNAs changes and these diagnostic indexes in male individuals after adjusting sex. The study showed that plasma miRNAs changed in an aging-related sarcopenia manner and were associated with increased fracture risk. In aging patients, plasma miR-23a-3p, miR-93-5p, and miR-637 have the potential as biomarkers of sarcopenia, which can affect the development of physiological dysfunction and may be also used in the fracture risk assessment of these patients.
Collapse
Affiliation(s)
- Nana He
- Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Yuelin Zhang
- Department of Cardiology, HwaMei Hospital (Previously Named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, Ningbo, China
| | - Yue Zhang
- Department of Cardiology, HwaMei Hospital (Previously Named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, Ningbo, China
| | - Beili Feng
- Department of Cardiology, HwaMei Hospital (Previously Named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, Ningbo, China
| | - Zaixing Zheng
- Department of Cardiology, HwaMei Hospital (Previously Named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, Ningbo, China
| | - Dongjuan Wang
- Department of Cardiology, HwaMei Hospital (Previously Named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, Ningbo, China
| | - Shun Zhang
- Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Honghua Ye
- Department of Cardiology, HwaMei Hospital (Previously Named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
25
|
Kanakis I, Alameddine M, Folkes L, Moxon S, Myrtziou I, Ozanne SE, Peffers MJ, Goljanek-Whysall K, Vasilaki A. Small-RNA Sequencing Reveals Altered Skeletal Muscle microRNAs and snoRNAs Signatures in Weanling Male Offspring from Mouse Dams Fed a Low Protein Diet during Lactation. Cells 2021; 10:cells10051166. [PMID: 34064819 PMCID: PMC8150574 DOI: 10.3390/cells10051166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/18/2022] Open
Abstract
Maternal diet during gestation and lactation affects the development of skeletal muscles in offspring and determines muscle health in later life. In this paper, we describe the association between maternal low protein diet-induced changes in offspring skeletal muscle and the differential expression (DE) of small non-coding RNAs (sncRNAs). We used a mouse model of maternal protein restriction, where dams were fed either a normal (N, 20%) or a low protein (L, 8%) diet during gestation and newborns were cross-fostered to N or L lactating dams, resulting in the generation of NN, NL and LN offspring groups. Total body and tibialis anterior (TA) weights were decreased in weanling NL male offspring but were not different in the LN group, as compared to NN. However, histological evaluation of TA muscle revealed reduced muscle fibre size in both groups at weaning. Small RNA-sequencing demonstrated DE of multiple miRs, snoRNAs and snRNAs. Bioinformatic analyses of miRs-15a, -34a, -122 and -199a, in combination with known myomiRs, confirmed their implication in key muscle-specific biological processes. This is the first comprehensive report for the DE of sncRNAs in nutrition-associated programming of skeletal muscle development, highlighting the need for further research to unravel the detailed molecular mechanisms.
Collapse
Affiliation(s)
- Ioannis Kanakis
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester CH2 1BR, UK;
- Correspondence: or
| | - Moussira Alameddine
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| | - Leighton Folkes
- School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK; (L.F.); (S.M.)
| | - Simon Moxon
- School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK; (L.F.); (S.M.)
| | - Ioanna Myrtziou
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester CH2 1BR, UK;
| | - Susan E. Ozanne
- Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Mandy J. Peffers
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
- Department of Physiology, School of Medicine and REMEDI, CMNHS, NUI Galway, Galway H91 TK33, Ireland
| | - Aphrodite Vasilaki
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| |
Collapse
|
26
|
De Sanctis P, Filardo G, Abruzzo PM, Astolfi A, Bolotta A, Indio V, Di Martino A, Hofer C, Kern H, Löfler S, Marcacci M, Marini M, Zampieri S, Zucchini C. Non-Coding RNAs in the Transcriptional Network That Differentiates Skeletal Muscles of Sedentary from Long-Term Endurance- and Resistance-Trained Elderly. Int J Mol Sci 2021; 22:1539. [PMID: 33546468 PMCID: PMC7913629 DOI: 10.3390/ijms22041539] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/02/2023] Open
Abstract
In a previous study, the whole transcriptome of the vastus lateralis muscle from sedentary elderly and from age-matched athletes with an exceptional record of high-intensity, life-long exercise training was compared-the two groups representing the two extremes on a physical activity scale. Exercise training enabled the skeletal muscle to counteract age-related sarcopenia by inducing a wide range of adaptations, sustained by the expression of protein-coding genes involved in energy handling, proteostasis, cytoskeletal organization, inflammation control, and cellular senescence. Building on the previous study, we examined here the network of non-coding RNAs participating in the orchestration of gene expression and identified differentially expressed micro- and long-non-coding RNAs and some of their possible targets and roles. Unsupervised hierarchical clustering analyses of all non-coding RNAs were able to discriminate between sedentary and trained individuals, regardless of the exercise typology. Validated targets of differentially expressed miRNA were grouped by KEGG analysis, which pointed to functional areas involved in cell cycle, cytoskeletal control, longevity, and many signaling pathways, including AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR), which had been shown to be pivotal in the modulation of the effects of high-intensity, life-long exercise training. The analysis of differentially expressed long-non-coding RNAs identified transcriptional networks, involving lncRNAs, miRNAs and mRNAs, affecting processes in line with the beneficial role of exercise training.
Collapse
Affiliation(s)
- Paola De Sanctis
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, 40138 Bologna, Italy; (P.D.S.); (M.M.); (C.Z.)
| | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Provvidenza Maria Abruzzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, 40138 Bologna, Italy; (P.D.S.); (M.M.); (C.Z.)
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Don Carlo Gnocchi, 20148 Milan, Italy
| | - Annalisa Astolfi
- Giorgio Prodi Interdepartimental Center for Cancer Research, S.Orsola-Malpighi Hospital, 40138 Bologna, Italy; (A.A.); (V.I.)
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandra Bolotta
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, 40138 Bologna, Italy; (P.D.S.); (M.M.); (C.Z.)
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Don Carlo Gnocchi, 20148 Milan, Italy
| | - Valentina Indio
- Giorgio Prodi Interdepartimental Center for Cancer Research, S.Orsola-Malpighi Hospital, 40138 Bologna, Italy; (A.A.); (V.I.)
| | - Alessandro Di Martino
- Second Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Christian Hofer
- Ludwig Boltzmann Institute for Rehabilitation Research, 3100 St. Pölten, Austria; (C.H.); (H.K.); (S.L.)
| | - Helmut Kern
- Ludwig Boltzmann Institute for Rehabilitation Research, 3100 St. Pölten, Austria; (C.H.); (H.K.); (S.L.)
| | - Stefan Löfler
- Ludwig Boltzmann Institute for Rehabilitation Research, 3100 St. Pölten, Austria; (C.H.); (H.K.); (S.L.)
| | - Maurilio Marcacci
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy;
| | - Marina Marini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, 40138 Bologna, Italy; (P.D.S.); (M.M.); (C.Z.)
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Don Carlo Gnocchi, 20148 Milan, Italy
| | - Sandra Zampieri
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35122 Padua, Italy;
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Cinzia Zucchini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, 40138 Bologna, Italy; (P.D.S.); (M.M.); (C.Z.)
| |
Collapse
|
27
|
Li Z, Liu C, Li S, Li T, Li Y, Wang N, Bao X, Xue P, Liu S. BMSC-Derived Exosomes Inhibit Dexamethasone-Induced Muscle Atrophy via the miR-486-5p/FoxO1 Axis. Front Endocrinol (Lausanne) 2021; 12:681267. [PMID: 34659106 PMCID: PMC8517407 DOI: 10.3389/fendo.2021.681267] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023] Open
Abstract
Sarcopenia, characterized by reduced muscle function as well as muscle mass, has been a public health problem with increasing prevalence. It might result from aging, injury, hormone imbalance and other catabolic conditions. Recently, exosomes were considered to regulate muscle regeneration and protein synthesis. In order to confirm the effect of BMSC-derived exosomes (BMSC-Exos) on muscle, dexamethasone-induced muscle atrophy was built both in vitro and in vivo. In the present research, BMSC-Exos attenuated the decrease of myotube diameter induced by dexamethasone, indicating that BMSC-Exos played a protective role in skeletal muscle atrophy. Further mechanism analysis exhibited that the content of miR-486-5p in C2C12 myotubes was up-regulated after treated with BMSC-Exos. Meanwhile, BMSC-Exos markedly downregulated the nuclear translocation of FoxO1, which plays an important role in muscle differentiation and atrophy. Importantly, the miR-486-5p inhibitor reversed the decreased expression of FoxO1 induced by BMSC-Exos. In animal experiments, BMSC-Exos inhibited dexamethasone-induced muscle atrophy, and miR-486-5p inhibitor reversed the protective effect of BMSC-Exos. These results indicating that BMSC-derived exosomes inhibit dexamethasone-induced muscle atrophy via miR486-5p/Foxo1 Axis.
Collapse
Affiliation(s)
- Ziyi Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Chang Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Shilun Li
- Department of Joint Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ting Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yukun Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Na Wang
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Xiaoxue Bao
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Peng Xue
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
- *Correspondence: Peng Xue, ; Sijing Liu,
| | - Sijing Liu
- Editorial Department of Hebei Medical University, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Peng Xue, ; Sijing Liu,
| |
Collapse
|
28
|
Brzeszczyńska J, Brzeszczyński F, Hamilton DF, McGregor R, Simpson AHRW. Role of microRNA in muscle regeneration and diseases related to muscle dysfunction in atrophy, cachexia, osteoporosis, and osteoarthritis. Bone Joint Res 2020; 9:798-807. [PMID: 33174473 PMCID: PMC7672326 DOI: 10.1302/2046-3758.911.bjr-2020-0178.r1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that have emerged as potential predictive, prognostic, and therapeutic biomarkers, relevant to many pathophysiological conditions including limb immobilization, osteoarthritis, sarcopenia, and cachexia. Impaired musculoskeletal homeostasis leads to distinct muscle atrophies. Understanding miRNA involvement in the molecular mechanisms underpinning conditions such as muscle wasting may be critical to developing new strategies to improve patient management. MicroRNAs are powerful post-transcriptional regulators of gene expression in muscle and, importantly, are also detectable in the circulation. MicroRNAs are established modulators of muscle satellite stem cell activation, proliferation, and differentiation, however, there have been limited human studies that investigate miRNAs in muscle wasting. This narrative review summarizes the current knowledge as to the role of miRNAs in the skeletal muscle differentiation and atrophy, synthesizing the findings of published data. Cite this article: Bone Joint Res 2020;9(11):798-807.
Collapse
Affiliation(s)
- Joanna Brzeszczyńska
- School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
- Department of Molecular Biophysics, University of Lodz, Lodz, Poland
| | | | - David F Hamilton
- School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - Robin McGregor
- Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, South Korea
| | | |
Collapse
|
29
|
Regulation of microRNAs in Satellite Cell Renewal, Muscle Function, Sarcopenia and the Role of Exercise. Int J Mol Sci 2020; 21:ijms21186732. [PMID: 32937893 PMCID: PMC7555198 DOI: 10.3390/ijms21186732] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023] Open
Abstract
Sarcopenia refers to a condition of progressive loss of skeletal muscle mass and function associated with a higher risk of falls and fractures in older adults. Musculoskeletal aging leads to reduced muscle mass and strength, affecting the quality of life in elderly people. In recent years, several studies contributed to improve the knowledge of the pathophysiological alterations that lead to skeletal muscle dysfunction; however, the molecular mechanisms underlying sarcopenia are still not fully understood. Muscle development and homeostasis require a fine gene expression modulation by mechanisms in which microRNAs (miRNAs) play a crucial role. miRNAs modulate key steps of skeletal myogenesis including satellite cells renewal, skeletal muscle plasticity, and regeneration. Here, we provide an overview of the general aspects of muscle regeneration and miRNAs role in skeletal mass homeostasis and plasticity with a special interest in their expression in sarcopenia and skeletal muscle adaptation to exercise in the elderly.
Collapse
|
30
|
Borja-Gonzalez M, Casas-Martinez JC, McDonagh B, Goljanek-Whysall K. Aging Science Talks: The role of miR-181a in age-related loss of muscle mass and function. TRANSLATIONAL MEDICINE OF AGING 2020; 4:81-85. [PMID: 32835152 PMCID: PMC7341035 DOI: 10.1016/j.tma.2020.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Maria Borja-Gonzalez
- School of Medicine, Physiology, National University of Ireland Galway, Galway, H91 W5P7, Ireland
| | - Jose C Casas-Martinez
- School of Medicine, Physiology, National University of Ireland Galway, Galway, H91 W5P7, Ireland
| | - Brian McDonagh
- School of Medicine, Physiology, National University of Ireland Galway, Galway, H91 W5P7, Ireland
| | - Katarzyna Goljanek-Whysall
- School of Medicine, Physiology, National University of Ireland Galway, Galway, H91 W5P7, Ireland
- Institute of Aging and Chronic Disease & The Medical Research Council Versus Arthritis Centre for Integrated Research Into Musculoskeletal Aging, CIMA, University of Liverpool, Liverpool, L7 8TJ, UK
| |
Collapse
|
31
|
Yanai K, Kaneko S, Ishii H, Aomatsu A, Ito K, Hirai K, Ookawara S, Ishibashi K, Morishita Y. MicroRNAs in Sarcopenia: A Systematic Review. Front Med (Lausanne) 2020; 7:180. [PMID: 32549041 PMCID: PMC7270169 DOI: 10.3389/fmed.2020.00180] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia, which is characterized by the loss of skeletal muscle, has been reported to contribute to development of physical disabilities, various illnesses, and increasing mortality. MicroRNAs (miRNAs) are small non-coding RNAs that inhibit translation of target messenger RNAs. Previous studies have shown that miRNAs play pivotal roles in the development of sarcopenia. Therefore, this systematic review focuses on miRNAs that regulate sarcopenia.
Collapse
Affiliation(s)
- Katsunori Yanai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Shohei Kaneko
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Hiroki Ishii
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Akinori Aomatsu
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan.,Division of Intensive Care Unit, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kiyonori Ito
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Keiji Hirai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Susumu Ookawara
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kenichi Ishibashi
- Department of Medical Physiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| |
Collapse
|
32
|
Inflamma-miR-21 Negatively Regulates Myogenesis during Ageing. Antioxidants (Basel) 2020; 9:antiox9040345. [PMID: 32340146 PMCID: PMC7222422 DOI: 10.3390/antiox9040345] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/10/2020] [Accepted: 04/18/2020] [Indexed: 12/20/2022] Open
Abstract
Ageing is associated with disrupted redox signalling and increased circulating inflammatory cytokines. Skeletal muscle homeostasis depends on the balance between muscle hypertrophy, atrophy and regeneration, however during ageing this balance is disrupted. The molecular pathways underlying the age-related decline in muscle regenerative potential remain elusive. microRNAs are conserved robust gene expression regulators in all tissues including skeletal muscle. Here, we studied satellite cells from adult and old mice to demonstrate that inhibition of miR-21 in satellite cells from old mice improves myogenesis. We determined that increased levels of proinflammatory cytokines, TNFα and IL6, as well as H2O2, increased miR-21 expression in primary myoblasts, which in turn resulted in their decreased viability and myogenic potential. Inhibition of miR-21 function rescued the decreased size of myotubes following TNFα or IL6 treatment. Moreover, we demonstrated that miR-21 could inhibit myogenesis in vitro via regulating IL6R, PTEN and FOXO3 signalling. In summary, upregulation of miR-21 in satellite cells and muscle during ageing may occur in response to elevated levels of TNFα and IL6, within satellite cells or myofibrillar environment contributing to skeletal muscle ageing and potentially a disease-related decline in potential for muscle regeneration.
Collapse
|
33
|
Goljanek‐Whysall K, Soriano‐Arroquia A, McCormick R, Chinda C, McDonagh B. miR-181a regulates p62/SQSTM1, parkin, and protein DJ-1 promoting mitochondrial dynamics in skeletal muscle aging. Aging Cell 2020; 19:e13140. [PMID: 32291905 PMCID: PMC7189996 DOI: 10.1111/acel.13140] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/31/2020] [Accepted: 02/24/2020] [Indexed: 01/01/2023] Open
Abstract
One of the key mechanisms underlying skeletal muscle functional deterioration during aging is disrupted mitochondrial dynamics. Regulation of mitochondrial dynamics is essential to maintain a healthy mitochondrial population and prevent the accumulation of damaged mitochondria; however, the regulatory mechanisms are poorly understood. We demonstrated loss of mitochondrial content and disrupted mitochondrial dynamics in muscle during aging concomitant with dysregulation of miR‐181a target interactions. Using functional approaches and mito‐QC assay, we have established that miR‐181a is an endogenous regulator of mitochondrial dynamics through concerted regulation of Park2, p62/SQSTM1, and DJ‐1 in vitro. Downregulation of miR‐181a with age was associated with an accumulation of autophagy‐related proteins and abnormal mitochondria. Restoring miR‐181a levels in old mice prevented accumulation of p62, DJ‐1, and PARK2, and improved mitochondrial quality and muscle function. These results provide physiological evidence for the potential of microRNA‐based interventions for age‐related muscle atrophy and of wider significance for diseases with disrupted mitochondrial dynamics.
Collapse
Affiliation(s)
- Katarzyna Goljanek‐Whysall
- Discipline of Physiology School of Medicine National University of Ireland Galway Ireland
- Department of Musculoskeletal Biology Institute of Ageing and Chronic Disease University of Liverpool Liverpool UK
| | - Ana Soriano‐Arroquia
- Department of Musculoskeletal Biology Institute of Ageing and Chronic Disease University of Liverpool Liverpool UK
| | - Rachel McCormick
- Department of Musculoskeletal Biology Institute of Ageing and Chronic Disease University of Liverpool Liverpool UK
| | - Caroline Chinda
- Department of Musculoskeletal Biology Institute of Ageing and Chronic Disease University of Liverpool Liverpool UK
| | - Brian McDonagh
- Discipline of Physiology School of Medicine National University of Ireland Galway Ireland
| |
Collapse
|
34
|
Bonnet S, Boucherat O, Paulin R, Wu D, Hindmarch CCT, Archer SL, Song R, Moore JB, Provencher S, Zhang L, Uchida S. Clinical value of non-coding RNAs in cardiovascular, pulmonary, and muscle diseases. Am J Physiol Cell Physiol 2019; 318:C1-C28. [PMID: 31483703 DOI: 10.1152/ajpcell.00078.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although a majority of the mammalian genome is transcribed to RNA, mounting evidence indicates that only a minor proportion of these transcriptional products are actually translated into proteins. Since the discovery of the first non-coding RNA (ncRNA) in the 1980s, the field has gone on to recognize ncRNAs as important molecular regulators of RNA activity and protein function, knowledge of which has stimulated the expansion of a scientific field that quests to understand the role of ncRNAs in cellular physiology, tissue homeostasis, and human disease. Although our knowledge of these molecules has significantly improved over the years, we have limited understanding of their precise functions, protein interacting partners, and tissue-specific activities. Adding to this complexity, it remains unknown exactly how many ncRNAs there are in existence. The increased use of high-throughput transcriptomics techniques has rapidly expanded the list of ncRNAs, which now includes classical ncRNAs (e.g., ribosomal RNAs and transfer RNAs), microRNAs, and long ncRNAs. In addition, splicing by-products of protein-coding genes and ncRNAs, so-called circular RNAs, are now being investigated. Because there is substantial heterogeneity in the functions of ncRNAs, we have summarized the present state of knowledge regarding the functions of ncRNAs in heart, lungs, and skeletal muscle. This review highlights the pathophysiologic relevance of these ncRNAs in the context of human cardiovascular, pulmonary, and muscle diseases.
Collapse
Affiliation(s)
- Sébastien Bonnet
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, Quebec, Canada.,Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Olivier Boucherat
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, Quebec, Canada.,Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Roxane Paulin
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, Quebec, Canada.,Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Danchen Wu
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Charles C T Hindmarch
- Queen's Cardiopulmonary Unit, Translational Institute of Medicine, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Joseph B Moore
- Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky.,The Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Steeve Provencher
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, Quebec, Canada.,Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Shizuka Uchida
- Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky.,The Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, Kentucky.,Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| |
Collapse
|
35
|
Kinser HE, Pincus Z. MicroRNAs as modulators of longevity and the aging process. Hum Genet 2019; 139:291-308. [PMID: 31297598 DOI: 10.1007/s00439-019-02046-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/05/2019] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are short, non-coding RNAs that post-transcriptionally repress translation or induce mRNA degradation of target transcripts through sequence-specific binding. miRNAs target hundreds of transcripts to regulate diverse biological pathways and processes, including aging. Many microRNAs are differentially expressed during aging, generating interest in their use as aging biomarkers and roles as regulators of the aging process. In the invertebrates Caenorhabditis elegans and Drosophila, a number of miRNAs have been found to both positive and negatively modulate longevity through canonical aging pathways. Recent studies have also shown that miRNAs regulate age-associated processes and pathologies in a diverse array of mammalian tissues, including brain, heart, bone, and muscle. The review will present an overview of these studies, highlighting the role of individual miRNAs as biomarkers of aging and regulators of longevity and tissue-specific aging processes.
Collapse
Affiliation(s)
- Holly E Kinser
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, USA
| | - Zachary Pincus
- Department of Developmental Biology and Department of Genetics, Washington University in St. Louis, St. Louis, USA.
| |
Collapse
|
36
|
Shorter E, Sannicandro AJ, Poulet B, Goljanek-Whysall K. Skeletal Muscle Wasting and Its Relationship With Osteoarthritis: a Mini-Review of Mechanisms and Current Interventions. Curr Rheumatol Rep 2019; 21:40. [PMID: 31203463 PMCID: PMC6571089 DOI: 10.1007/s11926-019-0839-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Osteoarthritis (OA) is a subset of joint disorders resulting in degeneration of synovial joints. This leads to pain, disability and loss of independence. Knee and hip OA are extremely prevalent, and their occurrence increases with ageing. Similarly, loss of muscle mass and function, sarcopenia, occurs during ageing. RECENT FINDINGS Little is known about the impact of muscle wasting on OA progression; nevertheless, it has been suggested that muscle wasting directly affects the stability of the joints and loss of mobility leads to gradual degeneration of articular cartilage. The molecular mechanisms underlying muscle wasting in OA are not well understood; however, these are probably related to changes in gene expression, as well as epigenetic modifications. It is becoming clear that skeletal muscle wasting plays an important role in OA development and/or progression. Here, we discuss mechanisms, current interventions, such as exercise, and potentially novel approaches, such as modulation of microRNAs, aiming at ameliorating OA symptoms through maintaining muscle mass and function.
Collapse
Affiliation(s)
- Emily Shorter
- Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, West Derby Road, Liverpool, L7 8TX UK
| | - Anthony J Sannicandro
- Department of Physiology, School of Medicine, REMEDI, NUI Galway, Human Biology Building, University Road, Galway, Ireland
| | - Blandine Poulet
- Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, West Derby Road, Liverpool, L7 8TX UK
| | - Katarzyna Goljanek-Whysall
- Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, West Derby Road, Liverpool, L7 8TX UK
- Department of Physiology, School of Medicine, REMEDI, NUI Galway, Human Biology Building, University Road, Galway, Ireland
| |
Collapse
|
37
|
Mir BA, Islam R, Kalanon M, Russell AP, Foletta VC. MicroRNA suppression of stress-responsive NDRG2 during dexamethasone treatment in skeletal muscle cells. BMC Mol Cell Biol 2019; 20:12. [PMID: 31138100 PMCID: PMC6537443 DOI: 10.1186/s12860-019-0194-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/13/2019] [Indexed: 11/10/2022] Open
Abstract
Background MicroRNAs (miRNAs) are increasingly being identified as modulatory molecules for physiological and pathological processes in muscle. Here, we investigated whether miRNAs influenced the expression of the stress-responsive gene N-myc downstream-regulated gene 2 (Ndrg2) in skeletal muscle cells through the targeted degradation or translation inhibition of NDRG2 mRNA transcripts during basal or catabolic stress conditions. Results Three miRNAs, mmu-miR-23a-3p (miR-23a), mmu-miR-23b-3p (miR-23b) and mmu-miR-28-5p (miR-28), were identified using an in silico approach and confirmed to target the 3′ untranslated region of the mouse Ndrg2 gene through luciferase reporter assays. However, miR-23a, -23b or -28 overexpression had no influence on NDRG2 mRNA or protein levels up to 48 h post treatment in mouse C2C12 myotubes under basal conditions. Interestingly, a compensatory decrease in the endogenous levels of the miRNAs in response to each other’s overexpression was measured. Furthermore, dexamethasone, a catabolic stress agent that induces NDRG2 expression, decreased miR-23a and miR-23b endogenous levels at 24 h post treatment suggesting an interplay between these miRNAs and NDRG2 regulation under similar stress conditions. Accordingly, when overexpressed simultaneously, miR-23a, -23b and -28 attenuated the dexamethasone-induced increase of NDRG2 protein translation but did not affect Ndrg2 gene expression. Conclusion These findings highlight modulatory and co-regulatory roles for miR-23a, -23b and -28 and their novel regulation of NDRG2 during stress conditions in muscle. Electronic supplementary material The online version of this article (10.1186/s12860-019-0194-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bilal A Mir
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Science, Deakin University, Geelong, VIC, 3222, Australia
| | - Rabia Islam
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Science, Deakin University, Geelong, VIC, 3222, Australia
| | - Ming Kalanon
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Science, Deakin University, Geelong, VIC, 3222, Australia
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Science, Deakin University, Geelong, VIC, 3222, Australia
| | - Victoria C Foletta
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Science, Deakin University, Geelong, VIC, 3222, Australia.
| |
Collapse
|
38
|
Xiao C, Pan C, Liu E, He H, Liu C, Huang Y, Yi S, Huang D. Differences of microRNA expression profiles between monozygotic twins' blood samples. Forensic Sci Int Genet 2019; 41:152-158. [PMID: 31132533 DOI: 10.1016/j.fsigen.2019.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022]
Abstract
Monozygotic (MZ) twins are widely regarded as genetically identical, and traditional DNA typing methods are insufficient in identifying MZ twins. So the discrimination of MZ twins become a forensic problem. MicroRNAs (miRNAs) are a class of small, endogenous, non-protein-coding RNA molecules of approximately 22 nucleotides in length, and exist extensively in a variety of eukaryotic cells. MiRNAs regulate gene expression and play fundamental roles in multiple biological processes, including cell differentiation, proliferation and apoptosis as well as aging and disease processes. The goal of this study is to explore the differential expression of miRNAs within MZ twin pairs, and aimed to find new biomarkers for distinguishing MZ twins. Thus, the miRNA expression profiles of seven pairs of healthy MZ twins of different sex and age were analyzed by miRNA microarray. A total of 545 miRNAs were found to be differentially expressed in these MZ twin pairs, and 2, 5, 22, 53 and 132 differentially expressed miRNAs were shared across six, five, four, three and two pairs of MZ twins respectively. These findings had been confirmed by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assays on select miRNAs, including miR-151a-3p, miR-3653-3p, miR-142-3p, miR-4325, miR-16-5p, let-7i-5p, miR-222-3p, miR-550b-3p, miR-4791 and miR-27a-3p. The results demonstrated that there are differences in the expression of miRNAs within MZ twin pairs, suggesting a role of miRNAs in identifying MZ twins.
Collapse
Affiliation(s)
- Chao Xiao
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Chao Pan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Erliang Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Tianjin Municipal Public Security Bureau Wuqing Branch, Tianjin, PR China
| | - Huayu He
- Xiaogan Municipal Public Security Bureau, Xiaogan, PR China
| | - Chunfeng Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yujie Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Shaohua Yi
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Daixin Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
39
|
Sannicandro AJ, Soriano-Arroquia A, Goljanek-Whysall K. Micro(RNA)-managing muscle wasting. J Appl Physiol (1985) 2019; 127:619-632. [PMID: 30991011 DOI: 10.1152/japplphysiol.00961.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Progressive skeletal muscle wasting is a natural consequence of aging and is common in chronic and acute diseases. Loss of skeletal muscle mass and function (strength) often leads to frailty, decreased independence, and increased risk of hospitalization. Despite progress made in our understanding of the mechanisms underlying muscle wasting, there is still no treatment available, with exercise training and dietary supplementation improving, but not restoring, muscle mass and/or function. There has been slow progress in developing novel therapies for muscle wasting, either during aging or disease, partially due to the complex nature of processes underlying muscle loss. The mechanisms of muscle wasting are multifactorial, with a combination of factors underlying age- and disease-related functional muscle decline. These factors include well-characterized changes in muscle such as changes in protein turnover and more recently described mechanisms such as autophagy or satellite cell senescence. Advances in transcriptomics and other high-throughput approaches have highlighted significant deregulation of skeletal muscle gene and protein levels during aging and disease. These changes are regulated at different levels, including posttranscriptional gene expression regulation by microRNAs. microRNAs, potent regulators of gene expression, modulate many processes in muscle, and microRNA-based interventions have been recently suggested as a promising new therapeutic strategy against alterations in muscle homeostasis. Here, we review recent developments in understanding the aging-associated mechanisms of muscle wasting and explore potential microRNA-based therapeutic avenues.
Collapse
Affiliation(s)
- Anthony J Sannicandro
- Department of Physiology, School of Medicine, National University of Ireland, Galway, Ireland
| | - Ana Soriano-Arroquia
- Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom
| | - Katarzyna Goljanek-Whysall
- Department of Physiology, School of Medicine, National University of Ireland, Galway, Ireland.,Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom
| |
Collapse
|
40
|
McCormick R, Vasilaki A. Age-related changes in skeletal muscle: changes to life-style as a therapy. Biogerontology 2018; 19:519-536. [PMID: 30259289 PMCID: PMC6223729 DOI: 10.1007/s10522-018-9775-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
As we age, there is an age-related loss in skeletal muscle mass and strength, known as sarcopenia. Sarcopenia results in a decrease in mobility and independence, as well as an increase in the risk of other morbidities and mortality. Sarcopenia is therefore a major socio-economical problem. The mechanisms behind sarcopenia are unclear and it is likely that it is a multifactorial condition with changes in numerous important mechanisms all contributing to the structural and functional deterioration. Here, we review the major proposed changes which occur in skeletal muscle during ageing and highlight evidence for changes in physical activity and nutrition as therapeutic approaches to combat age-related skeletal muscle wasting.
Collapse
Affiliation(s)
- Rachel McCormick
- Musculoskeletal Biology II, Institute of Ageing and Chronic Disease, Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Aphrodite Vasilaki
- Musculoskeletal Biology II, Institute of Ageing and Chronic Disease, Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
41
|
Li F, Han H, Lei Q, Gao J, Liu J, Liu W, Zhou Y, Li H, Cao D. Genome-wide association study of body weight in Wenshang Barred chicken based on the SLAF-seq technology. J Appl Genet 2018; 59:305-312. [PMID: 29946990 DOI: 10.1007/s13353-018-0452-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022]
Abstract
Chicken body weight (BW) is an economically important trait, and many studies have been conducted on genetic selection for BW. However, previous studies have detected functional chromosome mutations or regions using gene chips. The present study used the specific-locus amplified fragment sequencing (SLAF-seq) technology to perform a genome-wide association study (GWAS) on purebred Wengshang Barred chicken. A total of 1,286,715 single-nucleotide polymorphisms (SNPs) were detected, and 175,211 SNPs were selected as candidate SNPs for genome-wide association analysis using TASSEL general linear models. Six SNP markers reached genome-wide significance. Of these, rs732048524, rs735522839, rs738991545, and rs15837818 were significantly associated with body weight at 28 days (BW28), while rs314086457 and rs315694878 were significantly associated with BW120. These SNPs are close to seven genes (PRSS23, ME3, FAM181B, NABP1, SDPR, TSSK6L2, and RBBP8). Moreover, 24 BW-associated SNPs reached "suggestive" genome-wide significance. Of these, 6, 13, 1, and 4 SNPs were associated with BW28, BW56, BW80, and BW120, respectively. These results would enrich the studies on BW and promote the use of Chinese chicken, especially the Wenshang Barred chicken.
Collapse
Affiliation(s)
- Fuwei Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, People's Republic of China.,Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250023, Shandong, China
| | - Haixia Han
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, People's Republic of China.,Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250023, Shandong, China
| | - Qiuxia Lei
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, People's Republic of China.,Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250023, Shandong, China
| | - Jinbo Gao
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, People's Republic of China.,Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250023, Shandong, China
| | - Jie Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, People's Republic of China.,Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250023, Shandong, China
| | - Wei Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, People's Republic of China.,Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250023, Shandong, China
| | - Yan Zhou
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, People's Republic of China.,Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250023, Shandong, China
| | - Huimin Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, People's Republic of China.,Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250023, Shandong, China
| | - Dingguo Cao
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, People's Republic of China. .,Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250023, Shandong, China.
| |
Collapse
|
42
|
Filipova D, Henry M, Rotshteyn T, Brunn A, Carstov M, Deckert M, Hescheler J, Sachinidis A, Pfitzer G, Papadopoulos S. Distinct transcriptomic changes in E14.5 mouse skeletal muscle lacking RYR1 or Cav1.1 converge at E18.5. PLoS One 2018; 13:e0194428. [PMID: 29543863 PMCID: PMC5854361 DOI: 10.1371/journal.pone.0194428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/04/2018] [Indexed: 12/20/2022] Open
Abstract
In skeletal muscle the coordinated actions of two mechanically coupled Ca2+ channels-the 1,4-dihydropyridine receptor (Cav1.1) and the type 1 ryanodine receptor (RYR1)-underlie the molecular mechanism of rapid cytosolic [Ca2+] increase leading to contraction. While both [Ca2+]i and contractile activity have been implicated in the regulation of myogenesis, less is known about potential specific roles of Cav1.1 and RYR1 in skeletal muscle development. In this study, we analyzed the histology and the transcriptomic changes occurring at E14.5 -the end of primary myogenesis and around the onset of intrauterine limb movement, and at E18.5 -the end of secondary myogenesis, in WT, RYR1-/-, and Cav1.1-/- murine limb skeletal muscle. At E14.5 the muscle histology of both mutants exhibited initial alterations, which became much more severe at E18.5. Immunohistological analysis also revealed higher levels of activated caspase-3 in the Cav1.1-/- muscles at E14.5, indicating an increase in apoptosis. With WT littermates as controls, microarray analyses identified 61 and 97 differentially regulated genes (DEGs) at E14.5, and 493 and 1047 DEGs at E18.5, in RYR1-/- and Cav1.1-/- samples, respectively. Gene enrichment analysis detected no overlap in the affected biological processes and pathways in the two mutants at E14.5, whereas at E18.5 there was a significant overlap of DEGs in both mutants, affecting predominantly processes linked to muscle contraction. Moreover, the E18.5 vs. E14.5 comparison revealed multiple genotype-specific DEGs involved in contraction, cell cycle and miRNA-mediated signaling in WT, neuronal and bone development in RYR1-/-, and lipid metabolism in Cav1.1-/- samples. Taken together, our study reveals discrete changes in the global transcriptome occurring in limb skeletal muscle from E14.5 to E18.5 in WT, RYR1-/- and Cav1.1-/- mice. Our results suggest distinct functional roles for RYR1 and Cav1.1 in skeletal primary and secondary myogenesis.
Collapse
Affiliation(s)
- Dilyana Filipova
- Institute of Vegetative Physiology, Center of Physiology and Pathophysiology, University of Cologne, Cologne, Germany
| | - Margit Henry
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Tamara Rotshteyn
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Anna Brunn
- Department of Neuropathology, University of Cologne, Cologne, Germany
| | - Mariana Carstov
- Department of Neuropathology, University of Cologne, Cologne, Germany
| | - Martina Deckert
- Department of Neuropathology, University of Cologne, Cologne, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Gabriele Pfitzer
- Institute of Vegetative Physiology, Center of Physiology and Pathophysiology, University of Cologne, Cologne, Germany
| | - Symeon Papadopoulos
- Institute of Vegetative Physiology, Center of Physiology and Pathophysiology, University of Cologne, Cologne, Germany
| |
Collapse
|
43
|
Ling YH, Sui MH, Zheng Q, Wang KY, Wu H, Li WY, Liu Y, Chu MX, Fang FG, Xu LN. miR-27b regulates myogenic proliferation and differentiation by targeting Pax3 in goat. Sci Rep 2018; 8:3909. [PMID: 29500394 PMCID: PMC5834623 DOI: 10.1038/s41598-018-22262-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/19/2018] [Indexed: 02/08/2023] Open
Abstract
This study found that miR-27 is expressed in muscle and regulates muscle proliferation and differentiation. We explored the function and regulatory mechanism of miR-27b in goat muscle proliferation and differentiation. Compared with the Boer goat, higher expression of miR-27b was observed in all of the collected muscle tissues of Anhuai goat, excluding the kidney, whereas the opposite expression pattern was observed for Pax3, which showed lower expression in Anhuai goat. Expression of miR-27b decreased gradually during the proliferation of skeletal muscle satellite cells in Anhuai goat and increased during differentiation; however, the expression pattern of Pax3 was opposite. The regulatory activity of miR-27b demonstrated that miR-27b inhibited the proliferation of skeletal muscle satellite cells, but promoted their differentiation. Moreover, function research demonstrated that Pax3 negatively regulated myogenic differentiation of goat skeletal muscle satellite cells, but accelerated their proliferation. The results of a dual-luciferase reporter analysis showed that miR-27b directly targeted the 3’-untranslated regions of Pax3 mRNA, and western blot and immunofluorescence staining analyses showed that miR-27b inhibited expression of the Pax3 protein. In goats, miR-27b can regulate myogenic proliferation and differentiation by targeting Pax3.
Collapse
Affiliation(s)
- Ying-Hui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Anhui Hefei, China
| | - Meng-Hua Sui
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Anhui Hefei, China
| | - Qi Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Anhui Hefei, China
| | - Kang-Yan Wang
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Anhui Hefei, China
| | - Hao Wu
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Anhui Hefei, China
| | - Wen-Yong Li
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, China
| | - Yong Liu
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, China
| | - Ming-Xing Chu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, CAAS, Beijing, 100193, China
| | - Fu-Gui Fang
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Anhui Hefei, China
| | - Li-Na Xu
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, China. .,Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China.
| |
Collapse
|
44
|
Mok GF, Lozano-Velasco E, Münsterberg A. microRNAs in skeletal muscle development. Semin Cell Dev Biol 2017; 72:67-76. [PMID: 29102719 DOI: 10.1016/j.semcdb.2017.10.032] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022]
Abstract
A fundamental process during both embryo development and stem cell differentiation is the control of cell lineage determination. In developing skeletal muscle, many of the diffusible signaling molecules, transcription factors and more recently non-coding RNAs that contribute to this process have been identified. This has facilitated advances in our understanding of the molecular mechanisms underlying the control of cell fate choice. Here we will review the role of non-coding RNAs, in particular microRNAs (miRNAs), in embryonic muscle development and differentiation, and in satellite cells of adult muscle, which are essential for muscle growth and regeneration. Some of these short post-transcriptional regulators of gene expression are restricted to skeletal muscle, but their expression can also be more widespread. In addition, we discuss a few examples of long non-coding RNAs, which are numerous but much less well understood.
Collapse
Affiliation(s)
- Gi Fay Mok
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Estefania Lozano-Velasco
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
45
|
Proctor CJ, Goljanek-Whysall K. Using computer simulation models to investigate the most promising microRNAs to improve muscle regeneration during ageing. Sci Rep 2017; 7:12314. [PMID: 28951568 PMCID: PMC5614911 DOI: 10.1038/s41598-017-12538-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/05/2017] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression through interactions with target sites within mRNAs, leading to enhanced degradation of the mRNA or inhibition of translation. Skeletal muscle expresses many different miRNAs with important roles in adulthood myogenesis (regeneration) and myofibre hypertrophy and atrophy, processes associated with muscle ageing. However, the large number of miRNAs and their targets mean that a complex network of pathways exists, making it difficult to predict the effect of selected miRNAs on age-related muscle wasting. Computational modelling has the potential to aid this process as it is possible to combine models of individual miRNA:target interactions to form an integrated network. As yet, no models of these interactions in muscle exist. We created the first model of miRNA:target interactions in myogenesis based on experimental evidence of individual miRNAs which were next validated and used to make testable predictions. Our model confirms that miRNAs regulate key interactions during myogenesis and can act by promoting the switch between quiescent/proliferating/differentiating myoblasts and by maintaining the differentiation process. We propose that a threshold level of miR-1 acts in the initial switch to differentiation, with miR-181 keeping the switch on and miR-378 maintaining the differentiation and miR-143 inhibiting myogenesis.
Collapse
Affiliation(s)
- Carole J Proctor
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), Institute of Cellular Medicine and Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK.
| | - Katarzyna Goljanek-Whysall
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| |
Collapse
|
46
|
D'Souza RF, Bjørnsen T, Zeng N, Aasen KMM, Raastad T, Cameron-Smith D, Mitchell CJ. MicroRNAs in Muscle: Characterizing the Powerlifter Phenotype. Front Physiol 2017. [PMID: 28638346 PMCID: PMC5461344 DOI: 10.3389/fphys.2017.00383] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Powerlifters are the epitome of muscular adaptation and are able to generate extreme forces. The molecular mechanisms underpinning the significant capacity for force generation and hypertrophy are not fully elucidated. MicroRNAs (miRs) are short non-coding RNA sequences that control gene expression via promotion of transcript breakdown and/or translational inhibition. Differences in basal miR expression may partially account for phenotypic differences in muscle mass and function between powerlifters and untrained age-matched controls. Muscle biopsies were obtained from m. vastus lateralis of 15 national level powerlifters (25.1 ± 5.8 years) and 13 untrained controls (24.1 ± 2.0 years). The powerlifters were stronger than the controls (isokinetic knee extension at 60°/s: 307.8 ± 51.6 Nm vs. 211.9 ± 41.9 Nm, respectively P < 0.001), and also had larger muscle fibers (type I CSA 9,122 ± 1,238 vs. 4,511 ± 798 μm2p < 0.001 and type II CSA 11,100 ± 1,656 vs. 5,468 ± 1,477 μm2p < 0.001). Of the 17 miRs species analyzed, 12 were differently expressed (p < 0.05) between groups with 7 being more abundant in powerlifters and five having lower expression. Established transcriptionally regulated miR downstream gene targets involved in muscle mass regulation, including myostatin and MyoD, were also differentially expressed between groups. Correlation analysis demonstrates the abundance of eight miRs was correlated to phenotype including peak strength, fiber size, satellite cell abundance, and fiber type regardless of grouping. The unique miR expression profiles between groups allow for categorization of individuals as either powerlifter or healthy controls based on a five miR signature (miR-126, -23b, -16, -23a, -15a) with considerable accuracy (100%). Thus, this unique miR expression may be important to the characterization of the powerlifter phenotype.
Collapse
Affiliation(s)
| | - Thomas Bjørnsen
- Department of Public Health, Sport and Nutrition, Faculty of Health and Sport Sciences, University of AgderKristiansand, Norway
| | - Nina Zeng
- Liggins Institute, University of AucklandAuckland, New Zealand
| | | | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport SciencesOslo, Norway
| | | | | |
Collapse
|
47
|
McCormick R, McDonagh B, Goljanek-Whysall K. microRNA-SIRT-1 interactions: key regulators of adult skeletal muscle homeostasis? J Physiol 2017; 595:3253-3254. [PMID: 28370225 DOI: 10.1113/jp274233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Rachel McCormick
- Institute of Ageing and Chronic Disease, University of Liverpool, UK
| | | | | |
Collapse
|
48
|
McCormick R, Goljanek-Whysall K. MicroRNA Dysregulation in Aging and Pathologies of the Skeletal Muscle. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:265-308. [PMID: 28838540 DOI: 10.1016/bs.ircmb.2017.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal muscle is one of the biggest organs of the body with important mechanistic and metabolic functions. Muscle homeostasis is controlled by environmental, genetic, and epigenetic factors. Indeed, MiRNAs, small noncoding RNAs robust regulators of gene expression, have and have been shown to regulate muscle homeostasis on several levels: through controlling myogenesis, muscle growth (hypertrophy) and atrophy, as well as interactions of muscle with other tissues. Given the large number of MiRNA target genes and the important role of MiRNAs in most physiological processes and various diseases, MiRNAs may have an enormous potential as therapeutic targets against numerous disorders, including pathologies of muscle. The purpose of this review is to present the current knowledge of the role of MiRNAs in skeletal muscle homeostasis and pathologies and the potential of MiRNAs as therapeutics for skeletal muscle wasting, with particular focus on the age- and disease-related loss of muscle mass and function.
Collapse
Affiliation(s)
- Rachel McCormick
- Musculoskeletal Biology II, Centre for Integrated Research into Musculoskeletal Aging, Institute of Aging and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.
| | - Katarzyna Goljanek-Whysall
- Musculoskeletal Biology II, Centre for Integrated Research into Musculoskeletal Aging, Institute of Aging and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
49
|
Neault M, Couteau F, Bonneau É, De Guire V, Mallette FA. Molecular Regulation of Cellular Senescence by MicroRNAs: Implications in Cancer and Age-Related Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:27-98. [DOI: 10.1016/bs.ircmb.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
50
|
MicroRNA-Regulated Proinflammatory Cytokines in Sarcopenia. Mediators Inflamm 2016; 2016:1438686. [PMID: 27382188 PMCID: PMC4921629 DOI: 10.1155/2016/1438686] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/18/2016] [Indexed: 01/06/2023] Open
Abstract
Sarcopenia has been defined as the aging-related disease with the declined mass, strength, and function of skeletal muscle, which is the major cause of frailty and falls in elders. The activation of inflammatory signal pathways due to diseases and aging is suggested to reveal the critical impact on sarcopenia. Several proinflammatory cytokines, especially interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), play crucial roles in modulation of inflammatory signaling pathway during the aging-related loss of skeletal muscle. MicroRNAs (miRNAs) have emerged as the important regulators for the mass and functional maintenance of skeletal muscle through regulating gene expression of proinflammatory cytokines. In this paper, we have systematically discussed regulatory mechanisms of miRNAs for the expression and secretion of inflammatory cytokines during sarcopenia, which will provide some novel targets and therapeutic strategies for controlling aging-related atrophy of skeletal muscle and corresponding chronic inflammatory diseases.
Collapse
|