1
|
Lyu H, Sugita N, Komatsu S, Wakasugi M, Yokoseki A, Yoshihara A, Kobayashi T, Sato K, Kawashima H, Onodera O, Narita I, Tabeta K. UCP2 polymorphisms, daily step count, and number of teeth associated with all-cause mortality risk in Sado City: A hospital-based cohort study. Heliyon 2024; 10:e32512. [PMID: 38952382 PMCID: PMC11215260 DOI: 10.1016/j.heliyon.2024.e32512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/13/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Objective Uncoupling protein 2 (UCP2) is an ion/anion transporter in the mitochondrial inner membrane that plays a crucial role in immune response, regulation of oxidative stress, and cellular metabolism. UCP2 polymorphisms are linked to chronic inflammation, obesity, diabetes, heart disease, exercise efficiency, and longevity. Daily step count and number of teeth are modifiable factors that reduce mortality risk, although the role of UCP2 in this mechanism is unknown. This study aimed to assess the possible effects of UCP2 polymorphisms on the association between daily step count and number of teeth with all-cause mortality. Methods This study was conducted as a cohort project involving adult Japanese outpatients at Sado General Hospital (PROST). The final number of participants was 875 (mean age: 69 y). All-cause mortality during thirteen years (from June 2008 to August 2021) was recorded. The functional UCP2 genotypes rs659366 and rs660339 were identified using the Japonica Array®. Survival analyses were performed using multivariate Cox proportional hazard models. Results There were 161 deaths (mean observation period: 113 months). Age, sex, daily step count, and the number of teeth were significantly associated with mortality. In females, UCP2 polymorphisms were associated with mortality independent of other factors (rs659366 GA compared to GG + AA; HR = 2.033, p = 0.019, rs660339 C T compared to CC + TT; HR = 1.911, p = 0.029). Multivariate models, with and without UCP2 genotypes, yielded similar results. The interaction terms between UCP2 genotype and daily step count or number of teeth were not significantly associated with mortality. Conclusion The effects of UCP2 polymorphisms on the association between daily step count or the number of teeth and all-cause mortality were not statistically significant. In females, UCP2 polymorphisms were significantly associated with all-cause mortality. Our findings confirmed the importance of physical activity and oral health and suggested a role of UCP2 in mortality risk independently with those factors.
Collapse
Affiliation(s)
- Han Lyu
- Division of Periodontology, Department of Oral Biological Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Noriko Sugita
- Division of Periodontology, Department of Oral Biological Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | | | - Minako Wakasugi
- Department of Inter-Organ Communication Research, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akio Yokoseki
- Department of Inter-Organ Communication Research, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akihiro Yoshihara
- Division of Oral Science and Health Promotion, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Tetsuo Kobayashi
- Division of Periodontology, Department of Oral Biological Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- General Dentistry and Clinical Education Unit, Faculty of Dentistry & Medical and Dental Hospital, Niigata University, Niigata, Japan
| | | | - Hiroyuki Kawashima
- Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Science, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koichi Tabeta
- Division of Periodontology, Department of Oral Biological Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
2
|
Benegiamo G, Bou Sleiman M, Wohlwend M, Rodríguez-López S, Goeminne LJE, Laurila PP, Klevjer M, Salonen MK, Lahti J, Jha P, Cogliati S, Enriquez JA, Brumpton BM, Bye A, Eriksson JG, Auwerx J. COX7A2L genetic variants determine cardiorespiratory fitness in mice and human. Nat Metab 2022; 4:1336-1351. [PMID: 36253618 PMCID: PMC9584823 DOI: 10.1038/s42255-022-00655-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 09/06/2022] [Indexed: 01/20/2023]
Abstract
Mitochondrial respiratory complexes form superassembled structures called supercomplexes. COX7A2L is a supercomplex-specific assembly factor in mammals, although its implication for supercomplex formation and cellular metabolism remains controversial. Here we identify a role for COX7A2L for mitochondrial supercomplex formation in humans. By using human cis-expression quantitative trait loci data, we highlight genetic variants in the COX7A2L gene that affect its skeletal muscle expression specifically. The most significant cis-expression quantitative trait locus is a 10-bp insertion in the COX7A2L 3' untranslated region that increases messenger RNA stability and expression. Human myotubes harboring this insertion have more supercomplexes and increased respiration. Notably, increased COX7A2L expression in the muscle is associated with lower body fat and improved cardiorespiratory fitness in humans. Accordingly, specific reconstitution of Cox7a2l expression in C57BL/6J mice leads to higher maximal oxygen consumption, increased lean mass and increased energy expenditure. Furthermore, Cox7a2l expression in mice is induced specifically in the muscle upon exercise. These findings elucidate the genetic basis of mitochondrial supercomplex formation and function in humans and show that COX7A2L plays an important role in cardiorespiratory fitness, which could have broad therapeutic implications in reducing cardiovascular mortality.
Collapse
Affiliation(s)
- Giorgia Benegiamo
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Martin Wohlwend
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sandra Rodríguez-López
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ludger J E Goeminne
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pirkka-Pekka Laurila
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Marie Klevjer
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Cardiology, St Olav's Hospital, Trondheim, Norway
| | - Minna K Salonen
- Finnish Institute for Health and Welfare, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- Turku Institute for Advanced Studies, University of Turku, Turku, Finland
| | - Pooja Jha
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sara Cogliati
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO) & Institute for Molecular Biology-IUBM, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Instituto Universitario de Biología Molecular - IUBM (Universidad Autónoma de Madrid), Madrid, Spain
| | - José Antonio Enriquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Centro de Investigaciones Biomedicas en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Ben M Brumpton
- Clinic of Medicine, St Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Anja Bye
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Cardiology, St Olav's Hospital, Trondheim, Norway
| | - Johan G Eriksson
- Folkhälsan Research Center, Helsinki, Finland
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
3
|
Lin YH, Lim SN, Chen CY, Chi HC, Yeh CT, Lin WR. Functional Role of Mitochondrial DNA in Cancer Progression. Int J Mol Sci 2022; 23:1659. [PMID: 35163579 PMCID: PMC8915179 DOI: 10.3390/ijms23031659] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial DNA (mtDNA) has been identified as a significant genetic biomarker in disease, cancer and evolution. Mitochondria function as modulators for regulating cellular metabolism. In the clinic, mtDNA variations (mutations/single nucleotide polymorphisms) and dysregulation of mitochondria-encoded genes are associated with survival outcomes among cancer patients. On the other hand, nuclear-encoded genes have been found to regulate mitochondria-encoded gene expression, in turn regulating mitochondrial homeostasis. These observations suggest that the crosstalk between the nuclear genome and mitochondrial genome is important for cellular function. Therefore, this review summarizes the significant mechanisms and functional roles of mtDNA variations (DNA level) and mtDNA-encoded genes (RNA and protein levels) in cancers and discusses new mechanisms of crosstalk between mtDNA and the nuclear genome.
Collapse
Affiliation(s)
- Yang-Hsiang Lin
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Hsiang-Cheng Chi
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Wey-Ran Lin
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
4
|
Ji L, Jazwinski SM, Kim S. Frailty and Biological Age. Ann Geriatr Med Res 2021; 25:141-149. [PMID: 34399574 PMCID: PMC8497950 DOI: 10.4235/agmr.21.0080] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
A reliable model of biological age is instrumental in the field of geriatrics and gerontology. This model should account for the heterogeneity and plasticity of aging and also accurately predict aging-related adverse outcomes. Epigenetic age models are based on DNA methylation levels at selected genomic sites and can be significant predictors of mortality and healthy/unhealthy aging. However, the biological function of DNA methylation at selected sites is yet to be determined. Frailty is a syndrome resulting from decreased physiological reserves and resilience. The frailty index is a probability-based extension of the concept of frailty. Defined as the proportion of health deficits, the frailty index quantifies the progression of unhealthy aging. The frailty index is currently the best predictor of mortality. It is associated with various biological factors and provides insight into the biological processes of aging. Investigation of the multi-omics factors associated with the frailty index will provide further insight.
Collapse
Affiliation(s)
- Lixin Ji
- Tulane University School of Medicine, New Orleans, LA, USA
| | - S Michal Jazwinski
- Tulane Center for Aging & Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Sangkyu Kim
- Tulane Center for Aging & Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
5
|
Kim S, Fuselier J, Welsh DA, Cherry KE, Myers L, Jazwinski SM. Feature Selection Algorithms Enhance the Accuracy of Frailty Indexes as Measures of Biological Age. J Gerontol A Biol Sci Med Sci 2021; 76:1347-1355. [PMID: 33471059 DOI: 10.1093/gerona/glab018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Biological age captures some of the variance in life expectancy for which chronological age is not accountable, and it quantifies the heterogeneity in the presentation of the aging phenotype in various individuals. Among the many quantitative measures of biological age, the mathematically uncomplicated frailty/deficit index is simply the proportion of the total health deficits in various health items surveyed in different individuals. We used 3 different statistical methods that are popular in machine learning to select 17-28 health items that together are highly predictive of survival/mortality, from independent study cohorts. From the selected sets, we calculated frailty indexes and Klemera-Doubal's biological age estimates, and then compared their mortality prediction performance using Cox proportional hazards regression models. Our results indicate that the frailty index outperforms age and Klemera-Doubal's biological age estimates, especially among the oldest old who are most prone to biological aging-caused mortality. We also showed that a DNA methylation index, which was generated by applying the frailty/deficit index calculation method to 38 CpG sites that were selected using the same machine learning algorithms, can predict mortality even better than the best performing frailty index constructed from health, function, and blood chemistry.
Collapse
Affiliation(s)
- Sangkyu Kim
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Jessica Fuselier
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - David A Welsh
- Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Katie E Cherry
- Department of Psychology, Louisiana State University, Baton Rouge, USA
| | - Leann Myers
- Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - S Michal Jazwinski
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
6
|
Vettori A, Paolacci S, Maltese PE, Herbst KL, Cestari M, Michelini S, Michelini S, Samaja M, Bertelli M. Genetic Determinants of the Effects of Training on Muscle and Adipose Tissue Homeostasis in Obesity Associated with Lymphedema. Lymphat Res Biol 2020; 19:322-333. [PMID: 33373545 DOI: 10.1089/lrb.2020.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is widely accepted that metabolic changes associated with training are influenced by a person's genetic background. In this review, we explore the polymorphisms underlying interindividual variability in response to training of weight loss and muscle mass increase in obese individuals, with or without lymphedema, and in normal-weight subjects. We searched PubMed for articles in English published up to May 2019 using the following keywords: (((physical training[Title/Abstract] OR sport activity[Title/Abstract]) AND predisposition[Title/Abstract]) AND polymorphism [Title/Abstract]). We identified 38 single-nucleotide polymorphisms that may modulate the genetic adaptive response to training. The identification of genetic marker(s) that improve the beneficial effects of training may in perspective make it possible to assess training programs, which in combination with dietary intervention can optimize body weight reduction in obese subjects, with or without lymphedema. This is particularly important for patients with lymphedema because obesity can worsen the clinical status, and therefore, a personalized approach that could reduce obesity would be fundamental in the clinical management of lymphedema.
Collapse
Affiliation(s)
- Andrea Vettori
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | | | - Karen L Herbst
- Department of Medicine, University of Arizona, Tucson, Arizona, USA.,Department of Pharmacy, University of Arizona, Tucson, Arizona, USA.,Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA.,Department of Surgery, University of Arizona, Tucson, Arizona, USA
| | - Marina Cestari
- Study Centre Pianeta Linfedema, Terni, Italy.,Lymphology Sector of the Rehabilitation Service, USLUmbria2, Terni, Italy
| | - Sandro Michelini
- Department of Vascular Rehabilitation, San Giovanni Battista Hospital, Rome, Italy
| | - Serena Michelini
- Unit of Physical Medicine and Rehabilitation, Sant'Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Michele Samaja
- Department of Health Science, University of Milan-San Paolo Hospital, Milan, Italy
| | - Matteo Bertelli
- MAGI'S Lab, Rovereto, Italy.,MAGI Euregio, Bolzano, Italy.,EBTNA-LAB, Rovereto, Italy
| |
Collapse
|
7
|
Altered miRNA and mRNA Expression in Sika Deer Skeletal Muscle with Age. Genes (Basel) 2020; 11:genes11020172. [PMID: 32041309 PMCID: PMC7073773 DOI: 10.3390/genes11020172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
Studies of the gene and miRNA expression profiles associated with the postnatal late growth, development, and aging of skeletal muscle are lacking in sika deer. To understand the molecular mechanisms of the growth and development of sika deer skeletal muscle, we used de novo RNA sequencing (RNA-seq) and microRNA sequencing (miRNA-seq) analyses to determine the differentially expressed (DE) unigenes and miRNAs from skeletal muscle tissues at 1, 3, 5, and 10 years in sika deer. A total of 51,716 unigenes, 171 known miRNAs, and 60 novel miRNAs were identified based on four mRNA and small RNA libraries. A total of 2,044 unigenes and 11 miRNAs were differentially expressed between adolescence and juvenile sika deer, 1,946 unigenes and 4 miRNAs were differentially expressed between adult and adolescent sika deer, and 2,209 unigenes and 1 miRNAs were differentially expressed between aged and adult sika deer. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that DE unigenes and miRNA were mainly related to energy and substance metabolism, processes that are closely associate with the growth, development, and aging of skeletal muscle. We also constructed mRNA–mRNA and miRNA–mRNA interaction networks related to the growth, development, and aging of skeletal muscle. The results show that mRNA (Myh1, Myh2, Myh7, ACTN3, etc.) and miRNAs (miR-133a, miR-133c, miR-192, miR-151-3p, etc.) may play important roles in muscle growth and development, and mRNA (WWP1, DEK, UCP3, FUS, etc.) and miRNAs (miR-17-5p, miR-378b, miR-199a-5p, miR-7, etc.) may have key roles in muscle aging. In this study, we determined the dynamic miRNA and unigenes transcriptome in muscle tissue for the first time in sika deer. The age-dependent miRNAs and unigenes identified will offer insights into the molecular mechanism underlying muscle development, growth, and maintenance and will also provide valuable information for sika deer genetic breeding.
Collapse
|
8
|
Jazwinski SM, Kim S. Examination of the Dimensions of Biological Age. Front Genet 2019; 10:263. [PMID: 30972107 PMCID: PMC6445152 DOI: 10.3389/fgene.2019.00263] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/08/2019] [Indexed: 12/22/2022] Open
Abstract
The concept of biological age has been used more and more frequently in aging research in attempts to measure the progress of the biological aging process as opposed to the simple passage of time. Several approaches to quantify biological age have been utilized, including the use of biomarkers in the form of serum analytes, epigenetic markers, and deficit or frailty indices. Among these methods, the deficit index possesses a theoretical basis grounded in systems biology by incorporating networks, with their emergent properties, to describe the complex aging system. Application of the deficit index in human aging studies points to the increased energetic demands posed by an aging system that is losing integration. Different aspects of mitochondrial function appear to be responsible in males and females. The gut microbiome loses complexity in tandem with the host, as biological age increases, with likely impact on host metabolism and immunity. Specific DNA methylation changes are associated with biological age. They suggest declining connectivity within the aging network, at the cellular level. The deficit/frailty index may account for at least part of the departure at older ages of the observed mortality in the population from the exponential increase modeled by the Gompertz equation.
Collapse
Affiliation(s)
- S Michal Jazwinski
- Tulane Center for Aging, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, United States
| | - Sangkyu Kim
- Tulane Center for Aging, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
9
|
Gordon EH, Hubbard RE. Do sex differences in chronic disease underpin the sex-frailty paradox? Mech Ageing Dev 2019; 179:44-50. [PMID: 30825457 DOI: 10.1016/j.mad.2019.02.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/17/2019] [Accepted: 02/26/2019] [Indexed: 12/21/2022]
Abstract
The 'male-female health-survival paradox' is a well-described clinical phenomenon. More recently, it has been conceptualized as a 'sex-frailty paradox': females may be considered to be more frail (because they have poorer health status) but also less frail (because they are less vulnerable to death) than males of the same age. Here, we review potential biological, behavioral and social mechanisms underpinning sex differences in morbidity, mortality and frailty before considering the question at the center of the sex paradox - why is it that females are able to tolerate poor health better than males? We explore, in detail, a frequently cited explanation for the sex paradox that centers on sex differences in chronic disease and conclude by presenting a new approach to this old hypothesis.
Collapse
Affiliation(s)
- E H Gordon
- Centre for Health Services Research, Level 2, Building 33, Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia.
| | - R E Hubbard
- Centre for Health Services Research, Level 2, Building 33, Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
10
|
|
11
|
Jazwinski SM, Jiang JC, Kim S. Adaptation to metabolic dysfunction during aging: Making the best of a bad situation. Exp Gerontol 2017; 107:87-90. [PMID: 28760705 DOI: 10.1016/j.exger.2017.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/17/2017] [Accepted: 07/23/2017] [Indexed: 10/19/2022]
Abstract
Mitochondria play a central role in energy metabolism in the process of oxidative phosphorylation. As importantly, they are key in several anabolic processes, including amino acid biosynthesis, nucleotide biosynthesis, heme biosynthesis, and the formation of iron‑sulfur clusters. Mitochondria are also engaged in waste removal in the urea cycle. Their activity can lead to the formation of reactive oxygen species which have damaging effects in the cell. These organelles are dynamic, undergoing cycles of fission and fusion which can be coupled to their removal by mitophagy. In addition to these widely recognized processes, mitochondria communicate with other subcellular compartments. Various components of mitochondrial complexes are encoded by either the nuclear or the mitochondrial genome necessitating coordination between these two organelles. This article reviews another form of communication between the mitochondria and the nucleus, in which the dysfunction of the former triggers changes in the expression of nuclear genes to compensate for it. The most extensively studied of these signaling pathways is the retrograde response whose effectors and downstream targets have been characterized. This response extends yeast replicative lifespan by adapting the organism to the mitochondrial dysfunction. Similar responses have been found in several other organisms, including mammals. Declining health and function during human aging incurs energetic costs. This compensation plays out differently in males and females, and variation in nuclear genes whose products affect mitochondrial function influences the outcome. Thus, the theme of mitochondria-nucleus communication as an adaptive response during aging appears very widespread.
Collapse
Affiliation(s)
- S Michal Jazwinski
- Tulane Center for Aging, Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA.
| | - James C Jiang
- Tulane Center for Aging, Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Sangkyu Kim
- Tulane Center for Aging, Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
12
|
Luglio HF, Sulistyoningrum DC, Huriyati E, Lee YY, Wan Muda WAM. The Gene-Lifestyle Interaction on Leptin Sensitivity and Lipid Metabolism in Adults: A Population Based Study. Nutrients 2017; 9:nu9070716. [PMID: 28686191 PMCID: PMC5537831 DOI: 10.3390/nu9070716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 12/26/2022] Open
Abstract
Background: Obesity has been associated with leptin resistance and this might be caused by genetic factors. The aim of this study was to investigate the gene-lifestyle interaction between −866G/A UCP2 (uncoupling protein 2) gene polymorphism, dietary intake and leptin in a population based study. Methods: This is a cross sectional study conducted in adults living at urban area of Yogyakarta, Indonesia. Data of adiposity, lifestyle, triglyceride, high density lipoprotein (HDL) cholesterol, leptin and UCP2 gene polymorphism were obtained in 380 men and female adults. Results: UCP2 gene polymorphism was not significantly associated with adiposity, leptin, triglyceride, HDL cholesterol, dietary intake and physical activity (all p > 0.05). Leptin was lower in overweight subjects with AA + GA genotypes than those with GG genotype counterparts (p = 0.029). In subjects with AA + GA genotypes there was a negative correlation between leptin concentration (r = −0.324; p < 0.0001) and total energy intake and this correlation was not seen in GG genotype (r = −0.111; p = 0.188). Conclusions: In summary, we showed how genetic variation in −866G/A UCP2 affected individual response to leptin production. AA + GA genotype had a better leptin sensitivity shown by its response in dietary intake and body mass index (BMI) and this explained the protective effect of A allele to obesity.
Collapse
Affiliation(s)
- Harry Freitag Luglio
- Department of Nutrition and Health, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | | | - Emy Huriyati
- Department of Nutrition and Health, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Yi Yi Lee
- School of Health Sciences, Universiti Sains Malaysia, Gelugor 11800, Malaysia.
| | | |
Collapse
|
13
|
Jazwinski SM, Kim S. Metabolic and Genetic Markers of Biological Age. Front Genet 2017; 8:64. [PMID: 28588609 PMCID: PMC5440459 DOI: 10.3389/fgene.2017.00064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/09/2017] [Indexed: 11/14/2022] Open
Abstract
Biological age is a concept that takes into account the heterogeneity of the aging process in different individuals that results in differences in survival and variations in relative health. Any measure of biological age must be better than chronological age at predicting mortality. Several quantitative measures of biological age have been developed. Among them are frailty indices, one of which called FI34 is discussed here in greater detail. FI34 increases exponentially with age reflecting decline in health and function ability. It readily depicts different patterns and trajectories of aging, and it is moderately heritable. Thus, it has been used to identify a genomic region on chromosome 12 associated with healthy aging. FI34 has also been useful in describing the metabolic characteristics of this phenotype, revealing both sex and genetic differences. These differences give rise to specific, testable models regarding healthy aging, which involve cell and tissue damage and mitochondrial metabolism. FI34 has been directly compared to various metrics based on DNA methylation as a predictor of mortality, demonstrating that it outperforms them uniformly. This and other frailty indices take a top-down, systems based view of aging that is cognizant of the integrated function of the complex aging system.
Collapse
Affiliation(s)
- S Michal Jazwinski
- Tulane Center for Aging, Department of Medicine, Tulane University Health Sciences Center, Tulane School of Medicine, New OrleansLA, United States
| | - Sangkyu Kim
- Tulane Center for Aging, Department of Medicine, Tulane University Health Sciences Center, Tulane School of Medicine, New OrleansLA, United States
| |
Collapse
|
14
|
Kim S, Myers L, Wyckoff J, Cherry KE, Jazwinski SM. The frailty index outperforms DNA methylation age and its derivatives as an indicator of biological age. GeroScience 2017; 39:83-92. [PMID: 28299637 PMCID: PMC5352589 DOI: 10.1007/s11357-017-9960-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 01/05/2017] [Indexed: 01/19/2023] Open
Abstract
The measurement of biological age as opposed to chronological age is important to allow the study of factors that are responsible for the heterogeneity in the decline in health and function ability among individuals during aging. Various measures of biological aging have been proposed. Frailty indices based on health deficits in diverse body systems have been well studied, and we have documented the use of a frailty index (FI34) composed of 34 health items, for measuring biological age. A different approach is based on leukocyte DNA methylation. It has been termed DNA methylation age, and derivatives of this metric called age acceleration difference and age acceleration residual have also been employed. Any useful measure of biological age must predict survival better than chronological age does. Meta-analyses indicate that age acceleration difference and age acceleration residual are significant predictors of mortality, qualifying them as indicators of biological age. In this article, we compared the measures based on DNA methylation with FI34. Using a well-studied cohort, we assessed the efficiency of these measures side by side in predicting mortality. In the presence of chronological age as a covariate, FI34 was a significant predictor of mortality, whereas none of the DNA methylation age-based metrics were. The outperformance of FI34 over DNA methylation age measures was apparent when FI34 and each of the DNA methylation age measures were used together as explanatory variables, along with chronological age: FI34 remained significant but the DNA methylation measures did not. These results indicate that FI34 is a robust predictor of biological age, while these DNA methylation measures are largely a statistical reflection of the passage of chronological time.
Collapse
Affiliation(s)
- Sangkyu Kim
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, Box 8513, 1430 Tulane Ave., New Orleans, 70112, LA, USA.
| | - Leann Myers
- Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Jennifer Wyckoff
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, Box 8513, 1430 Tulane Ave., New Orleans, 70112, LA, USA
| | - Katie E Cherry
- Department of Psychology, Louisiana State University, Baton Rouge, LA, USA
| | - S Michal Jazwinski
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, Box 8513, 1430 Tulane Ave., New Orleans, 70112, LA, USA
| |
Collapse
|
15
|
Nicoletti CF, de Oliveira APRP, Brochado MJF, Pinhel MAS, de Oliveira BAP, Marchini JS, Dos Santos JE, Salgado W, Cury NM, de Araújo LF, Silva WA, Nonino CB. The Ala55Val and -866G>A polymorphisms of the UCP2 gene could be biomarkers for weight loss in patients who had Roux-en-Y gastric bypass. Nutrition 2016; 33:326-330. [PMID: 27743836 DOI: 10.1016/j.nut.2016.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/20/2016] [Accepted: 07/31/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The aim of this study was to investigate whether the Ala55Val and -866G>A polymorphisms of the UCP2 gene are related to weight loss and changes in body composition after bariatric surgery performed by Roux-en-Y gastric bypass (RYGB). METHODS This longitudinal study enrolled obese patients submitted to RYGB. Data regarding weight (kg), body mass index (kg/m2), fat-free mass (FFM; kg), fat mass (kg), weight loss (kg and %), and percent excess weight loss were collected from both preoperative and 1-y postoperative medical records. Polymorphisms were genotyped by allelic discrimination using real-time polymerase chain reaction and TaqMan-predesigned single nucleotide polymorphism Genotyping Assay kits (Applied Biosystems, Foster City, CA, USA). The t test was used to compare variables between genotypes of each polymorphism to analyze the dominant and recessive models. Linear regression models were used to adjust the effects of initial weight, age, and sex on the variation of weight and body composition (P < 0.05). RESULTS We analyzed 150 severely obese individuals (age 47.2 ± 10.5 y; 80% women). Genotype analysis showed a greater prevalence of heterozygous GA (41.3%) for -866G>A polymorphism and CT (39.3%) for Ala55Val polymorphism. Individuals who carried the T (CT+TT) and A (GA+AA) mutated alleles for Ala55Val and -866G>A, respectively, showed a higher weight and FFM loss. CONCLUSION The mutated alleles T for Ala55Val and A for -866G>A polymorphism could be biomarkers of weight loss 1 y after RYGB.
Collapse
Affiliation(s)
- Carolina F Nicoletti
- Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Maria José F Brochado
- Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcela A S Pinhel
- Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bruno A P de Oliveira
- Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Julio S Marchini
- Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José E Dos Santos
- Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Wilson Salgado
- Department of Surgery and Anatomy, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nathalia Moreno Cury
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiza Ferreira de Araújo
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Wilson A Silva
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carla B Nonino
- Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|