1
|
Lear BP, Moore DL. Moving CNS axon growth and regeneration research into human model systems. Front Neurosci 2023; 17:1198041. [PMID: 37425013 PMCID: PMC10324669 DOI: 10.3389/fnins.2023.1198041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Axon regeneration is limited in the adult mammalian central nervous system (CNS) due to both intrinsic and extrinsic factors. Rodent studies have shown that developmental age can drive differences in intrinsic axon growth ability, such that embryonic rodent CNS neurons extend long axons while postnatal and adult CNS neurons do not. In recent decades, scientists have identified several intrinsic developmental regulators in rodents that modulate growth. However, whether this developmentally programmed decline in CNS axon growth is conserved in humans is not yet known. Until recently, there have been limited human neuronal model systems, and even fewer age-specific human models. Human in vitro models range from pluripotent stem cell-derived neurons to directly reprogrammed (transdifferentiated) neurons derived from human somatic cells. In this review, we discuss the advantages and disadvantages of each system, and how studying axon growth in human neurons can provide species-specific knowledge in the field of CNS axon regeneration with the goal of bridging basic science studies to clinical trials. Additionally, with the increased availability and quality of 'omics datasets of human cortical tissue across development and lifespan, scientists can mine these datasets for developmentally regulated pathways and genes. As there has been little research performed in human neurons to study modulators of axon growth, here we provide a summary of approaches to begin to shift the field of CNS axon growth and regeneration into human model systems to uncover novel drivers of axon growth.
Collapse
Affiliation(s)
| | - Darcie L. Moore
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
2
|
Van Breedam E, Ponsaerts P. Promising Strategies for the Development of Advanced In Vitro Models with High Predictive Power in Ischaemic Stroke Research. Int J Mol Sci 2022; 23:ijms23137140. [PMID: 35806146 PMCID: PMC9266337 DOI: 10.3390/ijms23137140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Although stroke is one of the world’s leading causes of death and disability, and more than a thousand candidate neuroprotective drugs have been proposed based on extensive in vitro and animal-based research, an effective neuroprotective/restorative therapy for ischaemic stroke patients is still missing. In particular, the high attrition rate of neuroprotective compounds in clinical studies should make us question the ability of in vitro models currently used for ischaemic stroke research to recapitulate human ischaemic responses with sufficient fidelity. The ischaemic stroke field would greatly benefit from the implementation of more complex in vitro models with improved physiological relevance, next to traditional in vitro and in vivo models in preclinical studies, to more accurately predict clinical outcomes. In this review, we discuss current in vitro models used in ischaemic stroke research and describe the main factors determining the predictive value of in vitro models for modelling human ischaemic stroke. In light of this, human-based 3D models consisting of multiple cell types, either with or without the use of microfluidics technology, may better recapitulate human ischaemic responses and possess the potential to bridge the translational gap between animal-based in vitro and in vivo models, and human patients in clinical trials.
Collapse
|
3
|
Wan J, Zhou S, Mea HJ, Guo Y, Ku H, Urbina BM. Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chem Rev 2022; 122:7142-7181. [PMID: 35080375 DOI: 10.1021/acs.chemrev.1c00480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Remarkable progress made in the past few decades in brain research enables the manipulation of neuronal activity in single neurons and neural circuits and thus allows the decipherment of relations between nervous systems and behavior. The discovery of glymphatic and lymphatic systems in the brain and the recently unveiled tight relations between the gastrointestinal (GI) tract and the central nervous system (CNS) further revolutionize our understanding of brain structures and functions. Fundamental questions about how neurons conduct two-way communications with the gut to establish the gut-brain axis (GBA) and interact with essential brain components such as glial cells and blood vessels to regulate cerebral blood flow (CBF) and cerebrospinal fluid (CSF) in health and disease, however, remain. Microfluidics with unparalleled advantages in the control of fluids at microscale has emerged recently as an effective approach to address these critical questions in brain research. The dynamics of cerebral fluids (i.e., blood and CSF) and novel in vitro brain-on-a-chip models and microfluidic-integrated multifunctional neuroelectronic devices, for example, have been investigated. This review starts with a critical discussion of the current understanding of several key topics in brain research such as neurovascular coupling (NVC), glymphatic pathway, and GBA and then interrogates a wide range of microfluidic-based approaches that have been developed or can be improved to advance our fundamental understanding of brain functions. Last, emerging technologies for structuring microfluidic devices and their implications and future directions in brain research are discussed.
Collapse
Affiliation(s)
- Jiandi Wan
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Sitong Zhou
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Hing Jii Mea
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Yaojun Guo
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Hansol Ku
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Brianna M Urbina
- Biochemistry, Molecular, Cellular and Developmental Biology Program, University of California, Davis, California 95616, United States
| |
Collapse
|
4
|
Aghlmandi A, Nikshad A, Safaralizadeh R, Warkiani ME, Aghebati-Maleki L, Yousefi M. Microfluidics as efficient technology for the isolation and characterization of stem cells. EXCLI JOURNAL 2021; 20:426-443. [PMID: 33746671 PMCID: PMC7975637 DOI: 10.17179/excli2020-3028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/15/2021] [Indexed: 01/09/2023]
Abstract
The recent years have been passed with significant progressions in the utilization of microfluidic technologies for cellular investigations. The aim of microfluidics is to mimic small-scale body environment with features like optical transparency. Microfluidics can screen and monitor different cell types during culture and study cell function in response to stimuli in a fully controlled environment. No matter how the microfluidic environment is similar to in vivo environment, it is not possible to fully investigate stem cells behavior in response to stimuli during cell proliferation and differentiation. Researchers have used stem cells in different fields from fundamental researches to clinical applications. Many cells in the body possess particular functions, but stem cells do not have a specific task and can turn into almost any type of cells. Stem cells are undifferentiated cells with the ability of changing into specific cells that can be essential for the body. Researchers and physicians are interested in stem cells to use them in testing the function of the body's systems and solving their complications. This review discusses the recent advances in utilizing microfluidic techniques for the analysis of stem cells, and mentions the advantages and disadvantages of using microfluidic technology for stem cell research.
Collapse
Affiliation(s)
- Afsoon Aghlmandi
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Aylin Nikshad
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Majid Ebrahimi Warkiani
- The School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | | | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
5
|
Nikolakopoulou P, Rauti R, Voulgaris D, Shlomy I, Maoz BM, Herland A. Recent progress in translational engineered in vitro models of the central nervous system. Brain 2020; 143:3181-3213. [PMID: 33020798 PMCID: PMC7719033 DOI: 10.1093/brain/awaa268] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
The complexity of the human brain poses a substantial challenge for the development of models of the CNS. Current animal models lack many essential human characteristics (in addition to raising operational challenges and ethical concerns), and conventional in vitro models, in turn, are limited in their capacity to provide information regarding many functional and systemic responses. Indeed, these challenges may underlie the notoriously low success rates of CNS drug development efforts. During the past 5 years, there has been a leap in the complexity and functionality of in vitro systems of the CNS, which have the potential to overcome many of the limitations of traditional model systems. The availability of human-derived induced pluripotent stem cell technology has further increased the translational potential of these systems. Yet, the adoption of state-of-the-art in vitro platforms within the CNS research community is limited. This may be attributable to the high costs or the immaturity of the systems. Nevertheless, the costs of fabrication have decreased, and there are tremendous ongoing efforts to improve the quality of cell differentiation. Herein, we aim to raise awareness of the capabilities and accessibility of advanced in vitro CNS technologies. We provide an overview of some of the main recent developments (since 2015) in in vitro CNS models. In particular, we focus on engineered in vitro models based on cell culture systems combined with microfluidic platforms (e.g. 'organ-on-a-chip' systems). We delve into the fundamental principles underlying these systems and review several applications of these platforms for the study of the CNS in health and disease. Our discussion further addresses the challenges that hinder the implementation of advanced in vitro platforms in personalized medicine or in large-scale industrial settings, and outlines the existing differentiation protocols and industrial cell sources. We conclude by providing practical guidelines for laboratories that are considering adopting organ-on-a-chip technologies.
Collapse
Affiliation(s)
- Polyxeni Nikolakopoulou
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Rossana Rauti
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Dimitrios Voulgaris
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Iftach Shlomy
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ben M Maoz
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Anna Herland
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
6
|
Yang Y, Zhang Y, Chai R, Gu Z. Designs of Biomaterials and Microenvironments for Neuroengineering. Neural Plast 2018; 2018:1021969. [PMID: 30627148 PMCID: PMC6304813 DOI: 10.1155/2018/1021969] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/09/2018] [Indexed: 01/05/2023] Open
Abstract
Recent clinical research on neuroengineering is primarily focused on biocompatible materials, which can be used to provide electroactive and topological cues, regulate the microenvironment, and perform other functions. Novel biomaterials for neuroengineering have been received much attention in the field of research, including graphene, photonic crystals, and organ-on-a-chip. Graphene, which has the advantage of high mechanical strength and chemical stability with the unique electrochemical performance for electrical signal detection and transmission, has significant potential as a conductive scaffolding in the field of medicine. Photonic crystal materials, known as a novel concept in nerve substrates, have provided a new avenue for neuroengineering research because of their unique ordered structure and spectral attributes. The "organ-on-a-chip" systems have shown significant prospects for the developments of the solutions to nerve regeneration by mimicking the microenvironment of nerve tissue. This paper presents a review of current progress in the designs of biomaterials and microenvironments and provides case studies in developing nerve system stents upon these biomaterials. In addition, we compose a conductive patterned compounded biomaterial, which could mimic neuronal microenvironment for neuroengineering by concentrating the advantage of such biomaterials.
Collapse
Affiliation(s)
- Yanru Yang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Yuhua Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 211189, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| |
Collapse
|
7
|
Rothbauer M, Zirath H, Ertl P. Recent advances in microfluidic technologies for cell-to-cell interaction studies. LAB ON A CHIP 2018; 18:249-270. [PMID: 29143053 DOI: 10.1039/c7lc00815e] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Microfluidic cell cultures are ideally positioned to become the next generation of in vitro diagnostic tools for biomedical research, where key biological processes such as cell signalling and dynamic cell-to-cell interactions can be reliably analysed under reproducible physiological cell culture conditions. In the last decade, a large number of microfluidic cell analysis systems have been developed for a variety of applications including drug target optimization, drug screening and toxicological testing. More recently, advanced in vitro microfluidic cell culture systems have emerged that are capable of replicating the complex three-dimensional architectures of tissues and organs and thus represent valid biological models for investigating the mechanism and function of human tissue structures, as well as studying the onset and progression of diseases such as cancer. In this review, we present the most important developments in single-cell, 2D and 3D microfluidic cell culture systems for studying cell-to-cell interactions published over the last 6 years, with a focus on cancer research and immunotherapy, vascular models and neuroscience. In addition, the current technological development of microdevices with more advanced physiological cell microenvironments that integrate multiple organ models, namely, the so-called body-, human- and multi-organ-on-a-chip, is reviewed.
Collapse
Affiliation(s)
- Mario Rothbauer
- Vienna University of Technology, Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry, Getreidemarkt 9, 1060 Vienna, Austria.
| | | | | |
Collapse
|
8
|
Geraili A, Jafari P, Hassani MS, Araghi BH, Mohammadi MH, Ghafari AM, Tamrin SH, Modarres HP, Kolahchi AR, Ahadian S, Sanati-Nezhad A. Controlling Differentiation of Stem Cells for Developing Personalized Organ-on-Chip Platforms. Adv Healthc Mater 2018; 7. [PMID: 28910516 DOI: 10.1002/adhm.201700426] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/01/2017] [Indexed: 01/09/2023]
Abstract
Organ-on-chip (OOC) platforms have attracted attentions of pharmaceutical companies as powerful tools for screening of existing drugs and development of new drug candidates. OOCs have primarily used human cell lines or primary cells to develop biomimetic tissue models. However, the ability of human stem cells in unlimited self-renewal and differentiation into multiple lineages has made them attractive for OOCs. The microfluidic technology has enabled precise control of stem cell differentiation using soluble factors, biophysical cues, and electromagnetic signals. This study discusses different tissue- and organ-on-chip platforms (i.e., skin, brain, blood-brain barrier, bone marrow, heart, liver, lung, tumor, and vascular), with an emphasis on the critical role of stem cells in the synthesis of complex tissues. This study further recaps the design, fabrication, high-throughput performance, and improved functionality of stem-cell-based OOCs, technical challenges, obstacles against implementing their potential applications, and future perspectives related to different experimental platforms.
Collapse
Affiliation(s)
- Armin Geraili
- Department of Chemical and Petroleum Engineering; Sharif University of Technology; Azadi, Tehran 14588-89694 Iran
- Graduate Program in Biomedical Engineering; Western University; London N6A 5B9 ON Canada
| | - Parya Jafari
- Graduate Program in Biomedical Engineering; Western University; London N6A 5B9 ON Canada
- Department of Electrical Engineering; Sharif University of Technology; Azadi, Tehran 14588-89694 Iran
| | - Mohsen Sheikh Hassani
- Department of Systems and Computer Engineering; Carleton University; 1125 Colonel By Drive Ottawa K1S 5B6 ON Canada
| | - Behnaz Heidary Araghi
- Department of Materials Science and Engineering; Sharif University of Technology; Azadi, Tehran 14588-89694 Iran
| | - Mohammad Hossein Mohammadi
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto ON M5S 3G9 Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto Ontario M5S 3E5 Canada
| | - Amir Mohammad Ghafari
- Department of Stem Cells and Developmental Biology; Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology; Tehran 16635-148 Iran
| | - Sara Hasanpour Tamrin
- BioMEMS and Bioinspired Microfluidic Laboratory (BioM); Department of Mechanical and Manufacturing Engineering; University of Calgary; 2500 University Drive N.W. Calgary T2N 1N4 AB Canada
| | - Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory (BioM); Department of Mechanical and Manufacturing Engineering; University of Calgary; 2500 University Drive N.W. Calgary T2N 1N4 AB Canada
| | - Ahmad Rezaei Kolahchi
- BioMEMS and Bioinspired Microfluidic Laboratory (BioM); Department of Mechanical and Manufacturing Engineering; University of Calgary; 2500 University Drive N.W. Calgary T2N 1N4 AB Canada
| | - Samad Ahadian
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto ON M5S 3G9 Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto Ontario M5S 3E5 Canada
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory (BioM); Department of Mechanical and Manufacturing Engineering; University of Calgary; 2500 University Drive N.W. Calgary T2N 1N4 AB Canada
- Center for Bioengineering Research and Education; Biomedical Engineering Program; University of Calgary; Calgary T2N 1N4 AB Canada
| |
Collapse
|
9
|
Karimi M, Bahrami S, Mirshekari H, Basri SMM, Nik AB, Aref AR, Akbari M, Hamblin MR. Microfluidic systems for stem cell-based neural tissue engineering. LAB ON A CHIP 2016; 16:2551-71. [PMID: 27296463 PMCID: PMC4935609 DOI: 10.1039/c6lc00489j] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise control over the spatiotemporal distribution of chemical and physical cues at the cellular level compared to traditional systems. Various microsystems have been designed and fabricated for the purpose of neural tissue engineering. Enhanced neural migration and differentiation, and monitoring of these processes, as well as understanding the behavior of stem cells and their microenvironment have been obtained through application of different microfluidic-based stem cell culture and tissue engineering techniques. As the technology advances it may be possible to construct a "brain-on-a-chip". In this review, we describe the basics of stem cells and tissue engineering as well as microfluidics-based tissue engineering approaches. We review recent testing of various microfluidic approaches for stem cell-based neural tissue engineering.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sajad Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran. and Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hamed Mirshekari
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran.
| | - Seyed Masoud Moosavi Basri
- Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran. and Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - Amirala Bakhshian Nik
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Iran.
| | - Amir R Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA and Department of Genetics, Harvard Medical School, Boston, MA 02215, USA.
| | - Mohsen Akbari
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA. and Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
10
|
Carballo-Molina OA, Sánchez-Navarro A, López-Ornelas A, Lara-Rodarte R, Salazar P, Campos-Romo A, Ramos-Mejía V, Velasco I. Semaphorin 3C Released from a Biocompatible Hydrogel Guides and Promotes Axonal Growth of Rodent and Human Dopaminergic Neurons. Tissue Eng Part A 2016; 22:850-61. [PMID: 27174503 PMCID: PMC4913502 DOI: 10.1089/ten.tea.2016.0008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/12/2016] [Indexed: 12/21/2022] Open
Abstract
Cell therapy in experimental models of Parkinson's disease replaces the lost dopamine neurons (DAN), but we still need improved methods to guide dopaminergic axons (DAx) of grafted neurons to make proper connections. The protein Semaphorin 3C (Sema3C) attracts DAN axons and enhances their growth. In this work, we show that the hydrogel PuraMatrix, a self-assembling peptide-based matrix, incorporates Sema3C and releases it steadily during 4 weeks. We also tested if hydrogel-delivered Sema3C attracts DAx using a system of rat midbrain explants embedded in collagen gels. We show that Sema3C released by this hydrogel attracts DAx, in a similar way to pretectum, which is known to attract growing DAN axons. We assessed the effect of Sema3C on the growth of DAx using microfluidic devices. DAN from rat midbrain or those differentiated from human embryonic stem cells showed enhanced axonal extension when exposed to hydrogel-released Sema3C, similar to soluble Sema3C. Notably, DAN of human origin express the cognate Sema3C receptors, Neuropilin1 and Neuropilin2. These results show that PuraMatrix is able to incorporate and release Sema3C, and such delivery guides and promotes the axonal growth of DAN. This biocompatible hydrogel might be useful as a Sema3C carrier for in vivo studies in parkinsonian animal models.
Collapse
Affiliation(s)
- Oscar A. Carballo-Molina
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, México, D.F., México
- Laboratorio de Reprogramación Celular IFC/UNAM en el Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez,” México, D.F., México
| | - Andrea Sánchez-Navarro
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, México, D.F., México
- Laboratorio de Reprogramación Celular IFC/UNAM en el Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez,” México, D.F., México
| | - Adolfo López-Ornelas
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, México, D.F., México
- Laboratorio de Reprogramación Celular IFC/UNAM en el Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez,” México, D.F., México
| | - Rolando Lara-Rodarte
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, México, D.F., México
- Laboratorio de Reprogramación Celular IFC/UNAM en el Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez,” México, D.F., México
| | - Patricia Salazar
- GENYO: Centre for Genomics and Oncological Research Pfizer-University of Granada-Junta de Andalucía, PTS Granada, Spain
| | - Aurelio Campos-Romo
- Unidad Periférica de Neurociencias Facultad de Medicina-UNAM en el Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez,” México, D.F., México
| | - Verónica Ramos-Mejía
- GENYO: Centre for Genomics and Oncological Research Pfizer-University of Granada-Junta de Andalucía, PTS Granada, Spain
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, México, D.F., México
- Laboratorio de Reprogramación Celular IFC/UNAM en el Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez,” México, D.F., México
| |
Collapse
|
11
|
Lee Y, Lee JM, Bae PK, Chung IY, Chung BH, Chung BG. Photo-crosslinkable hydrogel-based 3D microfluidic culture device. Electrophoresis 2015; 36:994-1001. [PMID: 25641332 DOI: 10.1002/elps.201400465] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/20/2014] [Accepted: 01/14/2015] [Indexed: 12/21/2022]
Abstract
We developed the photo-crosslinkable hydrogel-based 3D microfluidic device to culture neural stem cells (NSCs) and tumors. The photo-crosslinkable gelatin methacrylate (GelMA) polymer was used as a physical barrier in the microfluidic device and collagen type I gel was employed to culture NSCs in a 3D manner. We demonstrated that the pore size was inversely proportional to concentrations of GelMA hydrogels, showing the pore sizes of 5 and 25 w/v% GelMA hydrogels were 34 and 4 μm, respectively. It also revealed that the morphology of pores in 5 w/v% GelMA hydrogels was elliptical shape, whereas we observed circular-shaped pores in 25 w/v% GelMA hydrogels. To culture NSCs and tumors in the 3D microfluidic device, we investigated the molecular diffusion properties across GelMA hydrogels, indicating that 25 w/v% GelMA hydrogels inhibited the molecular diffusion for 6 days in the 3D microfluidic device. In contrast, the chemicals were diffused in 5 w/v% GelMA hydrogels. Finally, we cultured NSCs and tumors in the hydrogel-based 3D microfluidic device, showing that 53-75% NSCs differentiated into neurons, while tumors were cultured in the collagen gels. Therefore, this photo-crosslinkable hydrogel-based 3D microfluidic culture device could be a potentially powerful tool for regenerative tissue engineering applications.
Collapse
Affiliation(s)
- Youlee Lee
- Department of Bionano Technology, Hanyang University, Ansan, Korea
| | | | | | | | | | | |
Collapse
|
12
|
Lee N, Park JW, Kim HJ, Yeon JH, Kwon J, Ko JJ, Oh SH, Kim HS, Kim A, Han BS, Lee SC, Jeon NL, Song J. Monitoring the differentiation and migration patterns of neural cells derived from human embryonic stem cells using a microfluidic culture system. Mol Cells 2014; 37:497-502. [PMID: 24938227 PMCID: PMC4086344 DOI: 10.14348/molcells.2014.0137] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 12/28/2022] Open
Abstract
Microfluidics can provide unique experimental tools to visualize the development of neural structures within a microscale device, which is followed by guidance of neurite growth in the axonal isolation compartment. We utilized microfluidics technology to monitor the differentiation and migration of neural cells derived from human embryonic stem cells (hESCs). We co-cultured hESCs with PA6 stromal cells, and isolated neural rosette-like structures, which subsequently formed neurospheres in suspension culture. Tuj1-positive neural cells, but not nestin-positive neural precursor cells (NPCs), were able to enter the microfluidics grooves (microchannels), suggesting that neural cell-migratory capacity was dependent upon neuronal differentiation stage. We also showed that bundles of axons formed and extended into the microchannels. Taken together, these results demonstrated that microfluidics technology can provide useful tools to study neurite outgrowth and axon guidance of neural cells, which are derived from human embryonic stem cells.
Collapse
Affiliation(s)
- Nayeon Lee
- CHA Stem Cell Institute, CHA University, Seoul 135-081,
Korea
| | - Jae Woo Park
- Division of World Class University Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742,
Korea
| | - Hyung Joon Kim
- Division of World Class University Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742,
Korea
| | - Ju Hun Yeon
- Division of World Class University Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742,
Korea
| | - Jihye Kwon
- CHA Stem Cell Institute, CHA University, Seoul 135-081,
Korea
| | - Jung Jae Ko
- CHA Stem Cell Institute, CHA University, Seoul 135-081,
Korea
| | - Seung-Hun Oh
- CHA Stem Cell Institute, CHA University, Seoul 135-081,
Korea
| | - Hyun Sook Kim
- CHA Stem Cell Institute, CHA University, Seoul 135-081,
Korea
| | - Aeri Kim
- CHA Stem Cell Institute, CHA University, Seoul 135-081,
Korea
| | - Baek Soo Han
- Research Center for Integrated Cellulomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
| | - Sang Chul Lee
- Research Center for Integrated Cellulomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
| | - Noo Li Jeon
- Division of World Class University Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742,
Korea
| | - Jihwan Song
- CHA Stem Cell Institute, CHA University, Seoul 135-081,
Korea
| |
Collapse
|
13
|
Lee JM, Kim JE, Borana J, Chung BH, Chung BG. Dual-micropillar-based microfluidic platform for single embryonic stem cell-derived neuronal differentiation. Electrophoresis 2014; 34:1931-8. [PMID: 23977683 DOI: 10.1002/elps.201200578] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We developed the dual-micropillar-based microfluidic platform to direct embryonic stem (ES) cell fate. 4 × 4 dual-micropillar-based microfluidic platform consisted of 16 circular-shaped outer micropillars and 8 saddle-shaped inner micropillars in which single ES cells were cultured. We hypothesized that dual-micropillar arrays would play an important role in controlling the shear stress and cell docking. Circular-shaped outer micropillars minimized the shear stress, whereas saddle-shaped innermicropillars allowed for docking of individual ES cells. We observed the effect of saddle-shaped inner micropillars on cell docking in response to hydrodynamic resistance. We also demonstrated that ES cells cultured for 6 days within the dual-micropillar-based microfluidic platform differentiated into neural-like cells. Therefore, this dual-micropillar-based microfluidic platform could be a potentially powerful method for screening of lineage commitments of single ES cells.
Collapse
Affiliation(s)
- Jong Min Lee
- Department of Bionano Technology, Hanyang University, Ansan, Korea
| | | | | | | | | |
Collapse
|
14
|
Kamei KI. Cutting-Edge Microfabricated Biomedical Tools for Human Pluripotent Stem Cell Research. ACTA ACUST UNITED AC 2013; 18:469-81. [DOI: 10.1177/2211068213495394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Tehranirokh M, Kouzani AZ, Francis PS, Kanwar JR. Microfluidic devices for cell cultivation and proliferation. BIOMICROFLUIDICS 2013; 7:51502. [PMID: 24273628 PMCID: PMC3829894 DOI: 10.1063/1.4826935] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/24/2013] [Indexed: 05/07/2023]
Abstract
Microfluidic technology provides precise, controlled-environment, cost-effective, compact, integrated, and high-throughput microsystems that are promising substitutes for conventional biological laboratory methods. In recent years, microfluidic cell culture devices have been used for applications such as tissue engineering, diagnostics, drug screening, immunology, cancer studies, stem cell proliferation and differentiation, and neurite guidance. Microfluidic technology allows dynamic cell culture in microperfusion systems to deliver continuous nutrient supplies for long term cell culture. It offers many opportunities to mimic the cell-cell and cell-extracellular matrix interactions of tissues by creating gradient concentrations of biochemical signals such as growth factors, chemokines, and hormones. Other applications of cell cultivation in microfluidic systems include high resolution cell patterning on a modified substrate with adhesive patterns and the reconstruction of complicated tissue architectures. In this review, recent advances in microfluidic platforms for cell culturing and proliferation, for both simple monolayer (2D) cell seeding processes and 3D configurations as accurate models of in vivo conditions, are examined.
Collapse
|
16
|
Min SK, Lee BM, Hwang JH, Ha SH, Shin HS. Mathematical analysis of colonial formation of embryonic stem cells in microfluidic system. KOREAN J CHEM ENG 2011. [DOI: 10.1007/s11814-011-0181-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
17
|
Goyal G, Nam Y. Neuronal micro-culture engineering by microchannel devices of cellular scale dimensions. Biomed Eng Lett 2011. [DOI: 10.1007/s13534-011-0014-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|