1
|
Dahiya D, Péter-Szabó Z, Senanayake M, Pingali SV, Leite WC, Byrnes J, Buchko GW, Sivan P, Vilaplana F, Master ER, O'Neill H. SANS investigation of fungal loosenins reveals substrate-dependent impacts of protein action on the inter-microfibril arrangement of cellulosic substrates. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:27. [PMID: 40022179 PMCID: PMC11869483 DOI: 10.1186/s13068-025-02618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/30/2024] [Indexed: 03/03/2025]
Abstract
BACKGROUND Microbial expansin-related proteins include fungal loosenins, which have been previously shown to disrupt cellulose networks and enhance the enzymatic conversion of cellulosic substrates. Despite showing beneficial impacts to cellulose processing, detailed characterization of cellulosic materials after loosenin treatment is lacking. In this study, small-angle neutron scattering (SANS) was used to investigate the effects of three recombinantly produced loosenins that originate from Phanerochaete carnosa, PcaLOOL7, PcaLOOL9, and PcaLOOL12, on the organization of holocellulose preparations from Eucalyptus and Spruce wood samples. RESULTS Whereas the SANS analysis of Spruce holocellulose revealed an increase in inter-microfibril spacing of neighboring cellulose microfibrils following treatment with PcaLOOL12 and to a lesser extent PcaLOOL7, the analysis of Eucalyptus holocellulose revealed a reduction in the ordered arrangement of microfibrils following treatment with PcaLOOL12 and to a lesser extent PcaLOOL9. Parallel SEC-SAXS characterization of PcaLOOL7, PcaLOOL9, and PcaLOOL12 indicated the proteins likely function as monomers; moreover, all appear to retain a flexible disordered N-terminus and folded C-terminal region. The comparatively high impact of PcaLOOL12 motivated its NMR structural characterization, revealing a double-psi β-barrel (DPBB) domain surrounded by three α-helices-the largest nestled against the DPBB core and the other two part of loops extending from the core. CONCLUSIONS The SANS analysis of PcaLOOL action on holocellulose samples confirms their ability to disrupt cellulose fiber networks and suggests a progression from reducing regular order in the microfibril arrangement to increasing inter-microfibril spacing. The most impactful PcaLOOL, PcaLOOL12, was previously observed to be the most highly expressed loosenin in P. carnosa. Its structural characterization herein reveals its stabilization through two disulfide linkages, and an extended N-terminal region distal to a negatively charged and surface accessible polysaccharide binding groove.
Collapse
Affiliation(s)
- Deepika Dahiya
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Zsuzsanna Péter-Szabó
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, 106 91, Stockholm, Sweden
| | - Manjula Senanayake
- Neutron Scattering Division and Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sai Venkatesh Pingali
- Neutron Scattering Division and Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Wellington C Leite
- Neutron Scattering Division and Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - James Byrnes
- Brookhaven National Laboratory, National Synchrotron Light Source II, Bldg. 745, P.O. Box 5000, Upton, NY, 11973-5000, USA
| | - Garry W Buchko
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Pramod Sivan
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, 106 91, Stockholm, Sweden
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, 106 91, Stockholm, Sweden
- Wallenberg Wood Science Centre, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Emma R Master
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland.
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada.
| | - Hugh O'Neill
- Neutron Scattering Division and Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
2
|
Haddad Momeni M, Zitting A, Jäämuru V, Turunen R, Penttilä P, Buchko GW, Hiltunen S, Maiorova N, Koivula A, Sapkota J, Marjamaa K, Master ER. Insights into the action of phylogenetically diverse microbial expansins on the structure of cellulose microfibrils. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:56. [PMID: 38654330 DOI: 10.1186/s13068-024-02500-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Microbial expansins (EXLXs) are non-lytic proteins homologous to plant expansins involved in plant cell wall formation. Due to their non-lytic cell wall loosening properties and potential to disaggregate cellulosic structures, there is considerable interest in exploring the ability of microbial expansins (EXLX) to assist the processing of cellulosic biomass for broader biotechnological applications. Herein, EXLXs with different modular structure and from diverse phylogenetic origin were compared in terms of ability to bind cellulosic, xylosic, and chitinous substrates, to structurally modify cellulosic fibrils, and to boost enzymatic deconstruction of hardwood pulp. RESULTS Five heterogeneously produced EXLXs (Clavibacter michiganensis; CmiEXLX2, Dickeya aquatica; DaqEXLX1, Xanthomonas sacchari; XsaEXLX1, Nothophytophthora sp.; NspEXLX1 and Phytophthora cactorum; PcaEXLX1) were shown to bind xylan and hardwood pulp at pH 5.5 and CmiEXLX2 (harboring a family-2 carbohydrate-binding module) also bound well to crystalline cellulose. Small-angle X-ray scattering revealed a 20-25% increase in interfibrillar distance between neighboring cellulose microfibrils following treatment with CmiEXLX2, DaqEXLX1, or NspEXLX1. Correspondingly, combining xylanase with CmiEXLX2 and DaqEXLX1 increased product yield from hardwood pulp by ~ 25%, while supplementing the TrAA9A LPMO from Trichoderma reesei with CmiEXLX2, DaqEXLX1, and NspEXLX1 increased total product yield by over 35%. CONCLUSION This direct comparison of diverse EXLXs revealed consistent impacts on interfibrillar spacing of cellulose microfibers and performance of carbohydrate-active enzymes predicted to act on fiber surfaces. These findings uncover new possibilities to employ EXLXs in the creation of value-added materials from cellulosic biomass.
Collapse
Affiliation(s)
- Majid Haddad Momeni
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland.
| | - Aleksi Zitting
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Vilma Jäämuru
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Rosaliina Turunen
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Paavo Penttilä
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Garry W Buchko
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Salla Hiltunen
- NE Research Center, UPM Pulp Research and Innovations, 53200, Lappeenranta, Finland
| | - Natalia Maiorova
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044-VTT, Espoo, Finland
| | - Anu Koivula
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044-VTT, Espoo, Finland
| | - Janak Sapkota
- NE Research Center, UPM Pulp Research and Innovations, 53200, Lappeenranta, Finland
| | - Kaisa Marjamaa
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044-VTT, Espoo, Finland
| | - Emma R Master
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland.
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada.
| |
Collapse
|
3
|
Dahiya D, Koitto T, Kutvonen K, Wang Y, Haddad Momeni M, de Ruijter S, Master ER. Fungal loosenin-like proteins boost the cellulolytic enzyme conversion of pretreated wood fiber and cellulosic pulps. BIORESOURCE TECHNOLOGY 2024; 394:130188. [PMID: 38104665 DOI: 10.1016/j.biortech.2023.130188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Microbial expansin-related proteins, including loosenins, can disrupt cellulose networks and increase enzyme accessibility to cellulosic substrates. Herein, four loosenins from Phanerochaete carnosa (PcaLOOLs), and a PcaLOOL fused to a family 63 carbohydrate-binding module, were compared for ability to boost the cellulolytic deconstruction of steam pretreated softwood (SSW) and kraft pulps from softwood (ND-BSKP) and hardwood (ND-BHKP). Amending the Cellic® CTec-2 cellulase cocktail with PcaLOOLs increased reducing products from SSW by up to 40 %, corresponding to 28 % higher glucose yield. Amending Cellic® CTec-2 with PcaLOOLs also increased the release of glucose from ND-BSKP and ND-BHKP by 82 % and 28 %, respectively. Xylose release from ND-BSKP and ND-BHKP increased by 47 % and 57 %, respectively, highlighting the potential of PcaLOOLs to enhance hemicellulose recovery. Scanning electron microscopy and fiber image analysis revealed fibrillation and curlation of ND-BSKP after PcaLOOL treatment, consistent with increasing enzyme accessibility to targeted substrates.
Collapse
Affiliation(s)
- Deepika Dahiya
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Taru Koitto
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Kim Kutvonen
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Yan Wang
- Biorefining Business Development & Production, St1 Oy, Firdonkatu 2, 00520 Helsinki, Finland
| | - Majid Haddad Momeni
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Siiri de Ruijter
- Biorefining Business Development & Production, St1 Oy, Firdonkatu 2, 00520 Helsinki, Finland
| | - Emma R Master
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150 Espoo, Finland; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, M5S 3E5 Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Laemthong T, Bing RG, Crosby JR, Manesh MJH, Adams MWW, Kelly RM. Role of cell-substrate association during plant biomass solubilization by the extreme thermophile Caldicellulosiruptor bescii. Extremophiles 2023; 27:6. [PMID: 36802247 PMCID: PMC10514702 DOI: 10.1007/s00792-023-01290-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023]
Abstract
Caldicellulosiruptor species are proficient at solubilizing carbohydrates in lignocellulosic biomass through surface (S)-layer bound and secretomic glycoside hydrolases. Tāpirins, surface-associated, non-catalytic binding proteins in Caldicellulosiruptor species, bind tightly to microcrystalline cellulose, and likely play a key role in natural environments for scavenging scarce carbohydrates in hot springs. However, the question arises: If tāpirin concentration on Caldicellulosiruptor cell walls increased above native levels, would this offer any benefit to lignocellulose carbohydrate hydrolysis and, hence, biomass solubilization? This question was addressed by engineering the genes for tight-binding, non-native tāpirins into C. bescii. The engineered C. bescii strains bound more tightly to microcrystalline cellulose (Avicel) and biomass compared to the parent. However, tāpirin overexpression did not significantly improve solubilization or conversion for wheat straw or sugarcane bagasse. When incubated with poplar, the tāpirin-engineered strains increased solubilization by 10% compared to the parent, and corresponding acetate production, a measure of carbohydrate fermentation intensity, was 28% higher for the Calkr_0826 expression strain and 18.5% higher for the Calhy_0908 expression strain. These results show that enhanced binding to the substrate, beyond the native capability, did not improve C. bescii solubilization of plant biomass, but in some cases may improve conversion of released lignocellulose carbohydrates to fermentation products.
Collapse
Affiliation(s)
- Tunyaboon Laemthong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
- Department of Chemical Engineering, Thammasat University, Pathum Thani, 12120, Thailand
| | - Ryan G Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - James R Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - Mohamad J H Manesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA.
| |
Collapse
|
5
|
Monschein M, Ioannou E, Koitto T, Al Amin LAKM, Varis JJ, Wagner ER, Mikkonen KS, Cosgrove DJ, Master ER. Loosenin-Like Proteins from Phanerochaete carnosa Impact Both Cellulose and Chitin Fiber Networks. Appl Environ Microbiol 2023; 89:e0186322. [PMID: 36645281 PMCID: PMC9888185 DOI: 10.1128/aem.01863-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/19/2022] [Indexed: 01/17/2023] Open
Abstract
Microbial expansin-related proteins are ubiquitous across bacterial and fungal organisms and reportedly play a role in the modification and deconstruction of cell wall polysaccharides, including lignocellulose. So far, very few microbial expansin-related proteins, including loosenins and loosenin-like (LOOL) proteins, have been functionally characterized. Herein, four LOOLs encoded by Phanerochaete carnosa and belonging to different subfamilies (i.e., PcaLOOL7 and PcaLOOL9 from subfamily A and PcaLOOL2 and PcaLOOL12 from subfamily B) were recombinantly produced and the purified proteins were characterized using diverse cellulose and chitin substrates. The purified PcaLOOLs weakened cellulose filter paper and cellulose nanofibril networks (CNF); however, none significantly boosted cellulase activity on the selected cellulose substrates (Avicel and Whatman paper). Although fusing the family 63 carbohydrate-binding module (CBM63) of BsEXLX1 encoded by Bacillus subtilis to PcaLOOLs increased their binding to cellulose, the CBM63 fusion appeared to reduce the cellulose filter paper weakening observed using wild-type proteins. Binding of PcaLOOLs to alpha-chitin was considerably higher than that to cellulose (Avicel) and was pH dependent, with the highest binding at pH 5.0. Amendment of certain PcaLOOLs in fungal liquid cultivations also impacted the density of the cultivated mycelia. The present study reveals the potential of fungal expansin-related proteins to impact both cellulose and chitin networks and points to a possible biological role in fungal cell wall processing. IMPORTANCE The present study deepens investigations of microbial expansin-related proteins and their applied significance by (i) reporting a detailed comparison of diverse loosenins encoded by the same organism, (ii) considering both cellulosic and chitin-containing materials as targeted substrates, and (iii) investigating the impact of the C-terminal carbohydrate binding module (CBM) present in other expansin-related proteins on loosenin function. By revealing the potential of fungal loosenins to impact both cellulose and chitin-containing networks, our study reveals a possible biological and applied role of loosenins in fungal cell wall processing.
Collapse
Affiliation(s)
- Mareike Monschein
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Eleni Ioannou
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Taru Koitto
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | | | - Jutta J. Varis
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Edward R. Wagner
- Department of Biology, Pennsylvania State University, University Park, State College, Pennsylvania, USA
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, State College, Pennsylvania, USA
| | - Kirsi S. Mikkonen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Daniel J. Cosgrove
- Department of Biology, Pennsylvania State University, University Park, State College, Pennsylvania, USA
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, State College, Pennsylvania, USA
| | - Emma R. Master
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Vo TTB, Cho WK, Jo Y, Lal A, Nattanong B, Qureshi MA, Tabssum M, Troiano E, Parrella G, Kil EJ, Lee TK, Lee S. Transcriptional Analysis of the Differences between ToLCNDV-India and ToLCNDV-ES Leading to Contrary Symptom Development in Cucumber. Int J Mol Sci 2023; 24:ijms24032181. [PMID: 36768502 PMCID: PMC9916722 DOI: 10.3390/ijms24032181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Tomato leaf curl New Delhi virus-ES (ToLCNDV-ES), a high threat to cucurbits in the Mediterranean Basin, is listed as a different strain from the Asian ToLCNDV isolates. In this study, the infectivity of two clones previously isolated from Italy and Pakistan were compared in cucumbers, which resulted in the opposite symptom appearance. The swapping subgenome was processed; however, the mechanisms related to the disease phenotype remain unclear. To identify the disease-associated genes that could contribute to symptom development under the two ToLCNDV infections, the transcriptomes of ToLCNDV-infected and mock-inoculated cucumber plants were compared 21 days postinoculation. The number of differentially expressed genes in ToLCNDV-India-infected plants was 10 times higher than in ToLCNDV-ES-infected samples. The gene ontology (GO) and pathway enrichment were analyzed using the Cucurbits Genomics Database. The flavonoid pathway-related genes were upregulated in ToLCNDV-ES, but some were downregulated in ToLCNDV-India infection, suggesting their role in resistance to the two ToLCNDV infections. The relative expression levels of the selected candidate genes were validated by qRT-PCR under two ToLCNDV-infected conditions. Our results reveal the different infectivity of the two ToLCNDVs in cucumber and also provide primary information based on RNA-seq for further analysis related to different ToLCNDV infections.
Collapse
Affiliation(s)
- Thuy T. B. Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Won Kyong Cho
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yeonhwa Jo
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bupi Nattanong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Muhammad Amir Qureshi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Marjia Tabssum
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Elisa Troiano
- Institute for Sustainable Plant Protection of the National Research Council (IPSP-CNR), 80055 Portici, Italy
| | - Giuseppe Parrella
- Institute for Sustainable Plant Protection of the National Research Council (IPSP-CNR), 80055 Portici, Italy
| | - Eui-Joon Kil
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| | - Taek-Kyun Lee
- Risk Assessment Research Center, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
- Correspondence: (T.-K.L.); (S.L.)
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence: (T.-K.L.); (S.L.)
| |
Collapse
|
7
|
Monschein M, Jurak E, Paasela T, Koitto T, Lambauer V, Pavicic M, Enjalbert T, Dumon C, Master ER. PACER: a novel 3D plant cell wall model for the analysis of non-catalytic and enzymatic responses. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:30. [PMID: 35296345 PMCID: PMC8928621 DOI: 10.1186/s13068-022-02128-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/05/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Substrate accessibility remains a key limitation to the efficient enzymatic deconstruction of lignocellulosic biomass. Limited substrate accessibility is often addressed by increasing enzyme loading, which increases process and product costs. Alternatively, considerable efforts are underway world-wide to identify amorphogenesis-inducing proteins and protein domains that increase the accessibility of carbohydrate-active enzymes to targeted lignocellulose components.
Results
We established a three-dimensional assay, PACER (plant cell wall model for the analysis of non-catalytic and enzymatic responses), that enables analysis of enzyme migration through defined lignocellulose composites. A cellulose/azo-xylan composite was made to demonstrate the PACER concept and then used to test the migration and activity of multiple xylanolytic enzymes. In addition to non-catalytic domains of xylanases, the potential of loosenin-like proteins to boost xylanase migration through cellulose/azo-xylan composites was observed.
Conclusions
The PACER assay is inexpensive and parallelizable, suitable for screening proteins for ability to increase enzyme accessibility to lignocellulose substrates. Using the PACER assay, we visualized the impact of xylan-binding modules and loosenin-like proteins on xylanase mobility and access to targeted substrates. Given the flexibility to use different composite materials, the PACER assay presents a versatile platform to study impacts of lignocellulose components on enzyme access to targeted substrates.
Collapse
|
8
|
Samalova M, Gahurova E, Hejatko J. Expansin-mediated developmental and adaptive responses: A matter of cell wall biomechanics? QUANTITATIVE PLANT BIOLOGY 2022; 3:e11. [PMID: 37077967 PMCID: PMC10095946 DOI: 10.1017/qpb.2022.6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 05/03/2023]
Abstract
Biomechanical properties of the cell wall (CW) are important for many developmental and adaptive responses in plants. Expansins were shown to mediate pH-dependent CW enlargement via a process called CW loosening. Here, we provide a brief overview of expansin occurrence in plant and non-plant species, their structure and mode of action including the role of hormone-regulated CW acidification in the control of expansin activity. We depict the historical as well as recent CW models, discuss the role of expansins in the CW biomechanics and address the developmental importance of expansin-regulated CW loosening in cell elongation and new primordia formation. We summarise the data published so far on the role of expansins in the abiotic stress response as well as the rather scarce evidence and hypotheses on the possible mechanisms underlying expansin-mediated abiotic stress resistance. Finally, we wrap it up by highlighting possible future directions in expansin research.
Collapse
Affiliation(s)
- Marketa Samalova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Evelina Gahurova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biotechnological Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biotechnological Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
9
|
Pan L, Harper K, Queiroz O, Copani G, Cappellozza BI. Effects of a Bacillus-based direct-fed microbial on in vitro nutrient digestibility of forage and high-starch concentrate substrates. Transl Anim Sci 2022; 6:txac067. [PMID: 35702175 PMCID: PMC9186312 DOI: 10.1093/tas/txac067] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Two experiments evaluated the effects of a Bacillus-based direct-fed microbial (DFM) on in vitro dry matter (DM) and neutral detergent fiber (NDF; experiment 1) and starch (experiment 2) digestibility of a variety of ruminant feedstuffs. In experiment 1, 10 forage sources were evaluated: ryegrass, alfalfa hay, leucaena, corn silage, spinifex, buffel grass, flinders grass, Mitchell grass, Rhodes grass hay, and Queensland bluegrass. Experimental treatments were control (forages with no probiotic inoculation; CON) and forage sources inoculated with a mixture containing Bacillus licheniformis and Bacillus subtilis (3.2 × 109 CFU per g; DFM). In vitro DM and NDF digestibility were evaluated at 24- and 48-h post-treatment inoculation. Treatment × hour interactions were noted for IVDMD (in vitro dry matter digestibility) and IVNDFD (in vitro neutral detergent fibre digestibility) (P ≤ 0.05). More specifically, DFM inoculation increased (P ≤ 0.03) IVDMD at 24 h in four forages and increased 48-h IVDMD (P ≤ 0.02) in alfalfa hay, ryegrass, leucaena, and Mitchell grass hay, but opposite results were observed for Queensland bluegrass (P < 0.01). A 24- and 48-h IVNDFD increased following DFM inoculation (P ≤ 0.02) in five forage sources, but reduced for Queensland bluegrass (P < 0.01). When the forages were classified according to their quality, main treatment effects were detected for IVDMD (P ≤ 0.02) and IVNDFD (P < 0.01). In experiment 2, five common cereal grains were evaluated—high-density barley (82 g/100 mL), low-density barley (69 g/100 mL), corn, sorghum, and wheat—under the same treatments as in experiment 1. In vitro starch digestibility (IVSD) was evaluated at 6- and 12-h following treatment inoculation. Treatment × hour interactions were observed for starch digestibility in three out of five concentrate sources (P ≤ 0.001). Inoculation of DFM yielded greater 24-h starch digestibility for high-, low-density barley, and wheat (P ≤ 0.02), but also greater at 48 h in wheat (P < 0.0001). Moreover, mean starch digestibility improved for corn and sorghum inoculated with DFM (P < 0.01). Using a Bacillus-based DFM (B. licheniformis and B. subtilis) improved the mean in vitro DM and NDF digestibility of different forage sources of varying qualities (based on crude protein content). Similarly, IVSD was also greater following DFM inoculation, highlighting the potential of this probiotic to improve nutrient digestibility and utilization in the beef and dairy cattle herd.
Collapse
Affiliation(s)
- Liyi Pan
- University of Queensland, School of Agriculture and Food Sciences, Gatton, Australia
| | - Karen Harper
- University of Queensland, School of Agriculture and Food Sciences, Gatton, Australia
| | | | | | | |
Collapse
|
10
|
Malau-Aduli AEO, Curran J, Gall H, Henriksen E, O'Connor A, Paine L, Richardson B, van Sliedregt H, Smith L. Genetics and nutrition impacts on herd productivity in the Northern Australian beef cattle production cycle. Vet Anim Sci 2022; 15:100228. [PMID: 35024494 PMCID: PMC8724957 DOI: 10.1016/j.vas.2021.100228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genetics and nutrition drive herd productivity due to significant impacts on all components of the beef cattle production cycle. In northern Australia, the beef production system is largely extensive and relies heavily on tropical cattle grazing low quality, phosphorus-deficient pastures with seasonal variations in nutritive value. The existing feedlots are predominantly grain-based; providing high-energy rations, faster turn-off and finishing of backgrounded cattle to meet market specifications. This review focusses on the beef cattle production cycle components of maternal nutrition, foetal development, bull fertility, post-natal to weaning, backgrounding, feedlotting, rumen microbes and carcass quality as influenced by genetics and nutrition. This student-driven review identified the following knowledge gaps in the published literature on northern Australian beef cattle production cycle: 1. Long-term benefits and effects of maternal supplementation to alter foetal enzymes on the performance and productivity of beef cattle; 2. Exogenous fibrolytic enzymes to increase nutrient availability from the cell wall and better utilisation of fibrous and phosphorus deficient pasture feedbase during backgrounding; 3. Supplementation with novel encapsulated calcium butyrate and probiotics to stimulate the early development of rumen papillae and enhance early weaning of calves; 4. The use of single nucleotide polymorphisms as genetic markers for the early selection of tropical beef cattle for carcass and meat eating quality traits prior to feedlotting; The review concludes by recommending future research in whole genome sequencing to target specific genes associated with meat quality characteristics in order to explore the development of breeds with superior genes more suited to the North Australian beef industry. Further research into diverse nutritional strategies of phosphorus supplementation and fortifying tropically adapted grasses with protein-rich legumes and forages for backgrounding and supplementing lot-fed beef cattle with omega-3 oil of plant origin will ensure sustainable production of beef with a healthy composition, tenderness, taste and eating quality.
Collapse
Affiliation(s)
- Aduli E O Malau-Aduli
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Jessica Curran
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Holly Gall
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Erica Henriksen
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Alina O'Connor
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Lydia Paine
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Bailey Richardson
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Hannake van Sliedregt
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Lucy Smith
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
11
|
Defining the Frontiers of Synergism between Cellulolytic Enzymes for Improved Hydrolysis of Lignocellulosic Feedstocks. Catalysts 2021. [DOI: 10.3390/catal11111343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lignocellulose has economic potential as a bio-resource for the production of value-added products (VAPs) and biofuels. The commercialization of biofuels and VAPs requires efficient enzyme cocktail activities that can lower their costs. However, the basis of the synergism between enzymes that compose cellulolytic enzyme cocktails for depolymerizing lignocellulose is not understood. This review aims to address the degree of synergism (DS) thresholds between the cellulolytic enzymes and how this can be used in the formulation of effective cellulolytic enzyme cocktails. DS is a powerful tool that distinguishes between enzymes’ synergism and anti-synergism during the hydrolysis of biomass. It has been established that cellulases, or cellulases and lytic polysaccharide monooxygenases (LPMOs), always synergize during cellulose hydrolysis. However, recent evidence suggests that this is not always the case, as synergism depends on the specific mechanism of action of each enzyme in the combination. Additionally, expansins, nonenzymatic proteins responsible for loosening cell wall fibers, seem to also synergize with cellulases during biomass depolymerization. This review highlighted the following four key factors linked to DS: (1) a DS threshold at which the enzymes synergize and produce a higher product yield than their theoretical sum, (2) a DS threshold at which the enzymes display synergism, but not a higher product yield, (3) a DS threshold at which enzymes do not synergize, and (4) a DS threshold that displays anti-synergy. This review deconvolutes the DS concept for cellulolytic enzymes, to postulate an experimental design approach for achieving higher synergism and cellulose conversion yields.
Collapse
|
12
|
Li R, Sun Y, Zhou Y, Gai J, You L, Yang F, Tang W, Li X. A novel decrystallizing protein CxEXL22 from Arthrobotrys sp. CX1 capable of synergistically hydrolyzing cellulose with cellulases. BIORESOUR BIOPROCESS 2021; 8:90. [PMID: 38650251 PMCID: PMC10992334 DOI: 10.1186/s40643-021-00446-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/16/2021] [Indexed: 11/10/2022] Open
Abstract
A novel expansin-like protein (CxEXL22) has been identified and characterized from newly isolated Arthrobotrys sp. CX1 that can cause cellulose decrystallization. Unlike previously reported expansin-like proteins from microbes, CxEXL22 has a parallel β-sheet domain at the N terminal, containing many hydrophobic residues to form the hydrophobic surface as part of the groove. The direct phylogenetic relationship implied the genetic transfers occurred from nematode to nematicidal fungal Arthrobotrys sp. CX1. CxEXL22 showed strong activity for the hydrolysis of hydrogen bonds between cellulose molecules, especially when highly crystalline cellulose was used as substrate. The hydrolysis efficiency of Avicel was increased 7.9-fold after pretreating with CxEXL22. The rupture characterization of crystalline region indicated that CxEXL22 strongly binds cellulose and breaks up hydrogen bonds in the crystalline regions of cellulose to split cellulose chains, causing significant depolymerization to expose much more microfibrils and enhances cellulose accessibility.
Collapse
Affiliation(s)
- Rong Li
- School of Biological Engineering, Dalian Polytechnic University, Gangjingqu, Dalian, 116034, China
| | - Yunze Sun
- School of Biological Engineering, Dalian Polytechnic University, Gangjingqu, Dalian, 116034, China
| | - Yihao Zhou
- School of Biological Engineering, Dalian Polytechnic University, Gangjingqu, Dalian, 116034, China
| | - Jiawei Gai
- School of Biological Engineering, Dalian Polytechnic University, Gangjingqu, Dalian, 116034, China
| | - Linlu You
- School of Biological Engineering, Dalian Polytechnic University, Gangjingqu, Dalian, 116034, China
| | - Fan Yang
- School of Biological Engineering, Dalian Polytechnic University, Gangjingqu, Dalian, 116034, China
| | - Wenzhu Tang
- School of Biological Engineering, Dalian Polytechnic University, Gangjingqu, Dalian, 116034, China
| | - Xianzhen Li
- School of Biological Engineering, Dalian Polytechnic University, Gangjingqu, Dalian, 116034, China.
| |
Collapse
|
13
|
Zhang P, Cui M, Huang R, Qi W, Thielemans W, He Z, Su R. Enhanced enzymatic hydrolysis of cellulose by endoglucanase via expansin pretreatment and the addition of zinc ions. BIORESOURCE TECHNOLOGY 2021; 333:125139. [PMID: 33882384 DOI: 10.1016/j.biortech.2021.125139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
One of the major limitations of lignocellulose conversion is the relatively low efficiency of cellulases. Expansins can act as an accessory protein to loosen the rigid cellulose structure and promote cellulose hydrolysis. However, the synergistic action of expansin is not well understood. In this study, we employed quartz crystal microbalance with dissipation to real-time monitor the adsorption of Bacillus subtilis expansin (BsEXLX1) and endoglucanase I (Cel7B) and the hydrolysis of cellulose. The effects of pH, temperature, and zinc ions on the initial adsorption rate and adsorption capacity of BsEXLX1 were examined. When 36.5 mM of zinc ions was added, the irreversible adsorption ratio of BsEXLX1 further increased to 4.63 times the value in the absence of zinc ions, whereas the initial adsorption rate and the hydrolysis rate constants of Cel7B could reach 2.16 times and 2.05 times the values in the absence of zinc ions, respectively.
Collapse
Affiliation(s)
- Peiqian Zhang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Mei Cui
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Renliang Huang
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China.
| |
Collapse
|
14
|
Valenzuela-Riffo F, Parra-Palma C, Ramos P, Morales-Quintana L. Molecular and structural insights into FaEXPA5, an alpha-expansin protein related with cell wall disassembly during ripening of strawberry fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:581-589. [PMID: 32711363 DOI: 10.1016/j.plaphy.2020.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Cell wall modification is one of the main factors that produce the tissue softening during ripening of many fruit including strawberry (Fragaria x ananassa). Expansins have been studied for over 20 years as a class of the important cell growth regulators, and in the last years these have been related with the fruit softening. In strawberry, five partial sequences of the expansins genes were described in the past, this analysis showed that FaEXP5 partial gene was present throughout fruit development, but was more strongly expressed during ripening. Now, we reported the full length of this α-expansin (FaEXPA5), whose had been related with fruit softening, and the protein structural was described by homology model. Their transcript accumulation during softening was confirmed by qRT-PCR, displaying a high accumulation rate during fruit ripening. In silico analysis of promoter sequence showed four ABA and two auxin cis-regulatory elements, potentially responsible for the expression patterns observed in response to the hormone treatments. Additionally, 3D protein model displayed two domains and one open groove characteristic of expansin structures. The protein-ligand interactions were evaluated by molecular dynamic (MD) simulation using three different long structure ligands (a cellulose fiber, a xyloglucan fiber (XXXG type), and a pectin fiber as control). Favorable interactions were observed with xyloglucan and cellulose, being cellulose the best ligand with lower RMSD value. Additionally, MD simulations showed that FaEXPA5 can interact with the ligands through residues present in the open groove along the two domains.
Collapse
Affiliation(s)
- Felipe Valenzuela-Riffo
- Programa de Doctorado en Ciencias Mención Ingeniería Genética, Instituto de Ciencias Biológicas, Universidad de Talca, Chile
| | - Carolina Parra-Palma
- Programa de Doctorado en Ciencias Mención Ingeniería Genética, Instituto de Ciencias Biológicas, Universidad de Talca, Chile
| | - Patricio Ramos
- Instituto de Ciencias Biológicas, Universidad de Talca, Chile; Núcleo Científico Multidisciplinario-DI, Universidad de Talca, Chile.
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédica, Facultad Ciencias de La Salud, Universidad Autónoma de Chile, Talca, Chile.
| |
Collapse
|
15
|
Ribeiro RSA, Bojorge N, Pereira N. Statistical analysis of the crystallinity index of nanocellulose produced from Kraft pulp via controlled enzymatic hydrolysis. Biotechnol Appl Biochem 2020; 67:366-374. [PMID: 31943376 DOI: 10.1002/bab.1873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 12/06/2019] [Indexed: 11/06/2022]
Abstract
Enzymatic hydrolysis processes can change the physical characteristics of nanocellulose derived from Kraft pulp. Among these attributes are its crystallinity index and dimensions. In this study, we determined the optimal conditions under which nanocellulose could be produced enzymatically with the greatest increase of the crystallinity index relative to its initial state. Application of Central Composite Rotatable Design statistical analysis to the experiments was employed to direct an increase the crystallinity index in 10% at the 24-H hydrolysis time. Upon establishment of ideal levels of starting material and enzyme, reactions were carried out at hydrolysis times of 24, 48, and 72 H under these ideal parameters. The effectiveness of deagglomeration was demonstrated by measuring the hydrodynamic diameter of the particles by dynamic light scattering. Scanning electron microscopy was performed on four samples, the original material, kraft pulp, and hydrolyzed biomaterials at 72 H in the ideal parameters. The hydrolyzed material with the best statistical data, revealing a fiber diameter of 180 nm, disclosing to be biomaterial with nanocellulose dimensions.
Collapse
Affiliation(s)
| | - Ninoska Bojorge
- Department of Chemical and Petroleum Engineering, Fluminense Federal University, Niterói, RJ, Brazil
| | - Nei Pereira
- School of Chemistry, Center of Technology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
16
|
An expansin-like protein expands forage cell walls and synergistically increases hydrolysis, digestibility and fermentation of livestock feeds by fibrolytic enzymes. PLoS One 2019; 14:e0224381. [PMID: 31689330 PMCID: PMC6830940 DOI: 10.1371/journal.pone.0224381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/12/2019] [Indexed: 11/19/2022] Open
Abstract
Bacterial expansin-like proteins have synergistically increased cellulose hydrolysis by cellulolytic enzymes during the initial stages of biofuel production, but they have not been tested on livestock feeds. The objectives of this study were to: isolate and express an expansin-like protein (BsEXLX1), to verify its disruptive activity (expansion) on cotton fibers by immunodetection (Experiment 1), and to determine the effect of dose, pH and temperature for BsEXLX1 and cellulase to synergistically hydrolyze filter paper (FP) and carboxymethyl cellulose (CMC) under laboratory (Experiment 2) and simulated ruminal (Experiment 3) conditions. In addition, we determined the ability of BsEXLX1 to synergistically increase hydrolysis of corn and bermudagrass silages by an exogenous fibrolytic enzyme (EFE) (Experiment 4) and how different doses of BsEXLX1 and EFE affect the gas production (GP), in vitro digestibility and fermentation of a diet for dairy cows (Experiment 5). In Experiment 1, immunofluorescence-based examination of cotton microfiber treated without or with recombinant expansin-like protein expressed from Bacillus subtilis (BsEXLX1) increased the surface area by > 100% compared to the untreated control. In Experiment 2, adding BsEXLX1 (100 μg/g FP) to cellulase (0.0148 FPU) increased release of reducing sugars compared to cellulase alone by more than 40% (P < 0.01) at optimal pH (4.0) and temperature (50°C) after 24 h. In Experiment 3 and 4, adding BsEXLX1 to cellulase or EFE, synergistically increased release of reducing sugars from FP, corn and bermudagrass silages under simulated ruminal conditions (pH 6.0, 39°C). In Experiment 5, increasing the concentration of BsEXLX1 linearly increased (P < 0.01) GP from fermentation of a diet for dairy cows by up to 17.8%. Synergistic effects between BsEXLX1 and EFE increased in vitro NDF digestibility of the diet by 23.3% compared to the control. In vitro digestibility of hemicellulose and butyrate concentration were linearly increased by BsEXLX1 compared to the control. This study demonstrated that BsEXLX1 can improve the efficacy of cellulase and EFE at hydrolyzing pure substrates and dairy cow feeds, respectively.
Collapse
|
17
|
Pech-Cervantes AA, Muhammad I, Ogunade IM, Jiang Y, Kim DH, Gonzalez CF, Hackmann TJ, Oliveira AS, Vyas D, Adesogan AT. Exogenous fibrolytic enzymes and recombinant bacterial expansins synergistically improve hydrolysis and in vitro digestibility of bermudagrass haylage. J Dairy Sci 2019; 102:8059-8073. [PMID: 31326164 DOI: 10.3168/jds.2019-16339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 05/07/2019] [Indexed: 11/19/2022]
Abstract
Four experiments were conducted to examine the effects of a recombinant bacterial expansin-like protein (BsEXLX1) from Bacillus subtilis and a commercial exogenous fibrolytic enzyme (EFE) preparation for ruminants on hydrolysis of pure substrates (cellulose and xylan) and in vitro digestibility of bermudagrass haylage (BMH). Recombinant Escherichia coli BL21 strain was used to express BsEXLX1; the protein was purified using an affinity column. In experiment 1, carboxymethylcellulose, Whatman #1 filter paper (General Electric, Boston, MA) and oat-spelt xylan substrates were subjected to 4 treatments (1) sodium citrate buffer (control), (2) BsEXLX1 (162 µg/g of substrate), (3) EFE (2.3 mg/g of substrate), and (4) EFE + BsELX1 in 3 independent runs. Samples were incubated at optimal conditions for both additives (pH 5 and 50°C) or at ruminal (pH 6 and 39°C) or ambient (pH 6 and 25°C) conditions for 24 h and sugar release was measured. In experiment 2, digestibility in vitro of BMH was examined after treatment with the following: (1) control (buffer only), (2) BsEXLX1 (162 µg/g of dry matter), (3) EFE (2.2 mg/g of dry matter), and (4) EFE + BsEXLX1 in 3 independent runs at 39°C for 24 h. Experiment 3 examined effects of EFE and BsEXLX1 on simulated preingestive hydrolysis and profile of released sugars from BMH after samples were suspended in deionized water with sodium azide at 25°C for 24 h in 2 independent runs. In experiment 4, the sequence of the BsEXLX1 purified protein was compared with 447 ruminal bacterial genomes to identify similar proteins from the rumen. In experiment 1, compared with EFE alone, EFE and BsEXLX1 synergistically increased sugar release from carboxymethylcellulose and Whatman #1 filter paper under all simulated conditions; however, hydrolysis of xylan was not improved. In experiment 2, compared with EFE alone, treatment with EFE and BsEXLX1 increased neutral detergent fiber and acid detergent fiber digestibility of bermudagrass haylage (by 5.5 and 15%, respectively) and total volatile fatty acid concentrations, and decreased acetate-propionate ratio. In experiment 3, compared with EFE alone. The EFE and BsEXLX1 synergistically reduced concentrations of neutral detergent fiber and acid detergent fiber and increased release of sugars by 9.3%, particularly cellobiose (72.5%). In experiment 4, a similar sequence to that of BsEXLX1 was identified in Bacillus licheniformis, and similar hypothetical protein sequences were identified in Ruminococcus flavefaciens strains along with different protein structures in E. xylanophilum and Lachnospiraceae. This study showed that an expansin-like protein synergistically increased the hydrolysis of pure cellulose substrates and the hydrolysis and digestibility in vitro of BMH.
Collapse
Affiliation(s)
| | - I Muhammad
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32603
| | - I M Ogunade
- Department of Animal Sciences, University of Florida, Gainesville 32611; Division of Food and Animal Science, Kentucky State University, Frankfort 40601
| | - Y Jiang
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - D H Kim
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - C F Gonzalez
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32603
| | - T J Hackmann
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - A S Oliveira
- Institute of Agriculture and Environmental Sciences, Federal University of Mato Grosso, Campus Sinop, Sinop, MT, Brazil, 78890
| | - D Vyas
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - A T Adesogan
- Department of Animal Sciences, University of Florida, Gainesville 32611.
| |
Collapse
|
18
|
Quarantin A, Castiglioni C, Schäfer W, Favaron F, Sella L. The Fusarium graminearum cerato-platanins loosen cellulose substrates enhancing fungal cellulase activity as expansin-like proteins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:229-238. [PMID: 30913532 DOI: 10.1016/j.plaphy.2019.03.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/27/2019] [Accepted: 03/14/2019] [Indexed: 05/01/2023]
Abstract
Cerato-platanin proteins (CPPs) are small non-catalytic, cysteine-rich hydrophobic proteins produced by filamentous fungi. The genome of Fusarium graminearum, the causal agent of Fusarium head blight disease of wheat and other cereal grains, contains two genes putatively encoding for CPPs. To better characterize their features, the two FgCPPs were heterologously expressed in Pichia pastoris. The recombinant FgCPPs reduced the viscosity of a cellulose soluble derivate (carboxymethyl cellulose, CMC). The same effect was not observed on other polysaccharide substrates such as chitin, 1,3-β-glucan, xylan and pectin. Indeed, differently from other fungal CPPs and similarly to expansins, FgCPPs are trapped by cellulose and not by chitin, thus suggesting that these proteins interact with cellulose. A double knock-out mutant deleted of both FgCPPs encoding genes produces much more cellulase activity than the corresponding wild type strain when grown on CMC, likely compensating the absence of FgCPPs. This result prompted us to investigate a possible synergistic effect of these proteins with fungal cellulases. The incubation of FgCPPs in the presence of a fungal cellulase (EC 3.2.1.4) determines an increased enzymatic activity on CMC, filter paper and wheat cell walls. The observation that FgCPPs act with a non-hydrolytic mechanism indicates that these proteins favor fungal cellulase activity in an expansin-like manner. Though the disruption of the FgCPP genes had no demonstrable impact on fungal virulence, our experimental data suggest their probable involvement in virulence, thus we refer to them as accessory virulence genes. Our results suggest also that the FgCPPs could be exploited for future biotechnological application in second-generation biofuels production on lignocellulosic biomasses rich in cellulose. Finally, we demonstrate that FgCPPs act as elicitors of defense responses on Arabidopsis leaves, increasing resistance to Botrytis cinerea infections.
Collapse
Affiliation(s)
- Alessandra Quarantin
- Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Carla Castiglioni
- Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Wilhelm Schäfer
- Biocenter Klein Flottbek, Molecular Phytopathology and Genetics, University of Hamburg, Hamburg, Germany
| | - Francesco Favaron
- Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Luca Sella
- Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Italy.
| |
Collapse
|
19
|
Adesogan AT, Arriola KG, Jiang Y, Oyebade A, Paula EM, Pech-Cervantes AA, Romero JJ, Ferraretto LF, Vyas D. Symposium review: Technologies for improving fiber utilization. J Dairy Sci 2019; 102:5726-5755. [PMID: 30928262 DOI: 10.3168/jds.2018-15334] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
Abstract
The forage lignocellulosic complex is one of the greatest limitations to utilization of the nutrients and energy in fiber. Consequently, several technologies have been developed to increase forage fiber utilization by dairy cows. Physical or mechanical processing techniques reduce forage particle size and gut fill and thereby increase intake. Such techniques increase the surface area for microbial colonization and may increase fiber utilization. Genetic technologies such as brown midrib mutants (BMR) with less lignin have been among the most repeatable and practical strategies to increase fiber utilization. Newer BMR corn hybrids are better yielding than the early hybrids and recent brachytic dwarf BMR sorghum hybrids avoid lodging problems of early hybrids. Several alkalis have been effective at increasing fiber digestibility. Among these, ammoniation has the added benefit of increasing the nitrogen concentration of the forage. However, few of these have been widely adopted due to the cost and the caustic nature of the chemicals. Urea treatment is more benign but requires sufficient urease and moisture for efficacy. Ammonia-fiber expansion technology uses high temperature, moisture, and pressure to degrade lignocellulose to a greater extent than ammoniation alone, but it occurs in reactors and is therefore not currently usable on farms. Biological technologies for increasing fiber utilization such as application of exogenous fibrolytic enzymes, live yeasts, and yeast culture have had equivocal effects on forage fiber digestion in individual studies, but recent meta-analyses indicate that their overall effects are positive. Nonhydrolytic expansin-like proteins act in synergy with fibrolytic enzymes to increase fiber digestion beyond that achieved by the enzyme alone due to their ability to expand cellulose microfibrils allowing greater enzyme penetration of the cell wall matrix. White-rot fungi are perhaps the biological agents with the greatest potential for lignocellulose deconstruction, but they require aerobic conditions and several strains degrade easily digestible carbohydrates. Less ruminant nutrition research has been conducted on brown rot fungi that deconstruct lignocellulose by generating highly destructive hydroxyl radicals via the Fenton reaction. More research is needed to increase the repeatability, efficacy, cost effectiveness, and on-farm applicability of technologies for increasing fiber utilization.
Collapse
Affiliation(s)
- A T Adesogan
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611.
| | - K G Arriola
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - Y Jiang
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - A Oyebade
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - E M Paula
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - A A Pech-Cervantes
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - J J Romero
- Animal and Veterinary Sciences Program, School of Food and Agriculture, University of Maine, Orono 04469
| | - L F Ferraretto
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - D Vyas
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| |
Collapse
|
20
|
de Paula RG, Antoniêto ACC, Ribeiro LFC, Srivastava N, O'Donovan A, Mishra PK, Gupta VK, Silva RN. Engineered microbial host selection for value-added bioproducts from lignocellulose. Biotechnol Adv 2019; 37:107347. [PMID: 30771467 DOI: 10.1016/j.biotechadv.2019.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/27/2019] [Accepted: 02/08/2019] [Indexed: 12/12/2022]
Abstract
Lignocellulose is a rich and sustainable globally available carbon source and is considered a prominent alternative raw material for producing biofuels and valuable chemical compounds. Enzymatic hydrolysis is one of the crucial steps of lignocellulose degradation. Cellulolytic and hemicellulolytic enzyme mixes produced by different microorganisms including filamentous fungi, yeasts and bacteria, are used to degrade the biomass to liberate monosaccharides and other compounds for fermentation or conversion to value-added products. During biomass pretreatment and degradation, toxic compounds are produced, and undesirable carbon catabolic repression (CCR) can occur. In order to solve this problem, microbial metabolic pathways and transcription factors involved have been investigated along with the application of protein engineering to optimize the biorefinery platform. Engineered Microorganisms have been used to produce specific enzymes to breakdown biomass polymers and metabolize sugars to produce ethanol as well other biochemical compounds. Protein engineering strategies have been used for modifying lignocellulolytic enzymes to overcome enzymatic limitations and improving both their production and functionality. Furthermore, promoters and transcription factors, which are key proteins in this process, are modified to promote microbial gene expression that allows a maximum performance of the hydrolytic enzymes for lignocellulosic degradation. The present review will present a critical discussion and highlight the aspects of the use of microorganisms to convert lignocellulose into value-added bioproduct as well combat the bottlenecks to make the biorefinery platform from lignocellulose attractive to the market.
Collapse
Affiliation(s)
- Renato Graciano de Paula
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Liliane Fraga Costa Ribeiro
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi 221005, U.P, India
| | - Anthonia O'Donovan
- School of Science and Computing, Galway-Mayo Institute of Technology, Galway, Ireland
| | - P K Mishra
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi 221005, U.P, India
| | - Vijai K Gupta
- ERA Chair of Green Chemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia.
| | - Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
21
|
|
22
|
Holland C, Perzon A, Cassland PRC, Jensen JP, Langebeck B, Sørensen OB, Whale E, Hepworth D, Plaice-Inglis R, Moestrup Ø, Ulvskov P, Jørgensen B. Nanofibers Produced from Agro-Industrial Plant Waste Using Entirely Enzymatic Pretreatments. Biomacromolecules 2018; 20:443-453. [DOI: 10.1021/acs.biomac.8b01435] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Claire Holland
- Department of Plant and Environmental Sciences, Section for Glycobiology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Alixander Perzon
- Department of Plant and Environmental Sciences, Section for Glycobiology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | | | - John P. Jensen
- Nordzucker, Technology and Innovation, Falckvænget 1, 4900 Nakskov, Denmark
| | - Birger Langebeck
- Nordzucker, Technology and Innovation, Falckvænget 1, 4900 Nakskov, Denmark
| | | | - Eric Whale
- Cellucomp Ltd., Unit 3, West
Dock, Harbour Place, Burntisland, Fife KY3 9DW, United Kingdom
| | - David Hepworth
- Cellucomp Ltd., Unit 3, West
Dock, Harbour Place, Burntisland, Fife KY3 9DW, United Kingdom
| | - Robyn Plaice-Inglis
- Cellucomp Ltd., Unit 3, West
Dock, Harbour Place, Burntisland, Fife KY3 9DW, United Kingdom
| | - Øjvind Moestrup
- Department of Biology, University of Copenhagen, 2100 København Ø, Denmark
| | - Peter Ulvskov
- Department of Plant and Environmental Sciences, Section for Glycobiology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, Section for Glycobiology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
23
|
Guo H, Chang Y, Lee DJ. Enzymatic saccharification of lignocellulosic biorefinery: Research focuses. BIORESOURCE TECHNOLOGY 2018; 252:198-215. [PMID: 29329774 DOI: 10.1016/j.biortech.2017.12.062] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
To realize lignocellulosic biorefinery is of global interest, with enzymatic saccharification presenting an essential stage to convert polymeric sugars to mono-sugars for fermentation use. This mini-review summarizes qualitatively the research focuses discussed the review articles presented in the past 22 months and other relevant papers. The research focuses on pretreatment with improved efficiency, enhanced enzyme production with high yields and high extreme tolerance, feasible combined saccharification and fermentation processes, detailed mechanisms corresponding to the enzymatic saccharification in lignocellulosic biorefinery, and the costs are discussed.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yingju Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
24
|
Orłowski A, Artzi L, Cazade PA, Gunnoo M, Bayer EA, Thompson D. On the distinct binding modes of expansin and carbohydrate-binding module proteins on crystalline and nanofibrous cellulose: implications for cellulose degradation by designer cellulosomes. Phys Chem Chem Phys 2018. [DOI: 10.1039/c7cp07764e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transformation of cellulose into monosaccharides can be achieved by hydrolysis of the cellulose chains, carried out by a special group of enzymes known as cellulases.
Collapse
Affiliation(s)
- Adam Orłowski
- Department of Physics
- Bernal Institute
- University of Limerick
- Ireland
| | - Lior Artzi
- Department of Biomolecular Sciences
- The Weizmann Institute of Science
- Rehovot
- Israel
| | | | | | - Edward A. Bayer
- Department of Biomolecular Sciences
- The Weizmann Institute of Science
- Rehovot
- Israel
| | - Damien Thompson
- Department of Physics
- Bernal Institute
- University of Limerick
- Ireland
| |
Collapse
|
25
|
|
26
|
Banoth C, Sunkar B, Tondamanati PR, Bhukya B. Improved physicochemical pretreatment and enzymatic hydrolysis of rice straw for bioethanol production by yeast fermentation. 3 Biotech 2017; 7:334. [PMID: 28955631 DOI: 10.1007/s13205-017-0980-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/14/2017] [Indexed: 10/18/2022] Open
Abstract
Lignocellulosic biomass such as agricultural and forest residues are considered as an alternative, inexpensive, renewable, and abundant source for fuel ethanol production. In the present study, three different pretreatment methods for rice straw were carried out to investigate the maximum lignin removal for subsequent bioethanol fermentation. The chemical pretreatments of rice straw were optimized under different pretreatment severity conditions in the range of 1.79-2.26. Steam explosion of rice straw at 170 °C for 10 min, sequentially treated with 2% (w/v) KOH (SEKOH) in autoclave at 121 °C for 30 min, resulted in 85 ± 2% delignification with minimum sugar loss. Combined pretreatment of steam explosion and KOH at severity factor (SF 3.10) showed improved cellulose fraction of biomass. Furthermore, enzymatic hydrolysis at 30 FPU/g enzyme loading resulted in 664.0 ± 5.39 mg/g sugar yield with 82.60 ± 1.7% saccharification efficiency. Consequently, the hydrolysate of SEKOH with 58.70 ± 1.52 g/L sugars when fermented with Saccharomyces cerevisiae OBC14 showed 26.12 ± 1.24 g/L ethanol, 0.44 g/g ethanol yield with 87.03 ± 1.6% fermentation efficiency.
Collapse
|
27
|
Bhatia R, Gallagher JA, Gomez LD, Bosch M. Genetic engineering of grass cell wall polysaccharides for biorefining. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1071-1092. [PMID: 28557198 PMCID: PMC5552484 DOI: 10.1111/pbi.12764] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/17/2017] [Accepted: 05/24/2017] [Indexed: 05/10/2023]
Abstract
Grasses represent an abundant and widespread source of lignocellulosic biomass, which has yet to fulfil its potential as a feedstock for biorefining into renewable and sustainable biofuels and commodity chemicals. The inherent recalcitrance of lignocellulosic materials to deconstruction is the most crucial limitation for the commercial viability and economic feasibility of biomass biorefining. Over the last decade, the targeted genetic engineering of grasses has become more proficient, enabling rational approaches to modify lignocellulose with the aim of making it more amenable to bioconversion. In this review, we provide an overview of transgenic strategies and targets to tailor grass cell wall polysaccharides for biorefining applications. The bioengineering efforts and opportunities summarized here rely primarily on (A) reprogramming gene regulatory networks responsible for the biosynthesis of lignocellulose, (B) remodelling the chemical structure and substitution patterns of cell wall polysaccharides and (C) expressing lignocellulose degrading and/or modifying enzymes in planta. It is anticipated that outputs from the rational engineering of grass cell wall polysaccharides by such strategies could help in realizing an economically sustainable, grass-derived lignocellulose processing industry.
Collapse
Affiliation(s)
- Rakesh Bhatia
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | - Joe A. Gallagher
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | | | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| |
Collapse
|
28
|
A single amino acid mutation affects elicitor and expansins-like activities of cerato-platanin, a non-catalytic fungal protein. PLoS One 2017; 12:e0178337. [PMID: 28542638 PMCID: PMC5444802 DOI: 10.1371/journal.pone.0178337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/11/2017] [Indexed: 11/19/2022] Open
Abstract
Cerato-platanin (CP) is a non-catalytic, cysteine-rich protein, the first member of the cerato-platanin family. It is a single-domain protein with a double Ψ/β barrel domain resembling the D1 domain of plant and bacterial expansins. Similarly to expansins, CP shows a cell wall-loosening activity on cellulose and can be defined as an expanisin-like protein, in spite of the missing D2 domain, normally present in plant expansins. The weakening activity shown on cellulose may facilitate the CP-host interaction, corroborating the role of CP in eliciting plant defence response. Indeed, CP is an elicitor of primary defences acting as a Pathogen-Associated Molecular Patterns (PAMP). So far, structure-function relationship study has been mainly performed on the bacterial BsEXLX1 expansin, probably due to difficulties in expressing plant expansins in heterologous systems. Here, we report a subcloning and purification method of CP in the engineered E. coli SHuffle cells, which proved to be suitable to obtain the properly folded and biologically active protein. The method also enabled the production of the mutant D77A, rationally designed to be inactive. The wild-type and the mutated CP were characterized for cellulose weakening activity and for PAMP activity (i.e. induction of Reactive Oxygen Species synthesis and phytoalexins production). Our analysis reveals that the carboxyl group of D77 is crucial for expansin-like and PAMP activities, thus permitting to establish a correlation between the ability to weaken cellulose and the capacity to induce defence responses in plants. Our results enable the structural and functional characterization of a mono-domain eukaryotic expansin and identify the essential role of a specific aspartic residue in cellulose weakening.
Collapse
|
29
|
Santos CA, Ferreira-Filho JA, O'Donovan A, Gupta VK, Tuohy MG, Souza AP. Production of a recombinant swollenin from Trichoderma harzianum in Escherichia coli and its potential synergistic role in biomass degradation. Microb Cell Fact 2017; 16:83. [PMID: 28511724 PMCID: PMC5432999 DOI: 10.1186/s12934-017-0697-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/05/2017] [Indexed: 01/09/2023] Open
Abstract
Background Fungal swollenins (SWOs) constitute a class of accessory proteins that are homologous to canonical plant expansins. Expansins and expansin-related proteins are well known for acting in the deagglomeration of cellulose structure by loosening macrofibrils. Consequently, SWOs can increase the accessibility and efficiency of the other enzymes involved in the saccharification of cellulosic substrates. Thus, SWOs are promising targets for improving the hydrolysis of plant biomass and for use as an additive to enhance the efficiency of an enzyme cocktail designed for the production of biofuels. Results Here, we report the initial characterization of an SWO from Trichoderma harzianum (ThSwo) that was successfully produced using Escherichia coli as a host. Initially, transcriptome and secretome data were used to compare swo gene expression and the amount of secreted ThSwo. The results from structural modeling and phylogenetic analysis of the ThSwo protein showed that ThSwo does preserve some structural features of the plant expansins and family-45 glycosyl hydrolase enzymes, but it evolutionarily diverges from both of these protein classes. Recombinant ThSwo was purified at a high yield and with high purity and showed secondary folding similar to that of a native fungal SWO. Bioactivity assays revealed that the purified recombinant ThSwo created a rough and amorphous surface on Avicel and displayed a high synergistic effect with a commercial xylanase from T. viride, enhancing its hydrolytic performance up to 147 ± 7%. Conclusions Many aspects of the structure and mechanism of action of fungal SWOs remain unknown. In the present study, we produced a recombinant, active SWO from T. harzianum using a prokaryotic host and confirmed its potential synergistic role in biomass degradation. Our work paves the way for further studies evaluating the structure and function of this protein, especially regarding its use in biotechnology. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0697-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clelton A Santos
- Molecular Glycobiotechnology Group, Department of Biochemistry, National University of Ireland Galway, Galway, Ireland.,Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, SP, Brazil
| | - Jaire A Ferreira-Filho
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anthonia O'Donovan
- Molecular Glycobiotechnology Group, Department of Biochemistry, National University of Ireland Galway, Galway, Ireland.,Technology Centre for Biorefining and Bioenergy, Orbsen Building, National University of Ireland, Galway, Ireland
| | - Vijai K Gupta
- Molecular Glycobiotechnology Group, Department of Biochemistry, National University of Ireland Galway, Galway, Ireland.,Technology Centre for Biorefining and Bioenergy, Orbsen Building, National University of Ireland, Galway, Ireland.,Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Maria G Tuohy
- Molecular Glycobiotechnology Group, Department of Biochemistry, National University of Ireland Galway, Galway, Ireland.,Technology Centre for Biorefining and Bioenergy, Orbsen Building, National University of Ireland, Galway, Ireland
| | - Anete P Souza
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, SP, Brazil. .,Department of Plant Biology, Biology Institute, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
30
|
Reyes-Sosa FM, López Morales M, Platero Gómez AI, Valbuena Crespo N, Sánchez Zamorano L, Rocha-Martín J, Molina-Heredia FP, Díez García B. Management of enzyme diversity in high-performance cellulolytic cocktails. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:156. [PMID: 28649275 PMCID: PMC5477296 DOI: 10.1186/s13068-017-0845-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/12/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Modern biorefineries require enzymatic cocktails of improved efficiency to generate fermentable sugars from lignocellulosic biomass. Cellulolytic fungi, among other microorganisms, have demonstrated the highest potential in terms of enzymatic productivity, complexity and efficiency. On the other hand, under cellulolytic-inducing conditions, they often produce a considerable diversity of carbohydrate-active enzymes which allow them to adapt to changing environmental conditions. However, industrial conditions are fixed and adjusted to the optimum of the whole cocktail, resulting in underperformance of individual enzymes. RESULTS One of these cellulolytic cocktails from Myceliophthora thermophila has been analyzed here by means of LC-MS/MS. Pure GH6 family members detected have been characterized, confirming previous studies, and added to whole cocktails to compare their contribution in the hydrolysis of industrial substrates. Finally, independent deletions of two GH6 family members, as an example of the enzymatic diversity management, led to the development of a strain producing a more efficient cellulolytic cocktail. CONCLUSIONS These data indicate that the deletion of noncontributive cellulases (here EG VI) can increase the cellulolytic efficiency of the cocktail, validating the management of cellulase diversity as a strategy to obtain improved fungal cellulolytic cocktails.
Collapse
Affiliation(s)
| | - Macarena López Morales
- Department of Biotechnology, Abengoa Research, Campus Palmas Altas, C/Energía Solar 1, 41014 Seville, Spain
| | - Ana Isabel Platero Gómez
- Department of Biotechnology, Abengoa Research, Campus Palmas Altas, C/Energía Solar 1, 41014 Seville, Spain
| | - Noelia Valbuena Crespo
- Department of Biotechnology, Abengoa Research, Campus Palmas Altas, C/Energía Solar 1, 41014 Seville, Spain
| | - Laura Sánchez Zamorano
- Department of Biotechnology, Abengoa Research, Campus Palmas Altas, C/Energía Solar 1, 41014 Seville, Spain
| | - Javier Rocha-Martín
- Department of Biotechnology, Abengoa Research, Campus Palmas Altas, C/Energía Solar 1, 41014 Seville, Spain
| | - Fernando P. Molina-Heredia
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla y CSIC, Américo Vespucio 49, 41092 Seville, Spain
| | - Bruno Díez García
- Department of Biotechnology, Abengoa Research, Campus Palmas Altas, C/Energía Solar 1, 41014 Seville, Spain
| |
Collapse
|
31
|
Cunha FM, Badino AC, Farinas CS. Effect of a novel method for in-house cellulase production on 2G ethanol yields. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
32
|
An overview of holocellulose-degrading enzyme immobilization for use in bioethanol production. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Eibinger M, Sigl K, Sattelkow J, Ganner T, Ramoni J, Seiboth B, Plank H, Nidetzky B. Functional characterization of the native swollenin from Trichoderma reesei: study of its possible role as C1 factor of enzymatic lignocellulose conversion. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:178. [PMID: 27570542 PMCID: PMC5000517 DOI: 10.1186/s13068-016-0590-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/15/2016] [Indexed: 05/28/2023]
Abstract
BACKGROUND Through binding to cellulose, expansin-like proteins are thought to loosen the structural order of crystalline surface material, thus making it more accessible for degradation by hydrolytic enzymes. Swollenin SWO1 is the major expansin-like protein from the fungus Trichoderma reesei. Here, we have performed a detailed characterization of a recombinant native form of SWO1 with respect to its possible auxiliary role in the enzymatic saccharification of lignocellulosic substrates. RESULTS The swo1 gene was overexpressed in T. reesei QM9414 Δxyr1 mutant, featuring downregulated cellulase production, and the protein was purified from culture supernatant. SWO1 was N-glycosylated and its circular dichroism spectrum suggested a folded protein. Adsorption isotherms (25 °C, pH 5.0, 1.0 mg substrate/mL) revealed SWO1 to be 120- and 20-fold more specific for binding to birchwood xylan and kraft lignin, respectively, than for binding to Avicel PH-101. The SWO1 binding capacity on lignin (25 µmol/g) exceeded 12-fold that on Avicel PH-101 (2.1 µmol/g). On xylan, not only the binding capacity (22 µmol/g) but also the affinity of SWO1 (K d = 0.08 µM) was enhanced compared to Avicel PH-101 (K d = 0.89 µM). SWO1 caused rapid release of a tiny amount of reducing sugars (<1 % of total) from different substrates (Avicel PH-101, nanocrystalline cellulose, steam-pretreated wheat straw, barley β-glucan, cellotetraose) but did not promote continued saccharification. Atomic force microscopy revealed that amorphous cellulose films were not affected by SWO1. Also with AFM, binding of SWO1 to cellulose nanocrystallites was demonstrated at the single-molecule level, but adsorption did not affect this cellulose. SWO1 exhibited no synergy with T. reesei cellulases in the hydrolysis of the different celluloses. However, SWO1 boosted slightly (1.5-fold) the reducing sugar release from a native grass substrate. CONCLUSIONS SWO1 is a strongly glycosylated protein, which has implications for producing it in heterologous hosts. Although SWO1 binds to crystalline cellulose, its adsorption to xylan is much stronger. SWO1 is not an auxiliary factor of the enzymatic degradation of a variety of cellulosic substrates. Effect of SWO1 on sugar release from intact plant cell walls might be exploitable with certain (e.g., mildly pretreated) lignocellulosic feedstocks.
Collapse
Affiliation(s)
- Manuel Eibinger
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/1, 8010 Graz, Austria
| | - Karin Sigl
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/1, 8010 Graz, Austria
| | - Jürgen Sattelkow
- Institute for Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria
| | - Thomas Ganner
- Institute for Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria
| | - Jonas Ramoni
- Research Division Biochemical Technology, Institute of Chemical Engineering, TU Wien, Gumpendorferstrasse 1A/166, 1060 Vienna, Austria
| | - Bernhard Seiboth
- Research Division Biochemical Technology, Institute of Chemical Engineering, TU Wien, Gumpendorferstrasse 1A/166, 1060 Vienna, Austria
| | - Harald Plank
- Institute for Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria
- Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/1, 8010 Graz, Austria
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
34
|
Martinez-Anaya C. Understanding the structure and function of bacterial expansins: a prerequisite towards practical applications for the bioenergy and agricultural industries. Microb Biotechnol 2016; 9:727-736. [PMID: 27365165 PMCID: PMC5072189 DOI: 10.1111/1751-7915.12377] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 01/03/2023] Open
Abstract
Since the publication of a landmark article on the structure of EXLX1 from Bacillus subtilis in 2011, our knowledge of bacterial expansins has steadily increased and our view and understanding of these enigmatic proteins has advanced with relation to their structure, phylogenetic relationships and substrate interaction, although the molecular basis for their mechanism of action remains to be determined. Lignocellulosic material represents a source of fermentable sugars for the production of biofuels, and cell‐wall degrading activities are essential to efficiently release such sugars from their polymeric structures. Because expansins from fungi and bacteria seem to be required to properly colonize or cause disease to plant tissues, and because they share some characteristics with their plant counterparts for loosening the cell wall they have been seen as a promising tool to overcome the recalcitrance of these materials. However, microbial expansins activity is at best, very low compared with plant expansins activity. This revision analyses recent work on bacterial expansins structure, function and biological role, emphasizing our need to focus on their mechanism of action as a means to design better strategies for their use, in both in the energy and agricultural industries.
Collapse
Affiliation(s)
- Claudia Martinez-Anaya
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, Cuernavaca, 62210, Morelos, México.
| |
Collapse
|
35
|
Valadares F, Gonçalves TA, Gonçalves DSPO, Segato F, Romanel E, Milagres AMF, Squina FM, Ferraz A. Exploring glycoside hydrolases and accessory proteins from wood decay fungi to enhance sugarcane bagasse saccharification. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:110. [PMID: 27222665 PMCID: PMC4877993 DOI: 10.1186/s13068-016-0525-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/10/2016] [Indexed: 05/25/2023]
Abstract
BACKGROUND Glycoside hydrolases (GHs) and accessory proteins are key components for efficient and cost-effective enzymatic hydrolysis of polysaccharides in modern, biochemically based biorefineries. Currently, commercialized GHs and accessory proteins are produced by ascomycetes. However, the role of wood decay basidiomycetes proteins in biomass saccharification has not been extensively pursued. Wood decay fungi degrade polysaccharides in highly lignified tissues in natural environments, and are a promising enzyme source for improving enzymatic cocktails that are designed for in vitro lignocellulose conversion. RESULTS GHs and accessory proteins were produced by representative brown- and white-rot fungi, Laetiporus sulphureus and Pleurotus ostreatus, respectively. Concentrated protein extracts were then used to amend commercial enzymatic cocktails for saccharification of alkaline-sulfite pretreated sugarcane bagasse. The main enzymatic activities found in the wood decay fungal protein extracts were attributed to endoglucanases, xylanases and β-glucosidases. Cellobiohydrolase (CBH) activities in the L. sulphureus and P. ostreatus extracts were low and nonexistent, respectively. The initial glucan conversion rates were boosted when the wood decay fungal proteins were used to replace half of the enzymes from the commercial cocktails. L. sulphureus proteins increased the glucan conversion levels, with values above those observed for the full load of commercial enzymes. Wood decay fungal proteins also enhanced the xylan conversion efficiency due to their high xylanase activities. Proteomic studies revealed 104 and 45 different proteins in the P. ostreatus and L. sulphureus extracts, respectively. The enhancement of the saccharification of alkaline-pretreated substrates by the modified enzymatic cocktails was attributed to the following protein families: GH5- and GH45-endoglucanases, GH3-β-glucosidases, and GH10-xylanases. CONCLUSIONS The extracellular proteins produced by wood decay fungi provide useful tools to improve commercial enzyme cocktails that are currently used for the saccharification of alkaline-pretreated lignocellulosic substrates. The relevant proteins encompass multiple glycoside hydrolase families, including the GH5- and GH45-endoglucanases, GH3-β-glucosidases, and GH10-xylanases.
Collapse
Affiliation(s)
- Fernanda Valadares
- />Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP 12602-810 Brazil
| | - Thiago A. Gonçalves
- />Laboratório Nacional de Ciência & Tecnolologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970 Brazil
- />Departamento de Bioquímica, Instituto de Biologia (IB), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862 Brazil
| | - Dayelle S. P. O. Gonçalves
- />Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP 12602-810 Brazil
| | - Fernando Segato
- />Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP 12602-810 Brazil
| | - Elisson Romanel
- />Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP 12602-810 Brazil
| | - Adriane M. F. Milagres
- />Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP 12602-810 Brazil
| | - Fabio M. Squina
- />Laboratório Nacional de Ciência & Tecnolologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970 Brazil
| | - André Ferraz
- />Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP 12602-810 Brazil
| |
Collapse
|
36
|
Gupta VK, Kubicek CP, Berrin JG, Wilson DW, Couturier M, Berlin A, Filho EXF, Ezeji T. Fungal Enzymes for Bio-Products from Sustainable and Waste Biomass. Trends Biochem Sci 2016; 41:633-645. [PMID: 27211037 DOI: 10.1016/j.tibs.2016.04.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/13/2016] [Accepted: 04/22/2016] [Indexed: 12/19/2022]
Abstract
Lignocellulose, the most abundant renewable carbon source on earth, is the logical candidate to replace fossil carbon as the major biofuel raw material. Nevertheless, the technologies needed to convert lignocellulose into soluble products that can then be utilized by the chemical or fuel industries face several challenges. Enzymatic hydrolysis is of major importance, and we review the progress made in fungal enzyme technology over the past few years with major emphasis on (i) the enzymes needed for the conversion of polysaccharides (cellulose and hemicellulose) into soluble products, (ii) the potential uses of lignin degradation products, and (iii) current progress and bottlenecks for the use of the soluble lignocellulose derivatives in emerging biorefineries.
Collapse
Affiliation(s)
- Vijai K Gupta
- Molecular Glycobiotechnology Group, Discipline of Biochemistry, National University of Ireland Galway, Galway City, Ireland.
| | - Christian P Kubicek
- Biotechnology and Microbiology, Institute of Chemical Engineering, Technische Universität Wien, Gumpendorferstrasse, 1060 Wien, Austria
| | - Jean-Guy Berrin
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1163-Biodiversité et Biotechnologie Fongiques, Avenue de Luminy, 13288 Marseille, France; Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, Avenue de Luminy, 13288 Marseille, France
| | - David W Wilson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Marie Couturier
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1163-Biodiversité et Biotechnologie Fongiques, Avenue de Luminy, 13288 Marseille, France; Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, Avenue de Luminy, 13288 Marseille, France
| | - Alex Berlin
- Novozymes, Inc., 1445 Drew Ave, Davis CA 95618 USA
| | - Edivaldo X F Filho
- Laboratory of Enzymology, Department of Cell Biology, University of Brasilia, Asa Norte, 70910-900 Brasilia, DF Brazil
| | - Thaddeus Ezeji
- Biotechnology and Fermentation Group, Department of Animal Sciences, Ohio State University and Ohio Agricultural Research and Development Center (OARDC), Madison Avenue, Wooster, OH 44691, USA
| |
Collapse
|
37
|
|
38
|
Yao G, Wu R, Kan Q, Gao L, Liu M, Yang P, Du J, Li Z, Qu Y. Production of a high-efficiency cellulase complex via β-glucosidase engineering in Penicillium oxalicum. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:78. [PMID: 27034716 PMCID: PMC4815182 DOI: 10.1186/s13068-016-0491-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/18/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Trichoderma reesei is a widely used model cellulolytic fungus, supplying a highly effective cellulase production system. Recently, the biofuel industry discovered filamentous fungi from the Penicillium genus as a promising alternative to T. reesei. RESULTS In our study, we present a systematic over-expression analysis of nine β-glucosidase encoding genes in the wild-type strain 114-2 of Penicillium oxalicum. We found that the over-expression of BGL1, BGL4, or BGL5 significantly enhanced both β-glucosidase activity and hydrolysis efficiency of the enzyme system on filter paper. We utilised two strategies to over-express β-glucosidase in the strain RE-10 that-although over-producing cellulase, does so at the cost of the cellulase mixture deficiency. The constitutive promoter of gene pde_02864 encoding 40S ribosomal protein S8 was used to over-express three β-glucosidases: BGL1, BGL4, and BGL5. We found that all mutants show significantly enhanced levels of β-glucosidase at transcriptional, protein, and activity levels. Furthermore, the inducible promoter from bgl2 was used to conditionally over-express the β-glucosidases BGL1 and BGL4. Surprisingly, this induced expression strategy enables significantly improved expression efficiency. The BGL1 over-expressing mutant I1-13 particularly improved the β-glucosidase activity at a factor of 65-folds, resulting in levels of up to 150 U/ml. All our BGL over-expression mutants displayed significant enhancement of cellulolytic ability on both microcrystalline cellulose and filter paper. In addition, they substantially reduced the enzyme loads in the saccharification of a natural lignocellulose material delignified corncob residue (DCCR). The mutant I4-32 with over-expression of BGL4 achieved the highest glucose yield in the saccharification of DCCR at only 25 % enzyme load compared to the parental strain RE-10. CONCLUSIONS In summary, genetically engineering P. oxalicum to significantly improve β-glucosidase activity is a potent strategy to substantially boost the hydrolytic efficiency of the cellulase cocktail, which will ultimately lead to a considerable reduction of cost for biomass-based biofuel.
Collapse
Affiliation(s)
- Guangshan Yao
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan City, 250100 Shandong Province China
| | - Ruimei Wu
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan City, 250100 Shandong Province China
| | - Qinbiao Kan
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan City, 250100 Shandong Province China
| | - Liwei Gao
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan City, 250100 Shandong Province China
| | - Meng Liu
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan City, 250100 Shandong Province China
| | - Piao Yang
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan City, 250100 Shandong Province China
| | - Jian Du
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan City, 250100 Shandong Province China
| | - Zhonghai Li
- />Department of Bioengineering, Qilu University of Technology, Jinan City, 250353 Shandong Province China
| | - Yinbo Qu
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan City, 250100 Shandong Province China
- />National Glycoengineering Research Center, Shandong University, Jinan City, 250100 Shandong Province China
| |
Collapse
|