1
|
Tuthill JE, Ortega YK, Pearson DE. Seed Size, Seed Dispersal Traits, and Plant Dispersion Patterns for Native and Introduced Grassland Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1032. [PMID: 36903896 PMCID: PMC10005497 DOI: 10.3390/plants12051032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Most terrestrial plants disperse by seeds, yet the relationship between seed mass, seed dispersal traits, and plant dispersion is poorly understood. We quantified seed traits for 48 species of native and introduced plants from the grasslands of western Montana, USA, to investigate the relationships between seed traits and plant dispersion patterns. Additionally, because the linkage between dispersal traits and dispersion patterns might be stronger for actively dispersing species, we compared these patterns between native and introduced plants. Finally, we evaluated the efficacy of trait databases versus locally collected data for examining these questions. We found that seed mass correlated positively with the presence of dispersal adaptations such as pappi and awns, but only for introduced plants, for which larger-seeded species were four times as likely to exhibit dispersal adaptations as smaller-seeded species. This finding suggests that introduced plants with larger seeds may require dispersal adaptations to overcome seed mass limitations and invasion barriers. Notably, larger-seeded exotics also tended to be more widely distributed than their smaller-seeded counterparts, again a pattern that was not apparent for native taxa. These results suggest that the effects of seed traits on plant distribution patterns for expanding populations may be obscured for long-established species by other ecological filters (e.g., competition). Finally, seed masses from databases differed from locally collected data for 77% of the study species. Yet, database seed masses correlated with local estimates and generated similar results. Nonetheless, average seed masses differed up to 500-fold between data sources, suggesting that local data provides more valid results for community-level questions.
Collapse
Affiliation(s)
- Jane E. Tuthill
- Division of Biological Sciences, Ecology and Evolution, The University of Montana, Missoula, MT 59801, USA
| | - Yvette K. Ortega
- Rocky Mountain Research Station, United States Forest Service, Missoula, MT 59801, USA
| | - Dean E. Pearson
- Division of Biological Sciences, Ecology and Evolution, The University of Montana, Missoula, MT 59801, USA
- Rocky Mountain Research Station, United States Forest Service, Missoula, MT 59801, USA
| |
Collapse
|
2
|
Demographic Rate Variability of Bighead and Silver Carps Along an Invasion Gradient. JOURNAL OF FISH AND WILDLIFE MANAGEMENT 2021. [DOI: 10.3996/jfwm-20-070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abstract
Invasive Bighead Carp Hypophthalmichthys nobilis and Silver Carp H. molitrix have infested and caused largescale ecological and economic damage to the Illinois, Mississippi, and Ohio rivers. We compiled demographic data from 42,995 fish from 23 pools in the Illinois, Mississippi, and Ohio rivers, which universities and management agencies previously collected as part of management, monitoring, and research activities. We used this data set to test whether demographic rates (length–weight relations including body condition, mortality, growth curves, and female maturity curves) varied among subpopulations across a gradient of invasion status. We found that length–weight relations and growth curves varied among subpopulations, whereas maturity curves did not. Our findings demonstrated spatial variability in demographic rates for Bighead and Silver carp across a broad geographic area in relation to invasion status and river conditions. Herein, we provide general subpopulation management options and present different hypotheses to explain the observed spatial variability in demographic rates.
Collapse
|
3
|
Welles SR, Funk JL. Patterns of intraspecific trait variation along an aridity gradient suggest both drought escape and drought tolerance strategies in an invasive herb. ANNALS OF BOTANY 2021; 127:461-471. [PMID: 32949134 PMCID: PMC7988521 DOI: 10.1093/aob/mcaa173] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/16/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS In water-limited landscapes, some plants build structures that enable them to survive with minimal water (drought resistance). Instead of making structures that allow survival through times of water limitation, annual plants may invoke a drought escape strategy where they complete growth and reproduction when water is available. Drought escape and resistance each require a unique combination of traits and therefore plants are likely to have a suite of trait values that are consistent with a single drought response strategy. In environments where conditions are variable, plants may additionally evolve phenotypically plastic trait responses to water availability. Invasive annual species commonly occur in arid and semi-arid environments and many will be subject to reduced water availability associated with climate change. Assessing intraspecific trait variation across environmental gradients is a valuable tool for understanding how invasive plants establish and persist in arid environments. METHODS In this study, we used a common garden experiment with two levels of water availability to determine how traits related to carbon assimilation, water use, biomass allocation and flowering phenology vary in California wild radish populations across an aridity gradient. KEY RESULTS We found that populations from arid environments have rapid flowering and increased allocation to root biomass, traits associated with both drought escape and tolerance. Early flowering was associated with higher leaf nitrogen concentration and lower leaf mass per area, traits associated with high resource acquisition. While trait values varied across low- and high-water treatments, these shifts were consistent across populations, indicating no differential plasticity across the aridity gradient. CONCLUSIONS While previous studies have suggested that drought escape and drought resistance are mutually exclusive drought response strategies, our findings suggest that invasive annuals may employ both strategies to succeed in novel semi-arid environments. As many regions are expected to become more arid in the future, investigations of intraspecific trait variation within low water environments help to inform our understanding of potential evolutionary responses to increased aridity in invasive species.
Collapse
Affiliation(s)
- Shana R Welles
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Jennifer L Funk
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
- Department of Plant Sciences, University of California, Davis, CA, USA
| |
Collapse
|
4
|
Abstract
Relatives often interact differently with each other than with nonrelatives, and whether kin cooperate or compete has important consequences for the evolution of mating systems, seed size, dispersal, and competition. Previous research found that the larger of the size dimorphic seeds produced by the annual plant Aegilops triuncialis suppressed germination of their smaller sibs by 25%-60%. Here, we found evidence for kin recognition and sibling rivalry later in life among Aegilops seedlings that places seed-seed interactions in a broader context. In experiments with size dimorphic seeds, seedlings reduced the growth of sibling seedlings by ∼40% but that of nonsibling seedlings by ∼25%. These sequential antagonistic interactions between seeds and then seedlings provide insight into conflict and cooperation among kin. Kin-based conflict among seeds may maintain dormancy for some seeds until the coast is clear of more competitive siblings. If so, biotically induced seed dormancy may be a unique form of cooperation, which increases the inclusive fitness of maternal plants and offspring by minimizing competition among kin.
Collapse
|
5
|
Stinson K, Carley L, Hancock L, Donohue K. Effects of maternal source and progeny microhabitat on natural selection and population dynamics in Alliaria petiolata. AMERICAN JOURNAL OF BOTANY 2019; 106:821-832. [PMID: 31162644 DOI: 10.1002/ajb2.1299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
PREMISE The success or failure of propagules in contrasting microhabitats may play a role in biological invasion. We tested for variation in demographic performance and phenotypic trait expression during invasion by Alliaria petiolata in different microhabitats. METHODS We performed a reciprocal transplant experiment with Alliaria petiolata from edge, intermediate, and forest understory microhabitats to determine the roles of the environment and maternal source on traits, fecundity, population growth rates (λ), and selection. RESULTS Observations of in situ populations show that edge populations had the highest density and reproductive output, and forest populations had the lowest. In experimental populations, population growth rates and reproductive output were highest in the edge, and the intermediate habitat had the lowest germination and juvenile survival. Traits exhibited phenotypic plasticity in response to microhabitat, but that plasticity was not adaptive. There were few effects of maternal source location on fitness components or traits. CONCLUSIONS Alliaria petiolata appears to be viable, or nearly so, in all three microhabitat types, with edge populations likely providing seed to the other microhabitats. The intermediate microhabitat may filter propagules at the seed stage, but discrepancies between in situ observations and experimental transplants preclude clear conclusions about the role of each microhabitat in niche expansion. However, edge microhabitats show the highest seed output in both analyses, suggesting that managing edge habitats might reduce spread to the forest understory.
Collapse
Affiliation(s)
- Kristina Stinson
- University of Massachusetts, Environmental Conservation, Amherst, MA, 01003, USA
- Harvard University, Harvard Forest, Petersham, MA, 01366, USA
| | - Lauren Carley
- Duke University Program in Ecology, Durham, NC, 27708, USA
- Duke University Biology Department, Durham, NC, 27708, USA
| | - Laura Hancock
- University of Massachusetts, Environmental Conservation, Amherst, MA, 01003, USA
- University of Massachusetts, Graduate Program in Organismic and Evolutionary Biology, Amherst, MA, 01003, USA
| | | |
Collapse
|
6
|
Böckelmann J, Tremetsberger K, Šumberová K, Grausgruber H, Bernhardt KG. Fitness and growth of the ephemeral mudflat species Cyperus fuscus in river and anthropogenic habitats in response to fluctuating water-levels. FLORA 2017; 234:135-149. [PMID: 31719726 PMCID: PMC6850911 DOI: 10.1016/j.flora.2017.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cyperus fuscus is a representative of threatened ephemeral wetland plant communities in summer-dry shoreline habitats. We compared variation and plasticity in traits related to fitness and growth of plants germinating from the soil seed bank and established plants from river and secondary anthropogenic habitats. Plants from sites at rivers, fishponds and fish storage ponds were cultivated and selfed to get homogenous seed material for a germination and an environmental manipulation experiment involving three different water regimes. Differences in traits and their plasticities were evaluated by means of linear mixed models. Cyperus fuscus followed a low-oxygen escape strategy when flooded. Seeds of plants derived from the soil seed bank germinated faster than seeds of plants derived from established plants suggesting that short-term selection of genotypes is mediated by the particular conditions on the site during germination. The experiment revealed significant differences between river and secondary habitats as well as between the soil seed bank and established plants. For example, plants from river habitats produced the highest number of culms with inflorescences. The difference was most evident under partial submergence. Plants from fish storage ponds rapidly reached the reproductive phase, but produced less culms with inflorescences. This seemingly allows them to cope with numerous and irregular disturbances and intensive substrate moisture changes. Our results suggest that populations have adapted to conditions at secondary habitats provided by fish farming during the last centuries.
Collapse
Affiliation(s)
- Jörg Böckelmann
- Institute of Botany, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences, Vienna, Gregor Mendel-Straβe 33, A-1180 Vienna, Austria
| | - Karin Tremetsberger
- Institute of Botany, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences, Vienna, Gregor Mendel-Straβe 33, A-1180 Vienna, Austria
| | - Kateřina Šumberová
- Department of Vegetation Ecology, Institute of Botany, The Czech Academy of Sciences, Lidická 25/27, CZ-602 00 Brno, Czech Republic
| | - Heinrich Grausgruber
- Division of Plant Breeding, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz-Straβe 24, A-3430 Tulln an der Donau, Austria
| | - Karl-Georg Bernhardt
- Institute of Botany, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences, Vienna, Gregor Mendel-Straβe 33, A-1180 Vienna, Austria
| |
Collapse
|
7
|
Pironon S, Papuga G, Villellas J, Angert AL, García MB, Thompson JD. Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm. Biol Rev Camb Philos Soc 2016; 92:1877-1909. [DOI: 10.1111/brv.12313] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 10/07/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Samuel Pironon
- Instituto Pirenaico de Ecología (IPE-CSIC); Box 1005 avenida Montañana 50059 Zaragoza, Spain
| | - Guillaume Papuga
- UMR 5175 Centre d'Ecologie Fonctionnelle et Evolutive, CNRS; Box 1019 route de Mende 34090 Montpellier France
- Dipartimento di Scienze della Natura e del Territorio; Università degli Studi di Sassari; Box 21 Piazza Universitá 07100 Sassari Italy
| | - Jesús Villellas
- Department of Biology; Duke University; Box 90338 Durham NC 27708-0338 U.S.A
| | - Amy L. Angert
- Departments of Botany and Zoology; University of British Columbia; Box 4200-6270 University Boulevard, Vancouver V6T 1Z4 Canada
| | - María B. García
- Instituto Pirenaico de Ecología (IPE-CSIC); Box 1005 avenida Montañana 50059 Zaragoza, Spain
| | - John D. Thompson
- UMR 5175 Centre d'Ecologie Fonctionnelle et Evolutive, CNRS; Box 1019 route de Mende 34090 Montpellier France
| |
Collapse
|
8
|
Ostrowski MF, Prosperi JM, David J. Potential Implications of Climate Change on Aegilops Species Distribution: Sympatry of These Crop Wild Relatives with the Major European Crop Triticum aestivum and Conservation Issues. PLoS One 2016; 11:e0153974. [PMID: 27100790 PMCID: PMC4839726 DOI: 10.1371/journal.pone.0153974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 04/06/2016] [Indexed: 11/23/2022] Open
Abstract
Gene flow from crop to wild relatives is a common phenomenon which can lead to reduced adaptation of the wild relatives to natural ecosystems and/or increased adaptation to agrosystems (weediness). With global warming, wild relative distributions will likely change, thus modifying the width and/or location of co-occurrence zones where crop-wild hybridization events could occur (sympatry). This study investigates current and 2050 projected changes in sympatry levels between cultivated wheat and six of the most common Aegilops species in Europe. Projections were generated using MaxEnt on presence-only data, bioclimatic variables, and considering two migration hypotheses and two 2050 climate scenarios (RCP4.5 and RCP8.5). Overall, a general decline in suitable climatic conditions for Aegilops species outside the European zone and a parallel increase in Europe were predicted. If no migration could occur, the decline was predicted to be more acute outside than within the European zone. The potential sympatry level in Europe by 2050 was predicted to increase at a higher rate than species richness, and most expansions were predicted to occur in three countries, which are currently among the top four wheat producers in Europe: Russia, France and Ukraine. The results are also discussed with regard to conservation issues of these crop wild relatives.
Collapse
Affiliation(s)
- Marie-France Ostrowski
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes, Montpellier Supagro, France
- Montpellier Supagro, Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes, Montpellier Supagro, France
| | - Jean-Marie Prosperi
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes, Montpellier Supagro, France
| | - Jacques David
- Montpellier Supagro, Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes, Montpellier Supagro, France
| |
Collapse
|
9
|
Bresowar GE, McGlaughlin ME. Morphological and genetic discrepancies in populations of Oreocarya paradoxa and O. revealii: the impact of edaphic selection on recent diversification in the Colorado Plateau. AMERICAN JOURNAL OF BOTANY 2015; 102:1647-1658. [PMID: 26453596 DOI: 10.3732/ajb.1500278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/02/2015] [Indexed: 06/05/2023]
Abstract
PREMISE OF THE STUDY Investigations of recently derived and edaphically (soil) defined plant systems have provided insight into important mechanisms of ecological divergence. We investigated the impact of edaphic adaptation on recent divergence between two Colorado Plateau endemics: the gypsum facultative Oreocarya revealii (Boraginaceae) and its more generalist sister species O. paradoxa. We assessed morphological stability, genetic identity, and soil chemistry to determine whether O. revealii is a distinct lineage edaphically adapted from O. paradoxa, as has been described in the literature. METHODS We genotyped 21 populations throughout the ranges of both species using 11 microsatellite markers and three plastid regions (trnL-F, trnT-L, trnQ-rps16) for haplotype analysis. We compared these data with soil chemistry (Ca and S concentrations, indicating gypsum levels), location, and morphological identity of populations. KEY RESULTS Soil chemistry failed to explain genetic or morphological identity in either taxon. Haplotype analysis suggests ancestral variation in the more geographically restricted O. revealii, along with regional geographic isolation. A discontinuity was identified between the morphological and genetic identity in several populations, suggesting incomplete lineage sorting and the nonfixation of identifying morphological traits. CONCLUSIONS Oreocarya revealii is unlikely to have arisen via edaphic selection, because soil chemistry of population sites, morphology of individuals, and genetic identity are not strongly correlated. The nonfixation of identifying traits is likely a result of recent divergence in this system, and the potentiality of such discrepancies should be considered when investigating recently diversified gypsum-associated groups.
Collapse
Affiliation(s)
- Gerald E Bresowar
- Biology Department, Emory and Henry College, Emory, Virginia 24327, USA School of Biological Sciences, University of Northern Colorado, Greeley, Colorado 80639, USA
| | - Mitchell E McGlaughlin
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado 80639, USA
| |
Collapse
|
10
|
Colautti RI, Lau JA. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Mol Ecol 2015; 24:1999-2017. [PMID: 25891044 DOI: 10.1111/mec.13162] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 01/15/2023]
Abstract
Biological invasions are 'natural' experiments that can improve our understanding of contemporary evolution. We evaluate evidence for population differentiation, natural selection and adaptive evolution of invading plants and animals at two nested spatial scales: (i) among introduced populations (ii) between native and introduced genotypes. Evolution during invasion is frequently inferred, but rarely confirmed as adaptive. In common garden studies, quantitative trait differentiation is only marginally lower (~3.5%) among introduced relative to native populations, despite genetic bottlenecks and shorter timescales (i.e. millennia vs. decades). However, differentiation between genotypes from the native vs. introduced range is less clear and confounded by nonrandom geographic sampling; simulations suggest this causes a high false-positive discovery rate (>50%) in geographically structured populations. Selection differentials (¦s¦) are stronger in introduced than in native species, although selection gradients (¦β¦) are not, consistent with introduced species experiencing weaker genetic constraints. This could facilitate rapid adaptation, but evidence is limited. For example, rapid phenotypic evolution often manifests as geographical clines, but simulations demonstrate that nonadaptive trait clines can evolve frequently during colonization (~two-thirds of simulations). Additionally, QST-FST studies may often misrepresent the strength and form of natural selection acting during invasion. Instead, classic approaches in evolutionary ecology (e.g. selection analysis, reciprocal transplant, artificial selection) are necessary to determine the frequency of adaptive evolution during invasion and its influence on establishment, spread and impact of invasive species. These studies are rare but crucial for managing biological invasions in the context of global change.
Collapse
Affiliation(s)
- Robert I Colautti
- Plant Evolutionary Ecology Group, Department for Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076, Tübingen, Germany
| | | |
Collapse
|
11
|
Abstract
Agricultural intensification is critical to meet global food demand, but intensification threatens native species and degrades ecosystems. Sustainable intensification (SI) is heralded as a new approach for enabling growth in agriculture while minimizing environmental impacts. However, the SI literature has overlooked a major environmental risk. Using data from eight countries on six continents, we show that few governments regulate conventionally bred pasture taxa to limit threats to natural areas, even though most agribusinesses promote taxa with substantial weed risk. New pasture taxa (including species, subspecies, varieties, cultivars, and plant-endophyte combinations) are bred with characteristics typical of invasive species and environmental weeds. By introducing novel genetic and endophyte variation, pasture taxa are imbued with additional capacity for invasion and environmental impact. New strategies to prevent future problems are urgently needed. We highlight opportunities for researchers, agribusiness, and consumers to reduce environmental risks associated with new pasture taxa. We also emphasize four main approaches that governments could consider as they build new policies to limit weed risks, including (i) national lists of taxa that are prohibited based on environmental risk; (ii) a weed risk assessment for all new taxa; (iii) a program to rapidly detect and control new taxa that invade natural areas; and (iv) the polluter-pays principle, so that if a taxon becomes an environmental weed, industry pays for its management. There is mounting pressure to increase livestock production. With foresight and planning, growth in agriculture can be achieved sustainably provided that the scope of SI expands to encompass environmental weed risks.
Collapse
|
12
|
Can transgenerational plasticity contribute to the invasion success of annual plant species? Oecologia 2014; 176:95-106. [PMID: 24929349 DOI: 10.1007/s00442-014-2994-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 06/05/2014] [Indexed: 10/25/2022]
Abstract
Adaptive transgenerational plasticity (TGP), i.e., significantly higher fitness when maternal and offspring conditions match, might contribute to the population growth of non-native species in highly variable environments. However, comparative studies that directly test this hypothesis are lacking. Therefore, we performed a reciprocal split-brood experiment to compare TGP in response to N and water availability in single populations of two invasive (Amaranthus retroflexus, Galinsoga parviflora) and two congeneric non-invasive introduced species (Amaranthus albus, Galinsoga ciliata). We hypothesized that the transgenerational effect is adaptive: (1) in invasive species compared with non-invasive adventives, and (2) in stressful conditions compared with resource-rich environments. The phenotypic variation among offspring was generated, in large part, by our experimental treatments in the maternal generation; therefore, we demonstrated a direct TGP effect on the offspring's adult fitness. We found evidence, for the first time, that invasive and non-invasive adventive species differ regarding the expression of TGP in the adult stage, as adaptive responses were found exclusively in the invasive species. The manifestation of TGP was more explicit under resource-rich conditions; therefore, it might contribute to the population dynamics of non-native species in resource-rich sites rather than to their ecological tolerance spectra.
Collapse
|