1
|
LeBoldus JM, Lynch SC, Newhouse AE, Søndreli KL, Newcombe G, Bennett PI, Muchero W, Chen JG, Busby PE, Gordon M, Liang H. Biotechnology and Genomic Approaches to Mitigating Disease Impacts on Forest Health. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:309-335. [PMID: 39251210 DOI: 10.1146/annurev-phyto-021622-114434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Outbreaks of insects and diseases are part of the natural disturbance regime of all forests. However, introduced pathogens have had outsized impacts on many dominant forest tree species over the past century. Mitigating these impacts and restoring these species are dilemmas of the modern era. Here, we review the ecological and economic impact of introduced pathogens, focusing on examples in North America. We then synthesize the successes and challenges of past biotechnological approaches and discuss the integration of genomics and biotechnology to help mitigate the effects of past and future pathogen invasions. These questions are considered in the context of the transgenic American chestnut, which is the most comprehensive example to date of how biotechnological tools have been used to address the impacts of introduced pathogens on naïve forest ecosystems.
Collapse
Affiliation(s)
- Jared M LeBoldus
- Department of Botany and Plant Pathology and Department of Forest Engineering, Resources, and Management, Oregon State University, Corvallis, Oregon, USA;
| | - Shannon C Lynch
- Faculty of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, New York, USA
| | - Andrew E Newhouse
- Faculty of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, New York, USA
| | - Kelsey L Søndreli
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - George Newcombe
- Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, Idaho, USA
| | - Patrick I Bennett
- Rocky Mountain Research Station, United States Forest Service, Moscow, Idaho, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Posy E Busby
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Michael Gordon
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA
| | - Haiying Liang
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
2
|
Romanelli JP, Piana MR, Klaus VH, Brancalion PHS, Murcia C, Cardou F, Wallace KJ, Adams C, Martin PA, Burton PJ, Diefenderfer HL, Gornish ES, Stanturf J, Beyene M, Santos JPB, Rodrigues RR, Cadotte MW. Convergence and divergence in science and practice of urban and rural forest restoration. Biol Rev Camb Philos Soc 2024; 99:295-312. [PMID: 37813383 DOI: 10.1111/brv.13022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Forest restoration has never been higher on policymakers' agendas. Complex and multi-dimensional arrangements across the urban-rural continuum challenge restorationists and require integrative approaches to strengthen environmental protection and increase restoration outcomes. It remains unclear if urban and rural forest restoration are moving towards or away from each other in practice and research, and whether comparing research outcomes can help stakeholders to gain a clearer understanding of the interconnectedness between the two fields. This study aims to identify the challenges and opportunities for enhancing forest restoration in both urban and rural systems by reviewing the scientific evidence, engaging with key stakeholders and using an urban-rural forest restoration framework. Using the Society for Ecological Restoration's International Principles as discussion topics, we highlight aspects of convergence and divergence between the two fields to broaden our understanding of forest restoration and promote integrative management approaches to address future forest conditions. Our findings reveal that urban and rural forest restoration have convergent and divergent aspects. We emphasise the importance of tailoring goals and objectives to specific contexts and the need to design different institutions and incentives based on the social and ecological needs and goals of stakeholders in different regions. Additionally, we discuss the challenges of achieving high levels of ecological restoration and the need to go beyond traditional ecology to plan, implement, monitor, and adaptively manage restored forests. We suggest that rivers and watersheds could serve as a common ground linking rural and urban landscapes and that forest restoration could interact with other environmental protection measures. We note the potential for expanding the creative vision associated with increasing tree-containing environments in cities to generate more diverse and resilient forest restoration outcomes in rural settings. This study underscores the value of integrative management approaches in addressing future forest conditions across the urban-rural continuum. Our framework provides valuable insights for policymakers, researchers, and decision-makers to advance the field of forest restoration and address the challenges of restoration across the urban-rural continuum. The rural-urban interface serves as a convergence point for forest restoration, and both urban and rural fields can benefit from each other's expertise.
Collapse
Affiliation(s)
- João P Romanelli
- Laboratory of Ecology and Forest Restoration (LERF), Department of Biological Sciences, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Max R Piana
- Northern Research Station, USDA Forest Service, 160 Holdsworth Way, Amherst, MA, 01003, USA
| | - Valentin H Klaus
- ETH Zurich, Institute of Agricultural Sciences, Universitätstr. 2, Zurich, 8092, Switzerland
| | - Pedro H S Brancalion
- Department of Forest Sciences, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Carolina Murcia
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Françoise Cardou
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Kiri Joy Wallace
- Te Tumu Whakaora Taiao - Environmental Research Institute, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand
| | - Cristina Adams
- Forest Governance Research Group (GGF), Institute of Energy and Environment (IEE), University of São Paulo, Av. Prof. Luciano Gualberto, 1289, São Paulo, SP, 05508-010, Brazil
| | - Philip A Martin
- Basque Centre for Climate Change (BC3), Edificio sede no 1, planta 1, Parque científico UPV/EHU, Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Spain
| | - Philip J Burton
- Department of Ecosystem Science & Management, University of Northern British Columbia, Prince George, BC, V2N 4Z9, Canada
- Symbios Research & Restoration, Smithers, BC, V0J 2N4, Canada
| | - Heida L Diefenderfer
- University of Washington and Pacific Northwest National Laboratory, 1529 West Sequim Bay Road, Sequim, WA, 98382, USA
| | - Elise S Gornish
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, 85721, USA
| | - John Stanturf
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu, 51014, Estonia
| | - Menilek Beyene
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - João Paulo Bispo Santos
- Laboratory of Ecology and Forest Restoration (LERF), Department of Biological Sciences, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Ricardo R Rodrigues
- Laboratory of Ecology and Forest Restoration (LERF), Department of Biological Sciences, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Marc W Cadotte
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| |
Collapse
|
4
|
When scientists become detectives: investigating systematic tree poisoning in a protected cove. Heliyon 2020; 6:e03386. [PMID: 32072064 PMCID: PMC7016248 DOI: 10.1016/j.heliyon.2020.e03386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/15/2019] [Accepted: 02/04/2020] [Indexed: 11/21/2022] Open
Abstract
The systematic killing of trees is usually aimed at eradicating pests or alien plant species susceptible to harm existing natural ecosystems. In some cases, trees may become the subject of dispute between neighbors, which sometimes ends in tree death after months or years of dispute. In this paper, we analyze a case of clandestine tree killing and look into ways through which evidence left by delinquents can be analyzed a posteriori with state-of-the-art approaches. The investigation presented here looks at a series of old-growth trees that were supposedly poisoned inside a protected, nineteenth century grove in Switzerland. After the sudden, unexplained death of several old Black poplar (Populus nigra) trees along the main alley in fall 2015 and their subsequent removal, the dying of five additional, neighboring Sycamore maple (Acer pseudoplatanus) and English walnut (Juglans regia) trees in 2016 promptly triggered a suite of criminal investigations at the property. During an initial inspection, a large number of boreholes was found in the root plates of the dying trees. We present findings obtained from tree-ring, wood anatomical and dendrogeochemical investigations performed on root, stem and leave material from the assumedly poisoned trees and show that massive amounts of chemical elements – supposedly in the form organic pesticides with high Al, As, Fe, Cr, Ni contents, aluminum phosphides or glyphosate-based pesticides – were injected into 36 boreholes drilled into the roots around September 2016. Results obtained in this study are currently used in criminal investigations, and are a nice example of how scientific detectives can help their “real World” colleagues in identifying delinquents.
Collapse
|
5
|
Zhao Z, Hui C, Plant RE, Su M, Papadopoulos NT, Carpenter TE, Li Z, Carey JR. The failure of success: cyclic recurrences of a globally invasive pest. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01991. [PMID: 31400182 DOI: 10.1002/eap.1991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
In the six decades since 1960, the oriental fruit fly, Bactrocera dorsalis (Hendel), has been announced successfully eradicated in California by the U.S. Department of Agriculture a total of 564 times. This includes eradication declarations in one city a total of 25 different years, in 12 cities 8-19 different years, and in 101 cities 2-7 different years. We here show that the false negatives in declaring elimination success hinge on the easily achieved regulatory criteria, which have virtually guaranteed the failure of complete extirpation of this pest. Analyses of the time series of fly detection over California placed on a grid of 100-km2 cells revealed (1) partial success of the eradication program in controlling the invasion of the oriental fruit fly; (2) low prevalence of the initial detection in these cells is often followed by high prevalence of recurrences; (3) progressively shorter intervals between years of consecutive detections; and (4) high likelihood of early-infested cells also experiencing the most frequent outbreaks. Facing the risk of recurrent invasions, such short-term eradication programs have only succeeded annually according to the current regulatory criteria but have failed to achieve the larger goal of complete extirpation of the oriental fruit fly. Based on the components and running costs of the current programs, we further estimated the efficiency of eradication programs with different combinations of eradication radius, duration, and edge impermeability in reducing invasion recurrences and slowing the spread of the oriental fruit fly. We end with policy implications including the need for agricultural agencies worldwide to revisit eradication protocols in which monitoring and treatments are terminated when the regulatory criteria for declaring eradication are met. Our results also have direct implications to invasion biologists and agriculture policy makers regarding long-term risks of short-term expediency.
Collapse
Affiliation(s)
- Zihua Zhao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Cang Hui
- Department of Mathematical Sciences, Centre for Invasion Biology, Stellenbosch University, Matieland, 7602, South Africa
- Mathematical and Physical Biosciences, African Institute for Mathematical Sciences, Muizenberg, 7945, South Africa
| | - Richard E Plant
- Department of Plant Sciences and Biological and Agricultural Engineering, University of California, Davis, California, 95616, USA
| | - Min Su
- School of Mathematics, Hefei University of Technology, Hefei, 230009, China
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, School of Agricultural Sciences, University of Thessaly, Thessaly, 38446, Greece
| | - Tim E Carpenter
- School of Veterinary Medicine, University of California, Davis, California, 95616, USA
| | - Zhihong Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - James R Carey
- Department of Entomology, University of California, Davis, California, 95616, USA
| |
Collapse
|