1
|
D'Incau E, Spaudo A, Henry S, Ouvrard S. Phytotoxic response of ryegrass (Lolium multiflorum L.) to extreme exposure to two anionic surfactants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117320. [PMID: 39549569 DOI: 10.1016/j.ecoenv.2024.117320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Bioremediation is an effective and environment-friendly treatment used to clean up hydrocarbon-contaminated soil. However, the effectiveness of this treatment is often limited by the low bioavailability of the target contaminants. Surfactants addition thus appears as a way to increase solubility of these hydrophobic molecules and consequently improve their bioavailability. The use of biological surfactants is often favoured over synthetic ones because they are claimed to be non-toxic to the environment though few studies have addressed this issue. The present work evaluated the effects of a synthetic surfactant, sodium dodecyl sulphate (SDS) and a biosurfactant (rhamnolipids) on germination and growth of ryegrass over a wide range of concentrations, between one up to ten times their respective critical micellar concentration (CMC). Experimental results showed that SDS inhibited seed germination of Lolium multiflorum at high concentrations (10 × CMC), unlike rhamnolipids, which did not induce any toxicity symptom at germination stage. At the growth stage, high rhamnolipid concentrations induced chronic phytotoxicity by significantly reducing root length, decreasing biomass production and disrupting the enzymatic defence system. Thus, biosurfactants are less toxic than synthetic ones but their application at high doses in bioremediation treatments might still induce phytotoxicity symptoms and thus negatively affect the environment.
Collapse
Affiliation(s)
| | - Antoine Spaudo
- Université de Lorraine, INRAE, LSE, Nancy F-54000, France
| | - Sonia Henry
- Université de Lorraine, INRAE, LSE, Nancy F-54000, France
| | | |
Collapse
|
2
|
Rigolet A, Argüelles Arias A, Anckaert A, Quinton L, Rigali S, Tellatin D, Burguet P, Ongena M. Lipopeptides as rhizosphere public goods for microbial cooperation. Microbiol Spectr 2024; 12:e0310623. [PMID: 38047676 PMCID: PMC10783051 DOI: 10.1128/spectrum.03106-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Here, we provide new insights into the possible fate of cyclic lipopeptides as prominent specialized metabolites from beneficial bacilli and pseudomonads once released in the soil. Our data illustrate how the B. velezensis lipopeptidome may be enzymatically remodeled by Streptomyces as important members of the soil bacterial community. The enzymatic arsenal of S. venezuelae enables an unsuspected extensive degradation of these compounds, allowing the bacterium to feed on these exogenous products via a mechanism going beyond linearization, which was previously reported as a detoxification strategy. As soils are carbon-rich and nitrogen-poor environments, we propose a new role for cyclic lipopeptides in interspecies interactions, which is to fuel the nitrogen metabolism of a part of the rhizosphere microbial community. Streptomyces and other actinomycetes, producing numerous peptidases and displaying several traits of beneficial bacteria, should be at the front line to directly benefit from these metabolites as "public goods" for microbial cooperation.
Collapse
Affiliation(s)
- Augustin Rigolet
- Microbial Processes and Interactions laboratory, TERRA teaching and research centre, Gembloux Agro-Bio Tech,University of Liège, Gembloux, Belgium
| | - Anthony Argüelles Arias
- Microbial Processes and Interactions laboratory, TERRA teaching and research centre, Gembloux Agro-Bio Tech,University of Liège, Gembloux, Belgium
| | - Adrien Anckaert
- Microbial Processes and Interactions laboratory, TERRA teaching and research centre, Gembloux Agro-Bio Tech,University of Liège, Gembloux, Belgium
| | - Loïc Quinton
- Department of Chemistry, University of Liège, Liège, Belgium
| | - Sébastien Rigali
- InBioS—Centre for Protein Engineering,University of Liège, Liege, Belgium
- Hedera-22, Liege, Belgium
| | - Deborah Tellatin
- InBioS—Centre for Protein Engineering,University of Liège, Liege, Belgium
| | - Pierre Burguet
- Department of Chemistry, University of Liège, Liège, Belgium
| | - Marc Ongena
- Microbial Processes and Interactions laboratory, TERRA teaching and research centre, Gembloux Agro-Bio Tech,University of Liège, Gembloux, Belgium
| |
Collapse
|
3
|
Abdel-Haleem DR, Badr EE, Samy AM, Baker SA. Larvicidal evaluation of two novel cationic gemini surfactants against the potential vector of West Nile virus Culex pipiens Linnaeus (Diptera: Culicidae). MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:483-490. [PMID: 36799890 DOI: 10.1111/mve.12645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
The development of insecticide resistance is a serious consequence of the widespread applications of synthetic insecticides. Recent studies have provided alternatives to currently available insecticides. Here, novel cationic gemini surfactants were synthesized to assess their insecticidal activities using laboratory and field strains larvae of Culex pipiens Linnaeus (Diptera: Culicidae). The efficacy of these surfactants was compared to that of clove oil and spinosad. The two surfactants G1 and G2 showed good insecticidal activities in laboratory strain with LC50 0.013 and 0.054 ppm, respectively, relative to spinosad with LC50 0.027 ppm, 48 h posttreatment. Although spinosad showed high efficiency against lab strain, it exhibited a high resistance ratio (RR) of 15.111 and 13.111 toward the field strain at 24 and 48 h posttreatment, respectively. The two gemini surfactants have a good safety profile and low RR (RR <5), which is close to clove oil; however, G1 and G2 presented high activities with 11,043.230 and 2658.648 folds, respectively, compared to clove oil. The treated Cx. pipiens larvae showed severe morphological malformations after treatment with gemini surfactants. The results of this study are promising in terms of developing novel, effective, affordable, and safe approaches for mosquito control strategies to reduce the risk of arbovirus transmission, which remains a global public health threat.
Collapse
Affiliation(s)
- Doaa R Abdel-Haleem
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Entsar E Badr
- Department of Chemistry, Faculty of Science Girls Branch, Al-Azhar University, Cairo, Egypt
| | - Abdallah M Samy
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sharbat A Baker
- Department of Chemistry, Faculty of Science Girls Branch, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
4
|
Genomic Analysis of Surfactant-Producing Bacillus vallismortis TIM68: First Glimpse at Species Pangenome and Prediction of New Plipastatin-Like Lipopeptide. Appl Biochem Biotechnol 2023; 195:753-771. [PMID: 36166154 DOI: 10.1007/s12010-022-04154-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
Surfactants are applied in several industrial processes when the modification of interface activity and the stability of colloidal systems are required. Lipopeptides are a class of microbial biosurfactants produced by species of the Bacillus genus. The present study aimed at assembling and analyzing the genome of a new Bacillus vallismortis strain, TIM68, that was shown to produce surfactant lipopeptides. The draft genome was also screened for common virulence factors and antibiotics resistance genes to investigate the strain biosafety. Comparative genomics analyses, i.e., synteny, average nucleotide identity (ANI), and pangenome, were also carried out using strain TIM68 and publicly available B. vallismortis complete and partial genomes. Three peptide synthetase operons were found in TIM68 genome, and they were surfactin A, mojavensin, and a novel plipastatin-like lipopeptide named vallisin. No virulence factors that render pathogenicity to the strain have been identified, but a region of prophage, that may contain unknown pathogenic factors, has been predicted. The pangenome of the species was characterized as closed, with 57% of genes integrating the core genome. The results obtained here on the genetic potential of TIM68 strain should contribute to its exploration in biotechnological applications.
Collapse
|
5
|
de Lima Ferreira JK, de Mello Varani A, Tótola MR, Fernandes Almeida M, de Sousa Melo D, Ferreira Silva E Batista C, Chalfun-Junior A, Pimenta de Oliveira KK, Wurdig Roesch LF, Satler Pylro V. Phylogenomic characterization and pangenomic insights into the surfactin-producing bacteria Bacillus subtilis strain RI4914. Braz J Microbiol 2022; 53:2051-2063. [PMID: 36083529 PMCID: PMC9679098 DOI: 10.1007/s42770-022-00815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/22/2022] [Indexed: 01/13/2023] Open
Abstract
Bacillus subtilis is a versatile bacterial species able to produce surfactin, a lipopeptide biosurfactant. We carried out the phylogenomic characterization and pangenomic analyses using available B. subtilis complete genomes. Also, we report the whole genome of the biosurfactant-producing B. subtilis strain RI4914 that was isolated from effluent water from an oil exploration field. We applied a hybrid sequencing approach using both long- and short-read sequencing technologies to generate a highly accurate, single-chromosome genome. The pangenomics analysis of 153 complete genomes classified as B. subtilis retrieved from the NCBI shows an open pangenome composed of 28,511 accessory genes, which agrees with the high genetic plasticity of the species. Also, this analysis suggests that surfactin production is a common trait shared by members of this species since the srfA operon is highly conserved among the B. subtilis strains found in most of the assemblies available. Finally, increased surfactin production corroborates the higher srfAA gene expression in B. subtilis strain RI4914.
Collapse
Affiliation(s)
| | - Alessandro de Mello Varani
- Departamento de Tecnologia, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, Sao Paulo, Brazil
| | - Marcos Rogério Tótola
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Minas Gerais, Viçosa, Brazil
| | - Michelle Fernandes Almeida
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Minas Gerais, Viçosa, Brazil
| | - Dirceu de Sousa Melo
- Department of Biology, Federal University of Lavras - UFLA, Lavras, Minas Gerais, Brazil
| | | | - Antonio Chalfun-Junior
- Department of Biology, Federal University of Lavras - UFLA, Lavras, Minas Gerais, Brazil
| | | | | | - Victor Satler Pylro
- Department of Biology, Federal University of Lavras - UFLA, Lavras, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Cazals F, Colombano S, Huguenot D, Betelu S, Galopin N, Perrault A, Simonnot MO, Ignatiadis I, Rossano S, Crampon M. Polycyclic aromatic hydrocarbons remobilization from contaminated porous media by (bio)surfactants washing. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 251:104065. [PMID: 36054960 DOI: 10.1016/j.jconhyd.2022.104065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Biosurfactants, surface-active agents produced by microorganisms, are increasingly studied for their potential use in soil remediation processes because they are more environmentally friendly than their chemically produced homologues. In this work, we report on the use of a crude biosurfactant produced by a bacterial consortium isolated from a PAHs-contaminated soil, compared with other (bio)surfactants (Tween80, Sodium dodecyl sulfate - SDS, rhamnolipids mix), to wash PAHs from a contaminated porous media. Assays were done using columns filled with sand or sand-clay mixtures (95:5) spiked with four model PAHs. The crude biosurfactant showed less adsorption to the [sand] and the [sand + clay] columns compared to Tween 80, SDS and the rhamnolipid mix. The biosurfactant showed the second best capacity to remove PAHs from the columns (as dissolved and particulate phases), both from [sand] and [sand + clay], after SDS when applied at lower concentrations than the other sufactants. The effluent concentrations of phenanthrene (PHE), pyrene (PYR) and benzo[a]pyrene (BAP) increased in the presence of the crude biosurfactant. Compared to the control experiment using only water, the global PAHs washed mass (amount of PAHs removed from the columns) increased between 9 and 1000 times for PHE and BAP in the [sand] column, and between 55 and 6000 times respectively for PHE and BAP in the [sand + clay] columns. Moreover, in the [sand + clay] columns, leaching of a part of the clays was observed in the SDS and the biosurfactant injections assays. This clay leaching resulted in higher PAHs removal, due not to desorption but rather to particulate transport. In the context of washing PAH-contaminated soils in biopiles or subsurface remediation, our results could help in sizing the remediation approach using an environmental friendly biosurfactant, before a pump-and-treat process.
Collapse
Affiliation(s)
- Florian Cazals
- Laboratoire Géomatériaux et Environnement, Université Paris-Est Marne-la-Vallée, France; Colas Environnement, France; Bureau de Recherches Géologiques et Minières (BRGM), F-45060 Orléans, France.
| | - Stéfan Colombano
- Bureau de Recherches Géologiques et Minières (BRGM), F-45060 Orléans, France.
| | - David Huguenot
- Laboratoire Géomatériaux et Environnement, Université Paris-Est Marne-la-Vallée, France.
| | - Stéphanie Betelu
- Bureau de Recherches Géologiques et Minières (BRGM), F-45060 Orléans, France.
| | | | | | | | - Ioannis Ignatiadis
- Bureau de Recherches Géologiques et Minières (BRGM), F-45060 Orléans, France.
| | - Stéphanie Rossano
- Laboratoire Géomatériaux et Environnement, Université Paris-Est Marne-la-Vallée, France.
| | - Marc Crampon
- Bureau de Recherches Géologiques et Minières (BRGM), F-45060 Orléans, France.
| |
Collapse
|
7
|
Hollenbach R, Delavault A, Gebhardt L, Soergel H, Muhle-Goll C, Ochsenreither K, Syldatk C. Lipase-Mediated Mechanoenzymatic Synthesis of Sugar Esters in Dissolved Unconventional and Neat Reaction Systems. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:10192-10202. [PMID: 35966390 PMCID: PMC9364441 DOI: 10.1021/acssuschemeng.2c01727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Mechanochemical and biocatalytic approaches in modern research are two major assets to develop greener processes. In the present study, these modular tools of sustainability are pointed toward the production of versatile and daily employed compounds such as surfactants. Toward this aim, glycolipids, a class of nonionic surfactants composed of ubiquitous and primary metabolites such as sugar and fatty acid moieties, represent a promising alternative to petroleum-derived surface-active agents. Therefore, the combination of biocatalysis with mechanochemistry aiming at glycolipid synthesis seemed a logical step that was taken in this study for the first time. The monoacylated model compound glucose-6-O-decanoate was synthesized with the help of a bead mill apparatus using two different unconventional dissolved reaction systems, namely, menthol-based hydrophobic deep eutectic solvents and 2-methyl-2-butanol, thus reaching up to 12% yield in the latter based on the conversion of vinyl decanoate, after only 90 min of reaction. In addition, a neat reaction system using an excess of vinylated fatty ester as an adjuvant allowed a 27 mM/h space-time yield. The overall significant increase in productivities, up to 6 times, compared to standard heating and shaking methods, shows the tremendous potential of mechanoenzymatic synthesis.
Collapse
Affiliation(s)
- Rebecca Hollenbach
- Technical
Biology, Institute for Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - André Delavault
- Technical
Biology, Institute for Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Laura Gebhardt
- Technical
Biology, Institute for Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Hannah Soergel
- Institute
for Biological Interfaces 4 and Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Claudia Muhle-Goll
- Institute
for Biological Interfaces 4 and Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Katrin Ochsenreither
- Technical
Biology, Institute for Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Christoph Syldatk
- Technical
Biology, Institute for Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| |
Collapse
|
8
|
Rekiel E, Zdziennicka A, Szymczyk K, Jańczuk B. Wetting Properties of Rhamnolipid and Surfactin Mixtures with Triton X-165. Molecules 2022; 27:molecules27154706. [PMID: 35897880 PMCID: PMC9330438 DOI: 10.3390/molecules27154706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
The wetting properties of the rhamnolipid and surfactin mixtures with Triton X-165 were considered based on the contact angle measurements of their aqueous solution on the polytetrafluoroethylene (PTFE), polymethyl methacrylate (PMMA) and quartz (Q) surfaces. The obtained contact angle isotherms were described by the exponential function of the second order as well as by Szyszkowski equation in some cases. Using the contact angle isotherms of individual biosurfactants and TX165 as well as the earlier obtained isotherms of their surface tension the contact angle isotherms of the biosurfactants mixtures with TX165 were deduced. As follows the presence of the maxima on the contact angle isotherms of the biosurfactants mixtures with TX165 is justified. They do not prove negative adsorption of the biosurfactant and TX165 at the interfaces. However, the mutual exchange of the biosurfactant and TX165 molecules is observed in the layers at the interfaces. The concentration of the studied mixtures at the PTFE-solution interface was established to be close to that at the solution-air one but that at the PTFE-air is equal to zero. However, the concentration of the studied mixtures at the PMMA-solution and quartz-solution is greater than zero. The concentration at the PMMA(quartz)-air and PMMA(quartz)-solution interfaces is smaller than that at the solution-air one.
Collapse
|
9
|
Abstract
Glycolipids are a class of biodegradable biosurfactants that are non-toxic and based on renewables, making them a sustainable alternative to petrochemical surfactants. Enzymatic synthesis allows a tailor-made production of these versatile compounds using sugar and fatty acid building blocks with rationalized structures for targeted applications. Therefore, glycolipids can be comprehensively designed to outcompete conventional surfactants regarding their physicochemical properties. However, enzymatic glycolipid processes are struggling with both sugars and fatty acid solubilities in reaction media. Thus, continuous flow processes represent a powerful tool in designing efficient syntheses of sugar esters. In this study, a continuous enzymatic glycolipid production catalyzed by Novozyme 435® is presented as an unprecedented concept. A biphasic aqueous–organic system was investigated, allowing for the simultaneous solubilization of sugars and fatty acids. Owing to phase separation, the remaining non-acylated glucose was easily separated from the product stream and was refed to the reactor forming a closed-loop system. Productivity in the continuous process was higher compared to a batch one, with space–time yields of up to 1228 ± 65 µmol/L/h. A temperature of 70 °C resulted in the highest glucose-6-O-decanoate concentration in the Packed Bed Reactor (PBR). Consequently, the design of a continuous biocatalytic production is a step towards a more competitive glycolipid synthesis in the aim for industrialization.
Collapse
|
10
|
Márquez-Villa JM, Mateos-Díaz JC, Rodríguez-González JA, Camacho-Ruíz RM. Optimization of Lipopeptide Biosurfactant Production by Salibacterium sp. 4CTb in Batch Stirred-Tank Bioreactors. Microorganisms 2022; 10:983. [PMID: 35630427 PMCID: PMC9145298 DOI: 10.3390/microorganisms10050983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/25/2022] [Accepted: 04/30/2022] [Indexed: 02/05/2023] Open
Abstract
Halophilic microorganisms are potentially capable as platforms to produce low-cost biosurfactants. However, the robustness of bioprocesses is still a challenge and, therefore, it is essential to understand the effects of microbiological culture conditions through bioreactor engineering. Based on a design of experiments (DOE) and a response surface methodology (RSM) tailored and taken from the literature, the present work focuses on the evaluation of a composite central design (CCD) under batch cultures in stirred-tank bioreactors with the halophilic bacteria Salibacterium sp. 4CTb in order to determine the operative conditions that favor mass transfer and optimize the production of a lipopeptide. The results obtained showed profiles highlighting the most favorable culture conditions, which lead to an emulsification index (E24%) higher than 70%. Moreover, through the behavior of dissolved oxygen (DO), it was possible to experimentally evaluate the higher volumetric coefficient of mass transfer in the presence of lipopeptide (kLa = 31 1/h) as a key criterion for the synthesis of the biosurfactant on further cell expansion.
Collapse
Affiliation(s)
| | | | | | - Rosa María Camacho-Ruíz
- Department of Industrial Biotechnology, CIATEJ-CONACyT, Zapopan 45019, Mexico; (J.M.M.-V.); (J.C.M.-D.); (J.A.R.-G.)
| |
Collapse
|
11
|
Moubayed NM, Al Houri HJ, Bukhari SI. Turbinaria ornata and its associated epiphytic Bacillus sp. A promising molecule supplier to discover new natural product approaches. Saudi J Biol Sci 2022; 29:2532-2540. [PMID: 35531156 PMCID: PMC9072896 DOI: 10.1016/j.sjbs.2021.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/11/2021] [Accepted: 12/14/2021] [Indexed: 11/08/2022] Open
Abstract
Marine ecosystems are highly dependent on macroalgea in providing food and shelter for aquatic organisms, interacting with many bacteria and mostly producing secondary metabolites of potent therapeutic antibacterial property. Screening of marine microbial secondary metabolites of valuable biotechnological and therapeutical applications are now extensively studied. In this study, Bacillus spp. identified by DNA sequencing and found associated with Turbinaria ornata, was screened and characterized for its cell free supernatant (CFS) possible antimicrobial and antibiofilm applications. Among the 7 microbial isolates tested, CFS greatly affected Bacillus subitilis (12 mm) and inhibited equally the yeast isolates Candida albicans, Candida tropicalis and Candida glabrata (10 mm) and had no or negligible effect on S.aureus, E.coli, P. aeruginosa. As for the CFS antibiofilm activity, no difference was revealed from the positive control. Algal crude extracts (methanol, acetone and aqueous), on the other hand, were similarly tested for their antimicrobial activity against the seven microbial isolates, where highest activity was observed with the aqueous crude extract against Staphylococcus aureus(10 mm) and Pseudomonas aeruginosa (9 mm) compared to the negligible effects of methanol and acetone crude extracts. Chemical analysis was performed to reveal the major constituents of both crude algal extracts and Bacillus spp. CFS. FTIR spectrum of the bacterial CFS indicated the presence of bacteriocin as the major lipopeptide responsible for its biological activity. Whereas, methanol and water crude algal extract GC-MS spectra revealed different chemical groups of various combined therapeutical activity mainly Naphthalene, amino ethane-sulfonic acid, pyrlene, Biotin and mercury chloromethyl correspondingly. Thus, the present study, demonstrated the moderate activity of both crude algal extract and the bacterial CFS, however, further investigations are needed for a better biological activity.
Collapse
Affiliation(s)
- Nadine M.S. Moubayed
- Botany and Microbiology Department, Science College, Female Campus, King Saud University, Riyadh 11495, Saudi Arabia
| | - Hadeel J. Al Houri
- Botany and Microbiology Department, Science College, Female Campus, King Saud University, Riyadh 11495, Saudi Arabia
| | - Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Environmental Impacts of Biosurfactants from a Life Cycle Perspective: A Systematic Literature Review. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 181:235-269. [DOI: 10.1007/10_2021_194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Raj A, Kumar A, Dames JF. Tapping the Role of Microbial Biosurfactants in Pesticide Remediation: An Eco-Friendly Approach for Environmental Sustainability. Front Microbiol 2021; 12:791723. [PMID: 35003022 PMCID: PMC8733403 DOI: 10.3389/fmicb.2021.791723] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 11/15/2022] Open
Abstract
Pesticides are used indiscriminately all over the world to protect crops from pests and pathogens. If they are used in excess, they contaminate the soil and water bodies and negatively affect human health and the environment. However, bioremediation is the most viable option to deal with these pollutants, but it has certain limitations. Therefore, harnessing the role of microbial biosurfactants in pesticide remediation is a promising approach. Biosurfactants are the amphiphilic compounds that can help to increase the bioavailability of pesticides, and speeds up the bioremediation process. Biosurfactants lower the surface area and interfacial tension of immiscible fluids and boost the solubility and sorption of hydrophobic pesticide contaminants. They have the property of biodegradability, low toxicity, high selectivity, and broad action spectrum under extreme pH, temperature, and salinity conditions, as well as a low critical micelle concentration (CMC). All these factors can augment the process of pesticide remediation. Application of metagenomic and in-silico tools would help by rapidly characterizing pesticide degrading microorganisms at a taxonomic and functional level. A comprehensive review of the literature shows that the role of biosurfactants in the biological remediation of pesticides has received limited attention. Therefore, this article is intended to provide a detailed overview of the role of various biosurfactants in improving pesticide remediation as well as different methods used for the detection of microbial biosurfactants. Additionally, this article covers the role of advanced metagenomics tools in characterizing the biosurfactant producing pesticide degrading microbes from different environments.
Collapse
Affiliation(s)
- Aman Raj
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar, India
- Mycorrhizal Research Laboratory, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Joanna Felicity Dames
- Mycorrhizal Research Laboratory, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
14
|
Hollenbach R, Oeppling S, Delavault A, Völp AR, Willenbacher N, Rudat J, Ochsenreither K, Syldatk C. Comparative study on interfacial and foaming properties of glycolipids in relation to the gas applied for foam generation. RSC Adv 2021; 11:34235-34244. [PMID: 35497276 PMCID: PMC9042364 DOI: 10.1039/d1ra06190a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/14/2021] [Indexed: 11/21/2022] Open
Abstract
Glycolipids are biosurfactants with a wide range of structural diversity. They are biodegradable, based on renewables, ecocompatible and exhibit high surface activity. Still, studies comparing glycolipids and conventional surfactants in terms of interfacial properties and foaming performance are lacking. Here, we compared interfacial and foaming properties of microbial and enzymatically synthesized glycolipids to those of the widely-used, conventional surfactant sodium dodecyl sulfate (SDS). The enzymatically produced sorbose monodecanoate, as well as microbially produced di-rhamno-di-lipids exhibited high foam stabilizing properties, similar to those of SDS. However, sophorolipid and mono-rhamno-di-lipids did not produce metastable foams. An appropriate selection of head and tail groups depending on the application of interest is therefore necessary. Then, glycolipids can serve as an ecofriendly and efficient alternative to petroleum-based surfactants, even at substantially lower concentrations than e.g. SDS. Moreover, the influence of three foaming gases on the foaming properties of the glycolipids was evaluated. Slightly higher foam stability and lower coarsening rates were determined for sorbose monodecanoate when using nitrogen as the foaming gas instead of air. Foams generated with carbon dioxide were not metastable, no matter which surfactant was used.
Collapse
Affiliation(s)
- Rebecca Hollenbach
- Institute of Process Engineering in Life Sciences II: Technical Biology, Karlsruhe Institute of Technology Germany +49 721 608 46737
| | - Sophie Oeppling
- Institute of Process Engineering in Life Sciences II: Technical Biology, Karlsruhe Institute of Technology Germany +49 721 608 46737
| | - André Delavault
- Institute of Process Engineering in Life Sciences II: Technical Biology, Karlsruhe Institute of Technology Germany +49 721 608 46737
| | - Annika R Völp
- Institute of Mechanical Process Engineering and Mechanics, Applied Mechanics, Karlsruhe Institute of Technology Germany
| | - Norbert Willenbacher
- Institute of Mechanical Process Engineering and Mechanics, Applied Mechanics, Karlsruhe Institute of Technology Germany
| | - Jens Rudat
- Institute of Process Engineering in Life Sciences II: Technical Biology, Karlsruhe Institute of Technology Germany +49 721 608 46737
| | - Katrin Ochsenreither
- Institute of Process Engineering in Life Sciences II: Technical Biology, Karlsruhe Institute of Technology Germany +49 721 608 46737
| | - Christoph Syldatk
- Institute of Process Engineering in Life Sciences II: Technical Biology, Karlsruhe Institute of Technology Germany +49 721 608 46737
| |
Collapse
|
15
|
Yadav VK, Khan SH, Choudhary N, Tirth V, Kumar P, Ravi RK, Modi S, Khayal A, Shah MP, Sharma P, Godha M. Nanobioremediation: A sustainable approach towards the degradation of sodium dodecyl sulfate in the environment and simulated conditions. J Basic Microbiol 2021; 62:348-360. [PMID: 34528719 DOI: 10.1002/jobm.202100217] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/20/2021] [Accepted: 08/28/2021] [Indexed: 11/12/2022]
Abstract
Nanotechnology has gained huge importance in the field of environmental clean-up today. Due to their remarkable and unique properties, it has shown potential application for the remediation of several pesticides and textile dyes. Recently it has shown positive results for the remediation of sodium dodecyl sulfate (SDS). One of the highly exploited surfactants in detergent preparation is anionic surfactants. The SDS selected for the present study is an example of anionic linear alkyl sulfate. It is utilized extensively in industrial washing, which results in the high effluent level of this contaminant and ubiquitously toxic to the environment. The present review is based on the research depicting the adverse effects of SDS in general and possible strategies to minimizing its effects by bacterial degradation which are capable of exploiting the SDS as an only source of carbon. Moreover, it has also highlighted that how nanotechnology can play a role in the remediation of such recalcitrant pesticides.
Collapse
Affiliation(s)
- Virendra K Yadav
- Department of Microbiology, School of Sciences, P P Savani University, Kosamba, Surat, Gujarat, India.,Environmental Nanotechnology, School of Nanosciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Samreen H Khan
- Environmental Nanotechnology, School of Nanosciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Nisha Choudhary
- Environmental Nanotechnology, School of Nanosciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, Kingdom of Saudi Arabia.,Center for Advanced Materials Science (RCAMS), King Khalid University Guraiger, Abha, Asir, Kingdom of Saudi Arabia
| | - Pankaj Kumar
- Environmental Microbiology, School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Raman K Ravi
- Environmental Microbiology, School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Shreya Modi
- Environmental Nanotechnology, School of Nanosciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Areeba Khayal
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Maulin P Shah
- Industrial Waste Water Research Laboratory, Division of Applied & Environmental Microbiology, Enviro Technology Limited, Ankleshwar, Gujarat, India
| | - Purva Sharma
- Department of Zoology, School of Life Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Meena Godha
- Department of Zoology, School of Life Sciences, Jaipur National University, Jaipur, Rajasthan, India
| |
Collapse
|
16
|
Hollenbach R, Ochsenreither K, Syldatk C. Parameters Influencing Lipase-Catalyzed Glycolipid Synthesis by (Trans-)Esterification Reaction. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 181:53-72. [PMID: 34518911 DOI: 10.1007/10_2021_173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycolipids are biodegradable, non-toxic surfactants with a wide range of applications. Enzymatic esterification or transesterification facilitated in reaction media of low water activity is a reaction strategy for the production of tailor-made glycolipids as a high structural diversity can be achieved. Organic solvents, ionic liquids, and deep eutectic solvents have been applied as reaction media. However, several challenges need to be addressed for efficient (trans-)esterification reactions, especially for the lipophilization of polar substrates. Therefore, crucial parameters in (trans-)esterification reactions in conventional and non-conventional media are discussed and compared in this review with a special focus on glycolipid synthesis.
Collapse
Affiliation(s)
- Rebecca Hollenbach
- Institute of Process Engineering in Life Sciences II: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | - Katrin Ochsenreither
- Institute of Process Engineering in Life Sciences II: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Christoph Syldatk
- Institute of Process Engineering in Life Sciences II: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
17
|
Glycolipid Biosurfactant Production from Waste Cooking Oils by Yeast: Review of Substrates, Producers and Products. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030136] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biosurfactants are a microbially synthesized alternative to synthetic surfactants, one of the most important bulk chemicals. Some yeast species are proven to be exceptional biosurfactant producers, while others are emerging producers. A set of factors affects the type, amount, and properties of the biosurfactant produced, as well as the environmental impact and costs of biosurfactant’s production. Exploring waste cooking oil as a substrate for biosurfactants’ production serves as an effective cost-cutting strategy, yet it has some limitations. This review explores the existing knowledge on utilizing waste cooking oil as a feedstock to produce glycolipid biosurfactants by yeast. The review focuses specifically on the differences created by using raw cooking oil or waste cooking oil as the substrate on the ability of various yeast species to synthesize sophorolipids, rhamnolipids, mannosylerythritol lipids, and other glycolipids and the substrate’s impact on the composition, properties, and limitations in the application of biosurfactants.
Collapse
|
18
|
Adu FA, Hunter CH. Screening and Identification of Lipopeptide Biosurfactants Produced by Two Aerobic Endospore-Forming Bacteria Isolated from Mfabeni Peatland, South Africa. Curr Microbiol 2021; 78:2615-2622. [PMID: 33988742 DOI: 10.1007/s00284-021-02516-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Two aerobic endospore-forming bacteria (AEFB), isolates SAB19 and SAD18, capable of biosurfactant production were isolated from a sediment core sampled from Mfabeni peatland, St Lucia, KwaZulu-Natal, South Africa. The isolates were screened for biosurfactant activity using drop collapse assay, hemolysis assay, oil spreading assay, emulsification, and surface tension measurement. The effect of environmental parameters--temperature [35 - 100 °C], pH [3.0 - 10.0], and salinity [0.5 - 15%]--on biosurfactant stability was also determined. Ultra-performance liquid chromatography in conjunction with electrospray ionization time-of-flight mass spectrometry (UPLC ESI-TOF MS) analysis revealed that both isolates produced surfactin isomers and a common mass peak of m/z 1326.1 that was ascribed to a precursor of the antibiotic plantazolicin (PZN). Isolate SAD18 was also found to produce the lipopeptides fengycin and iturin. Taxonomic classification based on partial 16S rRNA gene sequencing revealed that isolates SAB19 and SAD18 belonged to the Brevibacillus and Bacillus genera, respectively. The GenBank accession numbers obtained for SAB19 and SAD18 are MW429226 and MW441217. Biosurfactant extracts from isolate SAD18 exhibited the greatest level of surfactant activity and stability over the range of environmental parameters tested. Although no novel biosurfactants were identified, it was confirmed that the peatland environment represents an untapped source of microbial diversity with potential biotechnological applications.
Collapse
Affiliation(s)
- Folasade A Adu
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, 4000, South Africa.
| | - Charles H Hunter
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Pietermaritzburg, 3209, South Africa
| |
Collapse
|
19
|
Ceresa C, Fracchia L, Fedeli E, Porta C, Banat IM. Recent Advances in Biomedical, Therapeutic and Pharmaceutical Applications of Microbial Surfactants. Pharmaceutics 2021; 13:466. [PMID: 33808361 PMCID: PMC8067001 DOI: 10.3390/pharmaceutics13040466] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
The spread of antimicrobial-resistant pathogens typically existing in biofilm formation and the recent COVID-19 pandemic, although unrelated phenomena, have demonstrated the urgent need for methods to combat such increasing threats. New avenues of research for natural molecules with desirable properties to alleviate this situation have, therefore, been expanding. Biosurfactants comprise a group of unique and varied amphiphilic molecules of microbial origin capable of interacting with lipidic membranes/components of microorganisms and altering their physicochemical properties. These features have encouraged closer investigations of these microbial metabolites as new pharmaceutics with potential applications in clinical, hygiene and therapeutic fields. Mounting evidence has indicated that biosurfactants have antimicrobial, antibiofilm, antiviral, immunomodulatory and antiproliferative activities that are exploitable in new anticancer treatments and wound healing applications. Some biosurfactants have already been approved for use in clinical, food and environmental fields, while others are currently under investigation and development as antimicrobials or adjuvants to antibiotics for microbial suppression and biofilm eradication strategies. Moreover, due to the COVID-19 pandemic, biosurfactants are now being explored as an alternative to current products or procedures for effective cleaning and handwash formulations, antiviral plastic and fabric surface coating agents for shields and masks. In addition, biosurfactants have shown promise as drug delivery systems and in the medicinal relief of symptoms associated with SARS-CoV-2 acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
| | - Emanuele Fedeli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
| | - Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy
| | - Ibrahim M. Banat
- Pharmaceutical Science Research Group, Biomedical Science Research Institute, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK;
| |
Collapse
|
20
|
Bhatt P, Verma A, Gangola S, Bhandari G, Chen S. Microbial glycoconjugates in organic pollutant bioremediation: recent advances and applications. Microb Cell Fact 2021; 20:72. [PMID: 33736647 PMCID: PMC7977309 DOI: 10.1186/s12934-021-01556-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/27/2021] [Indexed: 02/06/2023] Open
Abstract
The large-scale application of organic pollutants (OPs) has contaminated the air, soil, and water. Persistent OPs enter the food supply chain and create several hazardous effects on living systems. Thus, there is a need to manage the environmental levels of these toxicants. Microbial glycoconjugates pave the way for the enhanced degradation of these toxic pollutants from the environment. Microbial glycoconjugates increase the bioavailability of these OPs by reducing surface tension and creating a solvent interface. To date, very little emphasis has been given to the scope of glycoconjugates in the biodegradation of OPs. Glycoconjugates create a bridge between microbes and OPs, which helps to accelerate degradation through microbial metabolism. This review provides an in-depth overview of glycoconjugates, their role in biofilm formation, and their applications in the bioremediation of OP-contaminated environments.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Amit Verma
- Department of Biochemistry, College of Basic Science and Humanities, SD Agricultural University, Gujarat, 385506, India
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal Campus, Dehradun, Uttarakhand, 248002, India
| | - Geeta Bhandari
- Department of Biotechnology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, 248161, India
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
21
|
Prakash AA, Prabhu NS, Rajasekar A, Parthipan P, AlSalhi MS, Devanesan S, Govarthanan M. Bio-electrokinetic remediation of crude oil contaminated soil enhanced by bacterial biosurfactant. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124061. [PMID: 33092887 DOI: 10.1016/j.jhazmat.2020.124061] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/04/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
The present study evaluating the coupling between bioremediation (BIO) and electrokinetic (EK) remediation of crude oil hydrocarbon by using bio-electrokinetic (BIO-EK) technique. The application of bacterial biosurfactant (BS) may increase the remediation efficiency by increasing the solubility of organic materials. In this work, the potential biosurfactant producing marine bacteria were isolated and identified by 16S rDNA analysis namely Bacillus subtilis AS2, Bacillus licheniformis AS3 and Bacillus velezensis AS4. Biodegradation efficiency of crude oil was found as 88%, 92% and 97% for strain AS2, AS3 and AS4 respectively, with the optimum temperature of 37 °C and pH 7. FTIR confirm the BS belongs to lipopeptide in nature. GCMS reveals that three isolates degraded the lower to higher molecular weight of the crude oil (C8 to C28) effectively. Results showed that use of BS in electokinetic remediation enhance the biodegradation rate of crude oil contaminated soil about 92% than EK (60%) in 2 days operation. BS enhances the solubilization of hydrocarbon and it leads to the faster electromigration of hydrocarbon to the anodic compartment, which was confirmed by the presence of higher total organic content than the EK. This study proven that the BIO-EK combined with BS can be used to enhance in situ bioremediation of petroleum contaminated soils.
Collapse
Affiliation(s)
- Arumugam Arul Prakash
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632 115, India
| | - Natarajan Srinivasa Prabhu
- Department of Biotechnology and Genetic Engineering, Bharathidasan University, Palkalaiperur, Tiruchirappalli, Tamil Nadu 620 024, India
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632 115, India
| | - Punniyakotti Parthipan
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632 115, India; Electrochemical Energy Research Lab, Centre for Nanoscience and Technology, Pondicherry University, Puducherry 605014, India
| | - Mohamad S AlSalhi
- Research Chair in Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Sandhanasamy Devanesan
- Research Chair in Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Muthusamy Govarthanan
- Research Chair in Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia; Department of Environmental Engineering, Kyungpook National University, 80 Daehak‑ro, Buk‑gu, Daegu 41566, South Korea.
| |
Collapse
|
22
|
Li H, Li Y, Bao M, Li S. Solid inoculants as a practice for bioaugmentation to enhance bioremediation of hydrocarbon contaminated areas. CHEMOSPHERE 2021; 263:128175. [PMID: 33297143 DOI: 10.1016/j.chemosphere.2020.128175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 06/12/2023]
Abstract
Vacuum freeze-drying is a scientifically advanced method to prepare solid inoculants from oil degrading bacterium. The introduction of oil-degrading microbes or bioaugmentation can be an efficient way to bioremediate oil spills in marine areas, where oil-degrading bacteria are deficient. The purpose of this study is to evaluate the potential use of solid inoculants of LZ-2 bacteria to enhance the degradation rate of crude oil. In this study, response surface methodology (RSM) was incorporated into the experimental design to optimize a response, which is influenced by different protectants. Our results showed that five factors have interactive and synergistic protective effects on the growth of LZ-2. Optimal growth of freeze-dried LZ-2 (63.8%) was observed with a 10.5% solution of skim milk supplemented with 14.3% sucrose, 14.4% of trehalose, 4.9% of glycerin and 14.7% of β-cyclodextrin. The culture grew in medium containing crude oil (3 g L-1) at 37 °C at 150 rpm for 30 d, GC and GC-MS analysis showed biodegradation of 44.2 and 21.6% for total saturate and aromatic hydrocarbons respectively. These results indicated that the solid inoculants of LZ-2 bacteria had the potential to be used for ex-situ bioremediation of hydrocarbon pollutants associated with crude oil.
Collapse
Affiliation(s)
- Haoshuai Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education / Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yang Li
- China Petrochemical Corporation (Sinopec Group), Beijing, 100728, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education / Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Shudong Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education / Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
23
|
Biosurfactants’ Potential Role in Combating COVID-19 and Similar Future Microbial Threats. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app11010334] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During 2020, the world has experienced extreme vulnerability in the face of a disease outbreak. The coronavirus disease 2019 (COVID-19) pandemic discovered in China and rapidly spread across the globe, infecting millions, causing hundreds of thousands of deaths, and severe downturns in the economies of countries worldwide. Biosurfactants can play a significant role in the prevention, control and treatment of diseases caused by these pathogenic agents through various therapeutic, pharmaceutical, environmental and hygiene approaches. Biosurfactants have the potential to inhibit microbial species with virulent intrinsic characteristics capable of developing diseases with high morbidity and mortality, as well as interrupting their spread through environmental and hygiene interventions. This is possible due to their antimicrobial activity, ability to interact with cells forming micelles and to interact with the immune system, and compatibility with relevant processes such as nanoparticle synthesis. They, therefore, can be applied in developing innovative and more effective pharmaceutical, therapeutics, sustainable and friendly environmental management approaches, less toxic formulations, and more efficient cleaning agents. These approaches can be easily integrated into relevant product development pipelines and implemented as measures for combating and managing pandemics. This review examines the potential approaches of biosurfactants as useful molecules in fighting microbial pathogens both known and previously unknown, such as COVID-19.
Collapse
|
24
|
Hassanshahian M, Amirinejad N, Askarinejad Behzadi M. Crude oil pollution and biodegradation at the Persian Gulf: A comprehensive and review study. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1415-1435. [PMID: 33312652 PMCID: PMC7721969 DOI: 10.1007/s40201-020-00557-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/29/2020] [Indexed: 06/01/2023]
Abstract
The Persian Gulf consider as the fundamental biological marine condition between the seas. There is a different assortment of marine life forms including corals, wipes, and fish in this marine condition. Mangrove timberlands are found all through this sea-going biological system. Sullying of the Persian Gulf to oil-based goods is the principle of danger to this marine condition and this contamination can effectively affect this differing marine condition. Numerous specialists examined the result of oil contamination on Persian Gulf marine creatures including corals sponges, bivalves, and fishes. These analysts affirmed this oil contamination on the Persian Gulf significantly diminished biodiversity. Diverse microorganisms fit to consume oil-based commodities detailed by various scientists from the Persian Gulf and their capacity to the debasement of unrefined petroleum has been examined. There has additionally been little exploration of cyanobacteria, yeast, and unrefined petroleum debasing organisms in this sea-going environment. Biosurfactants are amphipathic molecules that upgrade the disintegration of oil and increment their bioavailability to corrupt microscopic organisms. Additionally, biosurfactant-producing bacteria were discovered from the Persian Gulf, and the capability to degradation of crude oil in microscale was evaluated. The current review article aims to collect the finding of various researches performed in the Persian Gulf on oil pollution and crude-oil biodegradation. It is expected that by applying biological methods in combination with mechanical and chemical methods, the hazard consequences of crude-oil contamination on this important aquatic ecosystem at the world will be mitigated and a step towards preserving this diverse marine environment.
Collapse
Affiliation(s)
- Mehdi Hassanshahian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Nazanin Amirinejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | | |
Collapse
|
25
|
Surfactants-based remediation as an effective approach for removal of environmental pollutants—A review. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113960] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
26
|
Wittgens A, Rosenau F. Heterologous Rhamnolipid Biosynthesis: Advantages, Challenges, and the Opportunity to Produce Tailor-Made Rhamnolipids. Front Bioeng Biotechnol 2020; 8:594010. [PMID: 33195161 PMCID: PMC7642724 DOI: 10.3389/fbioe.2020.594010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
The first heterologous expression of genes responsible for the production of rhamnolipids was already implemented in the mid-1990s during the functional identification of the rhlAB operon. This was the starting shot for multiple approaches to establish the rhamnolipid biosynthesis in different host organisms. Since most of the native rhamnolipid producing organisms are human or plant pathogens, the intention for these ventures was the establishment of non-pathogenic organisms as heterologous host for the production of rhamnolipids. The pathogenicity of producing organisms is one of the bottlenecks for applications of rhamnolipids in many industrial products especially foods and cosmetics. The further advantage of heterologous rhamnolipid production is the circumvention of the complex regulatory network, which regulates the rhamnolipid biosynthesis in wild type production strains. Furthermore, a suitable host with an optimal genetic background to provide sufficient amounts of educts allows the production of tailor-made rhamnolipids each with its specific physico-chemical properties depending on the contained numbers of rhamnose sugar residues and the numbers, chain length and saturation degree of 3-hydroxyfatty acids. The heterologous expression of rhl genes can also enable the utilization of unusual carbon sources for the production of rhamnolipids depending on the host organism.
Collapse
Affiliation(s)
- Andreas Wittgens
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany.,Ulm Center for Peptide Pharmaceuticals (U-PEP), Ulm University, Ulm, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany.,Ulm Center for Peptide Pharmaceuticals (U-PEP), Ulm University, Ulm, Germany.,Department Synthesis of Macromolecules, Max-Planck-Institute for Polymer Research Mainz, Mainz, Germany
| |
Collapse
|
27
|
Alemán-Vega M, Sánchez-Lozano I, Hernández-Guerrero CJ, Hellio C, Quintana ET. Exploring Antifouling Activity of Biosurfactants Producing Marine Bacteria Isolated from Gulf of California. Int J Mol Sci 2020; 21:E6068. [PMID: 32842499 PMCID: PMC7504147 DOI: 10.3390/ijms21176068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022] Open
Abstract
Biofouling causes major problems and economic losses to marine and shipping industries. In the search for new antifouling agents, marine bacteria with biosurfactants production capability can be an excellent option, due to the amphipathic surface-active characteristic that confers antimicrobial and antibiofilm activities. The aim of this study was to evaluate the antifouling activity of biosurfactants producing marine bacteria from the Gulf of California. The cell free culture supernatant (CFCS) of Bacillus niabensis (S-69), Ralstonia sp. (S-74) (isolated from marine sediment) and of B. niabensis (My-30) (bacteria associated to the sponge Mycale ramulosa) were screened for production of biosurfactants (using hemolysis and drop collapse test, oil displacement and emulsifying activity). The toxicity and antifouling activity were evaluated against biofoulers (bacteria forming biofilm and macrofoulers) both in laboratory and field assays. The results indicate that all bacteria were biosurfactant producers, but the higher capability was shown by B. niabensis (My-30) with high emulsifying properties (E24) of 71%. The CFCS showed moderate toxicity but were considered non-toxic against Artemia franciscana at low concentrations. In the antifouling assay, the CFCS of both strains of B. niabensis showed the best results for the reduction of the biofilm formation (up 50%) against all Gram-positive bacteria and most Gram-negative bacteria with low concentrations. In the field assay, the CFCS of B. niabensis (My-30) led to the reduction of 30% of biofouling compared to the control. The results indicate that the biosurfactant produced by B. niabensis (My-30) has promising antifouling activity.
Collapse
Affiliation(s)
- Monserrat Alemán-Vega
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, 23096 La Paz, Baja California Sur, Mexico; (M.A.-V.); (I.S.-L.)
| | - Ilse Sánchez-Lozano
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, 23096 La Paz, Baja California Sur, Mexico; (M.A.-V.); (I.S.-L.)
| | - Claudia J. Hernández-Guerrero
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, 23096 La Paz, Baja California Sur, Mexico; (M.A.-V.); (I.S.-L.)
| | - Claire Hellio
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Institut Universitaire Européen de la Mer, F-29280 Plouzané, France
| | - Erika T. Quintana
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340 Ciudad de Mexico, Mexico;
| |
Collapse
|
28
|
Hollenbach R, Völp AR, Höfert L, Rudat J, Ochsenreither K, Willenbacher N, Syldatk C. Interfacial and Foaming Properties of Tailor-Made Glycolipids-Influence of the Hydrophilic Head Group and Functional Groups in the Hydrophobic Tail. Molecules 2020; 25:molecules25173797. [PMID: 32825508 PMCID: PMC7504461 DOI: 10.3390/molecules25173797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 11/20/2022] Open
Abstract
Glycolipids are a class of biodegradable surfactants less harmful to the environment than petrochemically derived surfactants. Here we discuss interfacial properties, foam stability, characterized in terms of transient foam height, gas volume fraction and bubble diameter as well as texture of seven enzymatically synthesized surfactants for the first time. Glycolipids consisting of different head groups, namely glucose, sorbitol, glucuronic acid and sorbose, combined with different C10 acyl chains, namely decanoate, dec-9-enoate and 4-methyl-nonanoate are compared. Equilibrium interfacial tension values vary between 24.3 and 29.6 mN/m, critical micelle concentration varies between 0.7 and 3.0 mM. In both cases highest values were found for the surfactants with unsaturated or branched tail groups. Interfacial elasticity and viscosity, however, were significantly reduced in these cases. Head and tail group both affect foam stability. Foams from glycolipids with sorbose and glucuronic acid derived head groups showed higher stability than those from surfactants with glucose head group, sorbitol provided lowest foam stability. We attribute this to different head group hydration also showing up in the time to reach equilibrium interfacial adsorption. Unsaturated tail groups reduced whereas branching enhanced foam stability compared to the systems with linear, saturated tail. Moreover, the tail group strongly influences foam texture. Glycolipids with unsaturated tail groups produced foams quickly collapsing even at smallest shear loads, whereas the branched tail group yielded a higher modulus than the linear tails. Normalized shear moduli for the systems with different head groups varied in a narrow range, with the highest value found for decylglucuronate.
Collapse
Affiliation(s)
- Rebecca Hollenbach
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (L.H.); (J.R.); (K.O.); (C.S.)
- Correspondence: ; Tel.:+49-721-60846737
| | - Annika Ricarda Völp
- Applied Mechanics, Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (A.R.V.); (N.W.)
| | - Ludwig Höfert
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (L.H.); (J.R.); (K.O.); (C.S.)
| | - Jens Rudat
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (L.H.); (J.R.); (K.O.); (C.S.)
| | - Katrin Ochsenreither
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (L.H.); (J.R.); (K.O.); (C.S.)
| | - Norbert Willenbacher
- Applied Mechanics, Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (A.R.V.); (N.W.)
| | - Christoph Syldatk
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (L.H.); (J.R.); (K.O.); (C.S.)
| |
Collapse
|
29
|
Hollenbach R, Bindereif B, van der Schaaf US, Ochsenreither K, Syldatk C. Optimization of Glycolipid Synthesis in Hydrophilic Deep Eutectic Solvents. Front Bioeng Biotechnol 2020; 8:382. [PMID: 32432093 PMCID: PMC7214929 DOI: 10.3389/fbioe.2020.00382] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/06/2020] [Indexed: 12/03/2022] Open
Abstract
Glycolipids are considered an alternative to petrochemically based surfactants because they are non-toxic, biodegradable, and less harmful to the environment while having comparable surface-active properties. They can be produced chemically or enzymatically in organic solvents or in deep eutectic solvents (DES) from renewable resources. DES are non-flammable, non-volatile, biodegradable, and almost non-toxic. Unlike organic solvents, sugars are easily soluble in hydrophilic DES. However, DES are highly viscous systems and restricted mass transfer is likely to be a major limiting factor for their application. Limiting factors for glycolipid synthesis in DES are not generally well understood. Therefore, the influence of external mass transfer, fatty acid concentration, and distribution on initial reaction velocity in two hydrophilic DES (choline:urea and choline:glucose) was investigated. At agitation speeds of and higher than 60 rpm, the viscosity of both DES did not limit external mass transfer. Fatty acid concentration of 0.5 M resulted in highest initial reaction velocity while higher concentrations had negative effects. Fatty acid accessibility was identified as a limiting factor for glycolipid synthesis in hydrophilic DES. Mean droplet sizes of fatty acid-DES emulsions can be significantly decreased by ultrasonic pretreatment resulting in significantly increased initial reaction velocity and yield (from 0.15 ± 0.03 μmol glucose monodecanoate/g DES to 0.57 ± 0.03 μmol/g) in the choline: urea DES. The study clearly indicates that fatty acid accessibility is a limiting factor in enzymatic glycolipid synthesis in DES. Furthermore, it was shown that physical pretreatment of fatty acid-DES emulsions is mandatory to improve the availability of fatty acids.
Collapse
Affiliation(s)
- Rebecca Hollenbach
- Institute of Process Engineering in Life Sciences II: Chair of Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Benjamin Bindereif
- Institute of Process Engineering in Life Sciences I: Chair of Food Process Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ulrike S. van der Schaaf
- Institute of Process Engineering in Life Sciences I: Chair of Food Process Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Katrin Ochsenreither
- Institute of Process Engineering in Life Sciences II: Chair of Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Christoph Syldatk
- Institute of Process Engineering in Life Sciences II: Chair of Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
30
|
Cazals F, Huguenot D, Crampon M, Colombano S, Betelu S, Galopin N, Perrault A, Simonnot MO, Ignatiadis I, Rossano S. Production of biosurfactant using the endemic bacterial community of a PAHs contaminated soil, and its potential use for PAHs remobilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136143. [PMID: 31884277 DOI: 10.1016/j.scitotenv.2019.136143] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
Biosurfactants are surface-active agents produced by microorganisms whose use in soil remediation processes is increasingly discussed as a more environmentally friendly alternative than chemically produced surfactants. In this work, we report the production of a biosurfactant by a bacterial community extracted from a polluted soil, mainly impacted by PAHs, in order to use it in a soil-washing process coupled with bioremediation. Nutrient balance was a critical parameter to optimize the production. Best conditions for biosurfactant production were found to be 20 g/L of glucose, 2 g/L of NH4NO3, and 14.2 g/L of Na2HPO4, corresponding to a C/N/P molar ratio equal to 13/1/2. Purification of the produced biosurfactant by acidification and double extraction with dichloromethane as a solvent allowed measuring the Critical Micellar Concentration (CMC) as equal to 42 mg/L. The capacity of the purified biosurfactant to increase the apparent solubility of four reference PAHs (naphthalene, phenanthrene, pyrene and benzo[a]pyrene) was completed. The solubilisation ratios, in mg of PAH/g of biosurfactant for phenanthrene, pyrene and benzo[a]pyrene are 0.214, 0.1204 and 0.0068, respectively. Identification of the bacteria found in the colony producing the biosurfactant showed the presence of bacteria able to produce biosurfactant (Enterobacteriaceae, Pseudomonas), as well as, others able to degrade PAHs (Microbacterium, Pseudomonas, Rhodanobacteraceae).
Collapse
Affiliation(s)
- Florian Cazals
- Laboratoire Géomatériaux et Environnement, Université Paris-Est Marne-la-Vallée, France; Colas Environnement, France; Bureau de Recherches Géologiques et Minières (BRGM), France.
| | - David Huguenot
- Laboratoire Géomatériaux et Environnement, Université Paris-Est Marne-la-Vallée, France.
| | - Marc Crampon
- Bureau de Recherches Géologiques et Minières (BRGM), France.
| | | | | | | | | | - Marie-Odile Simonnot
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, 54000 Nancy, France.
| | | | - Stéphanie Rossano
- Laboratoire Géomatériaux et Environnement, Université Paris-Est Marne-la-Vallée, France.
| |
Collapse
|
31
|
Araújo SCDS, Silva-Portela RCB, de Lima DC, da Fonsêca MMB, Araújo WJ, da Silva UB, Napp AP, Pereira E, Vainstein MH, Agnez-Lima LF. MBSP1: a biosurfactant protein derived from a metagenomic library with activity in oil degradation. Sci Rep 2020; 10:1340. [PMID: 31992807 PMCID: PMC6987170 DOI: 10.1038/s41598-020-58330-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/04/2019] [Indexed: 11/21/2022] Open
Abstract
Microorganisms represent the most abundant biomass on the planet; however, because of several cultivation technique limitations, most of this genetic patrimony has been inaccessible. Due to the advent of metagenomic methodologies, such limitations have been overcome. Prevailing over these limitations enabled the genetic pool of non-cultivable microorganisms to be exploited for improvements in the development of biotechnological products. By utilising a metagenomic approach, we identified a new gene related to biosurfactant production and hydrocarbon degradation. Environmental DNA was extracted from soil samples collected on the banks of the Jundiaí River (Natal, Brazil), and a metagenomic library was constructed. Functional screening identified the clone 3C6, which was positive for the biosurfactant protein and revealed an open reading frame (ORF) with high similarity to sequences encoding a hypothetical protein from species of the family Halobacteriaceae. This protein was purified and exhibited biosurfactant activity. Due to these properties, this protein was named metagenomic biosurfactant protein 1 (MBSP1). In addition, E. coli RosettaTM (DE3) strain cells transformed with the MBSP1 clone showed an increase in aliphatic hydrocarbon degradation. In this study, we described a single gene encoding a protein with marked tensoactive properties that can be produced in a host cell, such as Escherichia coli, without substrate dependence. Furthermore, MBSP1 has been demonstrated as the first protein with these characteristics described in the Archaea or Bacteria domains.
Collapse
Affiliation(s)
- Sinara Carla da Silva Araújo
- Department of Cellular Biology and Genetics, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Rita C B Silva-Portela
- Department of Cellular Biology and Genetics, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Daniel Chaves de Lima
- Department of Cellular Biology and Genetics, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Wydemberg J Araújo
- Department of Cellular Biology and Genetics, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Uaska Bezerra da Silva
- Department of Cellular Biology and Genetics, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Amanda P Napp
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Evandro Pereira
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marilene H Vainstein
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucymara Fassarella Agnez-Lima
- Department of Cellular Biology and Genetics, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
| |
Collapse
|
32
|
Microbial disease management in agriculture: Current status and future prospects. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Jahan R, Bodratti AM, Tsianou M, Alexandridis P. Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. Adv Colloid Interface Sci 2020; 275:102061. [PMID: 31767119 DOI: 10.1016/j.cis.2019.102061] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 12/29/2022]
Abstract
Biosurfactants comprise a wide array of amphiphilic molecules synthesized by plants, animals, and microbes. The synthesis route dictates their molecular characteristics, leading to broad structural diversity and ensuing functional properties. We focus here on low molecular weight (LMW) and high molecular weight (HMW) biosurfactants of microbial origin. These are environmentally safe and biodegradable, making them attractive candidates for applications spanning cosmetics to oil recovery. Biosurfactants spontaneously adsorb at various interfaces and self-assemble in aqueous solution, resulting in useful physicochemical properties such as decreased surface and interfacial tension, low critical micellization concentrations (CMCs), and ability to solubilize hydrophobic compounds. This review highlights the relationships between biosurfactant molecular composition, structure, and their interfacial behavior. It also describes how environmental factors such as temperature, pH, and ionic strength can impact physicochemical properties and self-assembly behavior of biosurfactant-containing solutions and dispersions. Comparison between biosurfactants and their synthetic counterparts are drawn to illustrate differences in their structure-property relationships and potential benefits. Knowledge of biosurfactant properties organized along these lines is useful for those seeking to formulate so-called green or natural products with novel and useful properties.
Collapse
|
34
|
Ram H, Kumar Sahu A, Said MS, Banpurkar AG, Gajbhiye JM, Dastager SG. A novel fatty alkene from marine bacteria: A thermo stable biosurfactant and its applications. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120868. [PMID: 31319332 DOI: 10.1016/j.jhazmat.2019.120868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
In this study, a novel thermo stable biosurfactants, 1-Pentanonacontene (C95H190) a fatty alkene and 3-Hydroxy-16-methylheptadecanoic acid (C18H36O3) were isolated from a marine isolate SGD-AC-13. Biosurfactants were produced using 1% yeast extract in tap water as production medium at 24 h in flask and 12 h in bioreactor. Using 16S rRNA gene sequence (1515 bp) and BCL card (bioMérieux VITEK®), strain was identified as Bacillus sp. Crude biosurfactant reduced the surface tension of distilled water to 31.32 ± 0.93 mN/m with CMC value of 0.3 mg/ml. Cell free supernatant showed excellent emulsification and oil displacement activity with stability up to 160 °C, pH 6-12 and 50 g/L NaCl conc. Biosurfactants were characterized using FTIR, TLC, HPLC LC-MS and NMR spectroscopy. Cell free supernatant reduced the contact angle of distilled water droplet from 117° to 52.28° and of 2% pesticide from 78.77° to 73.42° while 750 μg/ml of crude biosurfactant reduced from 66.06° to 56.33° for 2% pesticide and recovered 35% ULO and 12% HWCO from the contaminated sand. To our best of knowledge, this is the first report of thermo stable fatty alkene as a biosurfactant and is structurally different from previously reported, with having potential application in agriculture, oil recovery and bioremediation.
Collapse
Affiliation(s)
- Hari Ram
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Amit Kumar Sahu
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune, 411008, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Madhukar S Said
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, 411008, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Arun G Banpurkar
- Department of Physics, Savitribai Phule Pune University, Pune, 411007, India
| | - Jayant M Gajbhiye
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, 411008, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Syed G Dastager
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune, 411008, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune, 411008, India.
| |
Collapse
|
35
|
Luzzatto-Knaan T, Melnik AV, Dorrestein PC. Mass Spectrometry Uncovers the Role of Surfactin as an Interspecies Recruitment Factor. ACS Chem Biol 2019; 14:459-467. [PMID: 30763059 DOI: 10.1021/acschembio.8b01120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microbes use metabolic exchange to sense and respond to their changing environment. Surfactins, produced by Bacillus subtilis, have been extensively studied for their role in biofilm formation, biosurfactant properties, and antimicrobial activity, affecting the surrounding microbial consortia. Using mass spectrometry, we reveal that Paenibacillus dendritiformis, originally isolated with B. subtilis, is not antagonized by the presence of surfactins and is actually attracted to them. We demonstrate here for the first time that P. dendritiformis is also actively degrading surfactins produced by B. subtilis and accumulating the degradation products that serve as territorial markers. This new attribute as an attractant of selected microbes and the conversion into a deterrent highlight the diverse role natural products have in shaping the environment and establishing mixed communities.
Collapse
Affiliation(s)
- Tal Luzzatto-Knaan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Alexey V. Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
36
|
Feng JQ, Gang HZ, Li DS, Liu JF, Yang SZ, Mu BZ. Characterization of biosurfactant lipopeptide and its performance evaluation for oil-spill remediation. RSC Adv 2019; 9:9629-9632. [PMID: 35520745 PMCID: PMC9062149 DOI: 10.1039/c9ra01430f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/20/2019] [Indexed: 11/25/2022] Open
Abstract
Biosurfactant lipopeptide is a promising dispersant over varieties of chemical ones in oil-spill remediation. The toxicity, biodegradability and performance of the biosurfactant lipopeptide are studied in this paper. Biosurfactant lipopeptide is a promising dispersant over varieties of chemical ones in oil-spill remediation.![]()
Collapse
Affiliation(s)
- Jun-Qiao Feng
- State Key Laboratory of Bioreactor Engineering
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Hong-Ze Gang
- State Key Laboratory of Bioreactor Engineering
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Dong-Sheng Li
- State Key Laboratory of Bioreactor Engineering
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
37
|
Isolation and characterization of a lindane degrading bacteria Paracoccus sp. NITDBR1 and evaluation of its plant growth promoting traits. Int Microbiol 2018; 22:155-167. [PMID: 30810939 DOI: 10.1007/s10123-018-00037-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/02/2018] [Accepted: 10/15/2018] [Indexed: 01/29/2023]
Abstract
Lindane contamination in different environmental compartments is still posing a serious threat to our environment and effective measures need to be taken for the detoxification of lindane. Soil bacteria isolated from agricultural fields are known to possess certain plant growth promoting traits like the production of phytohormones, production of ammonia, nitrogen fixation and solubilization of phosphorus, etc. In the present study, an indigenous bacterial strain Paracoccus sp. NITDBR1 have been isolated from an agricultural field in Manipur, India which could grow on 100 mg L-1 lindane as the sole source of carbon and could degrade up to 90% of lindane in mineral salt media under liquid culture conditions in 8 days. The strain NITDBR1 was able to form biofilm in lindane media and the addition of substrate like glucose and sucrose enhanced the biofilm formation by 1.3 and 1.17-fold respectively in 3 days. The strain NITDBR1 could produce glycolipid and glycoprotein based biosurfactants. It was also found to possess plant growth promoting traits like nitrogen fixation and indole-3-acetic acid production to assist crop production. The phytotoxicity studies carried out on mustard seeds revealed that the degradation products formed after treatment with NITDBR1 could lower the toxicity of lindane for root elongation by 1.3-fold. Therefore, strain NITDBR1 could be useful for the bioremediation of soil contaminated with lindane with lesser damage to the environment, biofilm forming ability may help the bacteria survive under stressed environmental conditions, and biosurfactant production will help in increasing the bioavailability of contaminants. The plant growth promoting traits can be beneficial for agriculture. With such soil friendly activities coupled with pesticide degradation, this strain can be used for environmental as well as agricultural applications.
Collapse
|
38
|
Sharma N, Lavania M, Kukreti V, Rana DP, Lal B. Laboratory Investigation of Indigenous Consortia TERIJ-188 for Incremental Oil Recovery. Front Microbiol 2018; 9:2357. [PMID: 30356706 PMCID: PMC6189299 DOI: 10.3389/fmicb.2018.02357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/14/2018] [Indexed: 11/13/2022] Open
Abstract
Bacterial Profile modification is an efficient process which brings the alteration in permeability of the porous media of the reservoir by selective plugging which eventually recover the residual oil. It is an advantageous and feasible method for residual oil recovery from high permeability zones of the reservoir. In this study, indigenous bacterial consortia, TERIJ-188 was developed from Gujarat oil fields. TERIJ-188 was identified as Thermoanaerobacter sp., Thermoanaerobacter brockii, Thermoanaerobacter italicus, Thermoanaerobacter mathranii, Thermoanaerobacter thermocopriae. The novelty of consortia was that it produces biomass (850 mg l-1), bio-surfactant (500 mg l-1), and volatile fatty acids (495 mg l-1) at 70°C in the span of 10 days, which are adequate to alter the permeability and sweep efficiency of high permeability zones facilitating the displacement of oil. The biosurfactant was analyzed for its functional group by FTIR and NMR techniques which indicate the presence of C-N bond, aldehydes, triacylglycerols. TERIJ-188 showed an effective reduction in permeability at residual oil saturation from 28.3 to 11.3 mD and 19.2% incremental oil recovery in a core flood assay. Pathogenicity test suggested that TERIJ-188 is non-toxic, non-virulent and safe for field implementation.
Collapse
Affiliation(s)
- Neha Sharma
- Microbial Biotechnology, Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, New Delhi, India
| | - Meeta Lavania
- Microbial Biotechnology, Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, New Delhi, India
| | - Vipin Kukreti
- Institute of Reservoir Studies, Oil and Natural Gas Corporation Limited, Ahmadabad, India
| | - Dolly Pal Rana
- Institute of Reservoir Studies, Oil and Natural Gas Corporation Limited, Ahmadabad, India
| | - Banwari Lal
- Microbial Biotechnology, Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
39
|
On the road towards tailor-made rhamnolipids: current state and perspectives. Appl Microbiol Biotechnol 2018; 102:8175-8185. [DOI: 10.1007/s00253-018-9240-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 12/20/2022]
|
40
|
Kumar D, Pannu R. Perspectives of lindane (γ-hexachlorocyclohexane) biodegradation from the environment: a review. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0213-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
41
|
Raddadi N, Giacomucci L, Marasco R, Daffonchio D, Cherif A, Fava F. Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil. Microb Cell Fact 2018; 17:83. [PMID: 29855369 PMCID: PMC5984429 DOI: 10.1186/s12934-018-0934-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/22/2018] [Indexed: 12/03/2022] Open
Abstract
Background Water stress is a critical issue for plant growth in arid sandy soils. Here, we aimed to select bacteria producing polyextremotolerant surface-active compounds capable of improving water retention and humidity uptake in sandy soils. Results From Tunisian desert and saline systems, we selected eleven isolates able to highly emulsify different organic solvents. The bioemulsifying activities were stable with 30% NaCl, at 4 and 120 °C and in a pH range 4–12. Applications to a sandy soil of the partially purified surface-active compounds improved soil water retention up to 314.3% compared to untreated soil. Similarly, after 36 h of incubation, the humidity uptake rate of treated sandy soil was up to 607.7% higher than untreated controls. Conclusions Overall, results revealed that polyextremotolerant bioemulsifiers of bacteria from arid and desert soils represent potential sources to develop new natural soil-wetting agents for improving water retention in arid soils. Electronic supplementary material The online version of this article (10.1186/s12934-018-0934-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Noura Raddadi
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, via Terracini 28, 40131, Bologna, Italy.
| | - Lucia Giacomucci
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, via Terracini 28, 40131, Bologna, Italy
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ameur Cherif
- LR Biotechnology and Bio-Geo Resources Valorization, Higher Institute for Biotechnology, Biotechpole Sidi Thabet, University of Manouba, 2020, Ariana, Tunisia
| | - Fabio Fava
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, via Terracini 28, 40131, Bologna, Italy
| |
Collapse
|
42
|
Physiological and Molecular Characterization of Biosurfactant Producing Endophytic Fungi Xylaria regalis from the Cones of Thuja plicata as a Potent Plant Growth Promoter with Its Potential Application. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7362148. [PMID: 29862287 PMCID: PMC5971342 DOI: 10.1155/2018/7362148] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/22/2018] [Accepted: 04/05/2018] [Indexed: 11/23/2022]
Abstract
Currently, there is an absolute concern for all nations in agricultural productivity to meet growing demands of human population. In recent time, biosurfactants produced by diverse group of microorganisms are used to achieve such demands as it is known for its ecofriendly use in elimination of plant pathogens and for increasing the bioavailability of nutrients for plants. Endophytic fungi are the important source of secondary metabolites and novel bioactive compounds for different biological applications. In the present study, endophytic fungi Xylaria regalis (X. regalis) recovered from the cones of Thuja plicata was evaluated for its biosurfactant producing ability and plant growth-promoting abilities through various screening methods and also via its antagonistic activity against phytopathogens like Fusarium oxysporum and Aspergillus niger. In addition, X. regalis was also tested in vivo for a various range of growth parameters in chilli under greenhouse conditions. Significant increase in shoot and root length, dry matter production of shoot and root, chlorophyll, nitrogen, and phosphorus contents of chilli seedlings was found, which reveals its ability to improve the growth of crop plants. Hence, this study suggests the possibility of biosurfactant producing endophytic fungi X. regalis as a source of novel green biosurfactant for sustainable agriculture to achieve growing demands.
Collapse
|
43
|
Hvidsten I, Mjøs SA, Holmelid B, Bødtker G, Barth T. Lipids of Dietzia sp. A14101. Part I: A study of the production dynamics of surface-active compounds. Chem Phys Lipids 2017; 208:19-30. [DOI: 10.1016/j.chemphyslip.2017.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/06/2017] [Accepted: 08/14/2017] [Indexed: 11/25/2022]
|
44
|
Icgen B, Salik SB, Goksu L, Ulusoy H, Yilmaz F. Higher alkyl sulfatase activity required by microbial inhabitants to remove anionic surfactants in the contaminated surface waters. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:2357-2366. [PMID: 29144294 DOI: 10.2166/wst.2017.402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biodegradation of anionic surfactants, like sodium dodecyl sulfate (SDS) are challenged by some bacteria through the function of the enzyme alkyl sulfatases. Therefore, identifying and characterizing bacteria capable of degrading SDS with high alkyl sulfatase enzyme activity are pivotal. In this study, bacteria isolated from surfactant contaminated river water were screened for their potential to degrade SDS. Primary screening carried out by the conventional enrichment culture technique and assessment of SDS-degrading ability through methylene blue active substance assay revealed 12, out of 290, SDS-degrading surface water bacteria with maximum SDS degrading abilities of 46-94% in 24-54 h. The isolates exhibited optimum growth at SDS concentration of 1 g/L, but tolerated up to 15-75 g/L. Eleven isolates were identified as the species of Pseudomonas and one isolate was identified as Aeromonas through 16S rRNA sequencing. Proteolytic activity of alkyl sulfatases in the identified isolates was shown by using native-PAGE analysis. The determined enzyme activities changed in between 1.32 and 2.90 U/mg in the crude extracts. Preliminary experiments showed that the isolates with the alkyl sulfatase enzyme activities ≥2.50 U/mg were strong gratuitous degraders. However, their relative importance in soil, sewage, and wastewater treatment plants remains to be assessed.
Collapse
Affiliation(s)
- Bulent Icgen
- Department of Environmental Engineering, Middle East Technical University, Ankara 06800, Turkey E-mail:
| | | | - Lale Goksu
- Department of Biology, Kırıkkale University, Kırıkkale 71450, Turkey
| | - Huseyin Ulusoy
- Department of Biology, Kırıkkale University, Kırıkkale 71450, Turkey
| | - Fadime Yilmaz
- Department of Environmental Engineering, Middle East Technical University, Ankara 06800, Turkey E-mail:
| |
Collapse
|
45
|
Decesaro A, Machado TS, Cappellaro ÂC, Reinehr CO, Thomé A, Colla LM. Biosurfactants during in situ bioremediation: factors that influence the production and challenges in evalution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:20831-20843. [PMID: 28815413 DOI: 10.1007/s11356-017-9778-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
Research on the influence of biosurfactants on the efficiency of in situ bioremediation of contaminated soil is continuously growing. Despite the constant progress in understanding the mechanisms involved in the effects of biosurfactants, there are still many factors that are not sufficiently elucidated. There is a lack of research on autochthonous or exogenous microbial metabolism when biostimulation or bioaugmentation is carried out to produce biosurfactants at contaminated sites. In addition, studies on the application of techniques that measure the biosurfactants produced in situ are needed. This is important because, although the positive influence of biosurfactants is often reported, there are also studies where no effect or negative effects have been observed. This review aimed to examine some studies on factors that can improve the production of biosurfactants in soils during in situ bioremediation. Moreover, this work reviews the methodologies that can be used for measuring the production of these biocomposts. We reviewed studies on the potential of biosurfactants to improve the bioremediation of hydrocarbons, as well as the limitations of methods for the production of these biomolecules by microorganisms in soil.
Collapse
Affiliation(s)
- Andressa Decesaro
- Faculty of Engineering and Architecture, Postgraduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building, BR 285, km 171, Zip Code 611, Bairro São José, Passo Fundo, RS, CEP: 99052-900, Brazil
| | - Thaís Strieder Machado
- Faculty of Engineering and Architecture, Postgraduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building, BR 285, km 171, Zip Code 611, Bairro São José, Passo Fundo, RS, CEP: 99052-900, Brazil
| | - Ângela Carolina Cappellaro
- Faculty of Engineering and Architecture, Postgraduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building, BR 285, km 171, Zip Code 611, Bairro São José, Passo Fundo, RS, CEP: 99052-900, Brazil
| | - Christian Oliveira Reinehr
- Faculty of Engineering and Architecture, Postgraduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building, BR 285, km 171, Zip Code 611, Bairro São José, Passo Fundo, RS, CEP: 99052-900, Brazil
| | - Antônio Thomé
- Faculty of Engineering and Architecture, Postgraduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building, BR 285, km 171, Zip Code 611, Bairro São José, Passo Fundo, RS, CEP: 99052-900, Brazil
| | - Luciane Maria Colla
- Faculty of Engineering and Architecture, Postgraduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building, BR 285, km 171, Zip Code 611, Bairro São José, Passo Fundo, RS, CEP: 99052-900, Brazil.
| |
Collapse
|
46
|
Pi Y, Chen B, Bao M, Fan F, Cai Q, Ze L, Zhang B. Microbial degradation of four crude oil by biosurfactant producing strain Rhodococcus sp. BIORESOURCE TECHNOLOGY 2017; 232:263-269. [PMID: 28236759 DOI: 10.1016/j.biortech.2017.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
Rhodococcus erythropolis M-25, one of the representative biosurfactant producers, performed effectively during the biodegradation of four crude oil. The microbial degradation efficiency is positively relevant to the API of the crude oil. The chemical dispersant Corexit 9500A did not enhance the biodegradation of the petroleum hydrocarbons during the experimental period. 70.7% of the N-4 oil was degraded after 30days, while in the Corexit 9500A plus sample the biodegradation removal was 42.8%. The Corexit-derived compounds were metabolized by M-25 at the same time of the petroleum hydrocarbons biodegrading. Neither biodegradation nor chemical dispersion process has almost no effect on the biomarker (m/z=231). The saturated methyl-branched fatty acids increased from 37.3%, to 49.4%, when M-25 was exposed with the N-4 crude oil. Similarly, the saturated methyl-branched fatty acids in the membrane of N3-2P increased from 20.25% to 44.1%, when exposed it with the N-4 crude oil.
Collapse
Affiliation(s)
- Yongrui Pi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B3X5, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B3X5, Canada
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China.
| | - Fuqiang Fan
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B3X5, Canada
| | - Qinhong Cai
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B3X5, Canada
| | - Lv Ze
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B3X5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B3X5, Canada
| |
Collapse
|
47
|
De Oliveira DWF, Cara AB, Lechuga-Villena M, García-Román M, Melo VMM, Gonçalves LRB, Vaz DA. Aquatic toxicity and biodegradability of a surfactant produced by Bacillus subtilis ICA56. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:174-181. [PMID: 27791474 DOI: 10.1080/10934529.2016.1240491] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work, the environmental compatibility of a biosurfactant produced by a Bacillus subtilis strain isolated from the soil of a Brazilian mangrove was investigated. The biosurfactant, identified as surfactin, is able to reduce surface tension (ST) to 31.5 ± 0.1 mN m-1 and exhibits a lowcritical micelle concentration (CMC) value (0.015 ± 0.003 g L-1). The highest crude biosurfactant concentration (224.3 ± 1.9 mg L-1) was reached at 72 h of fermentation. Acute toxicity tests, carried out with Daphnia magna, Vibrio fischeri and Selenastrum capricornutum indicated that the toxicity of the biosurfactant is lower than that of its chemically derived counterparts. The results of the biodegradability tests demonstrated that the crude surfactin extract was degraded by both Pseudomonas putida and a mixed population from a sewage-treatment plant, in both cases the biodegradation efficiency being dependent on the initial concentration of the biosurfactant. Finally, as the biodegradation percentages obtained fall within the acceptance limits established by the Organization for Economic Co-operation and Development (Guidelines for Testing of Chemicals, OECD 301E), crude surfactin can be classified as a "readily" biodegradable compound.
Collapse
Affiliation(s)
- Darlane W F De Oliveira
- a Departamento de Engenharia Química , Universidade Federal do Ceará , Fortaleza , CE , Brazil
| | - Alejandro B Cara
- b Department of Chemical Engineering , Faculty of Sciences, University of Granada , Granada , Spain
| | - Manuela Lechuga-Villena
- b Department of Chemical Engineering , Faculty of Sciences, University of Granada , Granada , Spain
| | - Miguel García-Román
- b Department of Chemical Engineering , Faculty of Sciences, University of Granada , Granada , Spain
| | - Vania M M Melo
- c Departamento de Biologia , LemBiotech, Laboratório de Ecologia Microbiana e Biotecnologia, Universidade Federal do Ceará , Fortaleza , CE , Brazil
| | - Luciana R B Gonçalves
- a Departamento de Engenharia Química , Universidade Federal do Ceará , Fortaleza , CE , Brazil
| | - Deisi A Vaz
- b Department of Chemical Engineering , Faculty of Sciences, University of Granada , Granada , Spain
| |
Collapse
|
48
|
Singh P, Saini HS, Raj M. Rhamnolipid mediated enhanced degradation of chlorpyrifos by bacterial consortium in soil-water system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 134P1:156-162. [PMID: 27614262 DOI: 10.1016/j.ecoenv.2016.07.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 07/11/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
The study was conducted with the aim to develop an environmentally compatible bio-based system which may rapidly detoxify soil and water polluted by inordinate use of organophosphate (OP) pesticides. Chlorpyrifos was used as model pesticide as it degrade slowly due to its low aqueous phase solubility (2ppm) and formation of antibacterial intermediate 3,5,6, trichloropyridinol (TCP). Five potential bacteria used in this study belonging to genus Pseudomonas, Klebsiella, Stenotrophomonas, Ochrobactrum and Bacillus and their mixed culture system efficiently degraded chlorpyrifos and its toxic intermediates TCP and diethylthiophosphate (DETP) in aqueous medium. However, degradation rate in soil-water based slurry system was slow as it took 10 days to degrade 82% of added chlorpyrifos (50mg/kg) by a potential mixed culture CS2 comprised of isolates F-3 and CH-y. This might be due to strong sorption affinity of chlorpyrifos to soil components which limits its bioavailability. Hence, a crude rhamnolipid biosurfactant produced by ChlD was used which improved the aqueous phase solubility of chlorpyrifos by 2-15 folds. This supported CS2 to attain 30% higher degradation within short period of 6 days as compared to biotic control without surfactant. Thus, this combination of mixed bacterial population with biosurfactant significantly improved the rate of chlorpyrifos degradation in soil without accumulation of toxic intermediates. This environmentally benign biosurfactant may be produced "in situ" and can replace commonly used toxic synthetic surfactants for bioremediation purposes.
Collapse
Affiliation(s)
- Partapbir Singh
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Harvinder Singh Saini
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Mayil Raj
- MTCC, IMTECH, Sector 39-A, Chandigarh 160036, India
| |
Collapse
|
49
|
Shah A, Shahzad S, Munir A, Nadagouda MN, Khan GS, Shams DF, Dionysiou DD, Rana UA. Micelles as Soil and Water Decontamination Agents. Chem Rev 2016; 116:6042-74. [PMID: 27136750 DOI: 10.1021/acs.chemrev.6b00132] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Contaminated soil and water pose a serious threat to human health and ecosystem. For the treatment of industrial effluents or minimizing their detrimental effects, preventive and remedial approaches must be adopted prior to the occurrence of any severe environmental, health, or safety hazard. Conventional treatment methods of wastewater are insufficient, complicated, and expensive. Therefore, a method that could use environmentally friendly surfactants for the simultaneous removal of both organic and inorganic contaminants from wastewater is deemed a smart approach. Surfactants containing potential donor ligands can coordinate with metal ions, and thus such compounds can be used for the removal of toxic metals and organometallic compounds from aqueous systems. Surfactants form host-guest complexes with the hydrophobic contaminants of water and soil by a mechanism involving the encapsulation of hydrophobes into the self-assembled aggregates (micelles) of surfactants. However, because undefined amounts of surfactants may be released into the aqueous systems, attention must be paid to their own environmental risks as well. Moreover, surfactant remediation methods must be carefully analyzed in the laboratory before field implementation. The use of biosurfactants is the best choice for the removal of water toxins as such surfactants are associated with the characteristics of biodegradability, versatility, recovery, and reuse. This Review is focused on the currently employed surfactant-based soil and wastewater treatment technologies owing to their critical role in the implementation of certain solutions for controlling pollution level, which is necessary to protect human health and ensure the quality standard of the aquatic environment.
Collapse
Affiliation(s)
- Afzal Shah
- Department of Chemistry, Quaid-i-Azam University , Islamabad 45320, Pakistan
| | - Suniya Shahzad
- Department of Chemistry, Quaid-i-Azam University , Islamabad 45320, Pakistan
| | - Azeema Munir
- Department of Chemistry, Quaid-i-Azam University , Islamabad 45320, Pakistan
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University , Dayton, Ohio 45324, United States
| | - Gul Shahzada Khan
- Department of Chemistry, Shaheed Benazir Bhutto University , Sheringal, Dir (Upper), 18000 Khyber Pakhtunkhwa, Pakistan
| | - Dilawar Farhan Shams
- Department of Environmental Sciences, Abdul Wali Khan University Mardan , 23200 Khyber Pakhtunkhwa, Pakistan
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati , Cincinnati, Ohio 45221-0012, United States
| | - Usman Ali Rana
- Sustainable Energy Technologies Center, College of Engineering, King Saud University , PO Box 800, Riyadh 11421, Saudi Arabia
| |
Collapse
|
50
|
Microbial derived surface active compounds: properties and screening concept. World J Microbiol Biotechnol 2015; 31:1001-20. [DOI: 10.1007/s11274-015-1866-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 04/30/2015] [Indexed: 12/20/2022]
|