1
|
El-Kurdi N, El-Shatoury S, ElBaghdady K, Hammad S, Ghazy M. Biodegradation of polystyrene nanoplastics by Achromobacter xylosoxidans M9 offers a mealworm gut-derived solution for plastic pollution. Arch Microbiol 2024; 206:238. [PMID: 38684545 PMCID: PMC11058615 DOI: 10.1007/s00203-024-03947-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024]
Abstract
Nanoplastics pose significant environmental problems due to their high mobility and increased toxicity. These particles can cause infertility and inflammation in aquatic organisms, disrupt microbial signaling and act as pollutants carrier. Despite extensive studies on their harmful impact on living organisms, the microbial degradation of nanoplastics is still under research. This study investigated the degradation of nanoplastics by isolating bacteria from the gut microbiome of Tenebrio molitor larvae fed various plastic diets. Five bacterial strains capable of degrading polystyrene were identified, with Achromobacter xylosoxidans M9 showing significant nanoplastic degradation abilities. Within 6 days, this strain reduced nanoplastic particle size by 92.3%, as confirmed by SEM and TEM analyses, and altered the chemical composition of the nanoplastics, indicating a potential for enhanced bioremediation strategies. The strain also caused a 7% weight loss in polystyrene film over 30 days, demonstrating its efficiency in degrading nanoplastics faster than polystyrene film. These findings might enhance plastic bioremediation strategies.
Collapse
Affiliation(s)
- Najat El-Kurdi
- Biotechnology Program, Basic and Applied Science Institute, Egypt-Japan University of Science and Technology, New Burj Al-Arab, Alexandria, Egypt
- Aquaculture Biotechnology Department, Fish Farming and Technology Institute, Suez Canal University, Ismailia, Egypt
| | - Sahar El-Shatoury
- Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt.
| | - Khaled ElBaghdady
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sherif Hammad
- Medicinal Chemistry Department, PharmD Program, Egypt-Japan University of Science and Technology, New Burj Al-Arab, Alexandria, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Ain Helwan, Egypt
| | - Mohamed Ghazy
- Biotechnology Program, Basic and Applied Science Institute, Egypt-Japan University of Science and Technology, New Burj Al-Arab, Alexandria, Egypt
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Nyamath S, Subburamu K, Kalyanasundaram GT, Balachandar D, Suresh M, Anandham R. Multifarious characteristics of sulfur-oxidizing bacteria residing in rice rhizosphere. Folia Microbiol (Praha) 2024; 69:395-405. [PMID: 37505441 DOI: 10.1007/s12223-023-01080-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Sulfur-oxidizing bacteria (SOB) are versatile microorganisms known for their ability to oxidize various reduced sulfur compounds, namely, elemental sulfur (S0), hydrogen sulfide (H2S), tetrathionate (S4O62-), and trithionate (S3O62-) to sulfate (SO42-). In this study, out of twelve SOB isolates from rice rhizosphere, five were screened based on their sulfur oxidation potential, viz., SOB1, SOB2, SOB3, SOB4, and SOB5, and were identified as Ochrobactrum soli SOB1, Achromobacter xylosoxidans SOB2, Stenotrophomonas maltophilia SOB3, Brucella tritici SOB4, and Stenotrophomonas pavanii SOB5, respectively. All the isolates displayed chemolithotrophic nutritional mode by consuming thiosulfate and accumulating trithionate and tetrathionate in the growth medium which is ultimately oxidized to sulfate. The strains were authenticated with the production of thiosulfate oxidizing enzymes such as rhodanese and sulfite oxidase. Despite their tendency to oxidize reduced sulfur compounds, B. tritici SOB4 and S. pavanii SOB5 were also found to possess phosphate and zinc solubilization potential, acetic acid, and indole acetic acid (IAA) production and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. The presence of sulfanyl (R-SH) groups was noticed in the A. xylosoxidans SOB2. Elemental sulfur conversion into sulfate was noted in the S. maltophilia SOB3, and hydrogen sulfide conversion into sulfate was observed in the Ochromobacter soli SOB1. Sulfur oxidation potential coupled with beneficial properties of the isolates widen the knowledge on SOB.
Collapse
Affiliation(s)
- Syed Nyamath
- Department of Agricultural Microbiology, Directorate of Natural Resource Management, Agricultural College and Research Institute, Coimbatore, 641003, India
| | - Karthikeyan Subburamu
- Department of Agricultural Microbiology, Directorate of Natural Resource Management, Agricultural College and Research Institute, Coimbatore, 641003, India.
- Centre for Post-Harvest Technology, Agricultural Engineering College and Research Institute, Coimbatore, 641003, India.
| | - Geetha Thanuja Kalyanasundaram
- Department of Agricultural Microbiology, Directorate of Natural Resource Management, Agricultural College and Research Institute, Coimbatore, 641003, India
| | - Dananjeyan Balachandar
- Department of Agricultural Microbiology, Directorate of Natural Resource Management, Agricultural College and Research Institute, Coimbatore, 641003, India
| | - Meena Suresh
- Department of Soil Science and Agricultural Chemistry, Agricultural College and Research Institute, Trichy, 620009, India
| | - Rangasamy Anandham
- Department of Agricultural Microbiology, Directorate of Natural Resource Management, Agricultural College and Research Institute, Coimbatore, 641003, India
| |
Collapse
|
3
|
Ren Y, Wang G, Bai X, Su Y, Zhang Z, Han J. Research progress on remediation of organochlorine pesticide contamination in soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:25. [PMID: 38225511 DOI: 10.1007/s10653-023-01797-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/25/2023] [Indexed: 01/17/2024]
Abstract
Deteriorated soil pollution has grown into a worldwide environmental concern over the years. Organochlorine pesticide (OCP) residues, featured with ubiquity, persistence and refractoriness, are one of the main pollution sources, causing soil degradation, fertility decline and nutritional imbalance, and severely impacting soil ecology. Furthermore, residual OCPs in soil may enter the human body along with food chain accumulation and pose a serious health threat. To date, many remediation technologies including physicochemical and biological ways for organochlorine pollution have been developed at home and abroad, but none of them is a panacea suitable for all occasions. Rational selection and scientific decision-making are grounded in in-depth knowledge of various restoration techniques. However, soil pollution treatment often encounters the interference of multiple factors (climate, soil properties, cost, restoration efficiency, etc.) in complex environments, and there is still a lack of systematic summary and comparative analysis of different soil OCP removal methods. Thus, to better guide the remediation of contaminated soil, this review summarized the most commonly used strategies for OCP removal, evaluated their merits and limitations and discussed the application scenarios of different methods. It will facilitate the development of efficient, inexpensive and environmentally friendly soil remediation strategies for sustainable agricultural and ecological development.
Collapse
Affiliation(s)
- Ying Ren
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Gang Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xuanjiao Bai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yuying Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zheng Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
4
|
Sakthivel S, Dhanapal AR, Palaniswamy R, Dhandapani S, Kathiravan MN. Biodegradation of Endosulfan-a Chlorinated Cyclodiene Pesticide by Indigenous Pseudomonas sp. MSCAS BT01. Appl Biochem Biotechnol 2022; 194:2747-2761. [PMID: 35267121 DOI: 10.1007/s12010-022-03869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/24/2022] [Indexed: 11/02/2022]
Abstract
Endosulfan remains as a lipophilic insecticide that causes serious medical problems because of biological stability and toxicity also found in air, water, soil sediments, and foodstuffs. Henceforward, the present study reveals a novel bacterial species isolated from pesticide-contaminated soil for enhanced endosulfan degradation. Next, isolated bacterial species was characterized with biochemical assays and 16S rRNA sequencing technique. Subsequently, the optimal conditions for endosulfan biodegradation such as pH, concentration of endosulfan, and bacterial growth were estimated with non-sulfur medium (NSM). Sequentially, the amount of endosulfan and compound degradation were analyzed through thin-layer chromatography and gas chromatography/mass spectrometry. Overall, the obtained results revealed the endosulfan acting as primary carbon source for bacterial growth. From the GC-MS analysis, the metabolic products released during endosulfan degradation by Pseudomonas sp. MSCAS BT01 were compared with standard GC-MS spectra. The highest (98%) endosulfan degradation was obtained at pH 7.0. The complete endosulfan degradation was achieved at 14th day of incubation and the less toxic endosulfan diol produced was observed via GC-MS. To conclude, the pesticide-contaminated isolate Pseudomonas sp. MSCAS BT01 emerged as a promising bioremediation tool and effectively employed to degrade endosulfan from contaminated soils, sediments, and wastewaters in the days yet to come.
Collapse
Affiliation(s)
- Selvakumar Sakthivel
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Anand Raj Dhanapal
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Radha Palaniswamy
- PG & Research Department of Biotechnology, Dr. N.G.P. Arts and Science College, Coimbatore, Tamil Nadu, 641048, India
| | - Soundarya Dhandapani
- PG & Research Department of Biotechnology, Dr. N.G.P. Arts and Science College, Coimbatore, Tamil Nadu, 641048, India
| | - Mathur Nadarajan Kathiravan
- PG & Research Department of Biotechnology, Dr. N.G.P. Arts and Science College, Coimbatore, Tamil Nadu, 641048, India.
| |
Collapse
|
5
|
Pacholak A, Burlaga N, Guzik U, Kaczorek E. Investigation of the bacterial cell envelope nanomechanical properties after long-term exposure to nitrofurans. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124352. [PMID: 33160784 DOI: 10.1016/j.jhazmat.2020.124352] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic residues in the environment may negatively affect biological communities in the natural ecosystems. However, their influence on environmental bacterial strains has not been thoroughly investigated. In this study, two representatives of 5-nitrofuran antibiotics (nitrofurantoin and furaltadone) were investigated in terms of their long-term influence on the cell envelopes of newly isolated environmental bacterial strains (Sphingobacterium caeni FTD2, Achromobacter xylosoxidans NFZ2 and Pseudomonas hibiscicola FZD2). A 12-month exposure of bacterial cells to nitrofurans at a concentration of 20 mg L-1 induced changes in the cell structure and texture (bacteria under stress conditions showed a loss of their original shape and seemed to be vastly inflated, the cells increased average surface roughness after exposure to NFT and FTD, respectively). AFM observations allowed the calculation of the bacterial cell nanomechanical properties. Significant increase in adhesion energy of bacteria after prolonged contact with nitrofurantoin was demonstrated. Changes in the permeability of bacterial membrane, fatty acids' composition and bacterial cell surface hydrophobicity were determined. Despite visible bacterial adaptation to nitrofurans, prolonged presence of pharmaceuticals in the environment has led to significant alterations in the cells' structures which was particularly visible in P. hibiscicola.
Collapse
Affiliation(s)
- Amanda Pacholak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Natalia Burlaga
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Urszula Guzik
- University of Silesia in Katowice, Faculty of Natural Science, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40 032 Katowice, Poland.
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
6
|
Crettaz-Minaglia M, Fallico M, Aranda O, Juarez I, Pezzoni M, Costa C, Andrinolo D, Giannuzzi L. Effect of temperature on microcystin-LR removal and lysis activity on Microcystis aeruginosa (cyanobacteria) by an indigenous bacterium belonging to the genus Achromobacter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44427-44439. [PMID: 32767213 DOI: 10.1007/s11356-020-09901-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Microcystis is a frequent cyanobacterium bloom-forming with cosmopolitan distribution which can produce a hepatotoxin group called microcystins (MCs). These MCs are resistant to the traditional processes employed in the water treatment plants and they are often detected after conventional treatments. Because of this, the bio-removal studies have obtained a great interest in the last decades. In this work, a bacterial strain namely LG1 with the ability to remove microcystin-LR (MC-LR) under laboratory conditions was isolated from Rio de la Plata River and it was identified as Achromobacter spp. This ubiquitous bacterium was able to remove 79.5% MC-LR in 7 days with average removal time of 3.33 ± 0.08, 3.06 ± 0.05, and 2.77 ± 0.05 days at 28, 32, and 36 ± 1 °C, being higher at high temperature (36 °C) with an activation energy = 16.79 ± 1.99 kJ mol-1. LG1 grew better at higher temperature (from 28 to 36 ± 1 °C) increasing the specific growth rate (μ) and reducing 2-fold the lag phase duration (LPD) without significant differences (p > 0.05) between maximum population density (MPD). In addition, LG1 showed a lysis activity on two M. aeruginosa native strains in 7 days measured as chlorophyll a (Chl-a) concentration. The lysis activity increased around 2-fold when increasing the temperature from 28 to 36 ± 1 °C. This is the first report of an indigenous bacterium belonging to the genus Achromobacter spp. isolated from the Rio de la Plata River with the capacity to remove MC-LR and lysis activity on M. aeruginosa.
Collapse
Affiliation(s)
- Melina Crettaz-Minaglia
- Laboratorio de Toxicología General, Facultad de Ciencias Exactas, UNLP, La Plata, Argentina.
- CONICET, Buenos Aires, Argentina.
| | - Maximiliano Fallico
- Laboratorio de Toxicología General, Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| | - Oswaldo Aranda
- Laboratorio de Toxicología General, Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| | - Ivan Juarez
- CONICET, Buenos Aires, Argentina
- Centro de Investigaciones y Desarrollo en Criotecnología de Alimentos, UNLP-CONICET, La Plata, Argentina
| | - Magdalena Pezzoni
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Cristina Costa
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Dario Andrinolo
- Laboratorio de Toxicología General, Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
- CONICET, Buenos Aires, Argentina
| | - Leda Giannuzzi
- CONICET, Buenos Aires, Argentina
- Centro de Investigaciones y Desarrollo en Criotecnología de Alimentos, UNLP-CONICET, La Plata, Argentina
| |
Collapse
|
7
|
Ahmad KS. Remedial potential of bacterial and fungal strains (Bacillus subtilis, Aspergillus niger, Aspergillus flavus and Penicillium chrysogenum) against organochlorine insecticide Endosulfan. Folia Microbiol (Praha) 2020; 65:801-810. [PMID: 32383069 DOI: 10.1007/s12223-020-00792-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/13/2020] [Indexed: 01/17/2023]
Abstract
Endosulfan, an organochlorine insecticide, is known to cause detrimental effects to the environment and human health due to its excessive usage. Its highly toxic nature calls for an environmental-friendly approach for its detoxification. Environmental transformation of Endosulfan was assessed through biodegradation by isolated and cultured soil microbes (Bacillus subtilis (BS), Aspergillus niger (AN), Aspergillus flavus (AF) and Penicillium chrysogenum (PC)). Degradation of 10 mg/L Endosulfan was determined in aqueous solution at regular time intervals and analysed by gas chromatography-mass spectrometry for 35 days. BS and AN displayed substantial potential to degrade Endosulfan and subsequently transform it into its daughter products (95 and 77%, respectively). Endosulfan transformation followed first-order reaction kinetics. Chromatogram peaks revealed less toxic metabolites by Endosulfan transformation (Endosulfan diol, Endosulfan ether, Endosulfan hydroxyether and Endosulfan lactone). Half-life of Endosulfan obtained by various strains utilised in the experiments was in the order, PC (69) > AF (34.6) > AN (17.3) > BS (11.5) days. Statistical analysis was performed in MINITAB to evaluate the significance of results. Bioaugmentation of contaminated sites with such efficient microbes can facilitate rapid pesticide transformation and decontamination of the environment.
Collapse
Affiliation(s)
- Khuram Shahzad Ahmad
- Department of Environmental Sciences, Fatima Jinnah Women University, Old Presidency, The Mall, Rawalpindi, 46000, Pakistan.
| |
Collapse
|
8
|
Ali SN, Baqar M, Mumtaz M, Ashraf U, Anwar MN, Qadir A, Ahmad SR, Nizami AS, Jun H. Organochlorine pesticides in the surrounding soils of POPs destruction facility: source fingerprinting, human health, and ecological risks assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7328-7340. [PMID: 31884545 DOI: 10.1007/s11356-019-07183-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
The elimination of persistent organic pollutants (POPs) obsolete pesticides stockpiles, particularly the organochlorine pesticides (OCPs), is one of the critical environmental issues faced by many developing countries. This pioneering study aimed to investigate the occurrence, source fingerprinting, human health, and ecological risks of OCPs in the surroundings of the lone POPs pesticide destruction facility in Pakistan. The ΣOCPs residual levels in soil ranged from 35.98 to 566.77 ng/g dry weight (dw), with a mean concentration of 174.42 + 111.62 ng/g (dw). The OCPs contamination levels in the soil followed the pattern as ΣHCHs > Σendrins > Σendosulfans > dieldrin > Σheptachlors > ΣDDTs > Σchlordanes > methoxychlor. The ΣHCHs residual concentrations were comparatively higher than the previous national and global soil studies. The recent accumulation of HCHs, DDTs, and heptachlor was observed in the study area as identified by β-HCH/∑HCHs, (DDE + DDD)/ΣDDTs, heptachlor/Σheptachlor, and heptachlor exo-epoxide/heptachlor ratios. The OCPs' lifetime carcinogenic risk through ingestion, dermal, and inhalation exposure routes ranged from 1.65E-08 to 2.91E-07, whereas the noncarcinogenic hazard quotient (HQ) ranged from 9.12E-05 to 1.61E-03. The risk vulnerability among age groups was in the order: adult > toddler > child > teen > infant. The calculated risk levels were within an acceptable limit of one in a million (1 × 10-6) for carcinogenic risk and HQ < 1 for noncarcinogenic risk. The current OCPs residual levels, especially dieldrin and endrin, exhibited low to medium ecological risks when compared to various worldwide limits. The upsurge of the OCPs' environmental contamination levels over the years and consideration of the food chain transfer might amplify the human health and ecological risks intensities.
Collapse
Affiliation(s)
- Syeda Nazish Ali
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Mujtaba Baqar
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan.
| | - Mehvish Mumtaz
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Uzma Ashraf
- Department of Environmental Science and Policy, Lahore School of Economics, Lahore, 53200, Pakistan
| | - Muhammad Naveed Anwar
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Abdul Qadir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Sajid Rashid Ahmad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Abdul-Sattar Nizami
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Huang Jun
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Singh NS, Sharma R, Singh DK. Identification of enzyme(s) capable of degrading endosulfan and endosulfan sulfate using in silico techniques. Enzyme Microb Technol 2019; 124:32-40. [DOI: 10.1016/j.enzmictec.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 11/10/2018] [Accepted: 01/04/2019] [Indexed: 11/28/2022]
|
10
|
Singh T, Singh DK. Lindane degradation by root epiphytic bacterium Achromobacter sp. strain A3 from Acorus calamus and characterization of associated proteins. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:419-424. [PMID: 30648424 DOI: 10.1080/15226514.2018.1524835] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lindane degrading root epiphytic bacteria were isolated from wetland plant Acorus calamus. Bacterial strain A3 identified as Achromobacter sp. A3, showed maximum degradation potential of 88.7 ± 1.24% for 50 mg l-1 lindane. Lindane biodegradation was followed by decrease in pH as well as increase in concentration of chloride ions in the culture medium. Lindane degradation potential of Achromobacter sp. A3 was also studied at different concentrations of lindane. Maximum degradation was at 10 mg l-1 followed by 50 mg l-1 and 100 mg l-1 lindane. Also, lindane induced proteins were studied using SDS-PAGE. The induced proteins were identified as alpha/beta hydrolase fold-3 domain-containing protein, involved in lindane hydrolysis and extracellular solute-binding family protein having role in transmembrane transport of lindane for utilization of lindane by bacteria. The appearance of unique polypeptides in lane corresponding to media supplemented with lindane showed that the exposure of bacterial cells to lindane has resulted in regulative expression of certain proteins. So far as known, this is the first report to isolate and study lindane degrading root epiphytic bacteria from A. calamus.
Collapse
Affiliation(s)
- Tanvi Singh
- a Department of Zoology , University of Delhi , Delhi , India
| | - Dileep K Singh
- a Department of Zoology , University of Delhi , Delhi , India
| |
Collapse
|
11
|
Furlan JPR, Stehling EG. High-level of resistance to β-lactam and presence of β-lactamases encoding genes in Ochrobactrum sp. and Achromobacter sp. isolated from soil. J Glob Antimicrob Resist 2017; 11:133-137. [PMID: 29111479 DOI: 10.1016/j.jgar.2017.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/04/2017] [Accepted: 10/13/2017] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES Bacteria belonging to the genera Ochrobactrum and Achromobacter are bacteria considered opportunistic, causing infections mainly in immunocompromised patients. β-lactamases are the main cause of resistance to β-lactam antibiotics. This study aimed to investigate the antimicrobial resistance profile and the presence of β-lactamases encoding genes in Ochrobactrum sp. and Achromobacter sp. isolated from Brazilian soils. METHODS Soil samples from the five regions of Brazil were collected for the isolation of bacteria, which were identified molecularly and then, the minimum inhibitory concentration and detection of β-lactamases encoding genes were performed. RESULTS High-level of resistance to β-lactam antibiotics and different β-lactamases encoding genes were found (blaCTX-M-Gp1, blaSHV, blaOXA-1-like and blaKPC), including the first report of the presence of blaKPC in bacteria belonging to the genera Ochrobactrum and Achromobacter. CONCLUSION The results showed that the bacteria from this study, belonging to genera Ochrobactrum and Achromobacter isolated from soil, harbor different β-lactamases encoding genes and can act as a reservoir of these genes.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Eliana Guedes Stehling
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil.
| |
Collapse
|
12
|
Anaerobic digestion of spent mushroom substrate under thermophilic conditions: performance and microbial community analysis. Appl Microbiol Biotechnol 2017; 102:499-507. [PMID: 29079864 DOI: 10.1007/s00253-017-8578-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 12/31/2022]
Abstract
Spent mushroom substrate (SMS) is the residue of edible mushroom production occurring in huge amounts. The SMS residue can be digested for biogas production in the mesophilic anaerobic digestion. In the present study, performance of batch thermophilic anaerobic digestion (TAD) of SMS was investigated as well as the interconnected microbial population structure changes. The analyzed batch TAD process lasted for 12 days with the cumulative methane yields of 177.69 mL/g volatile solid (VS). Hydrolytic activities of soluble sugar, crude protein, and crude fat in SMS were conducted mainly in the initial phase, accompanied by the excessive accumulation of volatile fatty acids and low methane yield. Biogas production increased dramatically from days 4 to 6. The degradation rates of cellulose and hemicellulose were 47.53 and 55.08%, respectively. The high-throughput sequencing of 16S rRNA gene amplicons revealed that Proteobacteria (56.7%-62.8%) was the dominant phylum in different fermentative stages, which was highly specific compared with other anaerobic processes of lignocellulosic materials reported in the literature. Crenarchaeota was abundant in the archaea. The most dominant genera of archaea were retrieved as Methanothermobacter and Methanobacterium, but the latter decreased sharply with time. This study shows that TAD is a feasible method to handle the waste SMS.
Collapse
|
13
|
Jadhav K, Jadhav I. Sulfur oxidation by Achromobacter xylosoxidans strain wsp05 reveals ecological widening over which thiotrophs are distributed. World J Microbiol Biotechnol 2017; 33:192. [PMID: 28975472 DOI: 10.1007/s11274-017-2359-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
Achromobacter xylosoxidans is a versatile bacterium known for its ability to degrade aromatic compounds. However, its ability to oxidize sulfur compounds for electron and energy source is not reported much. In the present work, the Gram-negative bacterium Achromobacter xylosoxidans strain wsp05 isolated from a waste stabilization ponds (WSPs) system was studied for its ability to oxidize reduced sulfur compounds. The strain was able to oxidize thiosulfate and sodium sulfite. To observe the effect of physicochemical parameters on the rate of sulfur oxidation, strain wsp05 was grown in thiosulfate (20 mM) containing minimal salt medium at varied pH, temperature and ammonium and phosphate ions concentration. Maximum thiosulfate oxidation was observed at 30 °C with initial pH of 7-7.2. The strain was characterized using universal 16S rRNA gene primers revealing high similarity (> 99%) with Achromobacter xylosoxidans NBRC 15126T belonging to β-proteobacteria. In the present study, we investigated the sulfur oxidation properties of the Achromobacter xylosoxidans strain wsp05, which revealed an ecological and phylogenetic widening over which the thiotrophs are distributed.
Collapse
Affiliation(s)
- Kapilesh Jadhav
- School of Studies in Botany, Vikram University Ujjain, Ujjain, 456010, India. .,School of Life Sciences, Jaipur National University, Jaipur, 302017, India.
| | - Indrani Jadhav
- School of Studies in Botany, Vikram University Ujjain, Ujjain, 456010, India.,School of Life Sciences, Jaipur National University, Jaipur, 302017, India
| |
Collapse
|
14
|
Supreeth M, Raju NS. Biotransformation of chlorpyrifos and endosulfan by bacteria and fungi. Appl Microbiol Biotechnol 2017; 101:5961-5971. [DOI: 10.1007/s00253-017-8401-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 12/23/2022]
|
15
|
Ozdal M, Ozdal OG, Algur OF, Kurbanoglu EB. Biodegradation of α-endosulfan via hydrolysis pathway by Stenotrophomonas maltophilia OG2. 3 Biotech 2017; 7:113. [PMID: 28567625 DOI: 10.1007/s13205-017-0765-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 02/06/2017] [Indexed: 01/19/2023] Open
Abstract
Stenotrophomonas maltophilia OG2 was isolated from the intestine of cockroaches that was collected from a cow barn contaminated some pesticides belong to pyrethroid and organochlorine groups. OG2 was able to degrade α-endosulfan in non sulfur medium (NSM) as a sole sulfur source for growth within 10 days of incubation. The effects of some growth parameters on endosulfan biodegradation by OG2 was studied and found that the biodegradation was significantly affected by the endosulfan concentrations, pH and temperature. Experimental results obtained in different conditions show that the optimum concentration of α-endosulfan, pH and temperature were 100 mg/L, 8.0 and 30 °C, respectively. Under these conditions, the bacterium degraded 81.53% of the α-endosulfan after 10 days. The concentration of α-endosulfan and its metabolites was determined by HPLC. Endosulfan ether, endosulfan lactone and endosulfan diol were the main metabolites in culture, but did not produce toxic metabolite, endosulfan sulfate. These results suggested that S. maltophilia OG2 degrades α-endosulfan via a hydrolysis pathway. The present study indicates that strain OG2 may have potential use in the biodegradation of pesticides contaminated environments.
Collapse
|
16
|
Qian S, Zhu H, Xiong B, Zheng G, Zhang J, Xu W. Adsorption and desorption characteristics of endosulfan in two typical agricultural soils in Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:11493-11503. [PMID: 28316050 DOI: 10.1007/s11356-017-8800-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 03/10/2017] [Indexed: 06/06/2023]
Abstract
Endosulfan is an organochlorine pesticide widely used in Southwest China. In this paper, the adsorption and desorption characteristics of endosulfan in two typical agricultural soils (latosol and lateritic red soil) in this area were studied. The results showed that Langmuir isothermal equation could well describe the adsorption thermodynamic characteristics of endosulfan in latosol and lateritic red soil, and the maximum adsorption capacities of α-endosulfan were 0.186 and 0.209 mg/g, while those of β-endosulfan were 0.140 and 0.148 mg/g, respectively. Endosulfan adsorption in the two soils was an exothermic physicochemical process, but dominated by physical process. The adsorption kinetic characteristics of endosulfan in the two soils could be well described by second-order kinetic equation, and the initial rate constants were 0.228 and 0.325 mg/(g min) for α-endosulfan, while those were 0.119 and 0.125 mg/(g min) for β-endosulfan, respectively. The adsorbed endosulfan in the two soils was difficult to be desorbed into the liquid phase, and showed weak desorption hysteresis. These results implied that endosulfan could be firmly adsorbed by the two soils, and their adsorption and desorption abilities may be related to the contents of soil clay and organic matter.
Collapse
Affiliation(s)
- Sheng Qian
- College of Resources and Environment, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, People's Republic of China
| | - Heng Zhu
- College of Resources and Environment, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, People's Republic of China
| | - Bailian Xiong
- College of Resources and Environment, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, People's Republic of China
- Department of Resources and Environment, Zunyi Normal College, Zunyi, Guizhou, 563002, People's Republic of China
| | - Guocan Zheng
- Chongqing Entry-Exit Inspection and Quarantine Bureau, Chongqing, 400020, People's Republic of China
| | - Jinzhong Zhang
- College of Resources and Environment, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, People's Republic of China.
- Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, People's Republic of China.
| | - Weihong Xu
- College of Resources and Environment, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, People's Republic of China
| |
Collapse
|
17
|
Differential expression and characterization of cypermethrin-degrading potential proteins in Bacillus thuringiensis strain, SG4. 3 Biotech 2016; 6:225. [PMID: 28330297 PMCID: PMC5071268 DOI: 10.1007/s13205-016-0541-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/03/2016] [Indexed: 12/29/2022] Open
Abstract
A cypermethrin-degrading bacterium (SG4) was isolated from the pesticide-contaminated soil in the agricultural field of the crop research centre of the University, and characterized as Bacillus thuringiensis strain, SG4. The bacterium degraded 78.9 % of cypermethrin (50 ppm) in 15 days when grown in a minimal medium. To understand the functional proteins of cypermethrin degradation in Bacillus thuringiensis strain SG4, a comparative proteomic analysis was performed in the presence/absence of cypermethrin after 5 days of incubation in minimal medium. More than 450 spots corresponding to different proteins were recorded by 2D electrophoresis. We report expression of 223 and 250 unique proteins under normal and induced conditions (cypermethrin stress), respectively. Identified proteins were categorized into different functional groups on the basis of their biological functions, viz., catabolic enzymes, translational and stress proteins, etc. Characterization of cypermethrin-specific proteins in a bacterial strain will help in biodegradation practices in situ.
Collapse
|
18
|
Kumari U, Srivastava N, Shelly A, Khatri P, N S, Singh DK, Mazumder S. Inducible headkidney cytochrome P450 contributes to endosulfan immunotoxicity in walking catfish Clarias gariepinus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 179:44-54. [PMID: 27567944 DOI: 10.1016/j.aquatox.2016.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 07/06/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
The effect of endosulfan metabolites on fish immune system is not well known. It is also not clear whether endosulfan accumulates in fish immune organs and undergoes metabolic biotransformation in situ. In the present study we investigated the role of headkidney (HK), an important fish immune organ on endosulfan metabolism and the long term effects of endosulfan metabolites on the fish immune system. C. gariepinus (walking catfish) were exposed to 2.884ppb of endosulfan (1/10th LC50) for 30d followed by their maintenance in endosulfan-free water for 30d for recovery. Endosulfan induced time-dependent reduction in the HK somatic index and histo-pathological changes in renal and hemopoietic components of the organ. At cellular level, exposure to endosulfan led to death of HK leucocytes. Gas-liquid-chromatography documented the presence of both α- and β-isomers of endosulfan along with the toxic metabolite endosulfan sulfate (ESS) in the HK of exposed fishes. We report that β-endosulfan accumulates more readily in the HK. Depuration studies suggested the persistence of ESS in the HK. Enzyme-immunoassay and qPCR results demonstrated direct relationship between cytochrome P450 1A (CYP1A) expression and ESS levels in the HK. Pre-treatment of HKL with CYP1A specific inhibitor α-Naphthoflavone (ANF) led to reduction in CYP1A mRNA, protein levels, and inhibited ESS formation together implicating the role of CYP1A on endosulfan metabolism. When the exposed fish were transferred to endosulfan-free water ('recovered fish') it was observed that after 30d of recovery period the concentration of endosulfan and its metabolite in the HK were significantly reduced, compared to 30-d exposed fish. We also observed improvement in HK histo-architecture but no significant recovery in HKL number and viability. Collectively, our findings suggest that HK plays an important role in endosulfan metabolism. We propose that endosulfan induces the activation of CYP1A in HK which led to the generation of persistent metabolite, ESS, resulting in immunotoxicity.
Collapse
Affiliation(s)
- Usha Kumari
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Nidhi Srivastava
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Asha Shelly
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Preeti Khatri
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Sarat N
- Pesticide Toxicology and Soil Microbial Ecology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Dileep Kumar Singh
- Pesticide Toxicology and Soil Microbial Ecology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
19
|
Ozdal M, Ozdal OG, Alguri OF. Isolation and Characterization of α-Endosulfan Degrading Bacteria from the Microflora of Cockroaches. Pol J Microbiol 2016; 65:63-8. [PMID: 27281995 DOI: 10.5604/17331331.1197325] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Extensive applications of organochlorine pesticides like endosulfan have led to the contamination of soil and environments. Five different bacteria were isolated from cockroaches living in pesticide contaminated environments. According to morphological, physiological, biochemical properties, and total cellular fatty acid profile by Fatty Acid Methyl Esters (FAMEs), the isolates were identified as Pseudomonas aeruginosa G1, Stenotrophomonas maltophilia G2, Bacillus atrophaeus G3, Citrobacter amolonaticus G4 and Acinetobacter lwoffii G5. This is the first study on the bacterial flora of Blatta orientalis evaluated for the biodegradation of α-endosulfan. After 10 days of incubation, the biodegradation yields obtained from P. aeruginosa G1, S. maltophilia G2, B. atrophaeus G3, C. amolonaticus G4 and A. lwoffii G5 were 88.5% , 85.5%, 64.4%, 56.7% and 80.2%, respectively. As a result, these bacterial strains may be utilized for biodegradation of endosulfan polluted soil and environments.
Collapse
|
20
|
Deng F, Xiong B, Chen B, Zheng G, Zhang J. Microbial degradation of endosulfan in contaminated soil with the elution of surfactants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:13268-13275. [PMID: 27023814 DOI: 10.1007/s11356-016-6523-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
In this work, an endosulfan-degrading strain was isolated from the aged soil contaminated by endosulfan, and identified as Ochrobactrum sp. EB-4 by 16S rDNA sequence analysis. The microbial degradation characteristics of endosulfan in three eluents (Tween 80 + SDS, Tween 80 + Na2SiO3, Tween 80 + SDS + Na2SiO3) were investigated. The results showed that the degradation percents of α-, β-endosulfan in the three eluents were 86.83 %∼92.91 % and 88.90 %∼93.94 % in 15 days, respectively. The degradation process can be well described by the first-order kinetic model, and the half-times of α-endosulfan in eluent 1∼eluent 3 were 3.83, 5.29, and 4.53 days, while those of β-endosulfan were 3.35, 4.50 and 3.79 days, respectively. The endosulfan diol and endosulfan sulfate as main metabolites were detected, and the former can be further degraded by this strain, which revealed that the simultaneously happened hydrolysis and oxidation reactions were the main degradation processes, and dominated by hydrolysis reaction. After 5 days of washing with the eluents, 56.00∼84.33 % of α-endosulfan, and 46.49∼68.56 % of β-endosulfan in soil were eluted, respectively, and can be entirely biodegraded in 12 days, which indicated that the microbial degradation was the rate-determining step.
Collapse
Affiliation(s)
- Fei Deng
- College of Resources and Environment, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Bailian Xiong
- College of Resources and Environment, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China
- Department of Resources and Environment, Zunyi Normal College, Zunyi, Guizhou, 563002, People's Republic of China
| | - Benshou Chen
- Chongqing Chemical Engineering Vocational College, Chongqing, 400020, China
| | - Guocan Zheng
- Chongqing Entry-Exit Inspection and Quarantine Bureau, Chongqing, 400020, People's Republic of China
| | - Jinzhong Zhang
- College of Resources and Environment, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China.
- Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, People's Republic of China.
| |
Collapse
|
21
|
Isolation of endosulfan sulfate-degrading Rhodococcus koreensis strain S1-1 from endosulfan contaminated soil and identification of a novel metabolite, endosulfan diol monosulfate. Biochem Biophys Res Commun 2016; 473:1094-1099. [DOI: 10.1016/j.bbrc.2016.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 11/18/2022]
|
22
|
Lucero PA, Ferrari MM, Orden AA, Cañas I, Nassetta M, Kurina-Sanz M. Treatment of endosulfan contaminated water with in vitro plant cell cultures. JOURNAL OF HAZARDOUS MATERIALS 2016; 305:149-155. [PMID: 26685061 DOI: 10.1016/j.jhazmat.2015.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/27/2015] [Accepted: 11/16/2015] [Indexed: 06/05/2023]
Abstract
Endosulfan is a Persistent Organic Pollutant insecticide still used in many countries. It is commercially available as mixtures of two diastereomers, α- and β-endosulfan, known as technical grade endosulfan (TGE). A laboratory model based on the use of axenic plant cell cultures to study the removal and metabolization of both isomers from contaminated water matrixes was established. No differences were recorded in the removal of the two individual isomers with the two tested endemic plants, Grindelia pulchella and Tessaria absinthioides. Undifferentiated cultures of both plant species were very efficient to lower endosulfan concentration in spiked solutions. Metabolic fate of TGE was evaluated by analyzing the time course of endosulfan metabolites accumulation in both plant biomass and bioremediation media. While in G. pulchella we only detected endosulfan sulfate, in T. absinthioides the non-toxic endosulfan alcohol was the main metabolite at 48h, giving the possibility of designing phytoremediation approaches.
Collapse
Affiliation(s)
- Patricia A Lucero
- INTEQUI-CONICET-Área de Química Orgánica, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, D5700HHW San Luis, Argentina; CEPROCOR, Complejo Hospitalario Santa María de Punilla, X5004AAP Córdoba, Argentina
| | - Mónica M Ferrari
- INTEQUI-CONICET-Área de Química Orgánica, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, D5700HHW San Luis, Argentina
| | - Alejandro A Orden
- INTEQUI-CONICET-Área de Química Orgánica, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, D5700HHW San Luis, Argentina
| | - Irene Cañas
- CEPROCOR, Complejo Hospitalario Santa María de Punilla, X5004AAP Córdoba, Argentina
| | - Mirtha Nassetta
- CEPROCOR, Complejo Hospitalario Santa María de Punilla, X5004AAP Córdoba, Argentina
| | - Marcela Kurina-Sanz
- INTEQUI-CONICET-Área de Química Orgánica, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, D5700HHW San Luis, Argentina.
| |
Collapse
|
23
|
Prashar P, Shah S. Impact of Fertilizers and Pesticides on Soil Microflora in Agriculture. SUSTAINABLE AGRICULTURE REVIEWS 2016. [DOI: 10.1007/978-3-319-26777-7_8] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
24
|
Odukkathil G, Vasudevan N. Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 165:72-80. [PMID: 26413801 DOI: 10.1016/j.jenvman.2015.09.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/20/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
The persistence of many hydrophobic pesticides has been reported by various workers in various soil environments and its bioremediation is a major concern due to less bioavailability. In the present study, the pesticide residues in the surface and subsurface soil in an area of intense agricultural activity in Pakkam Village of Thiruvallur District, Tamilnadu, India, and its bioremediation using a novel bacterial consortium was investigated. Surface (0-15 cm) and subsurface soils (15-30 cm and 30-40 cm) were sampled, and pesticides in different layers of the soil were analyzed. Alpha endosulfan and beta endosulfan concentrations ranged from 1.42 to 3.4 mg/g and 1.28-3.1 mg/g in the surface soil, 0.6-1.4 mg/g and 0.3-0.6 mg/g in the subsurface soil (15-30 cm), and 0.9-1.5 mg/g and 0.34-1.3 mg/g in the subsurface soil (30-40 cm) respectively. Residues of other persistent pesticides were also detected in minor concentrations. These soil layers were subjected to bioremediation using a novel bacterial consortium under a simulated soil profile condition in a soil reactor. The complete removal of alpha and beta endosulfan was observed over 25 days. Residues of endosulfate were also detected during bioremediation, which was subsequently degraded on the 30th day. This study revealed the existence of endosulfan in the surface and subsurface soils and also proved that the removal of such a ubiquitous pesticide in the surface and subsurface environment can be achieved in the field by bioaugumenting a biosurfactant-producing bacterial consortium that degrades pesticides.
Collapse
Affiliation(s)
- Greeshma Odukkathil
- Centre for Environmental Studies, Anna University, Chennai, Tamilnadu 600025, India.
| | | |
Collapse
|
25
|
Wang Y, Wang C, Li A, Gao J. Biodegradation of pentachloronitrobenzene by Arthrobacter nicotianae
DH19. Lett Appl Microbiol 2015; 61:403-10. [DOI: 10.1111/lam.12476] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/29/2015] [Accepted: 07/29/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Y. Wang
- College of Agronomy; Jilin Agricultural University; Changchun China
| | - C. Wang
- Institute of Special Wild Economic Animal and Plant Science; Chinese Academy of Agricultural Sciences (CAAS); Changchun China
| | - A. Li
- Jilin Entry-Exit Inspection and Quarantine Bureau; Changchun China
| | - J. Gao
- College of Agronomy; Jilin Agricultural University; Changchun China
| |
Collapse
|
26
|
Soh EYC, Chhabra SR, Halliday N, Heeb S, Müller C, Birmes FS, Fetzner S, Cámara M, Chan KG, Williams P. Biotic inactivation of the Pseudomonas aeruginosa quinolone signal molecule. Environ Microbiol 2015; 17:4352-65. [PMID: 25809238 DOI: 10.1111/1462-2920.12857] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 11/29/2022]
Abstract
In Pseudomonas aeruginosa, quorum sensing (QS) regulates the production of secondary metabolites, many of which are antimicrobials that impact on polymicrobial community composition. Consequently, quenching QS modulates the environmental impact of P. aeruginosa. To identify bacteria capable of inactivating the QS signal molecule 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS), a minimal medium containing PQS as the sole carbon source was used to enrich a Malaysian rainforest soil sample. This yielded an Achromobacter xylosoxidans strain (Q19) that inactivated PQS, yielding a new fluorescent compound (I-PQS) confirmed as PQS-derived using deuterated PQS. The I-PQS structure was elucidated using mass spectrometry and nuclear magnetic resonance spectroscopy as 2-heptyl-2-hydroxy-1,2-dihydroquinoline-3,4-dione (HHQD). Achromobacter xylosoxidans Q19 oxidized PQS congeners with alkyl chains ranging from C1 to C5 and also N-methyl PQS, yielding the corresponding 2-hydroxy-1,2-dihydroquinoline-3,4-diones, but was unable to inactivate the PQS precursor HHQ. This indicates that the hydroxyl group at position 3 in PQS is essential and that A. xylosoxidans inactivates PQS via a pathway involving the incorporation of oxygen at C2 of the heterocyclic ring. The conversion of PQS to HHQD also occurred on incubation with 12/17 A. xylosoxidans strains recovered from cystic fibrosis patients, with P. aeruginosa and with Arthrobacter, suggesting that formation of hydroxylated PQS may be a common mechanism of inactivation.
Collapse
Affiliation(s)
- Eliza Ye-Chen Soh
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.,Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Siri R Chhabra
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Nigel Halliday
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Stephan Heeb
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Christine Müller
- Institute of Molecular Microbiology and Biotechnology, University of Muenster, D-48149, Muenster, Germany
| | - Franziska S Birmes
- Institute of Molecular Microbiology and Biotechnology, University of Muenster, D-48149, Muenster, Germany
| | - Susanne Fetzner
- Institute of Molecular Microbiology and Biotechnology, University of Muenster, D-48149, Muenster, Germany
| | - Miguel Cámara
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Paul Williams
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
27
|
Narkhede CP, Patil AR, Koli S, Suryawanshi R, Wagh ND, Bipinchandra K S, Patil SV. Studies on endosulfan degradation by local isolate Pseudomonas aeruginosa. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Barman D, Dkhar MS. Amylolytic activity and its parametric optimization of an endophytic bacterium Bacillus subtilis with an ethno-medicinal origin. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Abraham J, Silambarasan S. Plant growth promoting bacteria Enterobacter asburiae JAS5 and Enterobacter cloacae JAS7 in mineralization of endosulfan. Appl Biochem Biotechnol 2015; 175:3336-48. [PMID: 25638268 DOI: 10.1007/s12010-015-1504-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 01/21/2015] [Indexed: 10/24/2022]
Abstract
Endosulfan and their metabolites can be detected in soils with a history of endosulfan application. Microbial degradation offers an effective approach to remove toxicants, and in this study, Enterobacter asburiae JAS5 and Enterobacter cloacae JAS7 were isolated through enrichment technique. The biodegradation of endosulfan and its metabolites rate constant (k) and DT50 were determined through first-order kinetic models. E. asburiae JAS5 degraded the endosulfan, and its metabolites in liquid medium was characterized by the k which was 0.382 day(-1) (α-endosulfan), 0.284 day(-1) (β-endosulfan) and 0.228 day(-1) (endosulfan sulphate), and DT50 was 1.8 day (α-endosulfan), 2.4 days (β-endosulfan) and 3.0 days (endosulfan sulphate). The α-endosulfan, β-endosulfan and endosulfan sulphate metabolites were present in the liquid medium that was degraded by E. cloacae JAS7 which was characterized by the k of 0.391, 0.297 day(-1) and 0.273 day(-1), and DT50 was 1.7, 2.3 and 2.5 days, respectively. The infrared spectrum of endosulfan degraded sample in the aqueous medium by E. asburiae JAS5 and E. cloacae JAS7 showed a band at 1402 cm(-1) which is the characteristics of COOH group. E. asburiae JAS5 and E. cloacae JAS7 strains also showed the ability of plant growth promoting traits such as indole-3-acetic acid (IAA) production, organic acids production and solubilization of various inorganic phosphates. E. asburiae JAS5 solubilized 324 ± 2 μg ml(-1) of tricalcium phosphate, 296 ± 6 μg ml(-1) of dicalcium phosphate and 248 ± 5 μg ml(-1) of zinc phosphate, whereas E. cloacae JAS7 solubilized 338 ± 5, 306 ± 4 and 268 ± 3 μg ml(-1) of tricalcium phosphate, dicalcium phosphate and zinc phosphate, respectively. The IAA production by JAS5 and JAS7 strains were estimated to be 38.6 ± 0.3 and 46.6 ± 0.5 μg ml(-1), respectively. These bacterial strains form a potential candidate for bioremediation of pesticide-contaminated agricultural fields. In addition, it has been demonstrated that the development of powder formulation has several advantages including high cell count, longer shelf life, greater protection against environmental stresses and increased field efficacy.
Collapse
Affiliation(s)
- Jayanthi Abraham
- Microbial Biotechnology Laboratory, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India,
| | | |
Collapse
|
30
|
Seralathan MV, Sivanesan S, Nargunanathan S, Bafana A, Kannan K, Chakrabarti T. Chemotaxis-based endosulfan biotransformation: enrichment and isolation of endosulfan-degrading bacteria. ENVIRONMENTAL TECHNOLOGY 2015; 36:60-67. [PMID: 25409584 DOI: 10.1080/09593330.2014.937464] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The study was conducted to isolate endosulfan biotransforming or biodegrading microbes based on chemotaxis. Pseudomonas aeruginosa strain KKc3, Ochrobactrum sp. strain KKc4, Achromobacter xylosoxidans strain KKc6 and Bacillus megaterium KKc7 were isolated based on their migration towards endosulfan in a soil column. Out of the four bacteria, B. megaterium converted endosulfan into toxic metabolite endosulfan sulphate, while the other three bacteria followed the non-toxic endosulfan diol pathway. The mixed culture system consisting of P. aeruginosa, Ochrobactrum sp and A. xylosoxidans could remove 94% of total endosulfan by using endosulfan as the sole source of sulphur.
Collapse
Affiliation(s)
- Muhil Vannan Seralathan
- a Environmental Health Division , National Environmental Engineering Research Institute , Nagpur 440022 , India
| | | | | | | | | | | |
Collapse
|
31
|
Abraham J, Silambarasan S. Biomineralization and formulation of endosulfan degrading bacterial and fungal consortiums. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 116:24-31. [PMID: 25454517 DOI: 10.1016/j.pestbp.2014.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 06/30/2014] [Accepted: 09/15/2014] [Indexed: 06/04/2023]
Abstract
Microbial degradation offers an effective approach to remove toxicants and in this study, a microbial consortium consisting of bacterial strains and fungal strains were originally obtained from endosulfan contaminated agricultural soils. Identification of the bacterial isolates by 16S rRNA sequences revealed the isolates to be Halophilic bacterium JAS4, Klebsiella pneumoniae JAS8, Enterobacter asburiae JAS5, and Enterobacter cloacae JAS7, whereas the fungal isolates were identified by 18S rRNA sequences and the isolates were Botryosphaeria laricina JAS6, Aspergillus tamarii JAS9 and Lasiodiplodia sp. JAS12. The biodegradation of endosulfan was monitored by using HPLC and FTIR analysis. The bacterial and fungal consortium could degrade 1000 mg l(-1) of endosulfan efficiently in aqueous medium and in soil. The infrared spectrum of endosulfan degraded samples in the aqueous medium by bacterial and fungal consortium showed bands at 1400 and 950 cm(-1) which are the characteristics of COOH group and acid dimer band respectively. In the present investigation, low cost solid materials such as sawdust, soil, fly ash, molasses and nutrients were used for the formulation of microbial consortium and to achieve greater multiplication and survival of the microbial strains.
Collapse
Affiliation(s)
- Jayanthi Abraham
- Microbial Biotechnology Laboratory, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu 632014, India.
| | - Sivagnanam Silambarasan
- Microbial Biotechnology Laboratory, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
32
|
Kumar A, Bhoot N, Soni I, John PJ. Isolation and characterization of a Bacillus subtilis strain that degrades endosulfan and endosulfan sulfate. 3 Biotech 2014; 4:467-475. [PMID: 28324378 PMCID: PMC4162894 DOI: 10.1007/s13205-013-0176-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 09/19/2013] [Indexed: 11/01/2022] Open
Abstract
Endosulfan has emerged as a major environmental menace worldwide due to extensive usage and environmental persistence, seeking its remedial by a cheaper and efficient means. Therefore, natural resource (soil) was explored to search a potential candidate for biodegradation of endosulfan. A soil bacterium was enriched and isolated by applying a strong nutritional selection pressure, using a non-sulfur medium supplemented with endosulfan as sole source sulfur. The microbial strain was found to degrade endosulfan as well as its equally toxic metabolite endosulfan sulfate to non-toxic metabolites (endodiol and endosulfan lactone) very efficiently (up to 94.2 %) within 7 days, estimated qualitatively by thin layer chromatography and quantitatively by gas chromatography-electron capture detection methods. The isolate was characterized for its morphological, physiological, biochemical and 16S rRNA sequencing and identified as a new strain of Bacillus subtilis with strain designation AKPJ04, which was deposited with accession number Microbial Type Culture Collection and Gene Bank (MTCC) 8561, at MTCC, Institute of Microbial Technology, Chandigarh, India. The partial 16S rRNA sequence was submitted to Genbank, Maryland, USA, with the accession number EU 258611. The primary investigation for endosulfan degrading gene(s) localization suggested its location on chromosomal DNA.
Collapse
|
33
|
Romero-Aguilar M, Tovar-Sánchez E, Sánchez-Salinas E, Mussali-Galante P, Sánchez-Meza JC, Castrejón-Godínez ML, Dantán-González E, Trujillo-Vera MÁ, Ortiz-Hernández ML. Penicillium sp. as an organism that degrades endosulfan and reduces its genotoxic effects. SPRINGERPLUS 2014; 3:536. [PMID: 25279327 PMCID: PMC4176840 DOI: 10.1186/2193-1801-3-536] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/10/2014] [Indexed: 01/03/2023]
Abstract
Endosulfan is an organochloride and persistent pesticide that has caused concern because of its impact in the environment and its toxicity to and bioaccumulation in living organisms. In this study, we isolated an endosulfan-degrading fungus from the activated sludge from an industrial wastewater treatment plant. Through repetitive enrichment and successive subculture in media containing endosulfan as the sole carbon source, a fungus designated CHE 23 was isolated. Based on a phylogenetic analysis, strain CHE 23 was assigned to the genus Penicillium sp. In a mineral salt medium with 50 mg/l endosulfan as the sole source carbon, CHE 23 removed the added endosulfan in a period of six days. To verify the decrease in endosulfan toxicity due to the activity of the fungus, we performed genotoxicity tests trough the single cell gel electrophoresis assay or comet assay, with Eisenia fetida as the bioindicator species. This organism was exposed to the supernatants of the culture of the fungus and endosulfan. Our results indicated that the genotoxicity of endosulfan was completely reduced due the activity of this fungus. These results suggest that the Penicillium sp. CHE 23 strain can be used to degrade endosulfan residues and/or for water and soil bioremediation processes without causing toxicity problems, which are probably due to the generation of no-toxic metabolites during biodegradation.
Collapse
Affiliation(s)
- Mariana Romero-Aguilar
- Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C. P. 62209 Cuernavaca, Mor, México ; Facultad de Química, Paseo Colón esquina Paseo Tollocan, Universidad Autónoma del Estado de México, S/N. C.P. 50120 Toluca, México
| | - Efrain Tovar-Sánchez
- Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C. P. 62209 Cuernavaca, Mor, México
| | - Enrique Sánchez-Salinas
- Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C. P. 62209 Cuernavaca, Mor, México
| | - Patricia Mussali-Galante
- Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C. P. 62209 Cuernavaca, Mor, México
| | - Juan Carlos Sánchez-Meza
- Facultad de Química, Paseo Colón esquina Paseo Tollocan, Universidad Autónoma del Estado de México, S/N. C.P. 50120 Toluca, México
| | - María Luisa Castrejón-Godínez
- Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C. P. 62209 Cuernavaca, Mor, México
| | - Edgar Dantán-González
- Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C. P. 62209 Cuernavaca, Mor, México
| | - Miguel Ángel Trujillo-Vera
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Carretera Federal Cuernavaca-Cuautla No. 8534 Col. El Progreso Jiutepec, Morelos, C.P. 62550 México
| | - Ma Laura Ortiz-Hernández
- Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C. P. 62209 Cuernavaca, Mor, México
| |
Collapse
|
34
|
Simultaneous degradation of organophosphorus and organochlorine pesticides by bacterial consortium. J Taiwan Inst Chem Eng 2014. [DOI: 10.1016/j.jtice.2014.06.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Silambarasan S, Abraham J. Halophilic bacterium JAS4 in biomineralisation of endosulfan and its metabolites isolated from Gossypium herbaceum rhizosphere soil. J Taiwan Inst Chem Eng 2014. [DOI: 10.1016/j.jtice.2014.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Kong L, Zhu S, Zhu L, Xie H, Su K, Yan T, Wang J, Wang J, Wang F, Sun F. Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalis JBW4. J Environ Sci (China) 2013; 25:2257-2264. [PMID: 24552054 DOI: 10.1016/s1001-0742(12)60288-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The recently discovered endosulfan-degrading bacterial strain Alcaligenesfaecalis JBW4 was isolated from activated sludge. This strain is able to use endosulfan as a carbon and energy source. The optimal conditions for the growth of strain JBW4 and for biodegradation by this strain were identified, and the metabolic products of endosulfan degradation were studied in detail. The maximum level of endosulfan biodegradation by strain JBW4 was obtained using broth at an initial pH of 7.0, an incubation temperature of 40 degreeC and an endosulfan concentration of 100 mg/L. The concentration of endosulfan was determined by gas chromatography. Strain JBW4 was able to degrade 87.5% of alpha-endosulfan and 83.9% of beta-endosulfan within 5 days. These degradation rates are much higher than the previously reported bacterial strains. Endosulfan diol and endosulfan lactone were the major metabolites detected by gas chromatography-mass spectrometry; endosulfan sulfate, which is a persistent and toxic metabolite, was not detected. These results suggested that A. faecalis JBW4 degrades endosulfan via a non-oxidative pathway. The biodegradation of endosulfan by A. faecalis is reported for the first time. Additionally, the present study indicates that strain JBW4 may have potential for the biodegradation of endosulfan residues.
Collapse
Affiliation(s)
- Lingfen Kong
- Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agriculture University, Taian 271018, China.
| | - Shaoyuan Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266109, China
| | - Lusheng Zhu
- Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agriculture University, Taian 271018, China
| | - Hui Xie
- Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agriculture University, Taian 271018, China
| | - Kunchang Su
- Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agriculture University, Taian 271018, China
| | - Tongxiang Yan
- Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agriculture University, Taian 271018, China
| | - Jun Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agriculture University, Taian 271018, China
| | - Jinhua Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agriculture University, Taian 271018, China
| | - Fenghua Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agriculture University, Taian 271018, China
| | - Fengxia Sun
- Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agriculture University, Taian 271018, China
| |
Collapse
|
37
|
Silambarasan S, Abraham J. Mycoremediation of endosulfan and its metabolites in aqueous medium and soil by Botryosphaeria laricina JAS6 and Aspergillus tamarii JAS9. PLoS One 2013; 8:e77170. [PMID: 24130848 PMCID: PMC3795002 DOI: 10.1371/journal.pone.0077170] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/30/2013] [Indexed: 11/26/2022] Open
Abstract
Microbial degradation offers an efficient and ecofriendly approach to remove toxicants from the contaminated environments. Botryosphaeria laricina JAS6 and Aspergillus tamarii JAS9 were capable of degrading endosulfan and their metabolites which were isolated through enrichment technique. Both the strains were able to withstand an exposure of 1300 mg/L and showed luxuriant growth at 1000 mg/L of endosulfan. The change in pH in the culture broth was from 6.8 to 3.4 and 3.8 during growth kinetic studies of JAS6 and JAS9 strains, respectively upon biological degradation of endosulfan. The degradation of endosulfan by JAS6 and JAS9 strains were examined by HPLC. The biodegradation rate constant (k) and the initial concentration were reduced by 50% (DT50) which was determined by first and pseudo first order kinetic models. In the present investigation it has been revealed that Botryosphaeria laricina JAS6 and Aspergillus tamarii JAS9 possessing endosulfan degrading capability are being reported for the first time. These findings confirm the degradation of endosulfan by JAS6 and JAS9 strains which were accompanied by significant reduction in the toxicity and could be used as remedial measure in contaminated environments.
Collapse
Affiliation(s)
- Sivagnanam Silambarasan
- Microbial Biotechnology Laboratory, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Jayanthi Abraham
- Microbial Biotechnology Laboratory, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| |
Collapse
|
38
|
Detection of Achromobacter xylosoxidans in hospital, domestic, and outdoor environmental samples and comparison with human clinical isolates. Appl Environ Microbiol 2013; 79:7142-9. [PMID: 24038696 DOI: 10.1128/aem.02293-13] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Achromobacter xylosoxidans is an aerobic nonfermentative Gram-negative rod considered an important emerging pathogen among cystic fibrosis (CF) patients worldwide and among immunocompromised patients. This increased prevalence remains unexplained, and to date no environmental reservoir has been identified. The aim of this study was to identify potential reservoirs of A. xylosoxidans in hospital, domestic, and outdoor environments and to compare the isolates with clinical ones. From 2011 to 2012, 339 samples were collected in Dijon's university hospital, in healthy volunteers' homes in the Dijon area, and in the outdoor environment in Burgundy (soil, water, mud, and plants). We designed a protocol to detect A. xylosoxidans in environmental samples based on a selective medium: MCXVAA (MacConkey agar supplemented with xylose, vancomycin, aztreonam, and amphotericin B). Susceptibility testing, genotypic analysis by pulsed-field gel electrophoresis, and blaOXA-114 sequencing were performed on the isolates. A total of 50 strains of A. xylosoxidans were detected in hospital (33 isolates), domestic (9 isolates), and outdoor (8 isolates) samples, mainly in hand washing sinks, showers, and water. Most of them were resistant to ciprofloxacin (49 strains). Genotypic analysis and blaOXA-114 sequencing revealed a wide diversity among the isolates, with 35 pulsotypes and 18 variants of oxacillinases. Interestingly, 10 isolates from hospital environment were clonally related to clinical isolates previously recovered from hospitalized patients, and one domestic isolate was identical to one recovered from a CF patient. These results indicate that A. xylosoxidans is commonly distributed in various environments and therefore that CF patients or immunocompromised patients are surrounded by these reservoirs.
Collapse
|
39
|
Kataoka R, Takagi K. Biodegradability and biodegradation pathways of endosulfan and endosulfan sulfate. Appl Microbiol Biotechnol 2013; 97:3285-92. [DOI: 10.1007/s00253-013-4774-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/12/2013] [Accepted: 02/12/2013] [Indexed: 11/29/2022]
|
40
|
Giri K, Rai J. Biodegradation of endosulfan isomers in broth culture and soil microcosm byPseudomonas fluorescensisolated from soil. ACTA ACUST UNITED AC 2012. [DOI: 10.1080/00207233.2012.702480] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
Kundu P, Pramanik A, Mitra S, Choudhury JD, Mukherjee J, Mukherjee S. Heterotrophic nitrification by Achromobacter xylosoxidans S18 isolated from a small-scale slaughterhouse wastewater. Bioprocess Biosyst Eng 2011; 35:721-8. [PMID: 22130566 DOI: 10.1007/s00449-011-0652-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 11/02/2011] [Indexed: 11/30/2022]
Abstract
Heterotrophic carbon utilizing microbes were acclimatized in the laboratory by inoculating sludge collected from the waste discharge pond of a small-scale rural abattoir in India in a nutrient solution intermittently fed with glucose and ammonium chloride. Cultures of 10 well-developed isolates were selected and grown in a basal medium containing glucose and ammonium chloride. Culture supernatants were periodically analyzed for ammonium nitrogen (NH(4)(+)-N) and chemical oxygen demand (COD). Polyphasic taxonomic study of the most active nitrifier (S18) was done. Half saturation concentration (K(s)), maximum rate of substrate utilization (k), yield coefficient (Y) and decay coefficient (K(d)) were determined from the Lineweaver-Burk plot using the modified Monod equation. S18 was able to remove 97 ± 2% of (NH(4)(+)-N) and 88 ± 3% of COD. Molecular phylogenetic study supported by physiological and biochemical characteristics assigned S18 as Achromobacter xylosoxidans. Nitrification activity of A. xylosoxidans was demonstrated for the first time, while interestingly, the distinctive anaerobic denitrification property was preserved in S18. K (s) values were determined as 232.13 ± 1.5 mg/l for COD reduction and 2.131 ± 1.9 mg/l for NH(4)(+)-N utilization. Yield coefficients obtained were 0.4423 ± 0.1134 mg of MLVSS/mg of COD and 0.2461 ± 0.0793 mg of MLVSS/mg of NH(4)(+)-N while the decay coefficients were 0.0627 ± 0.0013 per day and 0.0514 ± 0.0008 per day, respectively. After a contact period of 24 h, 650 ± 5 mg/l solids were produced when the initial concentration of COD and NH(4)(+)-N were 1820 ± 10 mg/l and 120 ± 5.5 mg/l, respectively. This is the first report on the kinetic coefficients for carbon oxidation and nitrification by a single bacterium isolated from slaughterhouse wastewater.
Collapse
Affiliation(s)
- Pradyut Kundu
- Department of Civil Engineering, Jadavpur University, Kolkata, India
| | | | | | | | | | | |
Collapse
|