1
|
Kumari P, Nanda KP, Firdaus H. Adverse effects of cadmium on lymphoid organs, immune cells, and immunological responses. J Appl Toxicol 2025; 45:159-173. [PMID: 39044417 DOI: 10.1002/jat.4675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/22/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
Humans and animals possess robust immune systems to safeguard against foreign pathogens. However, recent reports suggest a greater incidence of immunity breakdown due to exposure to environmental pollutants, with heavy metals emerging as potential candidates in such immuno-toxicological studies. While we have extensive data on the general toxicity resulting from exposure to heavy metals, comprehensive documentation of their role as immune disruptors remains scarce. Cd (Cadmium) exerts immunomodulation by interfering with immune organs and cells, leading to altered structure, physiology, and function, thereby inducing symptoms of immune deregulation, inflammation and/or autoimmunity. This review aims to summarize the link between Cd exposure and immune dysfunction, drawing from case studies on exposed human subjects, as well as research conducted on various model organisms and in-vitro culture systems.
Collapse
Affiliation(s)
- Priyanka Kumari
- Department of Life Sciences, Central University of Jharkhand, Cheri-Manatu Campus, Kanke, Ranchi, Jharkhand, India
| | - Kumari Pragati Nanda
- Department of Life Sciences, Central University of Jharkhand, Cheri-Manatu Campus, Kanke, Ranchi, Jharkhand, India
| | - Hena Firdaus
- Department of Life Sciences, Central University of Jharkhand, Cheri-Manatu Campus, Kanke, Ranchi, Jharkhand, India
| |
Collapse
|
2
|
Malintha GHT, Jeong JB, Gunathilaka BE, Hasanthi M, Yun KS, Lee KJ. Effects of dietary piperine supplementation on innate immunity, growth performance, feed utilization and intestinal morphology of olive flounder (Paralichthys olivaceus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:925-937. [PMID: 37594621 DOI: 10.1007/s10695-023-01229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/30/2023] [Indexed: 08/19/2023]
Abstract
Piperine, the main bioactive component of black pepper (Piper nigrum) or long pepper (Piper longum), has anti-inflammatory, antifungal, and antibacterial properties. This study was carried out to evaluate the supplemental effects of piperine in olive flounder (Paralichthys olivaceus) diets. Six isonitrogenous and isolipidic diets were formulated to contain different levels of piperine at 0.00, 0.25, 0.50, 0.75, 1.00, and 2.00 g/kg (Con, P25, P50, P75, P100, and P200, respectively). Diets were randomly allocated to triplicate groups of fish (initial weight 27.6 ± 0.4 g, 30 fish/tank) and fed three times daily for 8 weeks. Results showed that dietary piperine significantly improved fish growth and feed utilization efficiency. The highest growth, including the highest Igf-1 mRNA expression, was observed in the P50 group, while P50 and P75 groups showed the highest protein efficiency ratio. Compared to the Con group piperine supplemented groups had significantly higher lysozyme activity, immunoglobulin level, and phagocytosis activities. Plasma cholesterol was significantly lower in fish fed P200 diet. Dry matter and protein digestibility were higher in P25, P50, and P75 groups than in Con group. Dietary piperine increased the intestinal villi length and goblet cell counts. In the challenge test against Edwardsiella tarda, all the groups supplemented with piperine showed higher cumulative survival compared to Con group. Therefore, these findings indicate that dietary piperine supplementation can improve growth performance, innate immunity, disease resistance, diet digestibility, and intestinal morphology of olive flounder. The optimum dietary piperine level seems to be approximately 0.5 g/kg for the fish.
Collapse
Affiliation(s)
- G H T Malintha
- Department of Marine Life Sciences, Jeju National University, 63243, Jeju, South Korea
| | - Joon Bum Jeong
- Department of Marine Life Sciences, Jeju National University, 63243, Jeju, South Korea
| | - Buddhi E Gunathilaka
- Department of Marine Life Sciences, Jeju National University, 63243, Jeju, South Korea
| | - Mirasha Hasanthi
- Department of Marine Life Sciences, Jeju National University, 63243, Jeju, South Korea
| | - Kwan-Sik Yun
- Synergen Inc., Bucheon-Si, Gyeonggi-Do, South Korea
| | - Kyeong-Jun Lee
- Department of Marine Life Sciences, Jeju National University, 63243, Jeju, South Korea.
- Marine Science Institute, Jeju National University, Jeju, 63333, South Korea.
| |
Collapse
|
3
|
Wang Y, Xu S, Tang L, Gong J, Su D, Yang H. Piperine as a Potential Nutraceutical Agent for Managing Diabetes and Its Complications: A Literature Review. J Med Food 2023. [PMID: 37725004 DOI: 10.1089/jmf.2023.k.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
The global prevalence of diabetes and its related complications has increased drastically and is currently a worldwide health challenge. There is still an urgent need for safe and effective natural products and supplements as alternative and/or adjunctive therapeutic interventions. Nowadays, people pay more and more attention to the nutritional and medicinal value of food ingredients. As one of the most widely employed spices in cooking, pepper also has novel medicinal values attributed to its main component, piperine (Pip). Pip is an amide alkaloid with pleiotropic properties such as anti-inflammatory, antioxidant, anti-cancer, and other related activities. Recently, Pip has received increasing scientific attention due to its antidiabetic and related complication properties. However, the values of existing studies are limited due to being scattered and unsystematic. The present study reviewed the therapeutic potential and possible mechanisms of Pip in diabetes and related complications, with the aim of providing promising candidates for the development of novel and effective alternative and/or adjunctive nutraceutical agents for the management of diabetes.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Pharmacy, the Third Affiliated Hospital of Soochow University, the First Peoples's Hospital of Changzhou, Changzhou, China
| | - Shan Xu
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Lidan Tang
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Jinhong Gong
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Dan Su
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Hao Yang
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
4
|
Li KX, Wang ZC, Machuki JO, Li MZ, Wu YJ, Niu MK, Yu KY, Lu QB, Sun HJ. Benefits of Curcumin in the Vasculature: A Therapeutic Candidate for Vascular Remodeling in Arterial Hypertension and Pulmonary Arterial Hypertension? Front Physiol 2022; 13:848867. [PMID: 35530510 PMCID: PMC9075737 DOI: 10.3389/fphys.2022.848867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/03/2022] [Indexed: 01/14/2023] Open
Abstract
Growing evidence suggests that hypertension is one of the leading causes of cardiovascular morbidity and mortality since uncontrolled high blood pressure increases the risk of myocardial infarction, aortic dissection, hemorrhagic stroke, and chronic kidney disease. Impaired vascular homeostasis plays a critical role in the development of hypertension-induced vascular remodeling. Abnormal behaviors of vascular cells are not only a pathological hallmark of hypertensive vascular remodeling, but also an important pathological basis for maintaining reduced vascular compliance in hypertension. Targeting vascular remodeling represents a novel therapeutic approach in hypertension and its cardiovascular complications. Phytochemicals are emerging as candidates with therapeutic effects on numerous pathologies, including hypertension. An increasing number of studies have found that curcumin, a polyphenolic compound derived from dietary spice turmeric, holds a broad spectrum of pharmacological actions, such as antiplatelet, anticancer, anti-inflammatory, antioxidant, and antiangiogenic effects. Curcumin has been shown to prevent or treat vascular remodeling in hypertensive rodents by modulating various signaling pathways. In the present review, we attempt to focus on the current findings and molecular mechanisms of curcumin in the treatment of hypertensive vascular remodeling. In particular, adverse and inconsistent effects of curcumin, as well as some favorable pharmacokinetics or pharmacodynamics profiles in arterial hypertension will be discussed. Moreover, the recent progress in the preparation of nano-curcumins and their therapeutic potential in hypertension will be briefly recapped. The future research directions and challenges of curcumin in hypertension-related vascular remodeling are also proposed. It is foreseeable that curcumin is likely to be a therapeutic agent for hypertension and vascular remodeling going forwards.
Collapse
Affiliation(s)
- Ke-Xue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Zi-Chao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | | | - Meng-Zhen Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu-Jie Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ming-Kai Niu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kang-Ying Yu
- Nursing School of Wuxi Taihu University, Wuxi, China
| | - Qing-Bo Lu
- School of Medicine, Southeast University, Nanjing, China
| | - Hai-Jian Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Li J, Huang Z, Lu S, Luo H, Tan Y, Ye P, Liu X, Wu Z, Wu C, Stalin A, Wang H, Liu Y, Shen L, Fan X, Zhang B, Yi J, Yao L, Xu Y, Wu J, Duan X. Exploring potential mechanisms of Suhexiang Pill against COVID-19 based on network pharmacology and molecular docking. Medicine (Baltimore) 2021; 100:e27112. [PMID: 34941025 PMCID: PMC8702253 DOI: 10.1097/md.0000000000027112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/15/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The traditional Chinese medicine prescription Suhexiang Pill (SHXP), a classic prescription for the treatment of plague, has been recommended in the 2019 Guideline for coronavirus disease 2019 (COVID-19) diagnosis and treatment of a severe type of COVID-19. However, the bioactive compounds and underlying mechanisms of SHXP for COVID-19 prevention and treatment have not yet been elucidated. This study investigates the mechanisms of SHXP in the treatment of COVID-19 based on network pharmacology and molecular docking. METHODS First, the bioactive ingredients and corresponding target genes of the SHXP were screened from the traditional Chinese medicine systems pharmacology database and analysis platform database. Then, we compiled COVID-19 disease targets from the GeneCards gene database and literature search. Subsequently, we constructed the core compound-target network, the protein-protein interaction network of the intersection of compound targets and disease targets, the drug-core compound-hub gene-pathway network, module analysis, and hub gene search by the Cytoscape software. The Metascape database and R language software were applied to analyze gene ontology biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Finally, AutoDock software was used for molecular docking of hub genes and core compounds. RESULTS A total of 326 compounds, 2450 target genes of SHXP, and 251 genes related to COVID-19 were collected, among which there were 6 hub genes of SHXP associated with the treatment of COVID-19, namely interleukin 6, interleukin 10, vascular endothelial growth factor A, signal transducer and activator of transcription 3 (STAT3), tumor necrosis factor (TNF), and epidermal growth factor. Functional enrichment analysis suggested that the effect of SHXP against COVID-19 is mediated by synergistic regulation of several biological signaling pathways, including Janus kinase/ STAT3, phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt), T cell receptor, TNF, Nuclear factor kappa-B, Toll-like receptor, interleukin 17, Chemokine, and hypoxia-inducible factor 1 signaling pathways. SHXP may play a vital role in the treatment of COVID-19 by suppressing the inflammatory storm, regulating immune function, and resisting viral invasion. Furthermore, the molecular docking results showed an excellent binding affinity between the core compounds and the hub genes. CONCLUSION This study preliminarily predicted the potential therapeutic targets, signaling pathways, and molecular mechanisms of SHXP in the treatment of severe COVID-19, which include the moderate immune system, relieves the "cytokine storm," and anti-viral entry into cells.
Collapse
Affiliation(s)
- Jialin Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhihong Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shan Lu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yingying Tan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Peizhi Ye
- Chinese Medicine Department of the Cancer Hospital of the Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhishan Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Antony Stalin
- State Key Laboratory of Subtropical Silviculture, Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Haojia Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Liangliang Shen
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaotian Fan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Bei Zhang
- Beijing Zhongyan Tong Ren Tang Pharmaceutical R&d Co. LTD, Beijing, China
| | - Jianping Yi
- Beijing Zhongyan Tong Ren Tang Pharmaceutical R&d Co. LTD, Beijing, China
| | - Lu Yao
- Beijing Zhongyan Tong Ren Tang Pharmaceutical R&d Co. LTD, Beijing, China
| | - Yi Xu
- Beijing Zhongyan Tong Ren Tang Pharmaceutical R&d Co. LTD, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xianchun Duan
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, No. 117, Meishan Road, Shushan District, Hefei City, Anhui Province, PR China
| |
Collapse
|
6
|
Khan AU, Talucder MSA, Das M, Noreen S, Pane YS. Prospect of The Black Pepper (Piper nigrum L.) as Natural Product Used to an Herbal Medicine. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Black pepper (
Piper nigrum
L.) is a popular spice that is grown as tropical and subtropical plant throughout the world. The leaf, flower, fruit, and root are the most important elements of the plant. Asexual or vegetative propagation is becoming highly popular, although the sexual approach is still used for pepper vine cultivation. For mass production of the pepper plant,
in vitro
culture is also used. The bioactive components contained in them are extremely important because of their therapeutic potential against a number of diseases. They are usually classed as functional foods because, in addition to providing basic nutrition, provide physiological benefits and help to avoid chronic illness. The main component of black pepper is piperine. It has a complex phyto-chemistry includes: Volatile oil, alkaloids, and oleoresins. Because of its free-radical scavenging properties, black pepper and its active components can be prevention and control of tumor growth. Piperine, which can bind and inhibit the SARS-CoV-2 virus that causes the sickness, is present in black pepper and has antibacterial and antiviral effects. Piperine, a key alkaloid component of black pepper, it also helps to cognitive brain function, nutritional absorption, and gastrointestinal health. Black pepper is known as the “King of Spices” as well as the “King of Medicinal Agents,” since it includes a wide variety of bioactive compounds with nutraceutical and pharmacological applications. An overview of the most common applications for black pepper, along with a strong evidence is present in this review.
Collapse
|
7
|
Haq IU, Imran M, Nadeem M, Tufail T, Gondal TA, Mubarak MS. Piperine: A review of its biological effects. Phytother Res 2020; 35:680-700. [PMID: 32929825 DOI: 10.1002/ptr.6855] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/18/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023]
Abstract
Medicinal plants have been used for years as a source of food, spices, and, in traditional medicine, as a remedy to numerous diseases. Piper nigrum, belonging to the family Piperaceae is one of the most widely used spices all over the world. It has a distinct sharp flavor attributed to the presence of the phytochemical, piperine. Apart from its use as a spice, P. nigrum is frequently used for medicinal, preservation, and perfumery purposes. Black pepper contains 2-7.4% of piperine, varying in content is associated with the pepper plant. Piperine displays numerous pharmacological effects such as antiproliferative, antitumor, antiangiogenesis, antioxidant, antidiabetic, anti-obesity, cardioprotective, antimicrobial, antiaging, and immunomodulatory effects in various in vitro and in vivo experimental trials. Furthermore, piperine has also been documented for its hepatoprotective, anti-allergic, anti-inflammatory, and neuroprotective properties. This review highlights and discusses the medicinal and health-promoting effects of piperine, along with possible mechanisms of its action in health promotion and disease prevention. In addition, the present review summarizes the recent literature related to piperine as a therapeutic agent against several diseases.
Collapse
Affiliation(s)
- Iahtisham-Ul Haq
- Department of Diet and Nutritional Sciences, Faculty of Health and Allied Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, Comsats University Islamabad, Vehari, Pakistan
| | - Tabussam Tufail
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Tanweer A Gondal
- School of Exercise and Nutrition, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | | |
Collapse
|
8
|
Smilkov K, Ackova DG, Cvetkovski A, Ruskovska T, Vidovic B, Atalay M. Piperine: Old Spice and New Nutraceutical? Curr Pharm Des 2020; 25:1729-1739. [PMID: 31267856 DOI: 10.2174/1381612825666190701150803] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/19/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Many of the activities associated with pepper fruits have been attributed to piperine, the most active compound present in these spices. OBJECTIVE This paper aims to provide an overview of the known properties of piperine, i.e. piperine's chemistry, its physiological activity, documented interactions as a bioenhancer and reported data concerning its toxicity, antioxidant properties and anticancer activity. DISCUSSION It is known that piperine possesses several properties. In its interaction with other drugs, it can act as a bioavailability enhancer; this effect is also manifested in combination with other nutraceuticals, e.g. with curcumin, i.e. piperine can modify curcumin's antioxidant, anti-inflammatory, antimicrobial and anticancer effects. Piperine displays significant immunomodulating, antioxidant, chemopreventive and anticancer activity; these effects have been shown to be dose-dependent and tissue-specific. However, the main limitation associated with piperine seems to be its low bioavailability, a disadvantage that innovative formulations are overcoming. CONCLUSION It is predicted that an increasing number of studies will focus on piperine, especially those directed towards unraveling its properties at molecular level. The current knowledge about the action of piperine will form a foundation for ways to improve piperine's bioavailability e.g. exploitation of different carrier systems. The therapeutical applications of this compound will be clarified, and piperine will be recognized as an important nutraceutical.
Collapse
Affiliation(s)
- Katarina Smilkov
- Department of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Darinka G Ackova
- Department of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Aleksandar Cvetkovski
- Department of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Tatjana Ruskovska
- Department of General Medicine, Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Bojana Vidovic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Mustafa Atalay
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
9
|
Kumar A, Sasmal D, Sharma N. Mechanism of deltamethrin induced thymic and splenic toxicity in mice and its protection by piperine and curcumin: in vivo study. Drug Chem Toxicol 2018; 41:33-41. [PMID: 28633599 DOI: 10.1080/01480545.2017.1286352] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/06/2016] [Accepted: 12/22/2016] [Indexed: 12/30/2022]
Abstract
Deltamethrin (DLM) is a well-known pyrethroid insecticide which is widely used in the agriculture and home pest control due to restriction on the sale of organophosphate. DLM induced apoptosis is well known but its mechanism is still unclear. This study has been designed to find out its mechanism of apoptosis with the help of computational methods along with in vivo methods. The QikProp and ProTox results have shown that DLM has good oral absorption. The docking results reveal that DLM has a strong binding affinity toward the CD4, CD8, CD28 and CD45 receptors. Further, to understand the toxicity of DLM on lymphoid cells, a single dose of DLM (5 mg/kg, oral for seven days) has been administered to male Balb/c mice and cytotoxicity (MTT assay), oxidative stress indicators (glutathione, reactive oxygen species) and apoptotic markers (caspase-3 activity, DNA fragmentation) have been assessed in thymic and splenic single cell suspensions. Lowering of body weight, cellularity and loss in cell viability have been observed in DLM treated mice. The significant increase in ROS and GSH depletion in spleen and thymus, indicate the possible involvement of oxidative stress. The spleen cells appear more susceptible to the adverse effects of DLM than thymus cells. Further, for the amelioration of its effect, two structurally different bioactive herbal extracts, piperine and curcumin have been evaluated and have shown the cytoprotective effect by inhibiting the apoptogenic signaling pathways induced by DLM.
Collapse
Affiliation(s)
- Anoop Kumar
- a Department of Pharmaceutical Sciences and Technology , Birla Institute of Technology, Mesra , Ranchi , India
| | - Dinakar Sasmal
- a Department of Pharmaceutical Sciences and Technology , Birla Institute of Technology, Mesra , Ranchi , India
| | - Neelima Sharma
- a Department of Pharmaceutical Sciences and Technology , Birla Institute of Technology, Mesra , Ranchi , India
| |
Collapse
|
10
|
Mohajeri M, Rezaee M, Sahebkar A. Cadmium-induced toxicity is rescued by curcumin: A review. Biofactors 2017; 43:645-661. [PMID: 28719149 DOI: 10.1002/biof.1376] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/16/2017] [Accepted: 06/22/2017] [Indexed: 12/16/2022]
Abstract
Cadmium (Cd) is one of the most common environmental and occupational heavy metals with extended distribution. Exposure to Cd may be associated with several deleterious consequences on the liver, bones, kidneys, lungs, testes, brain, immunological, and cardiovascular systems. Overproduction of reactive oxygen species (ROS) as the main mechanism behind its toxicity causes oxidative stress and subsequent damages to lipids, proteins, and DNA. Therefore, antioxidants along with chelating agents have shown promising outcomes against Cd-induced toxicity. Curcumin with various beneficial effects and medical efficacy has been evaluated for its inhibitory activities against biological impairments caused by Cd. Thus, this article is intended to address the effectiveness of curcumin against toxicity following Cd entry. Curcumin can afford to attenuate lipid peroxidation, glutathione depletion, alterations in antioxidant enzyme, and so forth through scavenging and chelating activities or Nrf2/Keap1/ARE pathway induction. © 2017 BioFactors, 43(5):645-661, 2017.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rezaee
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
da Silva Cardoso V, Vermelho AB, Ribeiro de Lima CA, Mendes de Oliveira J, Freire de Lima ME, Pinto da Silva LH, Direito GM, Miranda Danelli MDG. Antigenotoxic Effect of Piperine in Broiler Chickens Intoxicated with Aflatoxin B1. Toxins (Basel) 2016; 8:E316. [PMID: 27809242 PMCID: PMC5127113 DOI: 10.3390/toxins8110316] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/19/2016] [Accepted: 10/27/2016] [Indexed: 12/01/2022] Open
Abstract
Piperine is an abundant amide extracted from black pepper seeds which has been shown to have protective effects against cytotoxic and genotoxic carcinogenesis induced by certain chemical carcinogens and aflatoxin B₁ (AFB₁) in vitro. The aim of this work was to study, in vivo, the antigenotoxic potential of feed-added piperine on broiler chickens experimentally intoxicated with AFB₁, using micronucleus and comet assays. The antigenotoxicity assessment of 9-day-old chicks was performed on a total of 60 chickens divided into four groups of 15 broilers each: (C) control, (P) 60 mg·piperine kg-1 feed, (A) 0.5 mg·AFB₁·kg-1 body weight, (daily by oral route), and (P + A) co-treatment with piperine and AFB₁. The experiment was conducted for 26 days. Chicks intoxicated with AFB₁ showed significant genotoxic effects in the first 24 h post intoxication, and the effects remained in the other periods analyzed (48, 72, and 96 h and 26 days of treatment). The DNA damage in peripheral blood cells, the number of erythrocytes with micronuclei, and polychromatic-to-normochromatic erythrocyte ratio were significantly reduced or absent in the piperine/AFB₁ group. No significant differences were observed between the group piperine/AFB₁ and the control and piperine-alone groups. The addition 60 mg·kg-1 of piperine to the diet of the broiler chicks was safe, promoting beneficial effects in poultry health with respect to the toxic effects 0.5 mg·AFB₁·kg-1 body weight.
Collapse
Affiliation(s)
- Verônica da Silva Cardoso
- BIOINOVAR-Biotecnologia, Unidade de Biocatálise, Bioprodutos e Bioenergia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil.
| | - Alane Beatriz Vermelho
- BIOINOVAR-Biotecnologia, Unidade de Biocatálise, Bioprodutos e Bioenergia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil.
| | | | - Jéssica Mendes de Oliveira
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ 23890-000, Brazil.
| | | | | | - Glória Maria Direito
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ 23890-000, Brazil.
| | | |
Collapse
|
12
|
Kukongviriyapan U, Apaijit K, Kukongviriyapan V. Oxidative Stress and Cardiovascular Dysfunction Associated with Cadmium Exposure: Beneficial Effects of Curcumin and Tetrahydrocurcumin. TOHOKU J EXP MED 2016; 239:25-38. [PMID: 27151191 DOI: 10.1620/tjem.239.25] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cadmium (Cd) is a non-essential heavy metal with high toxicity potential. Humans are exposed to Cd present in diet, polluted air, and cigarette smoke. Cd exposure has been associated with increased risk of chronic diseases, including hypertension, atherosclerosis, diabetes, and nephropathy, all of which could be attributable to dysfunctional endothelial and smooth muscle cells. Cd toxicity is correlated with increased reactive oxygen formation and depletion of antioxidants, resulting in an oxidative stress. Chelation of Cd has proved useful in the removal of the Cd burden. However, several chelating agents cause side effects in clinical usage. Recent studies have shown that the antioxidant compounds curcumin and tetrahydrocurcumin can alleviate vascular dysfunction and high blood pressure caused by Cd toxicity. In chronic Cd exposure, these antioxidants protect vascular endothelium by increasing nitric oxide (NO•) bioavailability and improving vascular function. Antioxidant activity against Cd intoxication results directly and/or indirectly through free radical scavenging, metal chelation, enhanced expression of the antioxidant defense system, regulation of inflammatory enzymes, increase in NO• bioavailability, and reduction of gastrointestinal absorption and tissue Cd accumulation. This review summarizes current knowledge of Cd-induced oxidative stress and cardiovascular dysfunction and a possible protective effect conferred by the antioxidants curcumin and tetrahydrocurcumin.
Collapse
|
13
|
Rice KM, Manne NDPK, Kolli MB, Wehner PS, Dornon L, Arvapalli R, Selvaraj V, Kumar A, Blough ER. Curcumin nanoparticles attenuate cardiac remodeling due to pulmonary arterial hypertension. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1909-1916. [DOI: 10.3109/21691401.2015.1111235] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Pretreatment with curcumin attenuates anxiety while strengthens memory performance after one short stress experience in male rats. Brain Res Bull 2015; 115:1-8. [DOI: 10.1016/j.brainresbull.2015.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/04/2015] [Accepted: 04/06/2015] [Indexed: 11/21/2022]
|
15
|
Kumar A, Sharma N. Comparative efficacy of piperine and curcumin in deltamethrin induced splenic apoptosis and altered immune functions. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 119:16-27. [PMID: 25868812 DOI: 10.1016/j.pestbp.2015.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 06/04/2023]
Abstract
Deltamethrin (DLM) being a potent immunotoxicant affects both humoral and cell mediated immunity. Thus, for the amelioration of its effects, two different bioactive herbal extracts piperine and curcumin are evaluated and their efficacy has been compared. The docking results demonstrated that curcumin has good binding affinity towards CD28 and CD45 receptors as compared to piperine but in vitro studies revealed that piperine is more effective. DLM induced apoptotic markers such as oxidative stress and caspase 3 have been attenuated more significantly by piperine as compared to curcumin. Phenotypic and cytokine changes have also been mitigated best with piperine. Thus, these findings strongly demonstrate that piperine displays the more anti-oxidative, anti-apoptotic and chemo-protective properties in the DLM induced splenic apoptosis as compared to curcumin. So, piperine can be considered the drug of choice under immunocompromised conditions.
Collapse
Affiliation(s)
- Anoop Kumar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi -835215, Jharkhand, India
| | - Neelima Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi -835215, Jharkhand, India.
| |
Collapse
|
16
|
García-Niño WR, Pedraza-Chaverrí J. Protective effect of curcumin against heavy metals-induced liver damage. Food Chem Toxicol 2014; 69:182-201. [PMID: 24751969 DOI: 10.1016/j.fct.2014.04.016] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/05/2014] [Accepted: 04/08/2014] [Indexed: 02/06/2023]
Abstract
Occupational or environmental exposures to heavy metals produce several adverse health effects. The common mechanism determining their toxicity and carcinogenicity is the generation of oxidative stress that leads to hepatic damage. In addition, oxidative stress induced by metal exposure leads to the activation of the nuclear factor (erythroid-derived 2)-like 2/Kelch-like ECH-associated protein 1/antioxidant response elements (Nrf2/Keap1/ARE) pathway. Since antioxidant and chelating agents are generally used for the treatment of heavy metals poisoning, this review is focused on the protective role of curcumin against liver injury induced by heavy metals. Curcumin has shown, in clinical and preclinical studies, numerous biological activities including therapeutic efficacy against various human diseases and anti-hepatotoxic effects against environmental or occupational toxins. Curcumin reduces the hepatotoxicity induced by arsenic, cadmium, chromium, copper, lead and mercury, prevents histological injury, lipid peroxidation and glutathione (GSH) depletion, maintains the liver antioxidant enzyme status and protects against mitochondrial dysfunction. The preventive effect of curcumin on the noxious effects induced by heavy metals has been attributed to its scavenging and chelating properties, and/or to the ability to induce the Nrf2/Keap1/ARE pathway. However, additional research is needed in order to propose curcumin as a potential protective agent against liver damage induced by heavy metals.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico
| | - José Pedraza-Chaverrí
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico.
| |
Collapse
|
17
|
Thiel A, Buskens C, Woehrle T, Etheve S, Schoenmakers A, Fehr M, Beilstein P. Black pepper constituent piperine: Genotoxicity studies in vitro and in vivo. Food Chem Toxicol 2014; 66:350-7. [DOI: 10.1016/j.fct.2014.01.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/24/2014] [Accepted: 01/31/2014] [Indexed: 11/27/2022]
|
18
|
Sampath M, Lakra R, Korrapati P, Sengottuvelan B. Curcumin loaded poly (lactic-co-glycolic) acid nanofiber for the treatment of carcinoma. Colloids Surf B Biointerfaces 2014; 117:128-34. [PMID: 24646452 DOI: 10.1016/j.colsurfb.2014.02.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 02/08/2014] [Accepted: 02/08/2014] [Indexed: 01/28/2023]
Abstract
Poly (DL-lactic-co-glycolic) acid [PLGA] copolymers with different ratios (78/22, 68/32 and 61/39) and molecular weight (15,400, 11,000 and 10,000 Da) were synthesized and characterized by (1)H NMR, FTIR, GPC and TGA-DTA studies. Curcumin loaded PLGA with the size of 100-300 nm were obtained by electrospinning in which no visible aggregation observed on the surface. The diameter of CPNF (61/39) nanofiber obtained from the topographical imaging by AFM is 160±10 nm. The water contact angle measurements indicate that an increase in GA content results in increase in the hydrophilicity of the PLGA copolymer. The in vitro release profile and release kinetics from the CPNF demonstrated a sustained release of curcumin from CPNF. The release profile follows Korsmeyer-Peppas model suggesting a combination of surface drug dissolution and non-Fickian diffusion as a major drug release mechanism. The effect of CPNF on cell viability was assessed by the MTT (3-[4,5-dimethylthiazol-2-yl] 2,5-diphenyltetrazolium bromide) assay to examine the cytotoxic effect of released curcumin on A431 cells in vitro.
Collapse
Affiliation(s)
- Malathi Sampath
- Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Rachita Lakra
- Biomaterials division, CSIR-CLRI, TICEL Biopark, Chennai 600 113, India
| | | | | |
Collapse
|
19
|
Immunomodulatory effects of nanocurcumin in arsenic-exposed rats. Int Immunopharmacol 2013; 17:65-70. [DOI: 10.1016/j.intimp.2013.05.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/29/2013] [Accepted: 05/20/2013] [Indexed: 01/16/2023]
|
20
|
Dudhatra GB, Mody SK, Awale MM, Patel HB, Modi CM, Kumar A, Kamani DR, Chauhan BN. A comprehensive review on pharmacotherapeutics of herbal bioenhancers. ScientificWorldJournal 2012; 2012:637953. [PMID: 23028251 PMCID: PMC3458266 DOI: 10.1100/2012/637953] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 08/09/2012] [Indexed: 01/17/2023] Open
Abstract
In India, Ayurveda has made a major contribution to the drug discovery process with new means of identifying active compounds. Recent advancement in bioavailability enhancement of drugs by compounds of herbal origin has produced a revolutionary shift in the way of therapeutics. Thus, bibliographic investigation was carried out by analyzing classical text books and peer-reviewed papers, consulting worldwide-accepted scientific databases from last 30 years. Herbal bioenhancers have been shown to enhance bioavailability and bioefficacy of different classes of drugs, such as antibiotics, antituberculosis, antiviral, antifungal, and anticancerous drugs at low doses. They have also improved oral absorption of nutraceuticals like vitamins, minerals, amino acids, and certain herbal compounds. Their mechanism of action is mainly through absorption process, drug metabolism, and action on drug target. This paper clearly indicates that scientific researchers and pharmaceutical industries have to give emphasis on experimental studies to find out novel active principles from such a vast array of unexploited plants having a role as a bioavailability and bioefficacy enhancer. Also, the mechanisms of action by which bioenhancer compounds exert bioenhancing effects remain to be explored.
Collapse
Affiliation(s)
- Ghanshyam B Dudhatra
- Department of Pharmacology & Toxicology, College of Veterinary Science & Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar 385506, Gujarat, India.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discov Today 2011; 17:71-80. [PMID: 21959306 DOI: 10.1016/j.drudis.2011.09.009] [Citation(s) in RCA: 480] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/02/2011] [Accepted: 09/13/2011] [Indexed: 12/31/2022]
Abstract
Curcumin, a natural diphenolic compound derived from turmeric Curcuma longa, has proven to be a modulator of intracellular signaling pathways that control cancer cell growth, inflammation, invasion and apoptosis, revealing its anticancer potential. In this review, we focus on the design and development of nanoparticles, self-assemblies, nanogels, liposomes and complex fabrication for sustained and efficient curcumin delivery. We also discuss the anticancer applications and clinical benefits of nanocurcumin formulations. Only a few novel multifunctional and composite nanosystem strategies offer simultaneous therapy as well as imaging characteristics. We also summarize the challenges to developing curcumin delivery platforms and up-to-date solutions for improving curcumin bioavailability and anticancer potential for therapy.
Collapse
|
23
|
Normalizing effect of plant-originated glycoprotein (116 kDa) on G0/G1 arrest in cadmium chloride-induced primary cultured mouse myelocytes. Naunyn Schmiedebergs Arch Pharmacol 2010; 383:109-18. [DOI: 10.1007/s00210-010-0580-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 11/07/2010] [Indexed: 02/04/2023]
|
24
|
Sane SA, Shakya N, Gupta S. Immunomodulatory effect of picroliv on the efficacy of paromomycin and miltefosine in combination in experimental visceral leishmaniasis. Exp Parasitol 2010; 127:376-81. [PMID: 20846525 DOI: 10.1016/j.exppara.2010.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 09/03/2010] [Accepted: 09/07/2010] [Indexed: 11/19/2022]
Abstract
Combination therapy for the treatment of visceral leishmaniasis has increasingly been advocated as a way to increase treatment efficacy and tolerance, to reduce treatment duration and cost, and to limit the emergence of drug resistance. In the present work, we have adopted a rational approach, which can modulate the immune response to overcome the negative control systems and to boost the positive killing responses. This study was designed to investigate the immunomodulatory effect of picroliv (standardized fraction from the alcoholic extract of root and rhizome of Picrorhiza kurroa) on a combination of paromomycin and miltefosine using Leishmania donovani/hamster model. Picroliv has significantly enhanced antileishmanial efficacy and lymphocyte proliferation when given in combination with paromomycin and miltefosine. Increased toxic oxygen metabolite generation and phagocytosis were also witnessed. Present study thus establishes the possible use of picroliv as adjunct to antileishmanial chemotherapy.
Collapse
Affiliation(s)
- Shraddha A Sane
- Division of Parasitology, Central Drug Research Institute, Chattar Manzil Palace, MG Road, Lucknow 226001, India
| | | | | |
Collapse
|
25
|
Wen YD, Ho YL, Shiau RJ, Yeh JK, Wu JY, Wang WL, Chiou SJ. Synergistic antitumor effect of curcumin and dinitrosyl iron complexes for against melanoma cells. J Organomet Chem 2010. [DOI: 10.1016/j.jorganchem.2009.10.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|