1
|
Abomosallam M, Hendam BM, Shouman Z, Refaat R, Hashem NMA, Sakr SA, Wahed NM. Rutin Nanoparticles Alleviate Cadmium-Induced Oxidative and Immune Damage in Broilers' Bursa of Fabricius via Modulating Hsp70/TLR4/NF-κB Signaling Pathway. Biol Trace Elem Res 2025; 203:1016-1034. [PMID: 38703309 PMCID: PMC11750906 DOI: 10.1007/s12011-024-04199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Cadmium (Cd) is a serious environmental pollutant affecting various tissues/organs in broilers and compromising their immunological function and productivity. Therefore, the current study aimed to investigate Cd-induced immunotoxicity and potential immunoprotective effect of rutin nanoparticles (RNPs) in the bursal tissue of broilers. A total number of 150 chicks from the Hubbard breed were randomly divided into 5 groups. Group I was fed on standard basal diet (SD) with normal drinking water (DW), Group II received SD containing RNPs (50 mg/kg feed) with DW, Group III fed on SD and DW containing Cd (150 mg/L), Group IV co-treated with rutin-enforced SD (50 mg/kg diet) and DW containing Cd (150 mg/L), and finally, Group V co-supplemented with RNP-enhanced SD (50 mg/kg diet) DW containing Cd (150 mg/L). Productive performance, economic efficiency, oxidative biomarkers, histopathological changes, and the expression level of TLR-4, HSP-70, caspase 3, NF-κB, Bcl-2, and Bax were assessed in the BF tissue. Cd led to severe production and economic losses in exposed birds with a marked surge of oxidative biomarkers, pro-inflammatory cytokines, and histopathological changes in the bursal tissue which could be explained through upregulation of the Hsp70/TLR4/NF-κB molecular pathway in the BF tissue. Meanwhile, RNPs could alleviate most of these changes and prevail optimistic immunomodulatory properties which subsequently could enhance broilers' productivity when incorporated in their diets.
Collapse
Affiliation(s)
- Mohamed Abomosallam
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Basma M Hendam
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Zeinab Shouman
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Rasha Refaat
- Phytochemistry and Plant Systematics Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Nada M A Hashem
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Shimaa A Sakr
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Noha M Wahed
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
2
|
Elgharib IM, Abdelhamid FM, Elshopakey GE, Sembawa H, Albukhari TA, Filimban WA, Bagadood RM, El-Boshy ME, Risha EF. Therapeutic Potential of Clove Oil in Mitigating Cadmium-Induced Hepatorenal Toxicity Through Antioxidant, Anti-Inflammatory, and Antiapoptotic Mechanisms. Pharmaceuticals (Basel) 2025; 18:94. [PMID: 39861156 PMCID: PMC11768416 DOI: 10.3390/ph18010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Hazardous heavy metals, particularly cadmium (Cd), are widely distributed in the environment and cause oxidative stress in various animal and human organs. Clove oil (CLO), a common aromatic spice, has been used as a traditional medication as it has potent anti-inflammatory, antioxidant, and hepatoprotective properties. BACKGROUND/OBJECTIVES This study aimed to investigate the antioxidant, antiapoptotic, and anti-inflammatory effects of clove oil (CLO) against hepatorenal toxicity induced by cadmium (Cd). METHODS Twenty rats were equally divided into four groups: a control group, a Cd group treated with 15 mg/kg b.wt CdCl2, a CLO group administered 200 mg/kg b.wt CLO, and a Cd+CLO group. All groups were orally treated for 4 weeks. RESULTS Cadmium (Cd) exposure caused anemia and hepatorenal damage, as evidenced by increased serum levels of urea, creatinine, uric acid, total bilirubin (including its direct and indirect fractions), and elevated activities of liver enzymes such as alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP). However, total protein and albumin levels decreased. Furthermore, there was a decrease in the levels of glutathione, glutathione transferase, and catalase in the liver antioxidant profiles. Meanwhile, malondialdehyde levels increased. Cadmium toxicity caused elevated expression of liver apoptosis markers, such as tumor necrosis factor-alpha (TNF-α) and caspase-3, and inflammation. CLO ameliorated the oxidative effects of Cd through decreasing urea (27.4%), creatinine (41.6%), liver enzymes, and hepatic apoptotic markers while increasing levels of total protein, albumin, and hepatic values of SOD (60.37%), CAT (64.49%), GSH (50.41%), and GST (9.16%). CONCLUSIONS Hematological and biochemical parameters, as well as the antioxidant system, improved following clove oil treatment, leading to a reduction in hepatorenal damage. Therefore, it is possible to conclude that CLO protects rats from inflammation, apoptosis, and hepatorenal oxidative damage caused by Cd poisoning. Comprehensive translational research is required to validate CLO's efficacy and safety of use in humans. Future studies should focus on elucidating the precise molecular mechanisms, optimal dosing strategies, and potential synergistic effects of CLO with other therapeutic agents.
Collapse
Affiliation(s)
- Inas M. Elgharib
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (I.M.E.); (F.M.A.); (G.E.E.); (M.E.E.-B.)
| | - Fatma M. Abdelhamid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (I.M.E.); (F.M.A.); (G.E.E.); (M.E.E.-B.)
| | - Gehad E. Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (I.M.E.); (F.M.A.); (G.E.E.); (M.E.E.-B.)
- Department of Veterinary Diseases, Faculty of Veterinary Medicine, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Hatem Sembawa
- Department of Surgery, Faculty of Medicine, Umm Alqura University, Makkah P.O. Box 7607, Saudi Arabia;
| | - Talat A. Albukhari
- Department of Hematology and Immunology, Faculty of Medicine, Umm Alqura University, Makkah P.O. Box 7607, Saudi Arabia;
| | - Waheed A. Filimban
- Pathology Department, Faculty of Medicine, Umm Al-Qura University, Makkah P.O. Box 7607, Saudi Arabia;
| | - Rehab M. Bagadood
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah P.O. Box 7607, Saudi Arabia;
| | - Mohamed E. El-Boshy
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (I.M.E.); (F.M.A.); (G.E.E.); (M.E.E.-B.)
| | - Engy F. Risha
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (I.M.E.); (F.M.A.); (G.E.E.); (M.E.E.-B.)
| |
Collapse
|
3
|
Chawla S, Molin M, Nystrom T. Tuning beneficial calcineurin phosphatase activation to counter α-synuclein toxicity in a yeast model of Parkinson's disease. Neural Regen Res 2025; 20:199-200. [PMID: 39657089 DOI: 10.4103/nrr.nrr-d-23-01917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 12/17/2024] Open
Affiliation(s)
- Srishti Chawla
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden (Chawla S, Nystrom T)
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden (Chawla S, Molin M)
| | - Mikael Molin
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden (Chawla S, Molin M)
| | - Thomas Nystrom
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden (Chawla S, Nystrom T)
| |
Collapse
|
4
|
Zhao M, Xie L, Huang W, Li M, Gu X, Zhang W, Wei J, Zhang N. Combined Effects of Cadmium and Lead on Growth Performance and Kidney Function in Broiler Chicken. Biol Trace Elem Res 2025; 203:358-373. [PMID: 38589681 DOI: 10.1007/s12011-024-04173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Cadmium (Cd) and lead (Pb) are heavy metals prevalent in the environment and feed, and they reduce production performance of domestic animals, as well as they result in residue in animal tissues. The kidney is the target tissue for Cd and Pb. And the kidney is crucial for the reabsorption of calcium (Ca), which consequently influences bone strength. However, there are relatively few studies related to the effects of Cd and Pb exposure on performance, bone strength and kidney damage in livestock. The purpose of this experiment was to explore the combined effect of Cd and Pb on growth performance and renal impairment and the possible underlying mechanism. For this, 168 1-day-old Ross 308 broilers were randomly divided into four groups of six birds each, with seven replicates in each group: control group, 50 mg Cd/kg body weight group, 200 mg Pb/kg body weight group and 50 mg Cd/kg body weight + 200 mg Pb/kg body weight group. Feed intake was recorded daily and body weight was recorded weekly. The results show that at the end of the 3rd and 6th week, one broiler from each replicate was randomly selected for sampling. Boilers co-exposed to Cd and Pb for 3 weeks and 6 weeks had significantly decreased average daily feed intake (ADFI) and average daily body weight gain (ADG) than the control group, and the ratio of feed-to-weight gain (F/G) significantly increased after 6 weeks of co-exposure to Cd and Pb. Microscopic picture and ultrastructure analyses of the kidneys showed that Cd and Pb caused kidney damage to broiler chickens, and the damage was more serious in the Cd + Pb group, which was manifested by increased renal tubular epithelial degeneration and increased interstitial stasis points. Dietary exposure to Cd and Pb impaired production performance and induced renal oxidative damage in broilers. The combined effects of Cd and Pb on the kidneys are greater than their effects alone. The PERK-ATF4 pathway mediated endoplasmic reticulum stress participates the renal oxidative damage during chronic Cd and Pb exposure.
Collapse
Affiliation(s)
- Man Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Longqiang Xie
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Wenbin Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Meiling Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Xin Gu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, China
| | - Jintao Wei
- Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, China
| | - Niya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
5
|
Frings S, Schmidt-Schippers R, Lee WK. Epigenetic alterations in bioaccumulators of cadmium: Lessons from mammalian kidneys and plants. ENVIRONMENT INTERNATIONAL 2024; 191:109000. [PMID: 39278047 DOI: 10.1016/j.envint.2024.109000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/07/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Faced with unpredictable changes in global weather patterns, release and redistribution of metals through land erosion and water movements add to the increasing use of metals in industrial activities causing high levels of environmental pollution and concern to the health of all living organisms. Cadmium is released into the environment by smelting and mining, entering the food chain via contaminated soils, water, and phosphate fertilizers. Bioaccumulation of cadmium in plants represents the first major step into the human food chain and contributes to toxicity of several organs, especially the kidneys, where biomagnification of cadmium occurs over decades of exposure. Even in small amounts, cadmium brings about alterations at the molecular and cellular levels in eukaryotes through mutagenicity, molecular mimicry at metal binding sites and oxidative stress. The epigenome dictates expression of a gene's output through a number of regulatory steps involving chromatin remodeling, nucleosome unwinding, DNA accessibility, or nucleic acid modifications that ultimately impact the transcriptional and translational machinery. Several epigenetic enzymes exhibit zinc-dependence as zinc metalloenzymes and zinc finger proteins thus making them susceptible to deregulation through displacement by cadmium. In this review, we summarize the literature on cadmium-induced epigenetic mechanisms in mammalian kidneys and plants, compare similarities in the epigenetic defense between these bioaccumulators, and explore how future studies could advance our understanding of the cadmium-induced stress response and disruption to biological health.
Collapse
Affiliation(s)
- Stephanie Frings
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany; Plant Biotechnology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Romy Schmidt-Schippers
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany; Plant Biotechnology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany.
| |
Collapse
|
6
|
Shi Y, Gao Z, Xu B, Mao J, Wang Y, Liu Z, Wang J. Protective effect of naringenin on cadmium chloride-induced renal injury via alleviating oxidative stress, endoplasmic reticulum stress, and autophagy in chickens. Front Pharmacol 2024; 15:1440877. [PMID: 39070780 PMCID: PMC11275578 DOI: 10.3389/fphar.2024.1440877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Cadmium (Cd) is a highly hazardous toxic substance that can cause serious harm to animals. Previous studies have indicated that cadmium chloride (CdCl2) can damage organs, such as the liver, ovaries, and testicles. Naringenin (Nar) represents a flavonoid with various properties that promote the alleviation of Cd-induced damage. In this experiment, 60 chickens were divided into the control group, 150 mg/kg CdCl2 treatment group, 250 mg/kg Nar treatment group, and 150 mg/kg CdCl2 + 250 mg/kg Nar co-treatment group, which were treated for 8 weeks. Kidney tissues samples were collected to investigate kidney function, including oxidative stress (OS), endoplasmic reticulum (ER) stress, and autophagy activity. Experimental results showed the decreased weight of chickens and increased relative weight of their kidneys after CdCl2 treatment. The increase in NAG, BUN, Cr, and UA activities, as well as the increase in MDA and GSH contents, and the decrease activities of T-AOC, SOD, and CAT in the kidney, manifested renal injury by OS in the chickens. TUNEL staining revealed that CdCl2 induced apoptosis in renal cells. CdCl2 upregulates the mRNA and protein expression levels of GRP78, PERK, eIF2α, ATF4, ATF6, CHOP, and LC3, and inhibited the mRNA and protein expression levels of P62 proteins, which leads to ER stress and autophagy. The CdCl2 + Nar co-treatment group exhibited alleviated CdCl2-induced kidney injury, OS, ER stress, and autophagy. Research has demonstrated that Nar reduces CdCl2-induced kidney injury through alleviation of OS, ER stress, and autophagy.
Collapse
Affiliation(s)
- Yaning Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Zhixin Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Bing Xu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Junbing Mao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yue Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jicang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
7
|
Lee WK, Probst S, Scharner B, Deba T, Dahdouh F, Thévenod F. Distinct concentration-dependent oxidative stress profiles by cadmium in a rat kidney proximal tubule cell line. Arch Toxicol 2024; 98:1043-1059. [PMID: 38289529 PMCID: PMC10944451 DOI: 10.1007/s00204-023-03677-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/20/2023] [Indexed: 03/17/2024]
Abstract
Levels and chemical species of reactive oxygen/nitrogen species (ROS/RNS) determine oxidative eustress and distress. Abundance of uptake pathways and high oxygen consumption for ATP-dependent transport makes the renal proximal tubule particularly susceptible to cadmium (Cd2+)-induced oxidative stress by targeting ROS/RNS generation or antioxidant defence mechanisms, such as superoxide dismutase (SOD) or H2O2-metabolizing catalase (CAT). Though ROS/RNS are well-evidenced, the role of distinct ROS profiles in Cd2+ concentration-dependent toxicity is not clear. In renal cells, Cd2+ (10-50 µM) oxidized dihydrorhodamine 123, reaching a maximum at 2-3 h. Increases (up to fourfold) in lipid peroxidation by TBARS assay and H2O2 by Amplex Red were evident within 30 min. ROS and loss in cell viability by MTT assay with 50 µM Cd2+ could not be fully reversed by SOD mimetics Tempol and MnTBAP nor by SOD1 overexpression, whereas CAT expression and α-tocopherol were effective. SOD and CAT activities were attenuated below controls only with >6 h 50 µM Cd2+, yet augmented by up to 1.5- and 1.2-fold, respectively, by 10 µM Cd2+. Moreover, 10 µM, but not 25-50 µM Cd2+, caused 1.7-fold increase in superoxide anion (O2•-), detected by dihydroethidium, paralled by loss in cell viability, that was abolished by Tempol, MnTBAP, α-tocopherol and SOD1 or CAT overexpression. H2O2-generating NADPH oxidase 4 (NOX4) was attenuated by ~50% with 10 µM Cd2+ at 3 h compared to upregulation by 50 µM Cd2+ (~1.4-fold, 30 min), which was sustained for 24 h. In summary, O2•- predominates with low-moderate Cd2+, driving an adaptive response, whereas oxidative stress by elevated H2O2 at high Cd2+ triggers cell death signaling pathways.Highlights Different levels of reactive oxygen species are generated, depending on cadmium concentration. Superoxide anion predominates and H2O2 is suppressed with low cadmium representing oxidative eustress. High cadmium fosters H2O2 by inhibiting catalase and increasing NOX4 leading to oxidative distress. Superoxide dismutase mimetics and overexpression were less effective with high versus low cadmium. Oxidative stress profile could dictate downstream signalling pathways.
Collapse
Affiliation(s)
- Wing-Kee Lee
- Institute of Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Str. 12, 58453, Witten, Germany.
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany.
| | - Stephanie Probst
- Institute of Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Str. 12, 58453, Witten, Germany
| | - Bettina Scharner
- Institute of Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Str. 12, 58453, Witten, Germany
| | - Timo Deba
- Institute of Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Str. 12, 58453, Witten, Germany
- Department of General Paediatrics, Klinik für Kinder- und Jugendmedizin, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Faouzi Dahdouh
- Institute of Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Str. 12, 58453, Witten, Germany
- Department of Natural Sciences, Higher School of Professors for Technological Education, Skikda, Algeria
| | - Frank Thévenod
- Institute of Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Str. 12, 58453, Witten, Germany
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany
| |
Collapse
|
8
|
Ding L, Wang K, Zhu H, Liu Z, Wang J. Protective effect of quercetin on cadmium-induced kidney apoptosis in rats based on PERK signaling pathway. J Trace Elem Med Biol 2024; 82:127355. [PMID: 38071864 DOI: 10.1016/j.jtemb.2023.127355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Cadmium (Cd) is a highly toxic environmental pollutant that can enter the body through bioaccumulation. The kidney is an important target organ for Cd poisoning. Quercetin (Que) is a natural flavonoid compound with free radical scavenging and antioxidant properties. Previous studies showed that Que can alleviate kidney damage caused by Cd poisoning in rats, but the specific mechanism is still unclear. METHODS Twenty-four male Sprague-Dawley (SD) rats were divided into four groups: normal saline-treated control group, Cd group treated by intraperitoneal injection of 2 mg/kg b.w. CdCl2, Cd + Que group treated by intraperitoneal injection of 2 mg/kg b.w. CdCl2 and 100 mg/kg b.w. Que, and Que group treated by 100 mg/kg b.w. Que. Four weeks later, the rats were anesthetized with diethyl ether, and blood was taken intravenously. The rats were executed with their necks cut off, and the kidneys were removed. Body weight, kidney organ weight, and glutathione (GSH) and malondialdehyde (MDA) levels were measured. The structure of kidney tissue was observed by hematoxylin and eosin staining, kidney cell apoptosis was detected by TUNEL assay, and the mRNA expression levels of genes related to the PERK signaling pathway were analyzed by RT-PCR. RESULTS Compared with the control group, the Cd-treated group exhibited a significant decrease in body weight (P < 0.01). Their kidneys showed a significant increase in the relative organ weight (P < 0.01). Moreover, the MDA and GSH levels increased. Kidney tissue damage and renal cell apoptosis were observed, and the mRNA expression levels of genes related to the PERK signaling pathway significantly increased (P < 0.01). Compared with the Cd-treated group, the Cd + Que group exhibited a significant increase in body weight (P < 0.01) and significant decreases in the relative organ weight, MDA and GSH levels, and mRNA expression levels of genes related to the PERK signaling pathway (P < 0.01). Furthermore, kidney tissue damage and renal cell apoptosis were observed. CONCLUSION Cd treatment resulted in rat weight loss, renal edema, and oxidative stress and caused renal tissue damage and cell apoptosis by activating the PERK signaling pathway. Que was able to restore the body weight and renal coefficient of rats. It also alleviated the oxidative stress and kidney tissue damage caused by Cd and the cell apoptosis caused by Cd through inhibiting the PERK signaling pathway. Thus, Que could be considered for the treatment of kidney diseases caused by Cd poisoning.
Collapse
Affiliation(s)
- Lulu Ding
- College of Animal Science and Technology, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luoyang 471023, PR China; College of Veterinary Medicine, Yangzhou University, No. 12, East Wenhui Road, Yangzhou 225009, PR China
| | - Ke Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luoyang 471023, PR China; Zhengzhou Medical College, No. 3, Chuangye Avenue, Zhengzhou 452370, PR China
| | - Huali Zhu
- Law Hospital, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luoyang 471023, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, No. 12, East Wenhui Road, Yangzhou 225009, PR China
| | - Jicang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luoyang 471023, PR China.
| |
Collapse
|
9
|
Bhardwaj JK, Bikal P, Sachdeva SN. Cadmium as an ovarian toxicant: A review. J Appl Toxicol 2024; 44:129-147. [PMID: 37587800 DOI: 10.1002/jat.4526] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
Cadmium (Cd) is a ubiquitous heavy metal toxicant with no biological function in the human body. Considerably, because of its long biological half-life and very low excretion rate, Cd is inclined to accumulate and cause deleterious effects on various body organs (e.g., liver, kidney, and ovary) in humans and animals. Ovaries are the most vulnerable targets of Cd toxicity. Cd has been shown to induce oxidative stress, follicular atresia, hormonal imbalance, and impairment of oocyte growth and development. Moreover, Cd toxicity has been associated with increasing incidences of menstrual disorders, pregnancy loss, preterm births, delayed puberty, and female infertility. Therefore, it is crucial to understand how Cd poisoning impacts specific ovarian processes for the development of preventive interventions to enhance female fertility. The current review attempts to collate the recent findings on Cd-induced oxidative stress, follicular apoptosis, steroid synthesis inhibition, and teratogenic toxicity, along with their possible mechanisms in the ovarian tissue of different animal species. Additionally, the review also summarizes the studies related to the use of many antioxidants, medicinal herbs, and other compounds as remedial approaches for managing Cd-induced ovarian toxicity.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Prerna Bikal
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Som Nath Sachdeva
- Department of Civil Engineering, National Institute of Technology Kurukshetra, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
10
|
Miglietta S, Cristiano L, Battaglione E, Macchiarelli G, Nottola SA, De Marco MP, Costanzi F, Schimberni M, Colacurci N, Caserta D, Familiari G. Heavy Metals in Follicular Fluid Affect the Ultrastructure of the Human Mature Cumulus-Oocyte Complex. Cells 2023; 12:2577. [PMID: 37947655 PMCID: PMC10650507 DOI: 10.3390/cells12212577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
It is known that exposure to heavy metal such as lead (Pb) and cadmium (Cd) has several adverse effects, particularly on the human reproductive system. Pb and Cd have been associated with infertility in both men and women. In pregnant women, they have been associated with spontaneous abortion, preterm birth, and impairment of the development of the fetus. Since these heavy metals come from both natural and anthropogenic activities and their harmful effects have been observed even at low levels of exposure, exposure to them remains a public health issue, especially for the reproductive system. Given this, the present study aimed to investigate the potential reproductive effects of Pb and Cd levels in the follicular fluid (FF) of infertile women and non-smokers exposed to heavy metals for professional reasons or as a result of living in rural areas near landfills and waste disposal areas in order to correlate the intrafollicular presence of these metals with possible alterations in the ultrastructure of human cumulus-oocyte complexes (COCs), which are probably responsible for infertility. Blood and FF metals were measured using atomic absorption spectrometry. COCs corresponding to each FF analyzed were subjected to ultrastructural analyses using transmission electron microscopy. We demonstrated for the first time that intrafollicular levels of Pb (0.66 µg/dL-0.85 µg/dL) and Cd (0.26 µg/L-0.41 µg/L) could be associated with morphological alterations of both the oocyte and cumulus cells' (CCs) ultrastructure. Since blood Cd levels (0.54 µg/L-1.87 µg/L) were above the current reference values established by the guidelines of the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA) (0.4 µg/L), whereas blood Pb levels (1.28 µg/dL-3.98 µg/dL) were below the ATSDR reference values (≤5 µg/dL), we believe that these alterations could be due especially to Cd, even if we cannot exclude a possible additional effect of Pb. Our results highlighted that oocytes were affected in maturation and quality, whereas CCs showed scarcely active steroidogenic elements. Regressing CCs, with cytoplasmic alterations, were also numerous. According to Cd's endocrine-disrupting activity, the poor steroidogenic activity of CCs might correlate with delayed oocyte cytoplasmic maturation. So, we conclude that levels of heavy metals in the blood and the FF might negatively affect fertilization, embryo development, and pregnancy, compromising oocyte competence in fertilization both directly and indirectly, impairing CC steroidogenic activity, and inducing CC apoptosis.
Collapse
Affiliation(s)
- Selenia Miglietta
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy; (E.B.); (S.A.N.); (G.F.)
| | - Loredana Cristiano
- Department of Life Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.C.); (G.M.)
| | - Ezio Battaglione
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy; (E.B.); (S.A.N.); (G.F.)
| | - Guido Macchiarelli
- Department of Life Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.C.); (G.M.)
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy; (E.B.); (S.A.N.); (G.F.)
| | - Maria Paola De Marco
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa 1035, 00189 Rome, Italy; (M.P.D.M.); (F.C.); (D.C.)
| | - Flavia Costanzi
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa 1035, 00189 Rome, Italy; (M.P.D.M.); (F.C.); (D.C.)
| | - Mauro Schimberni
- GENERA Centers for Reproductive Medicine, Clinica Valle Giulia, 00197 Rome, Italy;
| | - Nicola Colacurci
- Department of Woman Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Donatella Caserta
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa 1035, 00189 Rome, Italy; (M.P.D.M.); (F.C.); (D.C.)
| | - Giuseppe Familiari
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy; (E.B.); (S.A.N.); (G.F.)
| |
Collapse
|
11
|
Sulayman Aboulqassim NS, Hazem SH, Sharawy MH, Suddek GM. Roflumilast extenuates inflammation and oxidative stress in cadmium-induced hepatic and testicular injury in rats. Int Immunopharmacol 2023; 124:111027. [PMID: 37832240 DOI: 10.1016/j.intimp.2023.111027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Roflumilast (ROF), a highly selective phosphodiesterase-4 inhibitor, has proven anti-inflammatory and immunomodulatory effects on the pulmonary system. However, the protective effects of ROF on cadmium (Cd)-induced hepatic and testicular injury has never been investigated. Adult male Sprague Dawley rats were acutely intoxicated with CdCl2 (3 mg/Kg, ip, qd, for 5 days). In treatment groups, ROF was administered in two doses (1.5 & 3 mg/Kg, po, qd, for 5 days) 2 h prior to CdCl2 intoxication. The results demonstrated that the therapeutic potential of ROF can extend beyond the pulmonary system. The histopathological manifestation of Cd in the liver and testes were evidently mitigated by ROF prophylaxis. This study unraveled the multi-faceted ROF protective mechanisms, these comprise (i) reviving normal liver and testicular architecture, (ii) lessen immune cell infiltration in injured tissues (iii) restoration of cellular oxidant status (GSH, SOD, NO and MDA), (iv) shielding pro-inflammatory signaling pathways (NF-κB, NLRP3, IL-1β axis), (v) dampening endoplasmic reticulum stress (IRE-1), (vi) mitigating apoptotic injury (caspase-3), (vii) restoring the integrity of blood testes barrier (Cathepsin-D) and (viii) promoting the regenerative potentials of injured testes (SDF-1). In conclusion, ROF is a promising anti-inflammatory and anti-oxidative candidate in Cd-induced hepatic and testicular injury.
Collapse
Affiliation(s)
- Naeimah S Sulayman Aboulqassim
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmacology &Toxicology Faculty of Pharmacy, Derna university, Derna, Libya.
| | - Sara H Hazem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Maha H Sharawy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Ghada M Suddek
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
12
|
Rajabian F, Rajabian A, Tayarani-Najaran Z. The Antioxidant Activity of Betanin protects MRC-5 cells Against Cadmium Induced Toxicity. Biol Trace Elem Res 2023; 201:5183-5191. [PMID: 37099220 DOI: 10.1007/s12011-023-03662-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/05/2023] [Indexed: 04/27/2023]
Abstract
Cadmium (Cd) can induce both acute and chronic effects in the lungs depending on the time and the exposure route. Betanin is a component derived from the roots of red beets and it is well-known for its antioxidant and anti-apoptosis effects. The current study aimed to survey the protective effects of betanin on cell toxicity induced by Cd. Different concentration of Cd alone and in combination with betanin was assessed in MRC-5 cells. The viability and oxidative stress were measured using resazurin and DCF-DA methods respectively. Apoptotic cells were assessed by PI staining of the fragmented DNA and western blot analysis detected the activation of caspase 3 and PARP proteins. Cd exposure for 24 h declined viability and increased ROS production in MRC-5 cells compared to the control group (p < 0.001). Also, Cd (35 μM) elevated DNA fragmentation (p < 0.05), and the level of caspase 3-cleaved and cleaved PARP proteins in MRC-5 cells (p < 0.001). Co-treatment of cells with betanin for 24 h significantly enhanced viability in concentrations of 1.25 and 2.5 μM (p < 0.001) and 5 μM (p < 0.05) and declined ROS generation (1.25 and 5 μM p < 0.001, and 2.5 μM p < 0.01). As well as, betanin reduced DNA fragmentation (p < 0.01), and the markers of apoptosis (p < 0.001) compared to the Cd-treated group. In conclusion, betanin protects lung cells against Cd-induced toxicity through antioxidant activity and inhibition of apoptosis.
Collapse
Affiliation(s)
- Fatemeh Rajabian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box 9188617871, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Department of Internal Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box 9188617871, Mashhad, Iran.
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Tang P, Liao Q, Huang H, Chen Q, Liang J, Tang Y, Zhou Y, Zeng X, Qiu X. Effects of urinary barium exposure on bone mineral density in general population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106038-106046. [PMID: 37726622 DOI: 10.1007/s11356-023-29791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Previous studies have reported that exposures to metals are associated with bone health, but are mostly restricted to a few of the most frequent hazardous metals. The effects of barium (Ba) are not fully understood. A cross-sectional study involving 1532 adults from the National Health and Nutrition Examination Survey (NHANES, 2013-2016) was conducted. Generalized linear model (GLM) and restricted cubic spline (RCS) were applied to evaluate the relationship of urinary Ba exposure with BMDs. According to the GLM analyses, urinary Ba was adversely correlated with total BMD (percent change: -0.75; 95% CI: -1.21, -0.29) and lumbar BMD (percent change: -0.76; 95% CI: -1.47, -0.04). Compared with the lowest tertile of Ba levels, the percentage change of T3 was -2.06 (-3.36, -0.73) for total BMD and was -2.39 (-4.51, -0.24) for lumbar BMD, showing a significant linear trend (P trend = 0.014 and P trend = 0.047, respectively). The RCS models showed a monotonically decreasing relationship of urinary Ba with total BMD and lumbar BMD. Moreover, the positive joint effects were observed between Pb (lead) and Ba, and Cd (cadmium) and Ba on BMDs. According to our findings, exposure to Ba may lead to a decrease in BMDs. Possible positive joint effects of Ba and Pb, and Ba and Cd on BMDs were found. Exposure to Ba may contribute to poor skeletal health.
Collapse
Affiliation(s)
- Peng Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Huishen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Qian Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Ying Tang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yong Zhou
- School of Public Health, Xiangnan University, Chenzhou, 423000, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
14
|
Gwon MA, Kim MJ, Kang HG, Joo YE, Jeon SB, Jeong PS, Kim SU, Sim BW, Koo DB, Song BS. Cadmium exposure impairs oocyte meiotic maturation by inducing endoplasmic reticulum stress in vitro maturation of porcine oocytes. Toxicol In Vitro 2023; 91:105615. [PMID: 37207789 DOI: 10.1016/j.tiv.2023.105615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Cadmium (Cd) is toxic metal that can induce various diseases, such as cardiovascular, nervous, and reproductive systems. This study investigated the effect of Cd exposure on porcine oocyte maturation and the underlying mechanism. Porcine cumulus-oocyte complexes were exposed various Cd concentration and tauroursodeoxycholic acid (TUDCA), an inhibitor of endoplasmic reticulum (ER) stress during in vitro maturation (IVM). After IVM, we evaluated meiotic maturation, ER stress, and oocyte quality by Cd exposure. Cd exposure inhibited cumulus cell expansion and meiotic maturation, increased oocyte degeneration, and induced ER stress. The levels of spliced XBP1 and ER stress-associated transcripts, markers of ER stress, were elevated in Cd-treated cumulus-oocyte complexes and denuded oocytes during IVM. Moreover, Cd-induced ER stress impaired oocyte quality by disrupting mitochondrial function and elevating intracellular reactive oxygen species levels while decreasing ER function. Interestingly, TUDCA supplementation significantly decreased the expression of ER stress-related genes and increased the quantity of ER compared with the Cd treatment. Additionally, TUDCA was also able to rescue excessive levels of ROS and restore normal mitochondrial function. Moreover, the addition of TUDCA under Cd exposure greatly ameliorated Cd-mediated detrimental effects on meiotic maturation and oocyte quality, including cumulus cell expansion and MII rate. These findings suggest that Cd exposure during IVM impairs the meiotic maturation of oocytes by inducing of ER stress.
Collapse
Affiliation(s)
- Min-Ah Gwon
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea; Department of Biotechnology, Daegu University, Gyeongsangbuk-do 38453, Republic of Korea
| | - Min Ju Kim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea
| | - Hyo-Gu Kang
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea
| | - Ye Eun Joo
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea
| | - Se-Been Jeon
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea
| | - Pil-Soo Jeong
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Bo-Woong Sim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea
| | - Deog-Bon Koo
- Department of Biotechnology, Daegu University, Gyeongsangbuk-do 38453, Republic of Korea.
| | - Bong-Seok Song
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea.
| |
Collapse
|
15
|
Tyagi A, Chandrasekaran B, Navin AK, Shukla V, Baby BV, Ankem MK, Damodaran C. Molecular interplay between NOX1 and autophagy in cadmium-induced prostate carcinogenesis. Free Radic Biol Med 2023; 199:44-55. [PMID: 36764624 DOI: 10.1016/j.freeradbiomed.2023.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Chronic exposure to cadmium (Cd), a class I carcinogen, leads to malignant transformation of normal prostate epithelial cells (RWPE-1). The constant generation of Cd-induced ROS and resulting ER stress induces cellular responses that are needed for cell survival, and autophagy has an important role in this process. However, the mechanisms that regulate Cd-induced ROS and how these differ in terms of acute and chronic cadmium exposure remain unexplained. Here, we show that acute or chronic Cd exposure facilitates NOX1 assembly by activating its cytosolic regulators p47phox and p67phox in RWPE-1 cells. Upregulation of NOX1 complex proteins and generation of ROS activates unfolded protein response (UPR) via phosphorylation of protein kinase RNA-like endoplasmic reticulum kinase (PERK), eukaryotic initiation factor 2 alpha (eIF2α), and selective translation of activating transcription factor 4 (ATF4). Chronic Cd exposure constantly activates NOX1 complex and generates consistent ROS and ER stress that led to defective autophagy, wherein ATG5 expression is downregulated in contrast to acute Cd exposure. As a result, selective/defective autophagy creates depletion of autophagosome-lysosome fusion that gives a survival advantage to transforming cells, which is not available to RWPE-1 cells acutely exposed to Cd. Knockdown of key molecules in a lockstep manner directly affects the most downstream autophagy pathways in transforming cells. Overall, this study demonstrates that assembly of NOX1 complex proteins is indispensable for Cd-induced persistent ROS and controls ER stress-induced defective autophagy in mice and humans.
Collapse
Affiliation(s)
- Ashish Tyagi
- Department of Pharmacology, College of Pharmacy, Texas A&M University, College Station, TX, 77845, USA
| | - Balaji Chandrasekaran
- Department of Pharmacology, College of Pharmacy, Texas A&M University, College Station, TX, 77845, USA
| | - Ajit K Navin
- Department of Pharmacology, College of Pharmacy, Texas A&M University, College Station, TX, 77845, USA
| | - Vaibhav Shukla
- Department of Pharmacology, College of Pharmacy, Texas A&M University, College Station, TX, 77845, USA
| | - Becaa V Baby
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - Murali K Ankem
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - Chendil Damodaran
- Department of Pharmacology, College of Pharmacy, Texas A&M University, College Station, TX, 77845, USA; Department of Urology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
16
|
Man Y, Liu Y, Xiong C, Zhang Y, Zhang L. Non-Lethal Concentrations of CdCl 2 Cause Marked Alternations in Cellular Stress Responses within Exposed Sertoli Cell Line. TOXICS 2023; 11:167. [PMID: 36851042 PMCID: PMC9962571 DOI: 10.3390/toxics11020167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Cadmium is a component of ambient metal pollution, which is linked to diverse health issues globally, including male reproductive impairment. Assessments of the acute effects of cadmium on male reproduction systems, such as testes, tend to be based on frank adverse effects, with particular molecular pathways also involved. The relationship between cytotoxicity potential and cellular stress response has been suggested to be one of the many possible drivers of the acute effects of cadmium, but the link remains uncertain. In consequence, there is still much to be learned about the cellular stress response induced by a non-lethal concentration of cadmium in male reproductive cells. The present study used temporal assays to evaluate cellular stress response upon exposure to non-lethal concentrations of Cadmium chloride (CdCl2) in the Sertoli cell line (TM4). The data showed alternations in the expression of genes intimated involved in various cellular stress responses, including endoplasmic reticulum (ER) stress, endoplasmic unfolded protein stress (UPRmt), endoplasmic dynamics, Nrf2-related antioxidative response, autophagy, and metallothionein (MT) expression. Furthermore, these cellular responses interacted and were tightly related to oxidative stress. Thus, the non-lethal concentration of cadmium perturbed the homeostasis of the Sertoli cell line by inducing pleiotropic cellular stresses.
Collapse
Affiliation(s)
- Yonghong Man
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430060, China
- Center of Scientific Research and Experiment, Nanyang Medical College, Nanyang 473006, China
| | - Yunhao Liu
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430060, China
| | - Chuanzhen Xiong
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430060, China
| | - Yang Zhang
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430060, China
| | - Ling Zhang
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430060, China
| |
Collapse
|
17
|
Chen XX, Xu YM, Lau ATY. Metabolic effects of long-term cadmium exposure: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89874-89888. [PMID: 36367641 DOI: 10.1007/s11356-022-23620-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022]
Abstract
Cadmium (Cd) is a toxic non-essential heavy metal. Chronic low Cd exposure (CLCE) has been associated with distinct pathologies in many organ systems, including liver and kidney damage, osteoporosis, carcinogenicity, or reproductive toxicity. Currently, about 10% of the global population is at risk of CLCE. It is urgent to find robust and effective biomarkers for early diagnosis of Cd exposure and treatment. Metabolomics is a high-throughput method based on mass spectrometry to study the dynamic changes in a series of endogenous small molecular metabolites (typically < 1000 Da) of tissues, cells, or biofluids. It can reflect the rich and complex biochemical changes in the body after exposure to heavy metals, which may be useful in screening biomarkers to monitor exposure to environmental pollutants and/or predict disease risk. Therefore, this review focuses on the changes in metabolic profiles of humans and rodents under long-term Cd exposure from the perspective of metabolomics. Furthermore, the relationship between the disturbance of metabolic pathways and the toxic mechanism of Cd is discussed. All these information will facilitate the development of reliable metabolic biomarkers for early detection and diagnosis of Cd-related diseases.
Collapse
Affiliation(s)
- Xiao-Xia Chen
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| |
Collapse
|
18
|
Salama SA, Abd-Allah GM, Gad HS, Kabel AM. Galangin attenuates cadmium-evoked nephrotoxicity: Targeting nucleotide-binding domain-like receptor pyrin domain containing 3 inflammasome, nuclear factor erythroid 2-related factor 2, and nuclear factor kappa B signaling. J Biochem Mol Toxicol 2022; 36:e23059. [PMID: 35384154 DOI: 10.1002/jbt.23059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/09/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
The kidney is highly vulnerable to cadmium-evoked oxidative injury. Galangin is a natural flavone with reported antioxidant properties. This study investigated the potential modulating activity of galangin against cadmium-induced nephrotoxicity and explored the underlining mechanisms. Western blot analysis, spectrophotometric, ELISA, and histopathological techniques were employed. The results revealed that galangin suppressed tubular injury and improved glomerular function in the cadmium-intoxicated rats as evidenced by downregulation of kidney injury molecule-1, serum creatinine, and blood urea nitrogen. Galangin reduced cadmium-evoked inflammatory response and oxidative stress as indicated by reduced levels of interleukin-1 beta and TNF-α, decreased DNA damage, and improved antioxidant potential of the renal tissues. Mechanistically, galangin suppressed the nucleotide-binding domain-like receptor pyrin domain containing 3 inflammasome and efficiently decreased caspase-1 activity in the cadmium-intoxicated rats. Equally important, it inhibited the cadmium-induced nuclear translocation of nuclear factor kappa B and upregulated nuclear factor erythroid 2-related factor 2 signaling. The results highlight the ability of galangin to attenuate cadmium-evoked nephrotoxicity and support its therapeutic implementation although clinical investigations are warranted.
Collapse
Affiliation(s)
- Samir A Salama
- Division of Biochemistry, Department of Pharmacology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Gamil M Abd-Allah
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr, Egypt
| | - Hesham S Gad
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ahmed M Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
19
|
Abdelhafez HEDH, AbdAllah AA, Afify MM, Mahmoud NF, Guo J, Murad SA, Ibrahim EA. Protective action of polysaccharides from Laurencia papillose (Rhodophyta) against imidacloprid induced genotoxicity and oxidative stress in male albino rats. Environ Anal Health Toxicol 2022; 37:e2022011-0. [PMID: 35878919 PMCID: PMC9314203 DOI: 10.5620/eaht.2022011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
Imidacloprid (IMI), the main component of neonicotinoid insecticides, promotes oxidative stress and genotoxicity in mammals. The aim of this experiment is to assess oxidative stress in liver cells and genotoxicity of erythrocytes for rats exposed to sub-lethal doses of IMI and the protective effects for Rhodophyta as antioxidant material versus imidacloprid. A total of 30 adult male albino rats (average body weight, 190–200 g) were divided into six groups (n=5) as follows: group 1 served as the control, group 2 received 200 mg/kg red algae, group 3 received 45 mg/kg IMI (high-dose group), group 4 received 22.5 mg/kg IMI (low-dose group), group 5 received 200 mg/kg red algae +45 mg/kg IMI, and group 6 received 200 mg/kg red algae +22.5 mg/kg IMI. After 28 d of treatment, the antioxidant activity of the crude extract of red algae was assessed in terms of free radical scavenging activity and found to be higher in TCA (75.57%) followed by DPPH (50.08%) at concentration 100 μg extract and a significant increase in lipid peroxidation and reductions in glutathione were observed in liver cells were intoxicated with high and low doses of IMI. Moreover decreases in catalase and glutathione peroxidase parameters in same previous groups which indicated oxidative stress. In addition significant increases in micronucleus frequency (MN) in the bone marrow of the rats as a genotoxicity marker which indicated DNA damage in erythrocytes cells with alterations in the histopathology of liver cells were also noted such as necrosis, inflammatory cells, infiltration, and necrobiotic changes. Whereas Rhodophyta succeeded in alleviation the oxidative damage and genotoxicity induced by the insecticide. In conclusion, IMI demonstrates hazardous effects, such as alterations in antioxidant status and mutagenicity of erythrocytes and polysaccharides from Rhodophyta has good antioxidant activity in vivo model systems against imidacloprid.
Collapse
Affiliation(s)
- Hossam El Din H. Abdelhafez
- Mammalian and Aquatic Toxicology Department, Central Agricultural pesticides Lab, Agricultural Research Center, Giza,
Egypt
- Correspondence:
| | - Amr A AbdAllah
- Mammalian and Aquatic Toxicology Department, Central Agricultural pesticides Lab, Agricultural Research Center, Giza,
Egypt
| | - Mostafa M Afify
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef,
Egypt
| | - Naglaa F Mahmoud
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Cairo University, Giza,
Egypt
| | - Jiangfeng Guo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou,
China
| | - Soha A Murad
- Plant Biochemistry Department, National Research Centre (NRC), Giza,
Egypt
| | - Eman A Ibrahim
- Plant Biochemistry Department, National Research Centre (NRC), Giza,
Egypt
| |
Collapse
|
20
|
Du K, Zheng X, Lv J, Zhong X, Wei M, Liu M. Cordycepin exacerbates cadmium-induced neurotoxicity via promoting endoplasmic reticulum stress-associated apoptosis. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
21
|
The preferential accumulation of cadmium ions among various tissues in mice. Toxicol Rep 2022; 9:111-119. [PMID: 35059304 PMCID: PMC8760390 DOI: 10.1016/j.toxrep.2022.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/08/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
Cadmium (Cd) is hazardous to human health because of its toxicity and long half-life of clearance. Many studies have explored the relationship between chronic Cd exposure and different human diseases. However, most of the studies limited the study targets of Cd toxicity to two or three organ systems. The goal of this study was to establish a mouse model of Cd accumulation in most organ systems and to particularly investigate the potential toxic effects of Cd to the cardiovascular system. Mice were divided into three groups: the control group, Cd-100 group, and Cd-200 group. In the control group, Cd was detected in the kidney, lung, liver, heart and urine but was undetectable in the aorta, intestine, thigh bone, spinal bone and serum. Upon chronic exposure in the Cd-100 and Cd-200 groups, Cd accumulated in all tissues, with a dramatic increase in concentration. We confirmed that Cd could accumulate significantly in the heart and aorta upon chronic exposure. This finding might help to explain the potential toxic effects of Cd on these organs. In addition, the calcium concentration in the bones and kidney declined when the exposure to Cd increased. This finding aligned with the negative effects of Cd on bony mineralization and the potential direct toxic effects of Cd on bones. The impacts of Cd on the cardiovascular system were explored. Histologically, chronic Cd exposure led to myocytes hypertrophy and myocardial architecture disarray in the Cd-100 group compared to those in the control group. Our research confirms that Cd can accumulate in all of the organs studied upon chronic exposure, and suggests that the toxicity of Cd accumulation may play important roles in mediating the pathophysiologic effects in these target organs, especially the bone and heart.
Collapse
|
22
|
Salama SA, Mohamadin AM, Abdel-Bakky MS. Arctigenin alleviates cadmium-induced nephrotoxicity: Targeting endoplasmic reticulum stress, Nrf2 signaling, and the associated inflammatory response. Life Sci 2021; 287:120121. [PMID: 34742745 DOI: 10.1016/j.lfs.2021.120121] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 12/21/2022]
Abstract
AIM Nephrotoxicity is a critical consequence of cadmium toxicity. Cadmium induces nephrotoxicity through disruption of cellular redox balance and induction of endoplasmic reticulum stress (ERS) and inflammatory responses. The present study investigated the renoprotective effects of the naturally occurring arctigenin against the cadmium-induced nephrotoxicity. MAIN METHODS Male Wistar rats were randomized into normal control, arctigenin control, cadmium, and cadmium/arctigenin groups. Cadmium and arctigenin were administered daily over a seven-day period. On the eighth day, blood and kidney tissue specimens were collected and subjected to spectrophotometric, ELISA, and immunoblotting analysis. KEY FINDINGS Arctigenin significantly improved renal functions and reduced renal tubular injury in the cadmium-intoxicated rats as reflected by increased GFR and reduced levels of serum creatinine, BUN, urinary albumin-to-creatinine ratio, and protein expression of KIM-1. Arctigenin alleviated the cadmium-induced oxidative DNA damage and lipid peroxidation while boosted reduced glutathione level and antioxidant enzymes activity. Mechanistically, arctigenin enhanced nuclear translocation of the antioxidant transcription factor Nrf2 and up-regulated its downstream redox-regulating enzymes HO-1 and NQO1. Importantly, arctigenin ameliorated the cadmium-evoked ERS as demonstrated by reduced protein expression of the key molecules Bip, PERK, IRE1α, CHOP, phspho-eIF2α, and caspase-12 and diminished activity of caspase-12. Additionally, arctigenin down-regulated the cadmium-induced NF-κB nuclear translocation and decreased its downstream pro-inflammatory cytokines TNF-α and IL-1β. SIGNIFICANCE The current work underlines the alleviating activity of arctigenin against cadmium-evoked nephrotoxicity potentially through mitigating ERS and targeting Nrf2 and NF-κB signaling. The current findings support possible therapeutic application of arctigenin in controlling cadmium-induced nephrotoxicity although clinical investigations are necessary.
Collapse
Affiliation(s)
- Samir A Salama
- Division of Biochemistry, Department of Pharmacology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Ahmed M Mohamadin
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt
| | - Mohamed S Abdel-Bakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 52471, Saudi Arabia
| |
Collapse
|
23
|
Alshammari GM, Al-Qahtani WH, AlFaris NA, Albekairi NA, Alqahtani S, Eid R, Yagoub AEA, Al-Harbi LN, Yahya MA. Quercetin alleviates cadmium chloride-induced renal damage in rats by suppressing endoplasmic reticulum stress through SIRT1-dependent deacetylation of Xbp-1s and eIF2α. Biomed Pharmacother 2021; 141:111862. [PMID: 34246189 DOI: 10.1016/j.biopha.2021.111862] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Endoplasmic reticulum (ER) stress plays a key role in cadmium chloride (CdCl2)-induced nephrotoxicity. Sirtuin-1 (SIRT1) is a potent inhibitor of ER stress. In this study, we examined whether the protective effect of quercetin (QUR) against CdCl2-induced nephrotoxicity in rats involved modulation of SIRT1 and/or ER stress. Adult male rats were divided into five groups (n = 8, each) and treated for eight weeks as follows: control, control + QUR, CdCl2, CdCl2 + QUR, and CdCl2 + QUR + EX-527 (a SIRT1 inhibitor). Treatment of rats with QUR preserved the glomerulus and tubule structure, attenuated interstitial fibrosis, increased creatinine excretion, and reduced urinary levels of albumin, N-acetyl-β-D-glucosaminidase, and β2-microglobulin in CdCl2-treated rats. Concomitantly, QUR increased renal levels of Bcl-2, reduced mRNA levels of CHOP, and protein levels of Bax, caspase-3, and cleaved caspase-3, but failed to reduce the mRNA levels of GRP78, PERK, eIf2α, ATF-6, and xbp-1. QUR also reduced the renal levels of reactive oxygen species, tumour necrosis factor, and interleukin-6 and the nuclear activity of NF-κB in the control and CdCl2-treated rats but increased the nuclear activity of Nrf2 and levels of glutathione and manganese superoxide dismutase. Additionally, QUR increased the total levels and nuclear activity of SIRT1 and reduced the acetylation of eIf2α and xbp-1. The nephroprotective effects of QUR were abrogated by treatment with EX-527. Thus, QUR ameliorated CdCl2-induced nephrotoxicity through antioxidant and anti-inflammatory effects and suppressed ER stress mediated by the upregulation or activation of SIRT1-induced deacetylation of Nrf2, NF-κB p65, eIF2α, and xbp-1.
Collapse
Affiliation(s)
- Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Wahidah H Al-Qahtani
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nora A AlFaris
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sultan Alqahtani
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Refaat Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Abu ElGasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
24
|
Zhao Y, Li S, Wang J, Liu Y, Deng Y. Roles of High Osmolarity Glycerol and Cell Wall Integrity Pathways in Cadmium Toxicity in Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms22126169. [PMID: 34201004 PMCID: PMC8226467 DOI: 10.3390/ijms22126169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Cadmium is a carcinogen that can induce ER stress, DNA damage, oxidative stress and cell death. The yeast mitogen-activated protein kinase (MAPK) signalling pathways paly crucial roles in response to various stresses. Here, we demonstrate that the unfolded protein response (UPR) pathway, the high osmolarity glycerol (HOG) pathway and the cell wall integrity (CWI) pathway are all essential for yeast cells to defend against the cadmium-induced toxicity, including the elevated ROS and cell death levels induced by cadmium. We show that the UPR pathway is required for the cadmium-induced phosphorylation of HOG_MAPK Hog1 but not for CWI_MAPK Slt2, while Slt2 but not Hog1 is required for the activation of the UPR pathway through the transcription factors of Swi6 and Rlm1. Moreover, deletion of HAC1 and IRE1 could promote the nuclear accumulation of Hog1, and increase the cytosolic and bud neck localisation of Slt2, indicating crucial roles of Hog1 and Slt2 in regulating the cellular process in the absence of UPR pathway. Altogether, our findings highlight the significance of these two MAPK pathways of HOG and CWI and their interrelationship with the UPR pathway in responding to cadmium-induced toxicity in budding yeast.
Collapse
Affiliation(s)
- Yunying Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China;
| | - Shiyun Li
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China;
| | - Jing Wang
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China; (J.W.); (Y.L.)
| | - Yingli Liu
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China; (J.W.); (Y.L.)
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China;
- Correspondence:
| |
Collapse
|
25
|
So KY, Park BH, Oh SH. Cytoplasmic sirtuin 6 translocation mediated by p62 polyubiquitination plays a critical role in cadmium-induced kidney toxicity. Cell Biol Toxicol 2021; 37:193-207. [PMID: 32394328 DOI: 10.1007/s10565-020-09528-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022]
Abstract
Sirtuin 6 (Sirt6) is important for maintaining kidney homeostasis and function. Cd exposure increases the risk of developing kidney diseases. However, the role of Sirt6 in kidney disease mechanisms is unclear. Here, we evaluated the role of Sirt6 in Cd-induced kidney toxicity. After Cd exposure, p62/sequestosome-1 (SQSTM1), an autophagy substrate, accumulated in mouse kidney mesangial cells in monomeric and polyubiquitinated (polyUb) forms. Sirt6 accumulated in response to Cd treatment at concentrations below the half-maximal inhibitory concentration and decreased after 12 h of treatment. Sirt6 and p62 co-localized in the nucleus and redistributed to the cytosol after Cd treatment. Sirt6 was mainly present in nuclei-rich membrane fractions. Sirt6 interacted with p62. Ub, and microtubule-associated protein light chain 3 (LC3). Knockdown of p62 promoted Sirt6 nuclear accumulation and inhibited apoptosis. Sirt6 overexpression altered levels of polyUb-p62 and apoptosis. At earlier times during Cd treatment, polyubiquitination of p62 and apoptosis were reduced. Cytoplasmic translocation of Sirt6 occurred later, with increased polyubiquitination of p62 and apoptosis. Bafilomycin 1 (BaF1) treatment promoted cytosolic Sirt6 accumulation, increasing cell death. Silencing autophagy related 5 (Atg5) increased nuclear Sirt6 levels, reduced polyUb-p62, and inhibited cell death, indicating that autophagy was necessary for Sirt6 redistribution. Cd resistance was associated with reduced polyUb-p62 and persistent Sirt6 expression. Cd treatment in mice for 4 weeks promoted p62, Sirt6, and LC3-II accumulation, inducing apoptosis in kidney tissues. Overall, our findings show that polyUb-p62 targeted Sirt6 to autophagosomes, playing a crucial role in Cd-induced cell death and kidney damage.
Collapse
Affiliation(s)
- Keum-Young So
- Department of Anesthesiology and Pain Medicine, School of Medicine, Chosun University, 309 Pilmundaero, Dong-gu, Gwangju, 501-759, South Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Seon-Hee Oh
- School of Medicine, Chosun University, 309 Pilmundaero, Dong-gu, Gwangju, 501-759, South Korea.
| |
Collapse
|
26
|
Li H, Xu W, Wu L, Dong B, Jin J, Han D, Zhu X, Yang Y, Liu H, Xie S. Differential regulation of endoplasmic reticulum stress-induced autophagy and apoptosis in two strains of gibel carp (Carassius gibelio) exposed to acute waterborne cadmium. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 231:105721. [PMID: 33373863 DOI: 10.1016/j.aquatox.2020.105721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Previous studies illustrated that gibel carp F strain displays better lipid mobilization and antioxidant ability and compared to the A strain. We therefore hypothesized that the F strain would exhibit superior defense to cadmium exposure. Comparative studies were conducted between A and F strains using plasma stress biomarkers, histological observations, and analysis of hepatic molecular events to examine exposure to waterborne Cd (11.9 mg L-1) for 48 h and 96 h. Waterborne Cd exposure stimulated stress response and hepatic metallothionein mRNA induction in both gibel carp strains confirming exposure. Antioxidant responses were stimulated to counteract Cd toxicity, suggested by the upregulation of mRNA levels of genes associated with nuclear factor erythroid 2-related factor 2 (nrf2) signaling. Cd exposure induced endoplasmic reticulum (ER) stress, meanwhile, branches of genes in unfolded protein response (UPR) were activated. Slight time-dependent effects were implied by greater ER stress, UPR, and apoptosis signals with the duration of Cd exposure. Genotype-specific effects were identified, revealing that the F strain showed greater stress at 96 h exposure and higher antioxidant response compared to the A strain, as indicated by the mRNA levels of genes in nrf2 signaling. ER stress and UPR were also stronger in the F strain after Cd exposure. In contrast, the A strain showed higher autophagy and apoptosis response compared to the F strain. Collectively, combined autophagy and apoptosis were triggered under ER stress, which might serve as defense strategies in both gibel carp strains. The F strain showed greater antioxidant detoxification response and UPR to mitigate Cd toxicity, whereas excessive ER stress contributed to higher autophagy and apoptosis in the A strain. The present study uncovered the differential regulation and defense strategies in fish strains exposed to metal exposure.
Collapse
Affiliation(s)
- Hongyan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjie Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Liyun Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Dong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
27
|
|
28
|
Kim SM, Choi KC. Acrylonitrile induced cell cycle arrest and apoptosis by promoting the formation of reactive oxygen species in human choriocarcinoma cells. J Toxicol Sci 2020; 45:713-724. [PMID: 33132245 DOI: 10.2131/jts.45.713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Acrylonitrile (AN), which is widely utilized in the manufacture of plastics, acrylamide, acrylic fibers, and resins, is also one of main components of cigarette smoke (CS). In this study, we examined the effects of AN on the cell viability and apoptosis of JEG-3 and BeWo human choriocarcinoma cancer cell lines. A cell viability assay confirmed that AN decreased the cell proliferation of JEG-3 and BeWo cells in a dose-dependent manner. Additionally, Western blot assay revealed that protein expression of cyclin D and cyclin E decreased, while protein expression of p21 and p27 increased in response to AN treatment for 48 hr. The changes in reactive oxygen species (ROS) levels in JEG-3 and BeWo cells exposed to AN were also measured by a dichlorofluorescein diacetate (DCFH-DA) assay, which revealed that ROS levels increased in response to AN treatment for 48 hr. Moreover, western blot assay confirmed that AN treatment of JEG-3 and BeWo cells for 4 hr promoted the expression of phosphorylated eukaryotic initiation factor 2 alpha protein (p-eIF2α), C/EBP homologous protein (CHOP) and caspase 12, which are known to be involved in ROS-mediated endoplasmic reticulum stress (ER-stress)-related apoptosis. Overall, the protein expression of p53 and Bax (a pro-apoptosis marker) increased, while the expression of Bcl-xl (an anti-apoptotic marker) decreased and the number of apoptotic cells increased in response to AN treatment for 48 hr. Taken together, these results suggest that AN has the potential to induce apoptosis of JEG-3 and BeWo human choriocarcinoma cancer cells by activating ROS.
Collapse
Affiliation(s)
- Soo-Min Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Korea
| |
Collapse
|
29
|
Ma Y, Shi Y, Zou X, Wu Q, Wang J. Apoptosis induced by mercuric chloride is associated with upregulation of PERK-ATF4-CHOP pathway in chicken embryonic kidney cells. Poult Sci 2020; 99:5802-5813. [PMID: 33142498 PMCID: PMC7647797 DOI: 10.1016/j.psj.2020.06.084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 11/26/2022] Open
Abstract
Mercuric chloride (HgCl2) is a serious environmental toxicant. So far, the toxicity mechanism of HgCl2 in chicken embryonic kidney (CEK) cells is not still fully understood. In this study, the possible molecular mechanisms of HgCl2 on apoptosis of CEK cells were investigated. Results showed that the cell morphology changed, and cell viability was significantly decreased (P < 0.05) after HgCl2 exposure. Besides, apoptosis rate was significantly increased after HgCl2 exposure (P < 0.05). The gene and protein expressions of B-cell lymphoma-2 associate X/B-cell lymphoma-2 (P < 0.05), caspase-3 (P < 0.05), and caspase-9 (P < 0.05) were significantly enhanced by HgCl2 in CEK cells. We also found that intracellular reactive oxygen species level was significantly enhanced (P < 0.05), and the flux of calcium ion to mitochondria occurred after HgCl2 exposure. In terms of molecular mechanisms, the mRNA and protein expressions associated with endoplasmic reticulum (ER) stress were significantly increased after HgCl2 exposure (P < 0.05), including glucose regulated protein 78, protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP). However, pretreated with 1-μmol/L 4-phenylbutyrate (ER stress inhibitor) alleviated the apoptosis and downregulated PERK-ATF4-CHOP pathway in CEK cells. Taken together, upregulation of PERK-ATF4-CHOP pathway of ER stress induced by HgCl2 is associated with apoptosis in CEK cells.
Collapse
Affiliation(s)
- Yan Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.
| | - Yizhen Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xiaoting Zou
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Qiujue Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Jianping Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
30
|
Almenara CCP, Oliveira TF, Padilha AS. The Role of Antioxidants in the Prevention of Cadmium-Induced Endothelial Dysfunction. Curr Pharm Des 2020; 26:3667-3675. [DOI: 10.2174/1381612826666200415172338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/06/2020] [Indexed: 11/22/2022]
Abstract
Background:
Cadmium is a worldwide spread toxicant that accumulates in tissues and affects many
organs, mainly through oxidative damage. Oxidative stress is often associated with cardiovascular diseases and,
when it affects vessels, it induces endothelial dysfunction, which, in turn, could precipitate atherosclerosis and
hypertension. Therefore, it is reasonable to suggest antioxidant supplementation as a therapy against cadmiuminduced
endothelial dysfunction.
Objective:
This literature review aims to present the mechanisms involving oxidative stress in which cadmium
induces endothelial dysfunction and the benefits of antioxidant supplementation as a therapeutic strategy against
its harmful effects.
Methods:
On PubMed Central, articles that contemplated studies on cadmium intoxication and associated oxidative
stress with endothelial dysfunction as well as articles that reported the use of antioxidant supplementation in
an attempt to prevent or avoid endothelial dysfunction induced by cadmium exposure were selected.
Results:
Most of the studies that associated cadmium intoxication with endothelial dysfunction suggested oxidative
stress as the major mechanism for this damage. Furthermore, experimental studies also revealed that the
administration of substances with antioxidant properties, such as ascorbic acid and curcumin, has beneficial effects
on the prevention of such dysfunction, reducing reactive oxygen species within the vessels, preventing a
reduction in the amount of glutathione and the increase in blood pressure observed in animals exposed to cadmium.
Conclusion:
Antioxidant therapy demonstrated to be a potential treatment to reduce cardiovascular injuries provoked
by cadmium, but more studies are needed to determine the best antioxidant substance and dose to treat or
avoid this complication.
Collapse
Affiliation(s)
- Camila Cruz Pereira Almenara
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos 1468, Maruipe, 29042-755 - Vitoria, ES, Brazil
| | - Thiago F. Oliveira
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos 1468, Maruipe, 29042-755 - Vitoria, ES, Brazil
| | - Alessandra S. Padilha
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos 1468, Maruipe, 29042-755 - Vitoria, ES, Brazil
| |
Collapse
|
31
|
Zhou C, Huang JC, Zheng L, He S, Zhou W. Trophic transfer and biotransformation of selenium in the mosquito (Aedes albopictus) and interactive effects with hexavalent chromium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114288. [PMID: 32155550 DOI: 10.1016/j.envpol.2020.114288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/10/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
As an essential micronutrient for animals with a narrow range between essentiality and toxicity, selenium (Se) usually coexists with chromium (Cr) in contaminated aquatic environments. This study investigated effects of three diets (Microcystis aeruginosa, Chlorella vulgaris and biofilms) exposed to Se or/and Cr on Aedes albopictus as a vector for the aquatic-terrestrial transfer of Se and Cr. Se(IV)-exposed mosquitoes concentrated Se up to 66-fold faster than Se(VI)-exposed ones, corresponding to the greater Se enrichment in Se(IV)-treated diets. Analysis using synchrotron-based X-ray absorption spectroscopy (XAS) showed that Se(0) (61.9-74.6%) dominated Se(VI)-exposed mosquitoes except for the C. vulgaris-fed larvae (organo-Se, 94.0%), while organo-Se accounted for 93.3-100.0% in Se(IV)-exposed mosquitoes. Cr accumulation in larvae (56.40-87.24 μg Cr/g DW) or adults (19.41-50.77 μg Cr/g DW) was not significantly different among all Cr(VI) treatments, despite varying diet Cr levels. With Cr(0) being dominant (57.7-94.0%), Cr(VI)-exposed mosquitoes posed little threat to predators. Although mosquitoes exposed to Se or Cr had shorter wings, adults supplied with C. vulgaris or biofilms co-exposed to Se(VI) and Cr(VI) had wings significantly (1.1-1.2 fold) longer than Se(VI) only exposed ones. Overall, our study reveals the role of Ae. albopictus in transferring waterborne Se and Cr from the contaminated aquatic ecosystem to the terrestrial ecosystem with the resulting eco-risks to wildlife in both ecosystems.
Collapse
Affiliation(s)
- Chuanqi Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Minhang District, Shanghai 200240, China
| | - Jung-Chen Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Minhang District, Shanghai 200240, China.
| | - Lixin Zheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Minhang District, Shanghai 200240, China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Minhang District, Shanghai 200240, China
| | - Weili Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Minhang District, Shanghai 200240, China
| |
Collapse
|
32
|
Rana SVS. Endoplasmic Reticulum Stress Induced by Toxic Elements-a Review of Recent Developments. Biol Trace Elem Res 2020; 196:10-19. [PMID: 31686395 DOI: 10.1007/s12011-019-01903-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum of all eukaryotic cells is a membrane-bound organelle. Under electron microscope it appears as parallel arrays of "rough membranes" and a maze of "smooth vesicles" respectively. It performs various functions in cell, i.e., synthesis of proteins to degradation of xenobiotics. Bioaccumulation of drugs/chemicals/xenobiotics in the cytosol can trigger ER stress. It is recognized by the accumulation of unfolded or misfolded proteins in the lumen of ER. Present review summarizes the present status of knowledge on ER stress caused by toxic elements, viz arsenic, cadmium, lead, mercury, copper, chromium, and nickel. While inorganic arsenic may induce various glucose-related proteins, i.e., GRP78, GRP94 and CHOP, XBP1, and calpains, cadmium upregulates GRP78. Antioxidants like ascorbic acid, NAC, and Se inhibit the expression of UPR. Exposure to lead also changes ER stress related genes, i.e., GRP 78, GRP 94, ATF4, and ATF6. Mercury too upregulates these genes. Nickel, a carcinogenic element upregulates the expression of Bak, cytochrome C, caspase-3, caspase-9, caspase-12, and GADD 153. Much is not known on ER stress caused by nanoparticles. The review describes inter-organelle association between mitochondria and ER. It also discusses the interdependence between oxidative stress and ER stress. A cross talk amongst different cellular components appears essential to disturb pathways leading to cell death. However, these molecular switches within the signaling network used by toxic elements need to be identified. Nevertheless, ER stress especially caused by toxic elements still remains to be an engaging issue.
Collapse
Affiliation(s)
- S V S Rana
- Department of Toxicology, Ch. Charan Singh University, Meerut, 250 004, India.
| |
Collapse
|
33
|
Zhu MK, Li HY, Bai LH, Wang LS, Zou XT. Histological changes, lipid metabolism, and oxidative and endoplasmic reticulum stress in the liver of laying hens exposed to cadmium concentrations. Poult Sci 2020; 99:3215-3228. [PMID: 32475458 PMCID: PMC7597684 DOI: 10.1016/j.psj.2019.12.073] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/21/2019] [Accepted: 12/24/2019] [Indexed: 12/18/2022] Open
Abstract
The objective of this study was to determine the effects of cadmium (Cd) on histological changes, lipid metabolism, and oxidative and endoplasmic reticulum (ER) stress in the liver of layers. A total of 480 hens at 38 wk of age were randomly assigned in 5 groups that were fed a basal diet or basal diet supplemented with CdCl2 2.5H2O at 7.5, 15, 30, and 60 mg Cd/kg feed for 9 wk. The results showed that accumulation of Cd was the greatest in the kidney, followed by the liver, pancreas, and lung. Diet contaminated with 30 mg Cd/kg induced antioxidant defenses accompanied by the increase of the activities of antioxidant enzymes in the liver, while dietary supplementation with 60 mg Cd/kg decreased the antioxidant levels significantly (P < 0.05). Immunofluorescence assay showed Cd induced reactive oxygen species production and endoplasmic reticulum stress in hepatocytes. Exposure to 60 mg Cd/kg significantly upregulated the expression of cytochrome C, caspase 3, caspase 9, caspase 7, Grp78, and Chop (P < 0.05). Histopathology and quantitative real-time PCR results presented periportal fibrosis, bile duct hyperplasia, and periportal inflammatory cell infiltration in the liver accompanied by upregulating the expression of tumor necrosis factor-α, IL-6 and IL-10 in the 30- or 60-mg Cd/kg groups. Oil Red O staining and RT-qPCR results showed dietary supplementation with 7.5, 15, and 30 mg Cd/kg promoted the synthesis of lipid droplets and upregulated the expression of fatty acid synthase, while dietary supplementation with 60 mg Cd/kg attenuated the synthesis of lipid droplets and downregulated the expression of acyl-CoA oxidase 1, carnitine palmitoyltransferase-1, and perixisome proliferation-activated receptor α (P < 0.05). Besides, the expression of vitellogenin (VTG) II and microsomal triglyceride transfer protein were upregulated in the 7.5-mg Cd/kg group, and the expressions of apolipoprotein B, vitellogenin II, and apolipoprotein very-low-density lipoprotein-II were downregulated in the 30- and/or 60-mg Cd/kg groups (P < 0.05). Conclusively, although low-dose Cd exposure promoted the synthesis of lipids and lipoproteins in the liver, the increase of Cd exposure could trigger liver injury through inducing oxidative and endoplasmic reticulum stress and negatively affect lipid metabolism and yolk formation in laying hens.
Collapse
Affiliation(s)
- M K Zhu
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - H Y Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - L H Bai
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - L S Wang
- Jiande Weifeng Feed Co., Ltd., Jiande, 311603 Hangzhou, Zhejiang, P.R. China
| | - X T Zou
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China.
| |
Collapse
|
34
|
Shao B, Wang M, Chen A, Zhang C, Lin L, Zhang Z, Chen A. Protective effect of caffeic acid phenethyl ester against imidacloprid-induced hepatotoxicity by attenuating oxidative stress, endoplasmic reticulum stress, inflammation and apoptosis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 164:122-129. [PMID: 32284117 DOI: 10.1016/j.pestbp.2020.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 06/11/2023]
Abstract
Imidacloprid (IMI) is a widely used neonicotinoid pesticide in the world, its environmental and human health risk has particularly attracted the attention of researchers. Caffeic acid phenethyl ester (CAPE), an active polyphenol of propolis, has many pharmacological activities including free radical scavenger, anti-inflammatory, and anti-oxidant. In this study, protective effect of CAPE against IMI induced liver injury in mice was performed. Administration of 1 and 2.5 mg/kg CAPE markedly prevented serum AST and ALT increase in 5 mg/kg IMI-induced mice. CAPE significantly downregulated liver NO generation and lipid peroxidation, and upregulated glutathione, catalase, superoxide dismutase and glutathione peroxidase in a dose-dependent manner in liver of IMI-induced mice. Endoplasmic reticulum stress represented by the swelling of endoplasmic reticulum was observed by transmission electron microscope in IMI group. Pretreatment of 2.5 mg/kg CAPE significantly attenuated the endoplasmic reticulum stress induced by IMI in liver. Western blot analysis illustrated that pretreatment of CAPE downregulated the upregulation of TNF-α and IFN-γ induced by IMI in liver of mice. Moreover, the increase of positive apoptotic hepatocytes further suggested apoptosis might be involved in IMI-induced hepatotoxicity. Pretreatment of 1 and 2.5 mg/kg CAPE significantly decreased positive apoptotic hepatocytes, suggested that CAPE prevented apoptosis in liver of IMI-induced mice. In conclusion, CAPE prevented liver injury in IMI-induced mice via attenuation of oxidative stress, endoplasmic reticulum stress, inflammation and apoptosis. Our findings may have broad biological and environmental implications for future research on the therapeutic strategy to prevent liver injury induced by pesticides.
Collapse
Affiliation(s)
- Bo Shao
- Department of Public Health, Jining Medical University, Jining, Shandong 272067, PR China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Meixia Wang
- Department of pharmacy, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272067, PR China
| | - Anran Chen
- Department of Mental Health, Jining Medical University, Jining, Shandong 272067, PR China
| | - Chunzhi Zhang
- Department of Public Health, Jining Medical University, Jining, Shandong 272067, PR China
| | - Li Lin
- Department of Public Health, Jining Medical University, Jining, Shandong 272067, PR China
| | - Zhaoqiang Zhang
- Department of Public Health, Jining Medical University, Jining, Shandong 272067, PR China
| | - Anlan Chen
- Department of Public Health, Jining Medical University, Jining, Shandong 272067, PR China
| |
Collapse
|
35
|
Zhang Y, Gu T, Tian Y, Chen L, Li G, Zhou W, Liu G, Wu X, Zeng T, Xu Q, Chen G, Lu L. Effects of cage and floor rearing system on the factors of antioxidant defense and inflammatory injury in laying ducks. BMC Genet 2019; 20:103. [PMID: 31888457 PMCID: PMC6937681 DOI: 10.1186/s12863-019-0806-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 12/22/2019] [Indexed: 11/13/2022] Open
Abstract
Background Cage-rearing in laying ducks, as a novel rearing system, not only fundamentally solves the pollution problem of the duck industry and improve bio-safety and product quality but also exhibits more benefits by implementing standardized production compared with the floor-rearing. Of course, this system also brings some welfare problems and stress injuries to layers due to lack of water environment and limited activities in the cages. However, the effects on the factors of antioxidant defense and inflammatory injury in the early cage stage are not well-understood. Results In this study, eighty Shaoxing layers were reared on floor and in cages from 12 weeks of age. The ducks were caged 1, 2, 4, 7, and 10 days, the factors of antioxidant defense and inflammatory injury were investigated. The results showed that the caged ducks suffered liver injury to a certain extent when the ducks were just put into the cages. Analysis of antioxidant enzyme activities indicated that the different rearing system could not affect the change of antioxidant capacities, while the liver malondialdehyde (MDA) level was significant higher in the 2-d, 7-d, and 10-d ducks compared with the 1-d ducks during the change of days, while catalase (CAT) activity showed the opposite results. Additionally, quantitative real-time PCR (qRT-RCR) revealed that the relative mRNA levels of endoplasmic reticulum (ER) stress-related gene (CHOP and GRP78) were significantly upregulated in cage rearing ducks compared to that of the floor rearing ducks. Moreover, the mRNA levels of inflammatory cytokines including cycloxygenase-2 (COX-2), nitric oxide synthase (iNOS), Interleukin 1 beta (IL-1β), Interleukin 2 (IL-2) and Interleukin 6 (IL-6), were also increased significantly in caged layers. Conclusions Taken together, although antioxidant defense has no obvious effect on cage stress, the stress levels of laying ducks vary greatly in the early cage stage, which not only caused liver tissue damage to some extent, but also resulted in increases in the expression of the factors of inflammatory injury. Therefore, we recommend that anti-stress agents should be added in the feed to alleviate the stress in the early cage stage.
Collapse
Affiliation(s)
- Yang Zhang
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Tiantian Gu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Yong Tian
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China.,Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou, 310021, Zhejiang, China
| | - Li Chen
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China.,Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou, 310021, Zhejiang, China
| | - Guoqin Li
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China.,Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou, 310021, Zhejiang, China
| | - Wei Zhou
- Guiliu Animal Husbandry Company, Zhoukou, 450000, Henan, China
| | - Guofa Liu
- Guiliu Animal Husbandry Company, Zhoukou, 450000, Henan, China
| | - Xinsheng Wu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Tao Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Qi Xu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Guohong Chen
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China. .,Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR, China.
| |
Collapse
|
36
|
Yang Q, Zhu J, Luo X, Li F, Cong L, Wang Y, Sun Y. Melatonin attenuates cadmium-induced ovulatory dysfunction by suppressing endoplasmic reticulum stress and cell apoptosis. Reprod Biol Endocrinol 2019; 17:61. [PMID: 31358006 PMCID: PMC6661738 DOI: 10.1186/s12958-019-0502-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Increasing evidence demonstrate that cadmium (Cd) has adverse effects on the mammalian reproductive system. However, the mechanisms underlying the effects of Cd on ovarian function and the strategies to reverse these effects have not been fully elucidated. METHODS In this study, 60 CD-1 mice were divided into four groups (control, melatonin, Cd, Cd with melatonin). During the treatment for 14 days, body weight was measured every 2 days. After the treatment, ovaries were isolated and weighted to observe the morphological and biological characteristics. Statistical analyses were performed using one-way ANOVA followed by Fisher's-multiple range test or chi-squared test, A P value < 0.05 indicated statistical significance. RESULTS We observed that Cd exposure induced ovulatory dysfunction, demonstrated by the reduced number of ovulated oocytes numbers in the Cd group. However, this endoplasmic reticulum (ER) pathway was activated in the Cd-exposed ovaries and the expression of GRP78, ATF4, CHOP, and p-JNK was upregulated, which was reversed by treatment with melatonin. Furthermore, we found that melatonin inhibited Cd-induced activation of cleaved caspase-3, restored the ratio of Bax/Bcl-2, and ultimately decreased the apoptosis of granular cells as detected by TUNEL staining. CONCLUSION Collectively, our findings reveal that melatonin attenuated Cd-induced ovulation dysfunction and cell apoptosis by inhibiting the activation of the ER pathway. Thus, melatonin can be a potential agent to protect mammalian ovaries against Cd toxicity.
Collapse
Affiliation(s)
- Qingling Yang
- Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory for Reproduction and Genetics, Zhengzhou, China
| | - Jing Zhu
- Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory for Reproduction and Genetics, Zhengzhou, China
| | - Xiaoyan Luo
- Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory for Reproduction and Genetics, Zhengzhou, China
| | - Fangyuan Li
- Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory for Reproduction and Genetics, Zhengzhou, China
| | - Luping Cong
- Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory for Reproduction and Genetics, Zhengzhou, China
| | - Yujiao Wang
- Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory for Reproduction and Genetics, Zhengzhou, China
| | - Yingpu Sun
- Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Province Key Laboratory for Reproduction and Genetics, Zhengzhou, China.
| |
Collapse
|
37
|
Djordjevic VR, Wallace DR, Schweitzer A, Boricic N, Knezevic D, Matic S, Grubor N, Kerkez M, Radenkovic D, Bulat Z, Antonijevic B, Matovic V, Buha A. Environmental cadmium exposure and pancreatic cancer: Evidence from case control, animal and in vitro studies. ENVIRONMENT INTERNATIONAL 2019; 128:353-361. [PMID: 31078004 DOI: 10.1016/j.envint.2019.04.048] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 05/24/2023]
Abstract
Although profoundly studied, etiology of pancreatic cancer (PC) is still rather scarce. Some of established risk factors of PC are connected to an increased cadmium (Cd) body burden. Hence, the aim of this study was to investigate the role of this environmental pollutant in PC development by conducting human observational, experimental and in vitro studies. The case-control study included 31 patients with a histologically based diagnosis of exocrine PC subjected to radical surgical intervention as cases and 29 accidental fatalities or subjects who died of a nonmalignant illness as controls. Animal study included two treated groups of Wistar rats (15 and 30 mg Cd/kg b.w) and untreated control group, sacrificed 24 h after single oral exposure. In in vitro study pancreas hTERT-HPNE and AsPC-1 cells were exposed to different Cd concentrations corresponding to levels measured in human cancerous pancreatic tissue. Cd content in cancer tissue significantly differed from the content in healthy controls. Odds ratio levels for PC development were 2.79 (95% CI 0.91-8.50) and 3.44 (95% CI 1.19-9.95) in the third and fourth quartiles of Cd distribution, respectively. Animal study confirmed Cd deposition in pancreatic tissue. In vitro studies revealed that Cd produces disturbances in intrinsic pathway of apoptotic activity and the elevation in oxidative stress in pancreatic cells. This study presents three different lines of evidence pointing towards Cd as an agent responsible for the development of PC.
Collapse
Affiliation(s)
- Vladimir R Djordjevic
- First Surgical Clinic, Clinical Center of Serbia, Koste Todorovica 5, Belgrade, Serbia
| | - David R Wallace
- School of Biomedical Science, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898, USA; Oklahoma State University, Interdisciplinary Toxicology Program, 264 McElroy Hall, Stillwater, OK 74078-2014, USA
| | - Amie Schweitzer
- School of Biomedical Science, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898, USA; Oklahoma State University, Interdisciplinary Toxicology Program, 264 McElroy Hall, Stillwater, OK 74078-2014, USA
| | - Novica Boricic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, Dr Subotića Starijeg 1, Belgrade, Serbia
| | - Djordje Knezevic
- First Surgical Clinic, Clinical Center of Serbia, Koste Todorovica 5, Belgrade, Serbia
| | - Slavko Matic
- First Surgical Clinic, Clinical Center of Serbia, Koste Todorovica 5, Belgrade, Serbia
| | - Nikola Grubor
- First Surgical Clinic, Clinical Center of Serbia, Koste Todorovica 5, Belgrade, Serbia
| | - Mirko Kerkez
- First Surgical Clinic, Clinical Center of Serbia, Koste Todorovica 5, Belgrade, Serbia
| | - Dejan Radenkovic
- First Surgical Clinic, Clinical Center of Serbia, Koste Todorovica 5, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, Belgrade, Serbia
| | - Biljana Antonijevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, Belgrade, Serbia
| | - Vesna Matovic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, Belgrade, Serbia
| | - Aleksandra Buha
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, Belgrade, Serbia.
| |
Collapse
|
38
|
Company R, Antúnez O, Cosson RP, Serafim A, Shillito B, Cajaraville M, Bebianno MJ, Torreblanca A. Protein expression profiles in Bathymodiolus azoricus exposed to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:621-630. [PMID: 30658297 DOI: 10.1016/j.ecoenv.2019.01.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Proteomic changes in the "gill-bacteria complex" of the hydrothermal vent mussel B. azoricus exposed to cadmium in pressurized chambers ((Incubateurs Pressurises pour l'Observation en Culture d'Animaux Marins Profonds - IPOCAMP) were analyzed and compared with the non-exposed control group. 2-D Fluorescence Difference Gel Electrophoresis (2D-DIGE) showed that less than 1.5% of the proteome of mussels and symbiotic bacteria were affected by a short-term (24 h) Cd exposure. Twelve proteins of the more abundant differentially expressed proteins of which six were up-regulated and six were down-regulated were excised, digested and identified by mass spectrometry. The identified proteins included structural proteins (actin/actin like proteins), metabolic proteins (calreticulin/calnexin, peptidyl-prolyl cis-trans isomerase, aminotransferase class-III, electron transfer flavoprotein, proteasome, alpha-subunit and carbonic anhydrase) and stress response proteins (chaperone protein htpG, selenium-binding protein and glutathione transferases). All differently expressed proteins are tightly connected to Cd exposure and are affected by oxidative stress. It was also demonstrated that B. azoricus was well adapted to Cd contamination therefore B. azoricus from hydrothermal vent areas may be considered a good bioindicator.
Collapse
Affiliation(s)
- Rui Company
- CIMA, University of Algarve, Faculty of Marine and Environmental Sciences, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Oreto Antúnez
- Department of Functional Biology, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Richard P Cosson
- EA 2160 - MMS (Mer, Molécules, Santé) Biologie Marine - ISOMer, University of Nantes BP 92208, F-44322 Nantes cedex 3, France
| | - Angela Serafim
- CIMA, University of Algarve, Faculty of Marine and Environmental Sciences, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Bruce Shillito
- UMR 7138, Systématique Adaptation et Evolution, CNRS/MNHN/IRD/UPMC,University Pierre et Marie Curie, Paris, France
| | - Miren Cajaraville
- Laboratory of Cell Biology and Histology, Department of Zoology and Cell Biology, University of the Basque Country, P.O BOX 644, E-48080 Bilbao, Spain
| | - Maria João Bebianno
- CIMA, University of Algarve, Faculty of Marine and Environmental Sciences, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Amparo Torreblanca
- Department of Functional Biology, University of Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
39
|
Lu J, Zhang T, Sun H, Wang S, Liu M. Protective effects of dioscin against cartilage destruction in a monosodium iodoacetate (MIA)-indcued osteoarthritis rat model. Biomed Pharmacother 2018; 108:1029-1038. [DOI: 10.1016/j.biopha.2018.09.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/30/2018] [Accepted: 09/12/2018] [Indexed: 01/01/2023] Open
|
40
|
Zhang J, Wang Y, Fu L, Wang B, Ji YL, Wang H, Xu DX. Chronic cadmium exposure induced hepatic cellular stress and inflammation in aged female mice. J Appl Toxicol 2018; 39:498-509. [PMID: 30375035 DOI: 10.1002/jat.3742] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/11/2018] [Accepted: 09/25/2018] [Indexed: 01/04/2023]
Abstract
Previous studies have revealed that acute cadmium (Cd) exposure led to inflammation in different organs through an oxidative stress mechanism. However, whether chronic Cd exposure induces inflammation in liver and the mechanistic link between inflammation and cell stress remains unclear. In the present study, we investigated the effects of chronic Cd exposure on hepatic cellular stress and inflammatory responses. Female CD1 mice were administrated with CdCl2 (10 and 100 mg/L) in drinking water for 57 weeks. Our results showed that the mRNA levels of Inos and the protein content of HO-1, markers of oxidative stress, were markedly increased in Cd-treated mice. In addition, the protein level of GRP78, the chaperone of endoplasmic reticulum (ER) stress, was significantly increased in Cd-treated mice. The expression of the proteins CHOP and peIF2α, two proteins downstream of ER stress, was also upregulated in the Cd-100 mg/L and Cd-10 mg/L group, respectively. Moreover, there were increased inflammatory cells existing in liver after Cd administration. Besides, there was a significant elevation in the mRNA level of Mip-2, Il-10 and Il-12 in the Cd-100 mg/L group. The mRNA level of Tgf-β was also upregulated in Cd-treated mice. Moreover, we also found that the number of Ki67-positive hepatic cells was increased in the Cd-10 mg/L group. Hence, our results indicated that chronic Cd exposure induced oxidative stress, ER stress, inflammatory responses and proliferation in the liver of aged female mice.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China.,Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.,Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - Lin Fu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China.,Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - Bo Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.,Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - Yan-Li Ji
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China.,Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China.,Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China.,Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| |
Collapse
|
41
|
Varlamova EG, Goltyaev MV. The Effect of Sodium Selenite on the Expression of Genes of Endoplasmic Reticulum-Resident Selenoproteins in Human Fibrosarcoma Cells. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s000635091805024x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
42
|
Lee GA, Choi KC, Hwang KA. Treatment with Phytoestrogens Reversed Triclosan and Bisphenol A-Induced Anti-Apoptosis in Breast Cancer Cells. Biomol Ther (Seoul) 2018; 26:503-511. [PMID: 29310425 PMCID: PMC6131008 DOI: 10.4062/biomolther.2017.160] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/22/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023] Open
Abstract
Triclosan (TCS) and bisphenol A (BPA) are endocrine-disrupting chemicals that interfere with the hormone or endocrine system and may cause cancer. Kaempferol (Kaem) and 3,3'-diindolylmethane (DIM) are phytoestrogens that play chemopreventive roles in the inhibition of carcinogenesis and cancer progression. In this study, the influence of TCS, BPA, Kaem, and DIM on proliferation and apoptotic abilities of VM7Luc4E2 breast cancer cells were examined. MTT assay revealed that TCS (0.1-10 µM), BPA (0.1-10 µM) and E2 (0.01-0.0001 µM) induced significant cell proliferation of VM7Luc4E2 cells, which was restored to the control (0.1% DMSO) by co-treatment with Kaem (30 µM) or DIM (15 µM). Reactive oxygen species (ROS) production assays showed that TCS and BPA inhibited ROS production of VM7Luc4E2 cells similar to E2, but that co-treatment with Kaem or DIM on VM7Luc4E2 cells induced increased ROS production. Based on these results, the effects of TCS, BPA, Kaem, and DIM on protein expression of apoptosis and ROS production-related markers such as Bax and Bcl-xl, as well as endoplasmic reticulum (ER) stress-related markers such as eIF2α and CHOP were investigated by Western blot assay. The results revealed that TCS, and BPA induced anti-apoptosis by reducing ROS production and ER stress. However, Kaem and DIM effectively inhibited TCS and BPA-induced anti-apoptotic processes in VM7Luc4E2 cells. Overall, TCS and BPA were revealed to be distinct xenoestrogens that enhanced proliferation and anti-apoptosis, while Kaem and DIM were identified as natural chemopreventive compounds that effectively inhibited breast cancer cell proliferation and increased anti-apoptosis induced by TCS and BPA.
Collapse
Affiliation(s)
- Geum-A Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
43
|
Wan N, Xu Z, Liu T, Min Y, Li S. Ameliorative Effects of Selenium on Cadmium-Induced Injury in the Chicken Ovary: Mechanisms of Oxidative Stress and Endoplasmic Reticulum Stress in Cadmium-Induced Apoptosis. Biol Trace Elem Res 2018; 184:463-473. [PMID: 29090375 DOI: 10.1007/s12011-017-1193-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/24/2017] [Indexed: 12/25/2022]
Abstract
Despite the well-established toxicity of cadmium (Cd) to animals and the ameliorative effects of selenium (Se), some specific mechanisms in the chicken ovary are not yet clarified. To explore the mechanism by which the toxicity effect of Cd is induced and explore the effect of supranutritional Se on Cd toxicity in female bird reproduction, forty-eight 50-day-old Isa Brown female chickens were divided randomly into four groups. Group I (control group) was fed the basic diet containing 0.2 mg/kg Se. Group II (Se-treated group) was fed the basic diet supplemented with sodium selenite (Na2SeO3), and the total Se content was 2 mg/kg. Group III (Se + Cd-treated group) was fed the basic diet supplemented with Na2SeO3; the total Se content was 2 mg/kg, and it was supplemented with 150 mg/kg cadmium chloride (CdCl2). Group IV (Cd-treated group) was with the basic diet supplemented with 150 mg/kg CdCl2. The Cd, estradiol (E2), and progestogen (P4) contents changed after subchronic Cd exposure in chicken ovarian tissue; subsequently, oxidative stress occurred and activated the endoplasmic reticulum (ER) pathway to induce apoptosis. Further, Se decreased the accumulation of Cd in ovarian tissue, increased the E2 and P4 contents, alleviated oxidative stress, and reduced apoptosis via the ER stress pathway. The present results demonstrated that Cd could induce apoptosis via the ER stress pathway in chicken ovarian tissue and that Se had a significant antagonistic effect. These results are potentially valuable for finding a strategy to prevent Cd poisoning.
Collapse
Affiliation(s)
- Na Wan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhe Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Tianqi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yahong Min
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
44
|
Zhao WJ, Zhang ZJ, Zhu ZY, Song Q, Zheng WJ, Hu X, Mao L, Lian HZ. Time-dependent response of A549 cells upon exposure to cadmium. J Appl Toxicol 2018; 38:1437-1446. [PMID: 30051583 DOI: 10.1002/jat.3665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 01/15/2023]
Abstract
Cadmium is considered one of the most harmful carcinogenic heavy metals in the human body. Although many scientists have performed research on cadmium toxicity mechanism, the toxicokinetic process of cadmium toxicity remains unclear. In the present study, the kinetic response of proteome in/and A549 cells to exposure of exogenous cadmium was profiled. A549 cells were treated with cadmium sulfate (CdSO4 ) for different periods and expressions of proteins in cells were detected by two-dimensional gel electrophoresis. The kinetic expressions of proteins related to cadmium toxicity were further investigated by reverse transcription-polymerase chain reaction and western blotting. Intracellular cadmium accumulation and content fluctuation of several essential metals were observed after 0-24 hours of exposure by inductively coupled plasma mass spectrometry. Fifty-four protein spots showed significantly differential responses to CdSO4 exposure at both 4.5 and 24 hours. From these proteins, four expression patterns were concluded. Their expressions always exhibited a maximum abundance ratio after CdSO4 exposure for 24 hours. The expression of metallothionein-1 and ZIP-8, concentration of total protein, and contents of cadmium, zinc, copper, cobalt and manganese in cells also showed regular change. In synthesis, the replacement of the essential metals, the inhibition of the expression of metal storing protein and the activation of metal efflux system are involved in cadmium toxicity.
Collapse
Affiliation(s)
- Wen-Jie Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of E-Waste Recycling, College of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| | - Zi-Jin Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, China
| | - Zhen-Yu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qun Song
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, China
| | - Wei-Juan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, China
| | - Li Mao
- Ministry of Education (MOE) Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hong-Zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, China
| |
Collapse
|
45
|
Varlamova EG. Participation of selenoproteins localized in the ER in the processes occurring in this organelle and in the regulation of carcinogenesis-associated processes. J Trace Elem Med Biol 2018; 48:172-180. [PMID: 29773177 DOI: 10.1016/j.jtemb.2018.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/11/2018] [Accepted: 04/02/2018] [Indexed: 01/12/2023]
Abstract
The functions performed by the ER are diverse: synthesis of steroid hormones, synthesis of proteins for the plasma membrane, lysosomes, as well as proteins meant for exocytosis, protein folding, formation of disulfide bonds, N-linked glycosylation, etc. Selenoproteins localized in this organelle are definitely involved in the processes occurring in it, and the most common of them include participation in protein degradation, regulation of ER stress and redox metabolism. ER stress has been registered in many types of cancer cells. The ability to persist under prolonged ER stress increases their survival, resistance to drugs and immunity. Disturbances in the redox regulation of the cell cycle, which result in the accumulation of misfolded proteins in the ER, viral infection, disruption of Ca2+ regulation, are known to cause an evolutionarily conserved reaction - unfolded protein response (UPR) and, ultimately, lead to ER stress. Since selenoproteins, as oxidoreductases, possess antioxidant properties, and their role in the regulation of important processes, such as carcinogenesis and ER stress, has been actively studied in the recent decades, the subject of this review is highly relevant.
Collapse
Affiliation(s)
- Elena Gennadyevna Varlamova
- Federal State Institution of Science, Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya St. 3, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
46
|
Biochemical mechanisms of free-radical damage to the nuclear genome by cadmium. UKRAINIAN BIOCHEMICAL JOURNAL 2018. [DOI: 10.15407/ubj90.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
47
|
Ardic S, Gumrukcu A, Gonenc Cekic O, Erdem M, Reis Kose GD, Demir S, Kose B, Yulug E, Mentese A, Turedi S. The value of endoplasmic reticulum stress markers (GRP78 and CHOP) in the diagnosis of acute mesenteric ischemia. Am J Emerg Med 2018; 37:596-602. [PMID: 29958740 DOI: 10.1016/j.ajem.2018.06.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
AIM To evaluate levels of the endoplasmic reticulum (ER) stress markers GRP78 and CHOP in acute mesenteric ischemia (AMI) and to examine relations with degrees of AMI-related intestinal injury. MATERIALS AND METHODS Twenty-four rats were divided into four groups. Group I and Group III represented the control groups, from which blood and tissue specimens were collected 2 and 6 h after laparotomy without superior mesenteric artery (SMA) ligation. Group II and Group IV constituted the ischemia groups, from which blood and tissue specimens were collected 2 and 6 h after SMA ligation. The ER stress markers GRP78 and CHOP, total oxidant status (TOS), total antioxidant status (TAS), and the oxidative stress index (OSI) were investigated in each group. Ileum specimens were assessed in terms of ischemic injury, and appropriate comparisons were performed. RESULTS Significantly higher GRP78, CHOP, TOS, and TAS values were determined in the ischemia groups (groups II and IV) compared to the control groups (groups I and III). This elevation was greater in the 6 h ischemia group, the group exposed to the greatest ischemic injury (Group IV). Significant and powerful correlation was present between histopathological damage and levels of the ER stress markers and oxidative markers. CONCLUSION According to our results, ER stress markers (GRP78 and CHOP) increase significantly following ischemic injury. This elevation has the potential to be used diagnostically and also in prognostic terms due to the powerful correlation it exhibits with AMI-related ischemic injury.
Collapse
Affiliation(s)
- Senol Ardic
- University of Health Science, Faculty of Medicine, Department of Emergency Medicine, Trabzon, Turkey
| | - Aysegul Gumrukcu
- University of Health Science, Faculty of Medicine, Department of Emergency Medicine, Trabzon, Turkey
| | - Ozgen Gonenc Cekic
- University of Health Science, Faculty of Medicine, Department of Emergency Medicine, Trabzon, Turkey
| | - Mehmet Erdem
- Karadeniz Technical University, Faculty of Medicine, Department of Medical Biochemistry, Trabzon, Turkey
| | - Goksen Derya Reis Kose
- Karadeniz Technical University, Faculty of Medicine, Department of Histology and Embryology, Trabzon, Turkey
| | - Selim Demir
- Karadeniz Technical University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Trabzon, Turkey
| | - Bestami Kose
- University of Health Science, Faculty of Medicine, Department of Emergency Medicine, Trabzon, Turkey
| | - Esin Yulug
- Karadeniz Technical University, Faculty of Medicine, Department of Histology and Embryology, Trabzon, Turkey
| | - Ahmet Mentese
- Karadeniz Technical University, Vocational School of Health Sciences, Program of Medical Laboratory Techniques, Trabzon, Turkey
| | - Suleyman Turedi
- Karadeniz Technical University, Faculty of Medicine, Department of Emergency Medicine, Trabzon, Turkey.
| |
Collapse
|
48
|
Van Hoewyk D. Defects in endoplasmic reticulum-associated degradation (ERAD) increase selenate sensitivity in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2018; 13:e1171451. [PMID: 27045899 PMCID: PMC5933916 DOI: 10.1080/15592324.2016.1171451] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 05/23/2023]
Abstract
Stress can impair protein folding in the endoplasmic reticulum (ER). Minimizing the accumulation of misfolded proteins in the ER is achieved by ER-associated degradation (ERAD), which involves the retrograde transport and proteasomal removal of aberrant proteins. Recently, the proteasome has been implicated in a selenium stress response. However, it remains unknown if selenium causes ER stress in plants similar to animals, and if ERAD is associated with optimal selenium tolerance. This deficiency was addressed by monitoring selenate-treated Arabidopsis plants with mutations in HRD1 and SeL1L, participants of ERAD. hrd1a/hrd1b and sel1l mutants treated with selenate demonstrate decreased tolerance and ER stress, as judged by BiP2 accumulation. The data indicate that optimal plant growth during selenate stress requires ERAD.
Collapse
Affiliation(s)
- Doug Van Hoewyk
- Coastal Carolina University, Biology Department, Conway, South Carolina, USA
| |
Collapse
|
49
|
Lee HM, Choi KC. Cigarette smoke extract and isoprene resulted in the induction of apoptosis and autophagy in human placenta choriocarcinoma JEG-3 cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:178-190. [PMID: 29135079 DOI: 10.1002/tox.22506] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/17/2017] [Accepted: 10/22/2017] [Indexed: 06/07/2023]
Abstract
In this study, the effects of cigarette smoke (CS) on the induction of apoptosis via reactive oxygen species (ROS) production and endoplasmic reticulum stress (ER stress) of JEG-3 human choriocarcinoma cells were examined to confirm the relationship between CS and placenta development. Upon TUNEL assay, CS extract (3R4F; 0.3 and 2.1 μM) increased JEG-3 apoptosis. Western blot assay revealed that the protein expressions of p53, Bax, and CCAAT-enhancer-binding protein homologous protein (CHOP) increased, while the levels of Bcl-2 were reduced following CS extract treatment. Moreover, 2',7'-dichlorofluorescein diacetate (DCFH-DA) assay revealed increased ROS production. Upon 3-(4-5-dimethylthiazol-2-yl)-2.5-dyhphenyltetrazolium bromide (MTT) assay, isoprene (IP), one of ingredients of CS, deceased JEG-3 cell viability (10-11 to 10-6 M). After based on the MTT assay, two IP concentrations of 10-11 and 10-8 M were selected and the protein expressions of cyclin D1, cyclin E1, p21, and p27 decreased in response to IP. Furthermore, IP showed the greatest increase in autophagy at 24 hours and further induction of cell death at 72 hours upon monodansylacadaverine and TUNEL assay. Western blot analysis confirmed the increase in autophagy markers, LC3β and p62, as well as the increase or decrease of apoptosis markers p53, Bax, CHOP, and Bcl-2 in response to its treatments. In addition to confirming increases in ROS through DCFH-DA, we also confirmed the expression of Nrf2, an antioxidant marker, and the expression of Kelch-like ECH-associated protein 1 (KEAP1), which specifically degrades Nrf2, by Western blot. Taken together, these results indicate that CS and IP may inhibit the development of placenta via activation of ROS by inducing apoptosis and autophagy by affecting the expression of KEAP1, which regulates Nrf2 expression.
Collapse
Affiliation(s)
- Hae-Miru Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| |
Collapse
|
50
|
So KY, Lee BH, Oh SH. The critical role of autophagy in cadmium-induced immunosuppression regulated by endoplasmic reticulum stress-mediated calpain activation in RAW264.7 mouse monocytes. Toxicology 2017; 393:15-25. [PMID: 29111403 DOI: 10.1016/j.tox.2017.10.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/21/2017] [Accepted: 10/26/2017] [Indexed: 12/20/2022]
Abstract
Cadmium (Cd) has toxic and suppressive effects on the immune system, but the underlying mechanisms remain poorly understood. Here, we show that autophagy plays a critical role in regulation of Cd-induced immunosuppression in RAW264.7 cells. Cd decreased cell viability in a dose-dependent manner; cleaved caspase-8, caspase-3, and poly (ADP-ribose) polymerase (PARP)-1; increased DNA laddering; induced CCAAT-enhancer-binding protein homologous protein (CHOP); and reduced tumor necrosis factor (TNF)-α expression; indicating that caspase-dependent and endoplasmic reticulum (ER)-mediated apoptosis are involved in Cd-induced immunotoxicity. Furthermore, Cd induced autophagy, as demonstrated by microtubule-associated protein 1 light chain 3B (LC3B) plasmid DNA transfection and its conversion from LC3-I to the LC3-II form by autophagy inhibitors, via AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) signaling. Pharmacological and genetic inhibition of autophagy suppressed Cd-induced apoptosis, as evidenced by inhibition of caspase-8, caspase-3, and PARP-1 cleavage, indicating that autophagy promotes apoptosis. The pan-caspase inhibitor zVAD inhibited Cd-induced apoptosis, but increased autophagy and decreased cell viability, indicating that autophagy can compensate for reduced apoptotic cell death. Calpain inhibitors blocked Cd-induced apoptosis and autophagy, indicating that calpain plays a critical role in Cd cytotoxicity. Treatment with Ca2+ chelators completely recovered Cd-induced cell viability and inhibited Cd-induced apoptosis and autophagy. Treatment with N-acetyl-l-cysteine (NAC) suppressed Cd-induced antioxidant enzyme levels, apoptosis, and autophagy. Collectively, Cd-induced oxidative stress triggers ER stress, leading to Ca2+-dependent calpain activation and subsequent activation of autophagy and apoptosis, resulting in immune suppression.
Collapse
Affiliation(s)
- Keum-Young So
- Department of Anesthesiology and Pain Medicine, School of Medicine, Chosun University, Gwangju 501-759, Republic of Korea
| | - Byung-Hoon Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seon-Hee Oh
- School of Medicine, Chosun University, Gwangju 501-759, Republic of Korea.
| |
Collapse
|