1
|
Özkutlu F, Ete Aydemir Ö, Kocaman A, Ece D, Akgün M. Mitigation of Cadmium Uptake in Bread Wheat ( Triticum aestivum L.) and Durum Wheat ( Triticum durum L.) with Natural and Enriched Bentonite Treatments. ACS OMEGA 2025; 10:12553-12568. [PMID: 40191325 PMCID: PMC11966268 DOI: 10.1021/acsomega.5c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Abstract
Soil pollution by heavy metals is a significant issue impacting food security and human health. Cadmium, a toxic metal, contaminates soils via industrial and agricultural activities, posing risks to the food chain. This study aimed to evaluate methods for reducing cadmium bioavailability in bread wheat and durum wheat, crucial crops for human nutrition grown on contaminated soils. A greenhouse experiment was conducted in which soil samples were treated with 3-6% natural bentonite and sodium-enriched bentonite and contaminated with 5 and 10 ppm cadmium. Compared to controls, cadmium bioavailability in bread wheat decreased by 55% with 5 ppm of Cd and by 66% with 10 ppm of Cd when treated with 6% sodium-enriched bentonite. Similarly, in durum wheat, cadmium bioavailability decreased by 55% and 48% at 5 and 10 mg Cd kg-1, respectively. Additionally, 6% natural and enriched bentonite applications increased biomass production in both wheat varieties. Bread wheat dry matter increased by 43.69% with 5 ppm of Cd and natural bentonite, while durum wheat showed an increase of 88.66% with 10 ppm of Cd and enriched bentonite. In bread wheat, the highest B concentration was obtained with 6% NB at 5 and 10 ppm of Cd, with increases of 15.5%, 39.53%, and 16.56% compared to controls; similar increases were seen in durum wheat. Ca concentrations increased with Cd application in control samples, whereas Mn concentrations decreased with Cd and bentonite treatments. The highest Na concentrations in both wheat varieties were recorded at 6% EB, resulting in significant increases (bread wheat: 2434%-4126%; durum wheat: 2763%-3592%) compared to controls. Nutrient stability for Fe, Cu, K, Mg, P, and Zn varied according to Cd dose and bentonite type. The addition of natural and sodium-enriched bentonite effectively reduced cadmium bioavailability in bread and durum wheat, while promoting increased biomass production. These findings suggest that bentonite amendments have potential applications for enhancing crop yields and ensuring food safety in cadmium-contaminated environments.
Collapse
Affiliation(s)
- Faruk Özkutlu
- Department
of Soil Science and Plant Nutrition, Faculty of Agriculture, Ordu University, 52200 Ordu, Turkey
| | - Özlem Ete Aydemir
- Department
of Soil Science and Plant Nutrition, Faculty of Agriculture, Ordu University, 52200 Ordu, Turkey
| | - Ayhan Kocaman
- Engineering
Faculty, Environmental Engineering Department, Karabük University, 78050 Karabük, Turkey
| | - Dilek Ece
- Department
of Soil Science and Plant Nutrition, Faculty of Agriculture, Ordu University, 52200 Ordu, Turkey
| | - Mehmet Akgün
- Hazelnut
Specialization Coordinatorship, Giresun
University, 28100 Giresun, Turkey
| |
Collapse
|
2
|
Luo Y, Huang X, Sha A, He J, Chen X, Xiao W, Peng L, Zou L, Liu B, Li Q. Analysis of growth physiological changes and metabolome of highland barley seedlings under cadmium (II) stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125664. [PMID: 39805469 DOI: 10.1016/j.envpol.2025.125664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/24/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
This study aims to investigate the physiological changes in growth and metabolic response mechanisms of highland barley under different concentrations of cadmium. To achieve this, cadmium stress was applied to green barley at levels of 20, 40, and 80 mg/L. The results revealed that, under Cd(II) stress, the chlorophyll content and photosynthesis in leaves of highland barley seedlings were inhibited to some extent. Additionally, the malondialdehyde (MDA) content and superoxide dismutase activity increased significantly, indicating that the seedlings were affected by oxidative stress. In addition, Cd(II) stress also significantly affected the accumulation of metabolites in highland barley seedlings, resulting in an increase in lipids and lipid molecules, organic heterocyclic compounds, and phenylpropanoids. Cd(II) stress also significantly interfered with phenylalanine metabolism, fructose and mannose metabolism, amino acid, sugar, and nucleotide sugar metabolism, and biosynthetic metabolic pathways of isoquinoline alkaloids. The increase in Cd(II) stress also resulted in elevated levels of soluble sugars, soluble proteins, and proline as defense mechanisms against the stress. Overall, barley has a very good ability to resist adversity, and the mechanism of barley's resistance to adversity has not been deeply investigated. Therefore, in this paper, we systematically investigated the stress resistance mechanism of barley to cadmium stress and found that the growth physiology and metabolism of barley seedlings were significantly affected by cadmium stress. Differential changes in metabolites and enrichment of metabolic pathways may be the main mechanisms for barley seedlings to cope with Cd(II) stress. This provides direction for selecting better varieties of barley.
Collapse
Affiliation(s)
- Yingyong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Xian Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Jing He
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Bingliang Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Yang R, Cheng L, Li Z, Cui Y, Liu J, Xu D, Liu S, Lin Z, Chen J, Zhang Y. Mechanism of microplastics in the reduction of cadmium toxicity in tomato. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117621. [PMID: 39752910 DOI: 10.1016/j.ecoenv.2024.117621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025]
Abstract
Soil pollution by microplastics (MPs) and cadmium (Cd) poses significant threats to agricultural production, yet their combined toxicity and underlying mechanisms remain poorly understood. Here, we examined the effects of three types of MPs-polyethylene (PE), polyvinyl chloride (PVC) and polypropylene (PP)-with particle sizes of 150 μm and 10 μm, in combination with Cd stress (5 mg/kg) on tomato (Solanum lycopersicum L.) growth. The results revealed that the combined treatment of MPs effectively alleviated the inhibitory effect of Cd stress. Moreover, Ionome analysis demonstrated that the combined treatment alleviated ionic toxicity by reducing the accumulation of heavy metals (e.g., Al, Pb, Cd, Cr), restoring the uptake of essential elements (e.g., Mg, Ca, Mn), and minimizing the excessive absorption of trace elements (e.g., Mo, Ni) and ultra-trace elements (e.g., Co, Ag, Sn) compared to Cd stress alone. Transcriptome analysis further revealed that combined treatment reprogrammed key pathways, including cell wall synthesis, antioxidant systems, Cd transport, hormone signaling, nitrogen metabolism, and glutathione metabolism, to alleviate Cd toxicity. This study provides novel insights into the interaction between MPs and environmental pollutants, highlighting their role in modulating plant stress responses.
Collapse
Affiliation(s)
- Rongchao Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Long Cheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhenqin Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yilan Cui
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiawei Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Duo Xu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Sijia Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhong Lin
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiugeng Chen
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yueqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
4
|
Checchio MV, Bacha AL, Carrega WC, da Silveira Sousa Júnior G, da Costa Aguiar Alves PL, Gratão PL. Modulatory responses of physiological and biochemical status are related to drought tolerance levels in peanut cultivars. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:116-124. [PMID: 39541144 DOI: 10.1111/plb.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/06/2024] [Indexed: 11/16/2024]
Abstract
Peanut (Arachis hypogaea L.) is the fourth most cultivated oilseed in the world, but its cultivation is subject to fluctuations in water demand. Current studies of tolerance between cultivars and physiological mechanisms involved in plant recovery after drought are insufficient for selection of tolerant cultivars. We evaluated tolerance of different peanut cultivars to water deficit and subsequent rehydration, based on physiological and biochemical status. Gas exchange, photosynthetic pigments, Fv/Fm, MDA, H2O2 and antioxidant enzyme activity were analysed. Drought stress and rehydration triggered distinct changes in pigments, Fv/Fm, gas exchange, and H2O2 across genotypes, with increased MDA in all cultivars under stress. Based on multivariate analysis, 'IAC Sempre Verde' was identified as most drought sensitive, while 'IAC OL3', 'IAC 503', and 'IAC OL6' exhibited variations in physiological responses and antioxidant activity correlated to their respective tolerance levels. Notably, 'IAC OL3' had higher WUE and enhanced enzymatic defence and was classified as the most drought tolerant in this context. The above findings suggest that antioxidant metabolism is a important factor for plant recovery post-rehydration. Our study provides insights into antioxidant and physiological responses of peanut cultivars, which can support breeding programs for selection of drought-tolerant genotypes. Future field studies should be conducted for a better understanding of tolerance of these cultivars, particularly through correlation of these data with crop yield impact.
Collapse
Affiliation(s)
- M V Checchio
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - A L Bacha
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | | | | | - P L da Costa Aguiar Alves
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - P L Gratão
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
5
|
Marques DN, Piotto FA, Azevedo RA. Phosphoproteomics: Advances in Research on Cadmium-Exposed Plants. Int J Mol Sci 2024; 25:12431. [PMID: 39596496 PMCID: PMC11594898 DOI: 10.3390/ijms252212431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
With the increasing concern on heavy metal contamination in agriculture and other environmental settings, unraveling the mechanisms of cadmium (Cd) tolerance and response in plants has become highly important. Ongoing plant Cd research over the years has focused on strategic and relevant aspects, including molecular, biochemical, and physiological processes. From this perspective, phosphoproteomics appears to be an innovative and powerful approach to investigating plant responses to Cd stress. Here, we summarize progress in plant Cd research across different plant species regarding large-scale phosphoproteomic investigations. Some studies revealed major proteins participating in detoxification, stress signaling, and metabolism, along with their regulation through phosphorylation, which modulates the plant's defense against Cd. However, many pathways remain unexplored. Expanding these studies will help our ability to alleviate Cd stress and provide further information concerning involved mechanisms. Our purpose is to inspire researchers to further explore the use of phosphoproteomics in unraveling such complex mechanisms of Cd tolerance and response across various plant species, with the ultimate aim of enhancing strategies for mitigating Cd stress in agriculture and polluted environments.
Collapse
Affiliation(s)
- Deyvid Novaes Marques
- Department of Genetics, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba 13418-900, São Paulo (SP), Brazil
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Fernando Angelo Piotto
- Department of Genetics, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba 13418-900, São Paulo (SP), Brazil
| | - Ricardo Antunes Azevedo
- Department of Genetics, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba 13418-900, São Paulo (SP), Brazil
| |
Collapse
|
6
|
Aslam A, Noreen Z, Rashid M, Aslam M, Hussain T, Younas A, Fiaz S, Attia KA, Mohammed AA. Understanding the role of magnetic (Fe 3O 4) nanoparticle to mitigate cadmium stress in radish (Raphanus sativus L.). BOTANICAL STUDIES 2024; 65:20. [PMID: 38995467 PMCID: PMC11245460 DOI: 10.1186/s40529-024-00420-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/23/2024] [Indexed: 07/13/2024]
Abstract
Heavy metals stress particularly cadmium contamination is hotspot among researchers and considered highly destructive for both plants and human health. Iron is examined as most crucial element for plant development, but it is available in inadequate amount because they are present in insoluble Fe3+ form in soil. Fe3O4 have been recently found as growth promoting factor in plants. To understand, a sand pot experiment was conducted in completely randomized design (control, cadmium, 20 mg/L Fe3O4 nanoparticles,40 mg/L Fe3O4 nanoparticles, 20 mg/L Fe3O4 nanoparticles + cadmium, 40 mg/L Fe3O4 nanoparticles + cadmium) to study the mitigating role of Fe3O4 nanoparticles on cadmium stress in three Raphanus sativus cultivars namely i.e., MOL SANO, MOL HOL PARI, MOL DAQ WAL. The plant growth, physiological and biochemical parameters i.e.,shoot length, shoot fresh weight, shoot dry weight, root length, root fresh and dry weight, MDA content, soluble protein contents, APX, CAT, POD activities and ion concentrations, membrane permeability, chlorophyll a, chlorophyll b and anthocyanin content, respectively were studied. The results displayed that cadmium stress remarkably reduces all growth, physiological and biochemical parameters for allcultivars under investigation. However, Fe3O4 nanoparticles mitigated the adverse effect of cadmium by improving growth, biochemical and physiological attributes in all radish cultivars. While, 20 mg/L Fe3O4 nanoparticles have been proved to be more useful against cadmium stress. The outcome of present investigation displayed that Fe3O4 nanoparticles can be utilized for mitigating heavy metal stress.
Collapse
Affiliation(s)
- Amina Aslam
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Zahra Noreen
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Madiha Rashid
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Muhammad Aslam
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Tanveer Hussain
- Department of Horticulture, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Afifa Younas
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
- Lahore College for Women University Lahore, Jinnah Town, Lahore, Punjab, 44444, Pakistan
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, 22620, KP, Pakistan.
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang City, Henan Province, China.
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Arif Ahmed Mohammed
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
7
|
Fu S, Iqbal B, Li G, Alabbosh KF, Khan KA, Zhao X, Raheem A, Du D. The role of microbial partners in heavy metal metabolism in plants: a review. PLANT CELL REPORTS 2024; 43:111. [PMID: 38568247 DOI: 10.1007/s00299-024-03194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
Heavy metal pollution threatens plant growth and development as well as ecological stability. Here, we synthesize current research on the interplay between plants and their microbial symbionts under heavy metal stress, highlighting the mechanisms employed by microbes to enhance plant tolerance and resilience. Several key strategies such as bioavailability alteration, chelation, detoxification, induced systemic tolerance, horizontal gene transfer, and methylation and demethylation, are examined, alongside the genetic and molecular basis governing these plant-microbe interactions. However, the complexity of plant-microbe interactions, coupled with our limited understanding of the associated mechanisms, presents challenges in their practical application. Thus, this review underscores the necessity of a more detailed understanding of how plants and microbes interact and the importance of using a combined approach from different scientific fields to maximize the benefits of these microbial processes. By advancing our knowledge of plant-microbe synergies in the metabolism of heavy metals, we can develop more effective bioremediation strategies to combat the contamination of soil by heavy metals.
Collapse
Affiliation(s)
- Shilin Fu
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China
| | - Babar Iqbal
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China
| | - Guanlin Li
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China.
- Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 215009, Suzhou, People's Republic of China.
| | | | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products (CBRP), Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, 61413, Abha, Saudi Arabia
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Abdulkareem Raheem
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China.
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, 212013, Zhenjiang, People's Republic of China.
| |
Collapse
|
8
|
Lang X, Zhao X, Zhao J, Ren T, Nie L, Zhao W. MicroRNA Profiling Revealed the Mechanism of Enhanced Cold Resistance by Grafting in Melon ( Cucumis melo L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1016. [PMID: 38611545 PMCID: PMC11013280 DOI: 10.3390/plants13071016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Grafting is widely used to improve the resistance to abiotic stresses in cucurbit plants, but the effect and molecular mechanism of grafting on cold stress are still unknown in melon. In this study, phenotypic characteristics, physiological indexes, small-RNA sequencing and expression analyses were performed on grafted plants with pumpkin rootstock (PG) and self-grafted plants (SG) to explore the mechanism of changed cold tolerance by grafting in melon. Compared with SG plants, the cold tolerance was obviously enhanced, the malondialdehyde (MDA) content was significantly decreased and the activities of antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD) were significantly increased in PG plants. Depend on differentially expressed miRNA (DEM) identification and expression pattern analyses, cme-miR156b, cme-miR156f and chr07_30026 were thought to play a key role in enhancing low-temperature resistance resulting from grafting. Subsequently, 24, 37 and 17 target genes of cme-miR156b, cme-miR156f and chr07_30026 were respectively predicted, and 21 target genes were co-regulated by cme-miR156b and cme-miR156f. Among these 57 unique target genes, the putative promoter of 13 target genes contained the low-temperature responsive (LTR) cis-acting element. The results of qRT-PCR indicated that six target genes (MELO3C002370, MELO3C009217, MELO3C018972, MELO3C016713, MELO3C012858 and MELO3C000732) displayed the opposite expression pattern to their corresponding miRNAs. Furthermore, MELO3C002370, MELO3C016713 and MELO3C012858 were significantly downregulated in cold-resistant cultivars and upregulated in cold-sensitive varieties after cold stimulus, and they acted as the key negative regulators of low-temperature response in melon. This study revealed three key miRNAs and three putative target genes involved in the cold tolerance of melon and provided a molecular basis underlying how grafting improved the low-temperature resistance of melon plants.
Collapse
Affiliation(s)
- Xinmei Lang
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (X.L.); (X.Z.); (J.Z.); (T.R.)
| | - Xuan Zhao
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (X.L.); (X.Z.); (J.Z.); (T.R.)
| | - Jiateng Zhao
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (X.L.); (X.Z.); (J.Z.); (T.R.)
| | - Tiantian Ren
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (X.L.); (X.Z.); (J.Z.); (T.R.)
| | - Lanchun Nie
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (X.L.); (X.Z.); (J.Z.); (T.R.)
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding 071000, China
- Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Baoding 071000, China
| | - Wensheng Zhao
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (X.L.); (X.Z.); (J.Z.); (T.R.)
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding 071000, China
- Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Baoding 071000, China
| |
Collapse
|
9
|
Dikšaitytė A, Kniuipytė I, Žaltauskaitė J, Abdel-Maksoud MA, Asard H, AbdElgawad H. Enhanced Cd phytoextraction by rapeseed under future climate as a consequence of higher sensitivity of HMA genes and better photosynthetic performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168164. [PMID: 37914112 DOI: 10.1016/j.scitotenv.2023.168164] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
This study aimed to investigate the underlying physiological, biochemical, and molecular mechanisms responsible for Brassica napu's potential to remediate Cd-contaminated soil under current (CC) vs. future (FC) climate (400 vs. 800 ppm of CO2, 21/14 °C vs. 25/18 °C). B. napus exhibited good tolerance to low Cd treatments (Cd-1, Cd-10, i.e., 1, 10 mg kg-1) under both climates without visible phytotoxicity symptoms. TI sharply decreased by 47 % and 68 % (p < 0.05), respectively, in Cd-50 and Cd-100 treated shoots under CC, but to a lesser extent (-26 % and -53 %, p < 0.05) under FC. This agreed with increased photosynthetic apparatus performance under FC, primarily due to a significant decrease in the closure of active PSII RCs ((dV/dt)o, TRo/RC) and less dissipated excitation energy (DIo/RC, φDo). Calvin Benson cycle-related enzyme activity also improved under FC with 2.2-fold and 2.4-fold (p < 0.05) increases in Rubisco and TPI under Cd-50 and Cd-100, respectively. Consequentially, a 2.2-fold and 2.3-fold (p < 0.05) boosted Pr resulted in a 2.3-fold and 2.4-fold (p < 0.05) increase in the DW of Cd-50 and Cd-100 treated shoots, respectively. This also led to a decrease (26 %, p < 0.05) in shoot Cd concentration under both high Cd treatments with a slight reduction in BCF. Translocation factor (TF) decreased (on average 42 %, p < 0.05) by high Cd treatments under both climates. However, under Cd-100, FC increased TF by 1.7-fold (p < 0.05) compared to CC, which could be explained by significant increases in the expression of HMA genes, especially BnaHMA4a and BnaHMA4c. Finally, Cd TU increased under FC by 65 % and 76 % (p < 0.05) under Cd-50 and Cd-100. This led to a shorter hypothetical remediation time for reaching the Cd pollution limit by 35 (p > 0.05) and 61 (p < 0.05) years, respectively, compared to CC.
Collapse
Affiliation(s)
- Austra Dikšaitytė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto st. 10, LT-53361 Akademija, Kaunas distr., Lithuania.
| | - Inesa Kniuipytė
- Lithuanian Energy Institute, Laboratory of Heat-Equipment Research and Testing, Breslaujos st. 3, LT-44403 Kaunas, Lithuania
| | - Jūratė Žaltauskaitė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto st. 10, LT-53361 Akademija, Kaunas distr., Lithuania
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Han Asard
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Sana S, Ramzan M, Ejaz S, Danish S, Salmen SH, Ansari MJ. Differential responses of chili varieties grown under cadmium stress. BMC PLANT BIOLOGY 2024; 24:7. [PMID: 38163887 PMCID: PMC10759427 DOI: 10.1186/s12870-023-04678-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Heavy metal cadmium (Cd) naturally occurs in soil and is a hazardous trace contaminant for humans, animals, and plants. The main sources of Cd pollution in soil include overuse of phosphatic fertilizers, manure, sewage sludge, and aerial deposition. That's why an experiment was conducted to analyze the effect of Cd toxicity in Capsicum annuum L. by selecting its seven varieties: Hybrid, Desi, Sathra, G-916, BR-763, BG-912, and F1-9226. Cadmium was spiked in soil with four levels, i.e., (0, 3, 4, and 5 mg Cd kg- 1 of soil) for a week for homogeneous dispersion of heavy metal. Chili seeds were sown in compost-filled loamy soil, and 25-day-old seedlings were transplanted into Cd-spiked soil. Cadmium increasing concentration in soil decreased chili growth characteristics, total soluble sugars, total proteins, and amino acids. On the other hand, the activities of antioxidant enzymes were increased with the increasing concentration of Cd in almost all the varieties. Treatment 5 mg Cd/kg application caused - 197.39%, -138.78%, -60.77%, -17.84%, -16.34%, -11.82% and - 10.37% decrease of carotenoids level in chili V2 (Desi) followed by V4 (G-916), V1 (Hy7brid), V7 (F1-9226), V6 (BG-912), V5 (BR-763) and V3 (Sathra) as compared to their controls. The maximum flavonoids among varieties were in V5 (BR-763), followed by V6 (BG-912), V7 (F1-9226), V3 (Sathra) and V1 (Hybrid). Flavonoids content was decreased with - 37.63% (Sathra), -34.78% (Hybrid), -33.85% (G-916), -31.96% (F1-9226), -31.44% (Desi), -30.58% (BR-763), -22.88% (BG-912) as compared to their control at 5 mg Cd/kg soil stress. The maximum decrease in POD, SOD, and CAT was - 31.81%, -25.98%, -16.39% in chili variety V7 (F1-9226) at 5 mg Cd/kg stress compared to its control. At the same time, maximum APX content decrease was - 82.91%, followed by -80.16%, -65.19%, -40.31%, -30.14%, -10.34% and - 6.45% in V4 (G-916), V2 (Desi), V3 (Sathra), V6 (BG-912), V1 (Hybrid), V7 (F1-9226) and V5 (BR-763) at 5 mg Cd/kg treatment as compared to control chili plants. The highest CAT was found in 5 chili varieties except Desi and G-916. Desi and G-916 varieties. V5 (BR-763) and V6 (BG-912) were susceptible, while V1 (Hybrid), V3 (Sathra), and V7 (F1-9226) were with intermediate growth attributes against Cd stress. Our results suggest that Desi and G-916 chili varieties are Cd tolerant and can be grown on a large scale to mitigate Cd stress naturally.
Collapse
Affiliation(s)
- Sundas Sana
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Musarrat Ramzan
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Samina Ejaz
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics (IBBB), The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (MJP Rohilkhand University Bareilly), Moradabad, 244001, India
- Al-Waili foundation of Science, New York, USA
| |
Collapse
|
11
|
Lupp RM, Marques DN, Lima Nogueira M, Carvalho MEA, Azevedo RA, Piotto FA. Cadmium tolerance in tomato: determination of organ-specific contribution by diallel analysis using reciprocal grafts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:215-227. [PMID: 38049693 DOI: 10.1007/s11356-023-31230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023]
Abstract
Given the increasing problems of water and soil contamination with cadmium (Cd), it is necessary to investigate the genetic and physiological mechanisms of tolerance to this metal in different crops, which can be used for the development of effective crop management strategies. This study aimed to assess the potential of grafting as a strategy to increase Cd tolerance and reduce absorption in tomato by evaluating the contribution of the root system and aerial parts for tolerance mechanisms. To this end, reciprocal grafting and diallel analyses were used to examine the combining ability of contrasting tomato genotypes under exposure to 0 and 35 µM CdCl2. Roots and above-ground parts were found to have specific mechanisms of Cd tolerance, absorption, and accumulation. Grafting of the USP15 genotype (scion) on USP16 (rootstock) provided the greatest synergism, increasing the tolerance index and reducing the translocation index and Cd accumulation in leaves. USP163 exhibited potential for breeding programs that target genotypes with high Cd tolerance. In tomato, both Cd tolerance and accumulation in aerial parts are genotype- and tissue-specific, controlled by a complex system of complementary mechanisms that need to be better understood to support the development of strategies to reduce Cd contamination in aerial parts.
Collapse
Affiliation(s)
- Renata Mota Lupp
- Crop Science Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Deyvid Novaes Marques
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Marina Lima Nogueira
- Department of Agricultural, Livestock and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | | | - Ricardo Antunes Azevedo
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Fernando Angelo Piotto
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
12
|
Bitarishvili S, Dikarev A, Kazakova E, Bondarenko E, Prazyan A, Makarenko E, Babina D, Podobed M, Geras'kin S. Growth, antioxidant system, and phytohormonal status of barley cultivars contrasting in cadmium tolerance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59749-59764. [PMID: 37014597 DOI: 10.1007/s11356-023-26523-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/14/2023] [Indexed: 05/10/2023]
Abstract
Cadmium leads to disturbance of plant growth, and the manifestation of toxicity can vary greatly in different genotypes within one species. In this work we studied the effect of Cd on growth, antioxidant enzyme activity, and phytohormonal status of four barley cultivars (cvs. Simfoniya, Mestnyj, Ca 220702, Malva). According to the earlier study on seedlings, these cultivars were contrast in tolerance to Cd: Simfoniya and Mestnyj are Cd-tolerant and Ca 220702 and Malva are Cd-sensitive. The results presented showed that barley plants accumulated more Cd in straw than in grain. Tolerant cultivars accumulated significantly less Cd in grain than sensitive ones. The leaf area appeared to be a growth parameter susceptible to Cd treatment. The significant differences in leaf area values depended on Cd contamination and were not associated with cultivars' tolerance. Tolerance of cultivars was contingent on the activity of the antioxidant defense system. Indeed, activity of enzymes decreased in sensitive cultivars Ca 220702 and Malva under Cd stress. In contrast, in tolerant cultivars, increased activity of guaiacol peroxidase was revealed. The concentrations of abscisic acid and salicylic acid mostly increased as a result of Cd treatment, while the concentrations of auxins and trans-zeatin either decreased or did not change. The results obtained indicate that antioxidant enzymes and phytohormones play an important role in the response of barley plants to elevated concentrations of cadmium; however, these parameters are not able to explain the differentiation of barley cultivars in terms of tolerance to cadmium at the seedling stage. Therefore, barley intraspecific polymorphism for cadmium resistance is determined by the interplay of antioxidant enzymes, phytohormones, and other factors that require further elucidation.
Collapse
Affiliation(s)
- Sofia Bitarishvili
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation.
| | - Alexey Dikarev
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| | - Elizaveta Kazakova
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| | | | - Alexandr Prazyan
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| | | | - Darya Babina
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| | - Marina Podobed
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| | | |
Collapse
|
13
|
Luo F, Zhu D, Sun H, Zou R, Duan W, Liu J, Yan Y. Wheat Selenium-binding protein TaSBP-A enhances cadmium tolerance by decreasing free Cd 2+ and alleviating the oxidative damage and photosynthesis impairment. FRONTIERS IN PLANT SCIENCE 2023; 14:1103241. [PMID: 36824198 PMCID: PMC9941557 DOI: 10.3389/fpls.2023.1103241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Cadmium, one of the toxic heavy metals, robustly impact crop growth and development and food safety. In this study, the mechanisms of wheat (Triticum aestivum L.) selenium-binding protein-A (TaSBP-A) involved in response to Cd stress was fully investigated by overexpression in Arabidopsis and wheat. As a cytoplasm protein, TaSBP-A showed a high expression in plant roots and its expression levels were highly induced by Cd treatment. The overexpression of TaSBP-A enhanced Cd-toleration in yeast, Arabidopsis and wheat. Meanwhile, transgenic Arabidopsis under Cd stress showed a lower H2O2 and malondialdehyde content and a higher photochemical efficiency in the leaf and a reduction of free Cd2+ in the root. Transgenic wheat seedlings of TaSBP exhibited an increment of Cd content in the root, and a reduction Cd content in the leaf under Cd2+ stress. Cd2+ binding assay combined with a thermodynamics survey and secondary structure analysis indicated that the unique CXXC motif in TaSBP was a major Cd-binding site participating in the Cd detoxification. These results suggested that TaSBP-A can enhance the sequestration of free Cd2+ in root and inhibit the Cd transfer from root to leaf, ultimately conferring plant Cd-tolerance via alleviating the oxidative stress and photosynthesis impairment triggered by Cd stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yueming Yan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, China
| |
Collapse
|
14
|
Marques DN, Nogueira ML, Gaziola SA, Batagin-Piotto KD, Freitas NC, Alcantara BK, Paiva LV, Mason C, Piotto FA, Azevedo RA. New insights into cadmium tolerance and accumulation in tomato: Dissecting root and shoot responses using cross-genotype grafting. ENVIRONMENTAL RESEARCH 2023; 216:114577. [PMID: 36252830 DOI: 10.1016/j.envres.2022.114577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is one of the most threatening soil and water contaminants in agricultural settings. In previous studies, we observed that Cd affects the metabolism and physiology of tomato (Solanum lycopersicum) plants even after short-term exposure. The objective of this research was to use cross-genotype grafting to distinguish between root- and shoot-mediated responses of tomato genotypes with contrasting Cd tolerance at the early stages of Cd exposure. This study provides the first report of organ-specific contributions in two tomato genotypes with contrasting Cd tolerance: Solanum lycopersicum cv. Calabash Rouge and Solanum lycopersicum cv. Pusa Ruby (which have been classified and further characterized as sensitive (S) and tolerant (T) to Cd, respectively). Scion S was grafted onto rootstock S (S/S) and rootstock T (S/T), and scion T was grafted onto rootstock T (T/T) and rootstock S (T/S). A 35 μM cadmium chloride (CdCl2) treatment was used for stress induction in a hydroponic system. Both shoot and root contributions to Cd responses were observed, and they varied in a genotype- and/or organ-dependent manner for nutrient concentrations, oxidative stress parameters, antioxidant enzymes, and transporters gene expression. The findings overall provide evidence for the dominant role of the tolerant rootstock system in conferring reduced Cd uptake and accumulation. The lowest leaf Cd concentrations were observed in T/T (215.11 μg g-1 DW) and S/T (235.61 μg g-1 DW). Cadmium-induced decreases in leaf dry weight were observed only in T/S (-8.20%) and S/S (-13.89%), which also were the only graft combinations that showed decreases in chlorophyll content (-3.93% in T/S and -4.05% in S/S). Furthermore, the results show that reciprocal grafting is a fruitful approach for gaining insights into the organ-specific modulation of Cd tolerance and accumulation during the early stages of Cd exposure.
Collapse
Affiliation(s)
- Deyvid Novaes Marques
- Department of Genetics, University of São Paulo/Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil.
| | - Marina Lima Nogueira
- Department of Genetics, University of São Paulo/Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil
| | - Salete Aparecida Gaziola
- Department of Genetics, University of São Paulo/Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil
| | | | - Natália Chagas Freitas
- Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras (UFLA), Lavras, MG, Brazil
| | | | - Luciano Vilela Paiva
- Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras (UFLA), Lavras, MG, Brazil
| | - Chase Mason
- Department of Biology, University of Central Florida, Orlando, FL, USA
| | - Fernando Angelo Piotto
- Department of Crop Science, University of São Paulo/Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil
| | - Ricardo Antunes Azevedo
- Department of Genetics, University of São Paulo/Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil
| |
Collapse
|
15
|
Godinho DP, Serrano HC, Magalhães S, Branquinho C. Concurrent herbivory and metal accumulation: The outcome for plants and herbivores. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2022; 3:170-178. [PMID: 37283609 PMCID: PMC10168039 DOI: 10.1002/pei3.10088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 06/08/2023]
Abstract
The effects of metals on plants and herbivores, as well as the interaction among the latter, are well documented. However, the effects of simultaneous herbivory and metal accumulation remain poorly studied. Here, we shed light on this topic by infesting cadmium-accumulating tomato plants (Solanum lycopersicum), either exposed to cadmium or not, with herbivorous spider mites, Tetranychus urticae or T. evansi during 14 days. Whereas on plants without cadmium T. evansi had higher growth rate than T. urticae, on plants with cadmium both mite species had similar growth rates, which were lower than on plants without metal. Plants were affected by both cadmium toxicity and by herbivory, as shown by leaf reflectance, but not on the same wavelengths. Moreover, changes in leaf reflectance on the wavelength affected by herbivores were similar on plants with and without cadmium, and vice versa. Long-term effects of cadmium and herbivory did not affect H2O2 concentrations in the plant. Finally, plants infested with spider mites did not accumulate more cadmium, suggesting that metal accumulation is not induced by herbivory. We thus conclude that cadmium accumulation affects two congeneric herbivore species differently and that the effects of herbivory and cadmium toxicity on plants may be disentangled, via leaf reflectance, even during simultaneous exposure.
Collapse
Affiliation(s)
- Diogo P. Godinho
- Centre for Ecology, Evolution and Environmental Changes (cE3c)Faculdade de Ciências da Universidade de LisboaLisbonPortugal
| | - Helena C. Serrano
- Centre for Ecology, Evolution and Environmental Changes (cE3c)Faculdade de Ciências da Universidade de LisboaLisbonPortugal
| | - Sara Magalhães
- Centre for Ecology, Evolution and Environmental Changes (cE3c)Faculdade de Ciências da Universidade de LisboaLisbonPortugal
- Departamento de Biologia AnimalFaculdade de Ciências da Universidade de LisboaLisbonPortugal
| | - Cristina Branquinho
- Centre for Ecology, Evolution and Environmental Changes (cE3c)Faculdade de Ciências da Universidade de LisboaLisbonPortugal
- Departamento de Biologia VegetalFaculdade de Ciências da Universidade de LisboaLisbonPortugal
| |
Collapse
|
16
|
Kaleem M, Shabir F, Hussain I, Hameed M, Ahmad MSA, Mehmood A, Ashfaq W, Riaz S, Afzaal Z, Maqsood MF, Iqbal U, Shah SMR, Irshad M. Alleviation of cadmium toxicity in Zea mays L. through up-regulation of growth, antioxidant defense system and organic osmolytes under calcium supplementation. PLoS One 2022; 17:e0269162. [PMID: 35731737 PMCID: PMC9216560 DOI: 10.1371/journal.pone.0269162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/15/2022] [Indexed: 01/05/2023] Open
Abstract
Calcium (Ca) is a macronutrient and works as a modulator to mitigate oxidative stress induced by heavy metals. In this study, we investigated the role of Ca to ameliorate the Cd toxicity in Zea mays L. by modulating the growth, physio-biochemical traits, and cellular antioxidant defense system. Maize genotype Sahiwal-2002 was grown under a controlled glasshouse environment with a day/night temperature of 24 ± 4°C/14 ± 2°C in a complete randomized design with three replications and two Cd levels as (0 and 150 μM) and six regimes of Ca (0, 0.5, 1, 2.5, 5, and 10 mM). Maize seedlings exposed to Cd at 150 μM concentration showed a notable decrease in growth, biomass, anthocyanins, chlorophylls, and antioxidant enzymes activities. A higher level of Cd (150 μM) also caused an upsurge in oxidative damage observed as higher electrolyte leakage (increased membrane permeability), H2O2 production, and MDA accumulation. Supplementation of Ca notably improved growth traits, photosynthetic pigments, cellular antioxidants (APX, POD, and ascorbic acid), anthocyanins, and levels of osmolytes. The significant improvement in the osmolytes (proteins and amino acids), and enzymatic antioxidative defense system enhanced the membrane stability and mitigated the damaging effects of Cd. The present results concluded that exogenously applied Ca potentially improve growth by regulating antioxidants and enabling maize plants to withstand the Cd toxicity.
Collapse
Affiliation(s)
- Muhammad Kaleem
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
- Department of Botany, Government College University, Faisalabad, Pakistan Department of Botany, Government Associate College for Women Layyah, Layyah, Pakistan
| | - Farah Shabir
- Department of Botany, Government Associate College for Women Layyah, Layyah, Pakistan
| | - Iqbal Hussain
- Department of Botany, Government College University, Faisalabad, Pakistan Department of Botany, Government Associate College for Women Layyah, Layyah, Pakistan
- * E-mail:
| | - Mansoor Hameed
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | | | - Anam Mehmood
- Department of Bioinformatics & Biotechnology, Government College University, Faisalabad, Pakistan
| | - Waseem Ashfaq
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Saima Riaz
- Department of Botany, Government College University, Faisalabad, Pakistan Department of Botany, Government Associate College for Women Layyah, Layyah, Pakistan
| | - Zarbakht Afzaal
- Department of Botany, Government College University, Faisalabad, Pakistan Department of Botany, Government Associate College for Women Layyah, Layyah, Pakistan
| | | | - Ummar Iqbal
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Irshad
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
17
|
Yang L, Wu Y, Wang X, Lv J, Tang Z, Hu L, Luo S, Wang R, Ali B, Yu J. Physiological Mechanism of Exogenous 5-Aminolevulinic Acid Improved the Tolerance of Chinese Cabbage ( Brassica pekinensis L.) to Cadmium Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:845396. [PMID: 35720555 PMCID: PMC9199490 DOI: 10.3389/fpls.2022.845396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/04/2022] [Indexed: 06/15/2023]
Abstract
The 5-aminolevulinic acid (ALA), a new type of plant growth regulator, can relieve the toxicity of cadmium (Cd) to plants. However, its mechanism has not been thoroughly studied. In the study, the roles of ALA have been investigated in the tolerance of Chinese cabbage (Brassica pekinensis L.) seedlings to Cd stress. The results showed that Cd significantly reduced the biomass and the length of the primary root of seedlings but increased the malondialdehyde (MDA) and the hydrogen peroxide (H2O2) contents. These can be effectively mitigated through the application of ALA. The ALA can further induce the activities of antioxidant enzymes in the ascorbate-glutathione (AsA-GSH) cycle under Cd stress, which resulted in high levels of both GSH and AsA. Under ALA + Cd treatment, the seedlings showed a higher chlorophyll content and photosynthetic performance in comparison with Cd treatment alone. Microscopic analysis results confirmed that ALA can protect the cell structure of shoots and roots, i.e., stabilizing the morphological structure of chloroplasts in leaf mesophyll cells. The qRT-PCR results further reported that ALA downregulated the expressions of Cd absorption and transport-related genes in shoots (HMA2 and HMA4) and roots (IRT1, IRT2, Nramp1, and Nramp3), which resulted in the low Cd content in the shoots and roots of cabbage seedlings. Taken together, the exogenous application of ALA alleviates Cd stress through maintaining redox homeostasis, protecting the photosynthetic system, and regulating the expression of Cd transport-related genes in Chinese cabbage seedlings.
Collapse
Affiliation(s)
- Lijing Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Ruidong Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Basharat Ali
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
18
|
Khanna K, Kohli SK, Ohri P, Bhardwaj R, Ahmad P. Agroecotoxicological Aspect of Cd in Soil–Plant System: Uptake, Translocation and Amelioration Strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30908-30934. [PMID: 0 DOI: 10.1007/s11356-021-18232-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/16/2021] [Indexed: 05/27/2023]
|
19
|
Song C, Acuña T, Adler-Agmon M, Rachmilevitch S, Barak S, Fait A. Leveraging a graft collection to develop metabolome-based trait prediction for the selection of tomato rootstocks with enhanced salt tolerance. HORTICULTURE RESEARCH 2022; 9:uhac061. [PMID: 35531316 PMCID: PMC9071376 DOI: 10.1093/hr/uhac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Grafting has been demonstrated to significantly enhance the salt tolerance of crops. However, breeding efforts to develop enhanced graft combinations are hindered by knowledge-gaps as to how rootstocks mediate scion-response to salt stress. We grafted the scion of cultivated M82 onto rootstocks of 254 tomato accessions and explored the morphological and metabolic responses of grafts under saline conditions (EC = 20 dS m-1) as compared to self-grafted M82 (SG-M82). Correlation analysis and Least Absolute Shrinkage and Selection Operator were performed to address the association between morphological diversification and metabolic perturbation. We demonstrate that grafting the same variety onto different rootstocks resulted in scion phenotypic heterogeneity and emphasized the productivity efficiency of M82 irrespective of the rootstock. Spectrophotometric analysis to test lipid oxidation showed largest variability of malondialdehyde (MDA) equivalents across the population, while the least responsive trait was the ratio of fruit fresh weight to total fresh weight (FFW/TFW). Generally, grafts showed greater values for the traits measured than SG-M82, except for branch number and wild race-originated rootstocks; the latter were associated with smaller scion growth parameters. Highly responsive and correlated metabolites were identified across the graft collection including malate, citrate, and aspartate, and their variance was partly related to rootstock origin. A group of six metabolites that consistently characterized exceptional graft response was observed, consisting of sorbose, galactose, sucrose, fructose, myo-inositol, and proline. The correlation analysis and predictive modelling, integrating phenotype- and leaf metabolite data, suggest a potential predictive relation between a set of leaf metabolites and yield-related traits.
Collapse
Affiliation(s)
- Chao Song
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Tania Acuña
- Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | | | - Shimon Rachmilevitch
- Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Simon Barak
- Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Aaron Fait
- Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| |
Collapse
|
20
|
Checchio MV, de Cássia Alves R, de Oliveira KR, Moro GV, Santos DMMD, Gratão PL. Enhancement of salt tolerance in corn using Azospirillum brasilense: an approach on antioxidant systems. JOURNAL OF PLANT RESEARCH 2021; 134:1279-1289. [PMID: 34302571 DOI: 10.1007/s10265-021-01332-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/15/2021] [Indexed: 05/24/2023]
Abstract
Salinity has become one of the major factors limiting agricultural production. In this regard, different cost-effective management strategies such as the use of plant growth-promoting bacteria (PGPB) as inoculants to alleviate salt-stress conditions and minimize plant productivity losses have been used in agricultural systems. The aim of this study was to characterize induced antioxidant responses in corn through inoculation with Azospirillum brasilense and examine the relationship between these responses and the acquired salt-stress tolerance. Treatments were performed by combining sodium chloride (0 and 100 mM NaCl) through irrigation water with absence and presence of A. brasilense inoculation. The experiment was performed in a completely randomized design with four replications. Lipid peroxidation (malondialdehyde [MDA]), and nitrogen (N), sodium (Na+) and potassium (K+) contents, as well as dry biomass, glycine betaine, and antioxidant enzymes activities such as of superoxide dismutase (SOD, EC 1. 15. 1. 1), glutathione reductase (GR, EC 1. 6. 4. 2), guaiacol peroxidase (GPOX, EC 1. 11. 1. 7), and glutathione peroxidase (GSH-PX, EC 1. 11. 1. 9) were determined. Overall results indicated that plants treated with 100 mM NaCl showed the most pronounced salt-stress damages with consequent increase in MDA content. However, inoculated plants showed an enhanced capacity to withstand or avoid salt-stress damages. These results could be attributed, at least in part, to the increased activity of antioxidant enzymes. Our results suggest that A. brasilense may confer tolerance to salt stress in corn plants enhancing antioxidant responses, primarily by the enzymes GSH-PX and GPOX, and the osmolyte glycine betaine.
Collapse
Affiliation(s)
- Mirela Vantini Checchio
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Depto. de Biologia Aplicada à Agropecuária, Jaboticabal, SP, 14884-900, Brazil
| | - Rita de Cássia Alves
- Núcleo de Produção Vegetal, Instituto Nacional do Semiárido (INSA), Campina Grande, PB, 58434-700, Brazil
| | - Kevein Ruas de Oliveira
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Depto. de Biologia Aplicada à Agropecuária, Jaboticabal, SP, 14884-900, Brazil
| | - Gustavo Vitti Moro
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Depto. de Produção Vegetal, Jaboticabal, SP, 14884-900, Brazil
| | - Durvalina Maria Mathias Dos Santos
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Depto. de Biologia Aplicada à Agropecuária, Jaboticabal, SP, 14884-900, Brazil
| | - Priscila Lupino Gratão
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Depto. de Biologia Aplicada à Agropecuária, Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|
21
|
Hussain MK, Aziz A, Ditta HMA, Azhar MF, El-Shehawi AM, Hussain S, Mehboob N, Hussain M, Farooq S. Foliar application of seed water extract of Nigella sativa improved maize growth in cadmium-contaminated soil. PLoS One 2021; 16:e0254602. [PMID: 34252121 PMCID: PMC8274843 DOI: 10.1371/journal.pone.0254602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
Cadmium (Cd) is a widespread heavy metal, which commonly exert negative impacts on agricultural soils and living organisms. Foliar application of seed water extract of black cumin (Nigella sativa L.) can mitigate the adverse impacts of Cd-toxicity in plants through its rich antioxidants. This study examined the role of seed water extracts of N. sativa (NSE) in mitigating the adverse impacts of Cd-toxicity on maize growth. Two maize genotypes (synthetic ‘Neelum’ and hybrid ‘P1543’) were grown under 0, 4, 8 and 12 mg Cd kg-1 soil. The NSE was applied at three different concentrations (i.e., 0, 10 and 20%) as foliar spray at 25 and 45 days after sowing. All Cd concentrations had no effect on germination percentage of both genotypes. Increasing Cd concentration linearly decreased root and allometric attributes, gas exchange traits and relative water contents of hybrid genotype. However, gas exchange traits of synthetic genotype remained unaffected by Cd-toxicity. Overall, hybrid genotype showed better tolerance to Cd-toxicity than synthetic genotype with better germination and allometric attributes and less Cd accumulation. Foliar application of NSE lowered negative effects of Cd-toxicity on all studied traits, except relative water contents. In conclusion, foliar application of NSE seemed a viable option to improve maize growth in Cd-contaminated soil.
Collapse
Affiliation(s)
| | - Abida Aziz
- Department of Botany, The Women University, Multan, Pakistan
| | | | | | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Sajjad Hussain
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Noman Mehboob
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| | - Mubshar Hussain
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
- * E-mail:
| | - Shahid Farooq
- Department of Plant Protection, Faculty of Agriculture, Harran University, Şanlıurfa, Turkey
| |
Collapse
|
22
|
Sakouhi L, Kharbech O, Massoud MB, Gharsallah C, Hassine SB, Munemasa S, Murata Y, Chaoui A. Calcium and ethylene glycol tetraacetic acid mitigate toxicity and alteration of gene expression associated with cadmium stress in chickpea (Cicer arietinum L.) shoots. PROTOPLASMA 2021; 258:849-861. [PMID: 33432416 DOI: 10.1007/s00709-020-01605-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/28/2020] [Indexed: 05/20/2023]
Abstract
In the aim to estimate the protective role of calcium (Ca) and ethylene glycol tetraacetic acid (EGTA) against cadmium (Cd)-induced damage, chickpea (Cicer arietinum L.) seeds were exposed to 200 μM Cd stress for 6 days or 3 days then subjected to co-treatment of the metal with either 100 mM CaCl2 or 100 μM EGTA for 3 additional days. The addition of Ca and EGTA improved seedling growth. This protecting effect was correlated to the alleviation of the metal-induced oxidative stress, exemplified by the reduction of hydrogen peroxide (H2O2) contents. Besides, Ca and EGTA stimulated thioredoxin (Trx) and thioredoxin reductase (NTR) activities (2.75- and 1.75-fold increase when compared to Cd-stressed, respectively) protecting, thereby, protein -SH groups from the Cd-mediated oxidation, and modulated ferredoxin (Fdx) activity to a control level. Moreover, Ca and EGTA reinstated the glutathione redox steady state, mainly via preserving a high level of glutathione reduced form (GSH). This effect coincided with the maintaining of the Cd-stimulated glutathione reductase (GR) activity and the decline of glutathione peroxidase (GPX, 43% lower than Cd-stressed shoots) activity. Ca and EGTA counteracted the inhibitory effect of Cd on the activity and gene expression of Cu/Zn-superoxide dismutase (Cu/Zn-SOD) isoenzyme and modulated the activities of catalase (CAT) and ascorbate peroxidase (APX). Overall, our results provided evidence that Ca and EGTA supplement could be a promising approach in the remediation of Cd-contaminated environment.
Collapse
Affiliation(s)
- Lamia Sakouhi
- Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, University of Carthage, 7021, Bizerte, Tunisia.
| | - Oussama Kharbech
- Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, University of Carthage, 7021, Bizerte, Tunisia
| | - Marouane Ben Massoud
- Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, University of Carthage, 7021, Bizerte, Tunisia
- Proteomics Research Group, School of Biochemistry and Cell Biology & Environmental Research Institute, University College Cork, Lee Maltings, Prospect Row, Mardyke, Cork, Ireland
| | - Charfeddine Gharsallah
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of Sciences of Tunis, University of Tunis ElManar, 2092, Tunis, Tunisia
| | - Sihem Ben Hassine
- Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, University of Carthage, 7021, Bizerte, Tunisia
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Abdelilah Chaoui
- Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, University of Carthage, 7021, Bizerte, Tunisia
| |
Collapse
|
23
|
Thind S, Hussain I, Ali S, Rasheed R, Ashraf MA. Silicon Application Modulates Growth, Physio-Chemicals, and Antioxidants in Wheat ( Triticum aestivum L.) Exposed to Different Cadmium Regimes. Dose Response 2021; 19:15593258211014646. [PMID: 34158808 PMCID: PMC8182634 DOI: 10.1177/15593258211014646] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
Silicon (Si) application enhanced the tolerance of plants against different environmental stresses. Therefore, objective of the study revealed that foliar applied Si alleviates the adverse effect of Cd by enhancing the growth, metabolite accumulation, strengthening the antioxidant defense system, reducing oxidative injury, improving plant nutrient status, and decreasing the Cd uptake in wheat. The surface sterilized seeds of Sahar-2006 (tolerant) and Inqalab-91 (sensitive) having the differential metal tolerance capacity were sown in plastic pots containing normal and Cd spiked sandy loamy soil. The design of experiments was completely randomized with 3 replicates per treatment. Two weeks after germination, plants were sprayed with different concentrations of Si (1.5 and 3 mM) with 0.1% surfactant in the form of Tween-20. The plants were harvested after 2 weeks of Si application to determine various attributes. High concentration of Cd (25 mg kg-1) decreased growth-related-attributes, essential nutrient uptake and increase the levels of oxidative stress indicators. The application of Si increased the growth-related attributes, photosynthetic pigments, essential nutrient uptake and also enhanced the activities of various antioxidant compounds (superoxide dismutase (SOD), peroxidase (POD, ascorbate peroxidase (APX) and catalase (CAT) by decreasing the contents of oxidative stress indicators and Cd uptake in root and shoot of both wheat cultivars. Sahar-2006 cultivar showed more tolerance to Cd regimes than that of Inqalab-91 as clear from greater plant dry masses. Thus, our results showed that the applied Si level (3 mM) is an efficient strategy for field use in the areas, where slightly Cd polluted soils limit the agriculture production.
Collapse
Affiliation(s)
- Sumaira Thind
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Iqbal Hussain
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| | - Rizwan Rasheed
- Department of Botany, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
24
|
Seed priming with ascorbic acid enhances salt tolerance in micro-tom tomato plants by modifying the antioxidant defense system components. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Adamakis IDS, Sperdouli I, Hanć A, Dobrikova A, Apostolova E, Moustakas M. Rapid Hormetic Responses of Photosystem II Photochemistry of Clary Sage to Cadmium Exposure. Int J Mol Sci 2020; 22:E41. [PMID: 33375193 PMCID: PMC7793146 DOI: 10.3390/ijms22010041] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Five-day exposure of clary sage (Salvia sclarea L.) to 100 μM cadmium (Cd) in hydroponics was sufficient to increase Cd concentrations significantly in roots and aboveground parts and affect negatively whole plant levels of calcium (Ca) and magnesium (Mg), since Cd competes for Ca channels, while reduced Mg concentrations are associated with increased Cd tolerance. Total zinc (Zn), copper (Cu), and iron (Fe) uptake increased but their translocation to the aboveground parts decreased. Despite the substantial levels of Cd in leaves, without any observed defects on chloroplast ultrastructure, an enhanced photosystem II (PSII) efficiency was observed, with a higher fraction of absorbed light energy to be directed to photochemistry (ΦPSΙΙ). The concomitant increase in the photoprotective mechanism of non-photochemical quenching of photosynthesis (NPQ) resulted in an important decrease in the dissipated non-regulated energy (ΦNO), modifying the homeostasis of reactive oxygen species (ROS), through a decreased singlet oxygen (1O2) formation. A basal ROS level was detected in control plant leaves for optimal growth, while a low increased level of ROS under 5 days Cd exposure seemed to be beneficial for triggering defense responses, and a high level of ROS out of the boundaries (8 days Cd exposure), was harmful to plants. Thus, when clary sage was exposed to Cd for a short period, tolerance mechanisms were triggered. However, exposure to a combination of Cd and high light or to Cd alone (8 days) resulted in an inhibition of PSII functionality, indicating Cd toxicity. Thus, the rapid activation of PSII functionality at short time exposure and the inhibition at longer duration suggests a hormetic response and describes these effects in terms of "adaptive response" and "toxicity", respectively.
Collapse
Affiliation(s)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization—Demeter, Thermi, 57001 Thessaloniki, Greece;
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland;
| | - Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.D.); (E.A.)
| | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.D.); (E.A.)
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
26
|
Molina R, López G, Coniglio A, Furlan A, Mora V, Rosas S, Cassán F. Day and blue light modify growth, cell physiology and indole-3-acetic acid production of Azospirillum brasilense Az39 under planktonic growth conditions. J Appl Microbiol 2020; 130:1671-1683. [PMID: 32979295 DOI: 10.1111/jam.14869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 11/28/2022]
Abstract
AIM In this work, we evaluated the effects of light on growth, cell physiology and stress response of Azospirillum brasilense Az39, a non-photosynthetic rhizobacteria, under planktonic growth conditions. METHODS AND RESULTS Exponential cultures of Az39 were exposed to blue (BL), red (RL) and daylight (DL) or maintained in darkness for 24, 48 and 72 h. The biomass production and indole 3-acetic acid (IAA) biosynthesis increased by exposition to DL. Conversely, BL decreased IAA concentration through a direct effect on the molecule. The DL increased superoxide dismutase activity, hydrogen peroxide and thiobarbituric acid reactive substances levels, but the last one was also increased by BL. Both DL and BL increased cell aggregation but only BL increased biofilm formation. CONCLUSIONS We demonstrated that both BL and DL are stress effectors for A. brasilense Az39 under planktonic growth conditions. The DL increased biomass production, IAA biosynthesis and bacterial response to stress, whereas BL induced cell aggregation and biofilms formation, but decreased the IAA concentration by photooxidation. SIGNIFICANCE AND IMPACT OF THE STUDY Blue light and DL changes growth capacity, cell physiology and plant growth promotion ability of A. brasilense Az39 and these changes could be considered to improve the production and functionality of biofertilizers.
Collapse
Affiliation(s)
- R Molina
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - G López
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - A Coniglio
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - A Furlan
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - V Mora
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - S Rosas
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - F Cassán
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
27
|
Oliveira KR, Souza Junior JP, Bennett SJ, Checchio MV, Alves RDC, Felisberto G, Prado RDM, Gratão PL. Exogenous silicon and salicylic acid applications improve tolerance to boron toxicity in field pea cultivars by intensifying antioxidant defence systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110778. [PMID: 32480161 DOI: 10.1016/j.ecoenv.2020.110778] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Field peas (Pisum sativum L.) are widely cultivated throughout the world as a cool season grain and forage crop. Boron (B) toxicity is caused by high B concentration in the soil or irrigation water, and is particularly problematic in medium or heavier textured soil types with moderate alkalinity and low annual rainfall. Previous studies have indicated that B-toxicity increases oxidative stress in plants, and B-tolerance has been considered an important target in field pea plant breeding programmes. Inducers of tolerance may be a promising alternative for plant breeding. Little research has been conducted on the combined use of silicon (Si) and salicylic acid (SA) to remediate B-toxicity in field peas. The present study revealed the physiological and biochemical plant responses of applying Si + SA under B-toxicity (15 mg B L-1) on two Brazilian field pea cultivars (Iapar 83 and BRS Forrageira). A semi-hydroponic experiment was conducted using a completely randomized factorial design (2 × 5): with two field pea cultivars and five treatments which were formed by individual and combined applications of Si and SA under B-toxicity plus a control (control, B, B + Si, B + SA, and B + Si + SA). Si (2 mmol L-1) was applied to plants in two forms (root and leaf), while for SA (36 μmol L-1) only foliar applications were applied. Our results demonstrated that the combined use of exogenous Si + SA in field peas increased tolerance to B-toxicity through an intensified antioxidant plant defence system, resulting in a better regulation of reactive oxygen species (ROS) production and degradation. It significantly increased total chlorophyll and carotenoids contents, the activities of major antioxidant enzymes, and reduced MDA and H2O2 contents, resulting in increased fresh shoot and total plant dry biomass. The application of Si + SA alleviated the inhibitory effects of boron toxicity in field peas, resulting in greater plant growth by preventing oxidative membrane damage through an increased tolerance to B-excess within the plant tissue. Therefore, the use of Si + SA is an important and sustainable strategy to alleviate B-toxicity in field pea cultivation.
Collapse
Affiliation(s)
- Kevein Ruas Oliveira
- São Paulo State University (UNESP). Faculty of Agrarian and Veterinary Sciences. Department of Biology Applied to Agriculture, CEP 14884-900, Jaboticabal, São Paulo, Brazil
| | - Jonas Pereira Souza Junior
- São Paulo State University (UNESP). Faculty of Agrarian and Veterinary Sciences. Department of Agricultural Production Sciences, CEP 14884-900, Jaboticabal, São Paulo, Brazil
| | - Sarita Jane Bennett
- Curtin University. School of Molecular and Life Sciences, GPO Box U1987, Perth, WA 6845, Australia
| | - Mirela Vantini Checchio
- São Paulo State University (UNESP). Faculty of Agrarian and Veterinary Sciences. Department of Biology Applied to Agriculture, CEP 14884-900, Jaboticabal, São Paulo, Brazil
| | - Rita de Cássia Alves
- Semi-Arid National Institute (INSA). Crop Production Center, CEP 58437-700, Campina Grande, Paraíba, Brazil
| | - Guilherme Felisberto
- São Paulo State University (UNESP). Faculty of Agrarian and Veterinary Sciences. Department of Agricultural Production Sciences, CEP 14884-900, Jaboticabal, São Paulo, Brazil
| | - Renato de Mello Prado
- São Paulo State University (UNESP). Faculty of Agrarian and Veterinary Sciences. Department of Agricultural Production Sciences, CEP 14884-900, Jaboticabal, São Paulo, Brazil
| | - Priscila Lupino Gratão
- São Paulo State University (UNESP). Faculty of Agrarian and Veterinary Sciences. Department of Biology Applied to Agriculture, CEP 14884-900, Jaboticabal, São Paulo, Brazil.
| |
Collapse
|
28
|
Phytoremediation of Cadmium: Physiological, Biochemical, and Molecular Mechanisms. BIOLOGY 2020; 9:biology9070177. [PMID: 32708065 PMCID: PMC7407403 DOI: 10.3390/biology9070177] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
Cadmium (Cd) is one of the most toxic metals in the environment, and has noxious effects on plant growth and production. Cd-accumulating plants showed reduced growth and productivity. Therefore, remediation of this non-essential and toxic pollutant is a prerequisite. Plant-based phytoremediation methodology is considered as one a secure, environmentally friendly, and cost-effective approach for toxic metal remediation. Phytoremediating plants transport and accumulate Cd inside their roots, shoots, leaves, and vacuoles. Phytoremediation of Cd-contaminated sites through hyperaccumulator plants proves a ground-breaking and profitable choice to combat the contaminants. Moreover, the efficiency of Cd phytoremediation and Cd bioavailability can be improved by using plant growth-promoting bacteria (PGPB). Emerging modern molecular technologies have augmented our insight into the metabolic processes involved in Cd tolerance in regular cultivated crops and hyperaccumulator plants. Plants’ development via genetic engineering tools, like enhanced metal uptake, metal transport, Cd accumulation, and the overall Cd tolerance, unlocks new directions for phytoremediation. In this review, we outline the physiological, biochemical, and molecular mechanisms involved in Cd phytoremediation. Further, a focus on the potential of omics and genetic engineering strategies has been documented for the efficient remediation of a Cd-contaminated environment.
Collapse
|
29
|
Dawuda MM, Liao W, Hu L, Yu J, Xie J, Calderón-Urrea A, Wu Y, Tang Z. Foliar application of abscisic acid mitigates cadmium stress and increases food safety of cadmium-sensitive lettuce ( Lactuca sativa L.) genotype. PeerJ 2020; 8:e9270. [PMID: 32676218 PMCID: PMC7335501 DOI: 10.7717/peerj.9270] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/10/2020] [Indexed: 12/02/2022] Open
Abstract
Cadmium (Cd2 +) is among the toxic non-essential heavy metals that adversely affect plants metabolic processes and the safety of produce. However, plant hormones can improve plant’s tolerance to various stresses. This study investigated the effect of exogenous abscisic acid (ABA) on the biochemical and physiological processes and food safety of cadmium (Cd2 +)-sensitive lettuce genotype (Lüsu). Seedlings were subjected to five treatments: [(i) Control (untreated plants), (ii) 100 µM CdCl2, (iii) 100 µM CdCl2+10 µg L−1 ABA (iv) 10 µg L−1 ABA, and (v) 0.01 g L−1 ABA-inhibitor (fluridone)] for fourteen days in hydroponic system. The 100 µM CdCl2 increased the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA), decreased photosynthesis and plant biomass. Moreover, it decreased the contents of essential nutrients (except copper) in the leaves but increased the contents of toxic Cd2 + in the leaves and roots of the plants. Foliar application of fluridone (0.01 g L−1) also caused oxidative stress by increasing the contents of H2O2 and MDA. It also decreased the contents of nutrient elements in the leaves of the plants. However, exogenous ABA (10 µg L−1) mitigated the Cd2 +-induced stress, increased antioxidant enzymes activities, photosynthesis and plant biomass under CdCl2 treatment. Remarkably, exogenous ABA increased the contents of essential nutrient elements but decreased the Cd2 + content in leaves under the CdCl2 treatment. Our results have demonstrated that foliar application of ABA mitigates Cd2 + stress and increases the nutritional quality and food safety of Cd2 +-sensitive lettuce genotype under CdCl2 treatment.
Collapse
Affiliation(s)
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Alejandro Calderón-Urrea
- Department of Biology, California State University, Fresno, Fresno, CA, United States of America
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
30
|
Alves LR, Prado ER, de Oliveira R, Santos EF, Lemos de Souza I, Dos Reis AR, Azevedo RA, Gratão PL. Mechanisms of cadmium-stress avoidance by selenium in tomato plants. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:594-606. [PMID: 32333252 DOI: 10.1007/s10646-020-02208-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/31/2020] [Indexed: 05/12/2023]
Abstract
Cadmium (Cd) is probably the most damaging metal to plant species; with a long biological half-life, it can be taken up by plants, disrupting the cell homeostasis and triggering several metabolic pathways. Selenium (Se) improves plant defence systems against stressful conditions, but the biochemical antioxidant responses to Cd stress in tomato plants is poorly understood. To further address the relationship of Cd-stress responses with Se mineral uptake, Cd and Se concentration, proline content, MDA and H2O2 production, and the activity of SOD, APX, CAT and GR enzymes were analyzed in Micro-Tom (MT) plants submitted to 0.5 mM Cd. The results revealed different responses according to Se combination and Cd application. For instance, roots and leaves of MT plants treated with Se exhibited an increase in dry mass and nutritional status, exhibited lower proline content and higher APX and GR activities when compared with plants with no Se application. Plants submitted to 0.5 mM Cd, irrespective of Se exposure, exhibited lower proline, MDA and H2O2 content and higher SOD, CAT and GR activities. Selenium may improve tolerance against Cd, which allowed MT plants exhibited less oxidative damage to the cell, even under elevated Cd accumulation in their tissues. The results suggest that Se application is an efficient management technique to alleviate the deleterious effects of Cd-stress, enhancing the nutritional value and activity of ROS-scavenging enzymes in tomato plants.
Collapse
Affiliation(s)
- Leticia Rodrigues Alves
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Biologia Aplicada à Agropecuária, Jaboticabal, SP, CEP 14884-900, Brazil
| | - Emilaine Rocha Prado
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Biologia Aplicada à Agropecuária, Jaboticabal, SP, CEP 14884-900, Brazil
| | - Reginaldo de Oliveira
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Biologia Aplicada à Agropecuária, Jaboticabal, SP, CEP 14884-900, Brazil
| | - Elcio Ferreira Santos
- Universidade de São Paulo (USP), Centro de Energia Nuclear na Agricultura (CENA), Laboratório de Nutrição Mineral de Plantas, Piracicaba, SP, CEP 13418-900, Brazil
| | - Ivana Lemos de Souza
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Fitossanidade, Jaboticabal, SP, CEP 14884-900, Brazil
| | - André Rodrigues Dos Reis
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências e Engenharia, Laboratório de Biologia, Tupã, SP, CEP 17602-496, Brazil
| | - Ricardo Antunes Azevedo
- Universidade de São Paulo (USP), Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Depto. de Genética, Piracicaba, SP, 13418-900, Brazil
| | - Priscila Lupino Gratão
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Biologia Aplicada à Agropecuária, Jaboticabal, SP, CEP 14884-900, Brazil.
| |
Collapse
|
31
|
Zhang J, Wang P, Xiao Q. Cadmium (Cd) chloride affects the nutrient uptake and Cd-resistant bacterium reduces the adsorption of Cd in muskmelon plants. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThis study investigated the effect of cadmium (Cd) chloride on the uptake of N, P, and K and evaluate the effect of Cd-resistant bacterium “N3” on reducing the adverse effect of Cd in grafted and nongrafted plants. The shoot and total dry weights of the nongrafted muskmelon plants decreased under 50 and 100 µM Cd treatments. The scion and shoot dry weights of the grafted plants increased significantly, whereas their root dry weight increased by nearly onefold compared with those of the CK-grafted plants regardless of Cd concentration. The N, P, and K contents in the nongrafted plants decreased under Cd treatments but increased under 50 µM Cd treatment when inoculated with “N3”. The N, P, and K contents in the grafted plants were lower than those treated with only Cd. The grafted and nongrafted plants exhibited low Cd accumulation in the scion or shoot part compared with the root tissues. “N3” inoculation reduced the Cd concentration in all tissues of the grafted and nongrafted plants. Our results demonstrated great variation in Cd accumulation in the grafted and nongrafted muskmelon plants, thereby promoting food safety under Cd contamination conditions.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui Province, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei 230031, Anhui Province, China
| | - Pengcheng Wang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui Province, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei 230031, Anhui Province, China
| | - Qingqing Xiao
- Department of Biological and Environmental Engineering, Hefei University, Hefei, 230601 Anhui Province, China
| |
Collapse
|
32
|
Kaya C, Ashraf M, Alyemeni MN, Ahmad P. The role of nitrate reductase in brassinosteroid-induced endogenous nitric oxide generation to improve cadmium stress tolerance of pepper plants by upregulating the ascorbate-glutathione cycle. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110483. [PMID: 32247238 DOI: 10.1016/j.ecoenv.2020.110483] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/29/2020] [Accepted: 03/13/2020] [Indexed: 05/03/2023]
Abstract
A study was performed to assess if nitrate reductase (NR) participated in brassinosteroid (BR)-induced cadmium (Cd) stress tolerance primarily by accelerating the ascorbate-glutathione (AsA-GSH) cycle. Prior to initiating Cd stress (CdS), the pepper plants were sprayed with 0.5 μM 24-epibrassinolide (EBR) every other day for 10 days. Thereafter the seedlings were subjected to control or CdS (0.1 mM CdCl2) for four weeks. Cadmium stress decreased the plant growth related attributes, water relations as well as the activities of monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), but enhanced proline content, leaf Cd2+ content, oxidative stress-related traits, activities of ascorbate peroxidase (APX) and glutathione reductase (GR), and the activities of antioxidant defence system-related enzymes as well as NR activity and endogenous nitric oxide content. EBR reduced leaf Cd2+ content and oxidative stress-related parameters, enhanced plant growth, regulated water relations, and led to further increases in proline content, AsA-GSH cycle-related enzymes' activities, antioxidant defence system-related enzymes as well as NR activity and endogenous nitric oxide content. The EBR and the inhibitor of NR (tungstate) reversed the positive effects of EBR by reducing NO content, showing that NR could be a potential contributor of EBR-induced generation of NO which plays an effective role in tolerance to CdS in pepper plants by accelerating the AsA-GSH cycle and antioxidant enzymes.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| | | | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
33
|
Alves LR, Rossatto DR, Rossi ML, Martinelli AP, Gratão PL. Selenium improves photosynthesis and induces ultrastructural changes but does not alleviate cadmium-stress damages in tomato plants. PROTOPLASMA 2020; 257:597-605. [PMID: 31844994 DOI: 10.1007/s00709-019-01469-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/04/2019] [Indexed: 05/09/2023]
Abstract
The application of Se to plants growing under Cd contamination may become an alternative strategy to minimize Cd damage. However, there is no specific information available regarding whether Se can affect the anatomical structure and photosynthetic rates of plants under Cd stress. To address questions related to Se-protective responses under Cd stress, we evaluated the structural and ultrastructural aspects, photosynthetic rates and growth of tomato cv. Micro-Tom plants. Plants were exposed to 0.5 mM CdCl2 and further supplemented with 1.0 μM of selenite or selenate. The overall results revealed different trends according to the Se source and Cd application. Both Se sources improved growth, photosynthesis, leaf characteristics and middle lamella thickness between mesophyll cells. In contrast, Cd caused decreases in photosynthesis and growth and damage to the ultrastructure of the chloroplast. The number of mitochondria, peroxisomes, starch grains and plastogloboli and the disorganization of the thylakoids and the middle lamella in plants increased in the presence of Cd or Cd + Se. Se plays an important role in plant cultivation under normal conditions. This finding was corroborated by the identification of specific structural changes in Se-treated plants, which could benefit plant development. However, a reversal of Cd stress effects was not observed in the presence of Se.
Collapse
Affiliation(s)
- Leticia Rodrigues Alves
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Biologia Aplicada à Agropecuária, Jaboticabal, SP, 14884-900, Brazil
| | - Davi Rodrigo Rossatto
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Biologia Aplicada à Agropecuária, Jaboticabal, SP, 14884-900, Brazil
| | - Mônica Lanzoni Rossi
- Universidade de São Paulo (USP), Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP, 13416-000, Brazil
| | - Adriana Pinheiro Martinelli
- Universidade de São Paulo (USP), Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP, 13416-000, Brazil
| | - Priscila Lupino Gratão
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Biologia Aplicada à Agropecuária, Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|
34
|
AbdElgawad H, Zinta G, Hamed BA, Selim S, Beemster G, Hozzein WN, Wadaan MAM, Asard H, Abuelsoud W. Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113705. [PMID: 31864075 DOI: 10.1016/j.envpol.2019.113705] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/24/2019] [Accepted: 11/29/2019] [Indexed: 05/04/2023]
Abstract
Heavy metal accumulation in agricultural land causes crop production losses worldwide. Metal homeostasis within cells is tightly regulated. However, homeostasis breakdown leads to accumulation of reactive oxygen species (ROS). Overall plant fitness under stressful environment is determined by coordination between roots and shoots. But little is known about organ specific responses to heavy metals, whether it depends on the metal category (redox or non-redox reactive) and if these responses are associated with heavy metal accumulation in each organ or there are driven by other signals. Maize seedlings were subjected to sub-lethal concentrations of four metals (Zn, Ni, Cd and Cu) individually, and were quantified for growth, ABA level, and redox alterations in roots, mature leaves (L1,2) and young leaves (L3,4) at 14 and 21 days after sowing (DAS). The treatments caused significant increase in endogenous metal levels in all organs but to different degrees, where roots showed the highest levels. Biomass was significantly reduced under heavy metal stress. Although old leaves accumulated less heavy metal content than root, the reduction in their biomass (FW) was more pronounced. Metal exposure triggered ABA accumulation and stomatal closure mainly in older leaves, which consequently reduced photosynthesis. Heavy metals induced oxidative stress in the maize organs, but to different degrees. Tocopherols, polyphenols and flavonoids increased specifically in the shoot under Zn, Ni and Cu, while under Cd treatment they played a minor role. Under Cu and Cd stress, superoxide dismutase (SOD) and dehydroascorbate reductase (DHAR) activities were induced in the roots, however ascorbate peroxidase (APX) activity was only increased in the older leaves. Overall, it can be concluded that root and shoot organs specific responses to heavy metal toxicity are not only associated with heavy metal accumulation and they are specialized at the level of antioxidants to cope with.
Collapse
Affiliation(s)
- Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Belgium; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Gaurav Zinta
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Belgium; Center of Excellence Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Belgium; Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Badreldin A Hamed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Samy Selim
- Microbiology and Botany Department, Faculty of Science, Suez Canal University, Ismailia, P.O. 41522, Egypt
| | - Gerrit Beemster
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Belgium
| | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Mohammed A M Wadaan
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Han Asard
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Belgium
| | - Walid Abuelsoud
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt.
| |
Collapse
|
35
|
He J, Zhou J, Wan H, Zhuang X, Li H, Qin S, Lyu D. Rootstock-Scion Interaction Affects Cadmium Accumulation and Tolerance of Malus. FRONTIERS IN PLANT SCIENCE 2020; 11:1264. [PMID: 32922429 PMCID: PMC7457089 DOI: 10.3389/fpls.2020.01264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/31/2020] [Indexed: 05/17/2023]
Abstract
To understand the roles of Malus rootstock, scion, and their interaction in Cd accumulation and tolerance, four scion/rootstock combinations consisting of the apple cultivars "Hanfu" (HF) and "Fuji" (FJ) grafted onto M. baccata (Mb) or M. micromalus "qingzhoulinqin" (Mm) rootstocks differing in relative Cd tolerance were exposed either to 0 µM or 50 µM CdCl2 for 18 d. Cd accumulation and tolerance in grafted Malus plants varied within rootstock, scion, and rootstock-scion interaction. Cd-induced decreases in photosynthesis, photosynthetic pigment level, and biomass were lower for HF grafted onto Mb than those for HF grafted onto Mm. Reductions in growth and photosynthetic rate were always the lowest for HF/Mb. Cd concentration, bioconcentration factor (BCF), and translocation factor (Tf ) were always comparatively higher in HF and FJ grafted onto rootstock Mm than in HF and FJ grafted on Mb, respectively. When HF and FJ were grafted onto the same rootstock, the root Cd concentrations were always higher in HF than FJ, whereas the shoot Cd concentrations displayed the opposite trend. The shoot Cd concentrations and Tf were lower for HF/Mb than the other scion/rootstock combinations. Rootstock, scion, and rootstock-scion interaction also affected subcellular Cd distribution. Immobilization of Cd in the root cell walls may be a primary Cd mobility and toxicity reduction strategy in Malus. The rootstock and scion also had statistically significant influences on ROS level and antioxidant activity. Cd induced more severe oxidative stress in HF and FJ grafted onto Mm than it did in HF and FJ grafted onto Mb. Compared with FJ, HF had lower foliar O2 -, root H2O2, and root and leaf MDA levels, but higher ROS-scavenging capacity. The rootstock, scion, and rootstock-scion interaction affected the mRNA transcript levels of several genes involved in Cd uptake, transport, and detoxification including HA7, FRO2-like, NRAMP1, NRAMP3, HMA4, MT2, NAS1, and ABCC1. Hence, the responses of grafted Malus plants to Cd toxicity vary with rootstock, scion, and rootstock-scion interaction.
Collapse
Affiliation(s)
- Jiali He
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Jiangtao Zhou
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
| | - Huixue Wan
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xiaolei Zhuang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Huifeng Li
- Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai’an, China
| | - Sijun Qin
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Sijun Qin,
| | - Deguo Lyu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
36
|
Alves LR, Rodrigues Dos Reis A, Prado ER, Lavres J, Pompeu GB, Azevedo RA, Gratão PL. New insights into cadmium stressful-conditions: Role of ethylene on selenium-mediated antioxidant enzymes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109747. [PMID: 31634660 DOI: 10.1016/j.ecoenv.2019.109747] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/09/2019] [Accepted: 10/01/2019] [Indexed: 05/25/2023]
Abstract
Cadmium (Cd) contamination has generated an environmental problem worldwide, leading to harmful effects on human health and damages to plant metabolism. Selenium (Se) is non essential for plants, however it can improve plant growth and reduce the adverse effects of abiotic stress. In addition, ethylene may interplay the positive effects of Se in plants. In order to investigate the role of ethylene in Se-modulation of antioxidant defence system in response to Cd-stress, we tested the hormonal mutant Epinastic (epi) with a subset of constitutive activation of the ethylene response and Micro-Tom (MT) plants. For this purpose, Se mineral uptake, Cd and Se concentrations, pigments, malondialdeyde (MDA) and hydrogen peroxide (H2O2) contents, ethylene production, glutathione (GSH) compound, and superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GSH-Px) activities were analysed in MT and epi plants submitted to 0.5 mM CdCl2 and 1 μM of selenate or selenite. MT plants treated with both Se forms increased growth in the presence or not of 0.5 mM CdCl2, but not change epi growth. Both Se forms reduced Cd uptake in MT plants and cause reverse effect in epi plants. P, Mg, S, K and Zn uptake increased in epi plants with Se application, irrespective to Cd exposure. Chlorophylls and carotenoids contents decreased in both genotypes under Cd exposure, in contrast to what was observed in epi leaves in the presence of Se. When antioxidant enzymes activities were concerned, Se application increased Mn-SOD, Fe-SOD and APX activities. In the presence of Cd, MT and epi plants exhibited decreased SOD activity and increased CAT, APX and GR activities. MT and epi plants with Se supply exhibited increased APX and GR activities in the presence of Cd. Overall, these results suggest that ethylene may be involved in Se induced-defence responses, that triggers a positive response of the antioxidant system and improve growth under Cd stress. These results showed integrative roles of ethylene and Se in regulating the cell responses to stressful-conditions and, the cross-tolerance to stress could be used to manipulate ethylene regulated gene expression to induce heavy metal tolerance.
Collapse
Affiliation(s)
- Leticia Rodrigues Alves
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Biologia Aplicada à Agropecuária, CEP 14884-900, Jaboticabal, SP, Brazil
| | - André Rodrigues Dos Reis
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências e Engenharia, Laboratório de Biologia, CEP 17602-496, Tupã, SP, Brazil
| | - Emilaine Rocha Prado
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Biologia Aplicada à Agropecuária, CEP 14884-900, Jaboticabal, SP, Brazil
| | - José Lavres
- Universidade de São Paulo (USP), Centro de Energia Nuclear na Agricultura (CENA), Laboratório de Nutrição Mineral de Plantas, CEP 13418-900, Piracicaba, SP, Brazil
| | - Georgia Bertoni Pompeu
- Universidade de São Paulo (USP), Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Depto. de Ciência do Solo, CEP 13418-900, Piracicaba, SP, Brazil
| | - Ricardo Antunes Azevedo
- Universidade de São Paulo (USP), Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Depto. de Genética, CEP 13418-900, Piracicaba, SP, Brazil
| | - Priscila Lupino Gratão
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Biologia Aplicada à Agropecuária, CEP 14884-900, Jaboticabal, SP, Brazil.
| |
Collapse
|
37
|
Pizzaia D, Nogueira ML, Mondin M, Carvalho MEA, Piotto FA, Rosario MF, Azevedo RA. Cadmium toxicity and its relationship with disturbances in the cytoskeleton, cell cycle and chromosome stability. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:1046-1055. [PMID: 31502144 DOI: 10.1007/s10646-019-02096-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to investigate the mode of action of cadmium (Cd) toxicity at cell level, especially at early stages of plant exposure. Tomato seedlings were cultivated in growth media containing from 0.1 to 70 µM CdCl2 for 24 h. Mitotic index, chromosome abnormality, DNA integrity and organization of tubulin-based structures were assessed in root cells. As higher the Cd concentration in the growth media, higher was the DNA damage intensity and the occurrence of chromosomal abnormalities that included chromosome lost, bridges, stickiness, C-metaphase and polyploidy. The profile of chromosomal aberrations also varied with elevated Cd concentration, being observed increases in the frequency of chromosome stickiness. The mitotic index was reduced at the lowest Cd concentration, but such reduction was statistically similar to that detected at the highest concentration, suggesting that mitotic depression is a rapid outcome and, at same time, a Cd-induced effect that is limited at the first 24 h of direct root exposure to this metal. Under exposure to 20 µM CdCl2, heterogenous distribution of the spindle fibers, formation of two spindle complexes in both of the cell poles, absence of centrosome center, polarization of the spindle fibers during cell division, and non-uniform tubulin deposition in microtubule and phragmoplast were noticed. The results indicate that the tubulin-dependent components of cytoskeleton are Cd targets, and the sensitivity of tubulin-based structures to Cd exposure depends on cell cycle phase. Moreover, DNA damage intensity and chromosomal abnormality profile can be employed as markers of Cd toxicity level.
Collapse
Affiliation(s)
- Daniel Pizzaia
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Marina Lima Nogueira
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Mateus Mondin
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Marcia Eugenia Amaral Carvalho
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Fernando Angelo Piotto
- Departamento de Produção Vegetal, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Millor Fernandes Rosario
- Universidade Federal de São Carlos, Campus Lagoa do Sino, Rodovia Lauri Simões de Barros, km 12, SP 189, Buri, SP, 18290-000, Brazil
| | - Ricardo Antunes Azevedo
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
38
|
Sharaf A, De Michele R, Sharma A, Fakhari S, Oborník M. Transcriptomic Analysis Reveals the Roles of Detoxification Systems in Response to Mercury in Chromera velia. Biomolecules 2019; 9:E647. [PMID: 31653042 PMCID: PMC6920818 DOI: 10.3390/biom9110647] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 01/07/2023] Open
Abstract
Heavy metal pollution is an increasing global concern. Among heavy metals, mercury (Hg) is especially dangerous because of its massive release into the environment and high toxicity, especially for aquatic organisms. The molecular response mechanisms of algae to Hg exposure are mostly unknown. Here, we combine physiological, biochemical, and transcriptomic analysis to provide, for the first time, a comprehensive view on the pathways activated in Chromera velia in response to toxic levels of Hg. Production of hydrogen peroxide and superoxide anion, two reactive oxygen species (ROS), showed opposite patterns in response to Hg2+ while reactive nitrogen species (RNS) levels did not change. A deep RNA sequencing analysis generated a total of 307,738,790 high-quality reads assembled in 122,874 transcripts, representing 89,853 unigenes successfully annotated in databases. Detailed analysis of the differently expressed genes corroborates the biochemical results observed in ROS production and suggests novel putative molecular mechanisms in the algal response to Hg2+. Moreover, we indicated that important transcription factor (TF) families associated with stress responses differentially expressed in C. velia cultures under Hg stress. Our study presents the first in-depth transcriptomic analysis of C. velia, focusing on the expression of genes involved in different detoxification defense systems in response to heavy metal stress.
Collapse
Affiliation(s)
- Abdoallah Sharaf
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic.
- Genetic Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt.
| | - Roberto De Michele
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR) of Italy, 90129 Palermo, Italy.
| | - Ayush Sharma
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic.
| | - Safieh Fakhari
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR) of Italy, 90129 Palermo, Italy.
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic.
| |
Collapse
|
39
|
Mizushima MYB, Ferreira BG, França MGC, Almeida AAF, Cortez PA, Silva JVS, Jesus RM, Prasad MNV, Mangabeira PAO. Ultrastructural and metabolic disorders induced by short-term cadmium exposure in Avicennia schaueriana plants and its excretion through leaf salt glands. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:844-853. [PMID: 30927480 DOI: 10.1111/plb.12992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/26/2019] [Indexed: 05/08/2023]
Abstract
Environmental cadmium (Cd) sources have increased in mangrove sediments in recent decades, inducing cellular damage to many plants. Avicennia schaueriana is abundant in mangrove sites and has been subject to Cd contamination. The possible effects of Cd toxicity and the structural and physiological disturbances to this plant were studied. Can this plant express early cellular tolerance mechanisms to such metal contamination? Seedlings of A. schaueriana were collected from sites of their natural occurrence, placed in plastic pots containing nutrient solution for 60 days, and subsequently exposed to increasing Cd concentrations for 5 days under experimental conditions. The anatomical, ultrastructural and physiological changes induced by Cd were analysed. Cd accumulated mainly in the root system and in pneumatophores, stems and leaves, induced differential accumulation of mineral nutrients, but did not induce necrosis or changes in leaf anatomy. However, there was a decrease in starch grains and an increase in deposited electron-dense material in the cortex and vascular bundles. Cd induced both increases in calcium (Ca) content in shoots and Ca oxalate crystal precipitation in leaf mesophyll and was detected in crystals and in the secretion of salt glands. Our observations and experimental results provide evidence of Cd tolerance in A. schaueriana. As a new feature, despite the clear cellular physiological disorders, this plant is able to eliminate Cd through leaf salt glands and immobilise it in Ca crystals, representing fast mechanisms for Cd exclusion and complexation in leaves in heavy metal coastal polluted marine ecosystems.
Collapse
Affiliation(s)
- M Y B Mizushima
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brasil
| | - B G Ferreira
- Departamento de Botânica, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - M G C França
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - A-A F Almeida
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brasil
| | - P A Cortez
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brasil
| | - J V S Silva
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brasil
| | - R M Jesus
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brasil
| | - M N V Prasad
- Department of Plant Science, University of Hyderabad, Telangana, India
| | - P A O Mangabeira
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brasil
| |
Collapse
|
40
|
Carvalho MEA, Piotto FA, Franco MR, Rossi ML, Martinelli AP, Cuypers A, Azevedo RA. Relationship between Mg, B and Mn status and tomato tolerance against Cd toxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 240:84-92. [PMID: 30928798 DOI: 10.1016/j.jenvman.2019.03.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Distinct tomato genotypes possess different tolerance degree to cadmium (Cd), but the mechanisms behind this phenomenon are scarcely understood. To this end, the physiological, biochemical, anatomical, nutritional and molecular mechanisms associated to the plant tolerance against Cd toxicity were investigated in five tomato accessions with contrasting sensitivity to Cd exposure. Firstly, the data revealed that larger biomass loss was not always coupled to higher Cd concentration, indicating that other events, in addition to the internal Cd accumulation, impact tomato performance at early stages of Cd exposure. Secondly, the results indicated that the fine regulation of nutrient status, particularly magnesium (Mg), boron (B) and manganese (Mn), is associated to the mitigation of Cd toxicity. Magnesium status was coupled to the modulation of root development, resulting in changes in root hair formation and biomass allocation. Boron accumulation in leaves was linked to Cd toxicity, suggesting that tolerance mechanisms involved strategies to decrease or even avoid B excess in photosynthetic tissues. Disturbances in Mn status, i.e. Mn excess in leaves and Mn deficiency in roots, were also related to tomato sensitivity to Cd exposure. Thirdly, plant capacity to maintain leaf blade expansion is a relevant strategy for a better tomato development after short-term Cd exposure. Fourthly, tomato tolerance to Cd-induced stress does not depend on CAT activity enhancements in such conditions. In conclusion, tomato ability to quickly manage its nutritional status is necessary for alleviation of the Cd effects at early stages of exposure to this metal. The better understanding about tolerance mechanisms and mode of action of Cd toxicity in plants can help in the establishment of strategies to mitigate its impacts on crops.
Collapse
Affiliation(s)
- Marcia Eugenia Amaral Carvalho
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (Esalq/USP), 13418-900, Piracicaba, SP, Brazil
| | - Fernando Angelo Piotto
- Departamento de Produção Vegetal, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (Esalq/USP), 13418-900, Piracicaba, SP, Brazil
| | - Mônica Regina Franco
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (Esalq/USP), 13418-900, Piracicaba, SP, Brazil
| | - Mônica Lanzoni Rossi
- Divisão Produtividade Agroindustrial e Alimentos, Centro de Energia Nuclear na Agricultura/Universidade de São Paulo (Cena/USP), Av. Centenário, 303, São Dimas, 13416-000, Piracicaba, SP, Brazil
| | - Adriana Pinheiro Martinelli
- Divisão Produtividade Agroindustrial e Alimentos, Centro de Energia Nuclear na Agricultura/Universidade de São Paulo (Cena/USP), Av. Centenário, 303, São Dimas, 13416-000, Piracicaba, SP, Brazil
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Ricardo Antunes Azevedo
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (Esalq/USP), 13418-900, Piracicaba, SP, Brazil.
| |
Collapse
|
41
|
Andrade Júnior WV, de Oliveira Neto CF, dos Santos Filho BG, do Amarante CB, Cruz ED, Okumura RS, Barbosa AVC, de Sousa DJP, Teixeira JSS, Botelho ADS. Effect of cadmium on young plants of Virola surinamensis. AOB PLANTS 2019; 11:plz022. [PMID: 31114669 PMCID: PMC6524489 DOI: 10.1093/aobpla/plz022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 03/31/2019] [Indexed: 05/09/2023]
Abstract
The steady increase in cadmium (Cd) levels in the environment from anthropogenic actions has contributed to environmental degradation. Virola surinamensis is a forest species that has desirable characteristics such as deep and dense roots, relatively rapid growth and high biomass production to remedy contaminated environments by Cd. The aim of this study was to assess the physiological responses and the phytoextraction and tolerance capacity of young plants of V. surinamensis submitted to Cd concentrations. The experimental design was a completely randomized design with five Cd concentrations (0, 15, 30, 45 and 60 mg L-1) for 60 days. Leaf water potential (Ψpd), stomatal conductance (gs) and transpiration (E) reduced in plants exposed to Cd. Lower values of maximum photochemical efficiency of photosystem II (Fv/Fm), electron transport rate (ETR) and photochemical quenching coefficient (qP) were accompanied by reduction of photosynthesis (A) with increasing concentrations of Cd, although the non-photochemical quenching coefficient (NPQ), and intercellular CO2 concentration (Ci) showed increase. Instantaneous water-use efficiency (A/E), net photosynthesis to intercellular CO2 concentration ratio (A/Ci) and total chlorophyll (Chl) reduced with increasing levels of Cd. Cadmium concentrations increased in different plant tissues (root > stem > leaf). The tolerance index (TI) indicated that V. surinamensis presented medium and high tolerance to Cd. The results of bioconcentration factor (BCF) and translocation factor (TF) showed low plant efficacy in Cd phytoextraction and suggest that V. surinamensis may be promising for phytostabilization of Cd.
Collapse
Affiliation(s)
- Waldemar Viana Andrade Júnior
- Institute of Agronomists Sciences, Laboratory of Biodiversity Studies of Upper Plants, Federal Rural University of the Amazon, Campus Belém, Pará, Brazil
| | - Cândido Ferreira de Oliveira Neto
- Institute of Agronomists Sciences, Laboratory of Biodiversity Studies of Upper Plants, Federal Rural University of the Amazon, Campus Belém, Pará, Brazil
| | - Benedito Gomes dos Santos Filho
- Institute of Agronomists Sciences, Laboratory of Biodiversity Studies of Upper Plants, Federal Rural University of the Amazon, Campus Belém, Pará, Brazil
| | - Cristine Bastos do Amarante
- Museu Paraense Emílio Goeldi (MPEG), Belém, Pará, Brazil
- Pará/Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Eniel David Cruz
- Brazilian Agricultural Research Corporation (Embrapa), Belem, Pará, Brazil
| | - Ricardo Shigueru Okumura
- Institute of Agronomists Sciences, Federal Rural University of the Amazon, Campus Parauapebas, Pará, Brazil
- Corresponding author’s e-mail address:
| | | | - Diana Jhulia Palheta de Sousa
- Institute of Agronomists Sciences, Laboratory of Biodiversity Studies of Upper Plants, Federal Rural University of the Amazon, Campus Belém, Pará, Brazil
| | - Jéssica Suellen Silva Teixeira
- Institute of Agronomists Sciences, Laboratory of Biodiversity Studies of Upper Plants, Federal Rural University of the Amazon, Campus Belém, Pará, Brazil
| | - Anderson de Santana Botelho
- Museu Paraense Emílio Goeldi (MPEG), Belém, Pará, Brazil
- Pará/Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
42
|
Li Q, Wang G, Wang Y, Guan C, Ji J. Foliar application of salicylic acid alleviate the cadmium toxicity by modulation the reactive oxygen species in potato. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:317-325. [PMID: 30721875 DOI: 10.1016/j.ecoenv.2019.01.078] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
Heavy metal toxicity is one of the main factors that limit crop growth and yield in the world. Salicylic acid (SA) is thought to be a plant hormone that plays an important role in plant growth, development, and resistance to abiotic stresses. To uncover the toxic alleviation effects of SA on potato plants to cadmium (Cd) stress, the morphological, physiological, and biochemical indexes including antioxidant defense system were assayed in potato plants under 200 μM Cd stress in 1/2 Hoagland solution with foliar application of 600 μM SA concentration (10 ml/plant). Interestingly, exogenous SA treatment mitigated Cd toxicity by increasing the relative water content (RWC), chlorophyll, proline, and endogenous SA contents along with decline in malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion radicals (O2-). Correspondingly, our study also proved that SA may stimulate the antioxidant enzymatic mechanism pathway including superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), and glutathione reductase (GR, EC 1.6.4.2) in potato plants subjected to Cd stress. Moreover, the expression level of selected genes relate to SA and reactive oxygen species (ROS) metabolism (StSABP2, StSOD and StAPX) were enhanced in SA-treated potato plants under Cd stress, indicating that SA treatment regulated the expression of these genes, which in turn enhanced potato tolerance to Cd stress. Taken together, our results indicated that exogenous SA can play a positive regulatory role in alleviating Cd toxicity in potato plants.
Collapse
Affiliation(s)
- Qian Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Yurong Wang
- Division of Biological Sciences, University of California San Diego, San Diego, California USA
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
43
|
Lavres J, Silveira Rabêlo FH, Capaldi FR, Dos Reis AR, Rosssi ML, Franco MR, Azevedo RA, Abreu-Junior CH, de Lima Nogueira N. Investigation into the relationship among Cd bioaccumulation, nutrient composition, ultrastructural changes and antioxidative metabolism in lettuce genotypes under Cd stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:578-589. [PMID: 30576893 DOI: 10.1016/j.ecoenv.2018.12.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 05/11/2023]
Abstract
Lettuce (Lactuca sativa L.) is known to have high cadmium (Cd) concentrations in its shoots, which makes it necessary to protect against Cd toxicity. Understanding Cd-induced physiological responses in lettuce plants can contribute to the definition of useful strategies to decrease Cd uptake. This study aimed to gain new insights into Cd-induced stress by measuring Cd bioaccumulation, nutrient composition, anatomical and ultrastructural changes, and antioxidative metabolism in three lettuce genotypes characterized as having different degrees of Cd tolerance (Vanda = low, Lidia = medium and Stela = high). Plants were grown hydroponically with Cd concentrations of 0.0 and 0.1 or 0.5 μmol L-1, for 30 days. Cadmium uptake in the lettuce genotypes assayed is controlled by the root/shoot ratio, higher root/shoot ratios allowing greater Cd uptake. The Fe and Ni content increased in shoots of the genotype Lidia, which could be associated with a decrease in oxidative stress in chloroplasts due to superoxide dismutase (SOD) isozyme activity. Cadmium-induced oxidative stress is associated with de-structuring of the phloem and xylem in roots, and starch grain and plastoglobule accumulation in chloroplasts. Lettuce genotypes that presented higher SOD and ascorbate peroxidase (APX) activity presented better preserved anatomical structures. These results suggest that genotypes with less efficient antioxidant defence in the roots tend to take up more Cd, increasing root-to-shoot Cd translocation.
Collapse
Affiliation(s)
- José Lavres
- Centre for Nuclear Energy in Agriculture, University of Sao Paulo, 13416-000 Piracicaba, Brazil.
| | | | - Flávia Regina Capaldi
- Luiz de Queiroz College of Agriculture, University of Sao Paulo, 13418-900 Piracicaba, Brazil
| | | | - Monica Lanzoni Rosssi
- Centre for Nuclear Energy in Agriculture, University of Sao Paulo, 13416-000 Piracicaba, Brazil
| | - Mônica Regina Franco
- Luiz de Queiroz College of Agriculture, University of Sao Paulo, 13418-900 Piracicaba, Brazil
| | - Ricardo Antunes Azevedo
- Luiz de Queiroz College of Agriculture, University of Sao Paulo, 13418-900 Piracicaba, Brazil
| | | | - Neusa de Lima Nogueira
- Centre for Nuclear Energy in Agriculture, University of Sao Paulo, 13416-000 Piracicaba, Brazil
| |
Collapse
|
44
|
Hamid Y, Tang L, Sohail MI, Cao X, Hussain B, Aziz MZ, Usman M, He ZL, Yang X. An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:80-96. [PMID: 30639721 DOI: 10.1016/j.scitotenv.2018.12.419] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 05/09/2023]
Abstract
Cadmium contamination in soil, water and food has become a global problem since last century's industrial and agricultural revolution. It is a highly toxic metal with serious consequences on human and animal health. Different natural and anthropogenic sources are responsible for Cd release in the soil which ultimately leads to the food chain. Cd persists in soil for long durations due to its minimal microbial or chemical loss. There are various physical, chemical or biological techniques which are helpful to minimize Cd risk in food chain. Among them, in-situ immobilization with organic, inorganic or clay amendments is a cost-effective and an environment friendly strategy to remediate Cd polluted sites. Lime, biochar, organic wastes, phosphorus fertilizers, sepiolite, zeolite, hydroxyapatite and bentonite are commonly used amendments for amelioration of Cd contaminated soils. These amendments reduce Cd uptake and enhance immobilization by adsorption, complexation, and precipitation processes. This review is aimed to provide a comprehensive note on Cd toxicity in humans and environment, its immobilization by different agents through variety of processes, and comparison of technologies for Cd removal from contaminated sites.
Collapse
Affiliation(s)
- Yasir Hamid
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China
| | - Lin Tang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Irfan Sohail
- Institute of Soil and Environmental Sciences, University of Agriculture, 38080 Faisalabad, Pakistan
| | - Xuerui Cao
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China
| | - Bilal Hussain
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Zahir Aziz
- Institute of Soil and Environmental Sciences, University of Agriculture, 38080 Faisalabad, Pakistan
| | - Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture, 38080 Faisalabad, Pakistan; Environmental Mineralogy, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany
| | - Zhen-Li He
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, Florida 34945, USA
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
45
|
Selenium restricts cadmium uptake and improve micronutrients and proline concentration in tomato fruits. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101057] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Muhammad T, Zhang J, Ma Y, Li Y, Zhang F, Zhang Y, Liang Y. Overexpression of a Mitogen-Activated Protein Kinase SlMAPK3 Positively Regulates Tomato Tolerance to Cadmium and Drought Stress. Molecules 2019; 24:molecules24030556. [PMID: 30717451 PMCID: PMC6385007 DOI: 10.3390/molecules24030556] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 12/20/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) activation is a common defense response of plants to a range of abiotic stressors. SlMPK3, a serine-threonine protein kinase, has been reported as an important member of protein kinase cascade that also functions on plant stress tolerance. In this study, we cloned SlMPK3 from tomato and studied its role in cadmium (Cd2+) and drought tolerance. The results showed that transcripts of SlMAPK3 differentially accumulated in various plant tissues and were remarkably induced by different abiotic stressors and exogenous hormone treatments. Overexpression of SlMAPK3 increased tolerance to Cd2+ and drought as reflected by an increased germination rate and improved seedling growth. Furthermore, transgenic plants overexpressing SlMAPK3 showed an increased leaf chlorophyll content, root biomass accumulation and root activity under Cd2+ stress. Chlorophyll fluorescence analysis revealed that transgenic plants demonstrated an increased photosynthetic activity as well as contents of chlorophyll, proline, and sugar under drought stress. Notably, cadmium- and drought-induced oxidative stress was substantially attenuated in SlMAPK3 overexpressing plants as evidenced by lower malondialdehyde and hydrogen peroxide accumulation, and increased activity and transcript abundance of enzymatic antioxidants under stress conditions compared to that of wild-type. Our findings provide solid evidence that overexpression of SlMAPK3 gene in tomato positively regulates tolerance to Cd2+ and drought stress, which may have strengthen the molecular understanding of SlMAPK3 gene to improve abiotic stress tolerance.
Collapse
Affiliation(s)
- Tayeb Muhammad
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling 712100, China.
| | - Jie Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling 712100, China.
| | - Yalin Ma
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling 712100, China.
| | - Yushun Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling 712100, China.
| | - Fei Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Yan Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling 712100, China.
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
47
|
Hakeem KR, Alharby HF, Rehman R. Antioxidative defense mechanism against lead-induced phytotoxicity in Fagopyrum kashmirianum. CHEMOSPHERE 2019; 216:595-604. [PMID: 30390590 DOI: 10.1016/j.chemosphere.2018.10.131] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/30/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
The effect of lead (Pb)-induced oxidative stress was investigated in Fagopyrum kashmirianum. The seedlings absorbed the Pb readily by showing time (15 and 30 days) and concentration (0, 100, 200 and 300 μM) dependent effects. Pb caused reduction in both root and shoot lengths but its accumulation was more in roots (22.32 mg g-1 DW) than shoots (8.86 mg g-1 DW) at the highest concentration (300 μM) resulting in translocation factor (TF) < 1 at all concentrations. Thus the uptake and translocation of Pb between roots and shoots showed a positive correlation indicating the plant as root accumulator. Amongst the photosynthetic pigments, chlorophyll content showed a decline while the carotenoid and anthocyanin levels were elevated. The fresh mass and biomass showed a non-significant decrease at both the sampling times. The osmolyte and antioxidative enzymes (SOD, CAT, APX. POD, GR and GST) were positively correlated with Pb treatments except proline and CAT, which showed decline in 30-day-old plants. The alleviation of Pb-stress is an indication for existence of strong detoxification mechanism in F. kashmirianum, which suggest that it could be cultivated in Pb-contaminated soils.
Collapse
Affiliation(s)
- Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Reiazul Rehman
- Department of Bioresources, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
48
|
Khanna K, Jamwal VL, Kohli SK, Gandhi SG, Ohri P, Bhardwaj R, Abd Allah EF, Hashem A, Ahmad P. Plant growth promoting rhizobacteria induced Cd tolerance in Lycopersicon esculentum through altered antioxidative defense expression. CHEMOSPHERE 2019; 217:463-474. [PMID: 30445394 DOI: 10.1016/j.chemosphere.2018.11.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/24/2018] [Accepted: 11/01/2018] [Indexed: 05/08/2023]
Abstract
The present study was designed to determine the role of plant growth-promoting rhizobacteria (Pseudomonas aeruginosa &Burkholderia gladioli) in alleviating Cd stress in Lycopersicon esculentum. Cd concentration of 0.4 mM enhanced superoxide anions, MDA and H2O2 by 136%, 378% and 137% that also caused nuclear and cell viability damage. Cd enhanced the activities of enzymatic antioxidants such as CAT, GST, GPOX, DHAR, and GR by 64%, 126%, 265%, 25% and 93% respectively. However, SOD, POD and PPO was decreased by Cd and enhanced by 119%, 198% and 42% by inoculation of P. aeruginosa and 65%, 119% and 33% by B. gladioli. The contents of non-enzymatic antioxidants and total antioxidants (WSA, LSA) were also enhanced in response to metal stress and reduced by supplementation with PGPR. Confocal microscopy revealed improved cell viability and decreased nuclear damage in Cd-treated L. esculentum roots supplemented with PGPRs. Gene expression studies conducted through qRT-PCR revealed that expression levels of the SOD, POD, and PPO genes were enhanced by 478%, 830% and 253%, while the expression of CAT, GR, GST, GPOX, and APOX genes decreased by 97%, 87%, 75%, 82%, 88% in P. aeruginosa-inoculated Cd-treated seedlings. Also, B. gladioli elevated the expression of SOD, POD and PPO genes and reduced the expression of CAT, GR, GPOX, APOX and GST genes respectively. Therefore, the results suggest that Cd induced oxidative stress in L. esculentum seedlings was reduced by PGPRs through modulation of antioxidative defence expression as demonstrated in terms of antioxidants both quantitatively as well as qualitatively.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Vijay Lakshmi Jamwal
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial Research, Canal Road, Jammu, 180 001, India
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Sumit G Gandhi
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial Research, Canal Road, Jammu, 180 001, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia; Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia; Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
49
|
Carvalho MEA, Piotto FA, Franco MR, Borges KLR, Gaziola SA, Castro PRC, Azevedo RA. Cadmium toxicity degree on tomato development is associated with disbalances in B and Mn status at early stages of plant exposure. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:1293-1302. [PMID: 30259382 DOI: 10.1007/s10646-018-1983-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Cadmium (Cd) toxicity is frequently coupled to its accumulation in plants, but not always the highest Cd concentration triggers the worst damages, indicating that additional events influence the magnitude of Cd side-effects. We investigated the early mechanisms behind the differential Cd-induced impacts on plant development of four tomato accessions with contrasting tolerance to Cd toxicity. At organ level, the highest Cd concentration was not associated with the largest biomass losses. In leaves, changes in superoxide dismutase and catalase activities were not related to differences in Cd concentration, which was unable to provoke H2O2 overproduction on the sixth day of plant exposure to this metal. Further investigation in the mineral profile revealed that magnitude of Cd toxicity depends probably on synergic effects from increased B status, in addition to the own Cd accumulation. Furthermore, disbalances in Mn status (i.e., excess in leaves and deficiency in roots) may enhance Cd toxicity degree. According to data, however, the low magnesium (Mg) status can be linked to tomato tolerance against Cd toxicity. In conclusion, the tomato tolerance degree under short-Cd exposure depends on actively, finely regulation of mineral homeostasis that results in different development of plant organs. The better understanding on the mode of action of Cd toxicity in plants can help in the establishment of strategies to mitigate its impacts on crop yield.
Collapse
Affiliation(s)
- Marcia Eugenia Amaral Carvalho
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (Esalq/USP), Piracicaba, SP, 13418-900, Brazil
| | - Fernando Angelo Piotto
- Departamento de Produção Vegetal, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (Esalq/ USP), Piracicaba, SP, 13418-900, Brazil
| | - Mônica Regina Franco
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (Esalq/USP), Piracicaba, SP, 13418-900, Brazil
| | - Karina Lima Reis Borges
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (Esalq/USP), Piracicaba, SP, 13418-900, Brazil
| | - Salete Aparecida Gaziola
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (Esalq/USP), Piracicaba, SP, 13418-900, Brazil
| | - Paulo Roberto Camargo Castro
- Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (Esalq/ USP), Piracicaba, SP, 13418-900, Brazil
| | - Ricardo Antunes Azevedo
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (Esalq/USP), Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
50
|
Hippler FWR, Mattos-Jr D, Boaretto RM, Williams LE. Copper excess reduces nitrate uptake by Arabidopsis roots with specific effects on gene expression. JOURNAL OF PLANT PHYSIOLOGY 2018; 228:158-165. [PMID: 29933138 PMCID: PMC6090090 DOI: 10.1016/j.jplph.2018.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 06/09/2018] [Accepted: 06/10/2018] [Indexed: 05/09/2023]
Abstract
Nitrate uptake by plants is mediated by specific transport proteins in roots (NRTs), which are also dependent on the activity of proton pumps that energize the reaction. Nitrogen (N) metabolism in plants is sensitive to copper (Cu) toxicity conditions. To understand how Cu affects the uptake and assimilation processes, this study assesses the inhibitory effects of elevated Cu levels on the expression of genes related to N absorption, transport and assimilation in roots of Arabidopsis. Plants were grown hydroponically for 45 days, being exposed to a range of Cu concentrations in the last 72 h or alternatively exposed to 5.0 μM Cu for the last 15 days. High Cu levels decreased the uptake and accumulation of N in plants. It down-regulated the expression of genes encoding nitrate reductase (NR1), low-affinity nitrate transporters (NRT1 family) and bZIP transcription factors (TGA1 and TGA4) that regulate the expression of nitrate transporters. Cu toxicity also specifically down-regulated the plasma membrane proton pump, AHA2, whilst having little effect on AHA1 and AHA5. In contrast, there was an up-regulation of high-affinity nitrate transporters from the NRT2 family when exposed to medium level of Cu excess, but this was insufficient for restoring N absorption by roots to control levels. These results demonstrate that plants display specific responses to Cu toxicity, modulating the expression of particular genes related to nitrate uptake, such as low-affinity nitrate transporters and proton pumps.
Collapse
Affiliation(s)
- Franz W R Hippler
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico (IAC), Rod. Anhanguera, km 158, CP 04, CEP 13490-970, Cordeirópolis, SP, Brazil; University of Southampton, Biological Sciences, Building 85, Highfield, Southampton SO17 1BJ, United Kingdom.
| | - Dirceu Mattos-Jr
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico (IAC), Rod. Anhanguera, km 158, CP 04, CEP 13490-970, Cordeirópolis, SP, Brazil
| | - Rodrigo M Boaretto
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico (IAC), Rod. Anhanguera, km 158, CP 04, CEP 13490-970, Cordeirópolis, SP, Brazil
| | - Lorraine E Williams
- University of Southampton, Biological Sciences, Building 85, Highfield, Southampton SO17 1BJ, United Kingdom.
| |
Collapse
|