1
|
Li XY, Luo YT, Wang YH, Yang ZX, Shang YZ, Guan QX. Anti-inflammatory effect and antihepatoma mechanism of carrimycin. World J Gastroenterol 2023; 29:2134-2152. [PMID: 37122599 PMCID: PMC10130968 DOI: 10.3748/wjg.v29.i14.2134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 03/09/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND New drugs are urgently needed for the treatment of liver cancer, a feat that could be feasibly accomplished by finding new therapeutic purposes for marketed drugs to save time and costs. As a new class of national anti-infective drugs, carrimycin (CAM) has strong activity against gram-positive bacteria and no cross resistance with similar drugs. Studies have shown that the components of CAM have anticancer effects. AIM To obtain a deeper understanding of CAM, its distribution, metabolism and anti-inflammatory effects were assessed in the organs of mice, and its mechanism of action against liver cancer was predicted by a network pharmacology method. METHODS In this paper, the content of isovaleryl spiramycin III was used as an index to assess the distribution and metabolism of CAM and its effect on inflammatory factors in various mouse tissues and organs. Reverse molecular docking technology was utilized to determine the target of CAM, identify each target protein based on disease type, and establish a target protein-disease type network to ascertain the effect of CAM in liver cancer. Then, the key action targets of CAM in liver cancer were screened by a network pharmacology method, and the core targets were verified by molecular docking and visual analyses. RESULTS The maximum CAM concentration was reached in the liver, kidney, lung and spleen 2.5 h after intragastric administration. In the intestine, the maximum drug concentration was reached 0.5 h after administration. In addition, CAM significantly reduced the interleukin-4 (IL-4) levels in the lung and kidney and especially the liver and spleen; moreover, CAM significantly reduced the IL-1β levels in the spleen, liver, and kidney and particularly the small intestine and lung. CAM is predicted to regulate related pathways by acting on many targets, such as albumin, estrogen receptor 1, epidermal growth factor receptor and caspase 3, to treat cancer, inflammation and other diseases. CONCLUSION We determined that CAM inhibited inflammation. We also predicted the complex multitargeted effects of CAM that involve multiple pathways and the diversity of these effects in the treatment of liver cancer, which provides a basis and direction for further clinical research.
Collapse
Affiliation(s)
- Xiu-Yan Li
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Yu-Ting Luo
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Yan-Hong Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Zhi-Xin Yang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Yu-Zhou Shang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Qing-Xia Guan
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| |
Collapse
|
2
|
Zhang R, Liang C, Guo X, Bao P, Pei J, Wu F, Yin M, Chu M, Yan P. Quantitative phosphoproteomics analyses reveal the regulatory mechanisms related to frozen-thawed sperm capacitation and acrosome reaction in yak (Bos grunniens). Front Physiol 2022; 13:1013082. [PMID: 36277216 PMCID: PMC9583833 DOI: 10.3389/fphys.2022.1013082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Mammalian spermatozoa are not mature after ejaculation and must undergo additional functional and structural changes within female reproductive tracts to achieve subsequent fertilization, including both capacitation and acrosome reaction (AR), which are dominated by post-translational modifications (PTMs), especially phosphorylation. However, the mechanism of protein phosphorylation during frozen-thawed sperm capacitation and AR has not been well studied. In this study, the phosphoproteomics approach was employed based on tandem mass tag (TMT) labeling combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) strategy to analyze frozen-thawed sperm in Ashidan yak under three sequential conditions (density gradient centrifugation-based purification, incubation in the capacitation medium and induction of AR processes by the calcium ionophore A23187 treatment). The identification of 1,377 proteins with 5,509 phosphorylation sites revealed changes in phosphorylation levels of sperm-specific proteins involved in regulation of spermatogenesis, sperm motility, energy metabolism, cilium movement, capacitation and AR. Some phosphorylated proteins, such as AKAP3, AKAP4, SPA17, PDMD11, CABYR, PRKAR1A, and PRKAR2A were found to regulate yak sperm capacitation and AR though the cAMP/PKA signaling pathway cascades. Notably, the phosphorylation level of SPA17 at Y156 increased in capacitated sperm, suggesting that it is also a novel functional protein besides AKAPs during sperm capacitation. Furthermore, the results of this study suggested that the phosphorylation of PRKAR1A and PRKAR2A, and the dephosphorylation of CABYR both play key regulatory role in yak sperm AR process. Protein-protein interaction analysis revealed that differentially phosphorylated proteins (AKAP3, AKAP4, FSIP2, PSMD11, CABYR, and TPPP2) related to capacitation and AR process played a key role in protein kinase A binding, sperm motility, reproductive process, cytoskeleton and sperm flagella function. Taken together, these data provide not only a solid foundation for further exploring phosphoproteome of sperm in yak, but an efficient way to identify sperm fertility-related marker phosphorylated proteins.
Collapse
Affiliation(s)
- Renzheng Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jie Pei
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fude Wu
- Yak Breeding and Extension Service Center in in Qinghai Province, Xining, China
| | - Mancai Yin
- Yak Breeding and Extension Service Center in in Qinghai Province, Xining, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Min Chu, ; Ping Yan,
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Min Chu, ; Ping Yan,
| |
Collapse
|
3
|
Ma B, Ma C, Li J, Fang Y. Revealing phosphorylation regulatory networks during embryogenesis of honey bee worker and drone (Apis mellifera). Front Cell Dev Biol 2022; 10:1006964. [PMID: 36225314 PMCID: PMC9548569 DOI: 10.3389/fcell.2022.1006964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Protein phosphorylation is known to regulate a comprehensive scenario of critical cellular processes. However, phosphorylation-mediated regulatory networks in honey bee embryogenesis are mainly unknown. We identified 6342 phosphosites from 2438 phosphoproteins and predicted 168 kinases in the honey bee embryo. Generally, the worker and drone develop similar phosphoproteome architectures and major phosphorylation events during embryogenesis. In 24 h embryos, protein kinases A play vital roles in regulating cell proliferation and blastoderm formation. At 48–72 h, kinase subfamily dual-specificity tyrosine-regulated kinase, cyclin-dependent kinase (CDK), and induced pathways related to protein synthesis and morphogenesis suggest the centrality to enhance the germ layer development, organogenesis, and dorsal closure. Notably, workers and drones formulated distinct phosphoproteome signatures. For 24 h embryos, the highly phosphorylated serine/threonine-protein kinase minibrain, microtubule-associated serine/threonine-protein kinase 2 (MAST2), and phosphorylation of mitogen-activated protein kinase 3 (MAPK3) at Thr564 in workers, are likely to regulate the late onset of cell proliferation; in contrast, drone embryos enhanced the expression of CDK12, MAPK3, and MAST2 to promote the massive synthesis of proteins and cytoskeleton. In 48 h, the induced serine/threonine-protein kinase and CDK12 in worker embryos signify their roles in the construction of embryonic tissues and organs; however, the highly activated kinases CDK1, raf homolog serine/threonine-protein kinase, and MAST2 in drone embryos may drive the large-scale establishment of tissues and organs. In 72 h, the activated pathways and kinases associated with cell growth and tissue differentiation in worker embryos may promote the configuration of rudimentary organs. However, kinases implicated in cytoskeleton organization in drone embryos may drive the blastokinesis and dorsal closure. Our hitherto most comprehensive phosphoproteome offers a valuable resource for signaling research on phosphorylation dynamics in honey bee embryos.
Collapse
Affiliation(s)
| | | | - Jianke Li
- *Correspondence: Jianke Li, ; Yu Fang,
| | - Yu Fang
- *Correspondence: Jianke Li, ; Yu Fang,
| |
Collapse
|
4
|
Kwiatkowski M, Hotze M, Schumacher J, Asif AR, Pittol JMR, Brenig B, Ramljak S, Zischler H, Herlyn H. Protein speciation is likely to increase the chance of proteins to be determined in 2‐DE/MS. Electrophoresis 2022; 43:1203-1214. [DOI: 10.1002/elps.202000393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 11/30/2021] [Accepted: 02/02/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Marcel Kwiatkowski
- Department of Biochemistry and Center for Molecular Biosciences Innsbruck University of Innsbruck Innsbruck Austria
| | - Madlen Hotze
- Department of Biochemistry and Center for Molecular Biosciences Innsbruck University of Innsbruck Innsbruck Austria
| | | | - Abdul R. Asif
- Department of Clinical Chemistry/UMG‐Laboratories University Medical Center Göttingen Germany
| | - Jose Miguel Ramos Pittol
- Department of Biochemistry and Center for Molecular Biosciences Innsbruck University of Innsbruck Innsbruck Austria
| | - Bertram Brenig
- Department of Molecular Biology of Livestock Institute of Veterinary Medicine University of Göttingen Göttingen Germany
| | | | - Hans Zischler
- Institute of Organismic and Molecular Evolution, Anthropology University of Mainz Mainz Germany
| | - Holger Herlyn
- Institute of Organismic and Molecular Evolution, Anthropology University of Mainz Mainz Germany
| |
Collapse
|
5
|
Xu Y, Han Q, Ma C, Wang Y, Zhang P, Li C, Cheng X, Xu H. Comparative Proteomics and Phosphoproteomics Analysis Reveal the Possible Breed Difference in Yorkshire and Duroc Boar Spermatozoa. Front Cell Dev Biol 2021; 9:652809. [PMID: 34336820 PMCID: PMC8322956 DOI: 10.3389/fcell.2021.652809] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Sperm cells are of unique elongated structure and function, the development of which is tightly regulated by the existing proteins and the posttranslational modifications (PTM) of these proteins. Based on the phylogenetic relationships of various swine breeds, Yorkshire boar is believed to be distinctly different from Duroc boar. The comprehensive differential proteomics and phosphoproteomics profilings were performed on spermatozoa from both Yorkshire and Duroc boars. By both peptide and PTM peptide quantification followed by statistical analyses, 167 differentially expressed proteins were identified from 1,745 proteins, and 283 differentially expressed phosphopeptides corresponding to 102 unique differentially phosphorylated proteins were measured from 1,140 identified phosphopeptides derived from 363 phosphorylated proteins. The representative results were validated by Western blots. Pathway enrichment analyses revealed that majority of differential expression proteins and differential phosphorylation proteins were primarily concerned with spermatogenesis, male gamete generation, sperm motility, energy metabolism, cilium morphogenesis, axonemal dynein complex assembly, sperm–egg recognition, and capacitation. Remarkably, axonemal dynein complex assembly related proteins, such as SMCP, SUN5, ODF1, AKAP3, and AKAP4 that play a key regulatory role in the sperm physiological functions, were significantly higher in Duroc spermatozoa than that of Yorkshire. Furthermore, phosphorylation of sperm-specific proteins, such as CABYR, ROPN1, CALM1, PRKAR2A, and PRKAR1A, participates in regulation of the boar sperm motility mainly through the cAMP/PKA signal pathway in different breeds, demonstrating that protein phosphorylation may be an important mechanism underlying the sperm diversity. Protein–protein interaction analysis revealed that the 14 overlapped proteins between differential expression proteins and differential phosphorylation proteins potentially played a key role in sperm development and motility of the flagellum, including the proteins ODF1, SMCP, AKAP4, FSIP2, and SUN5. Taken together, these physiologically and functionally differentially expressed proteins (DEPs) and differentially expressed phosphorylated proteins (DPPs) may constitute the proteomic backgrounds between the two different boar breeds. The validation will be performed to delineate the roles of these PTM proteins as modulators of Yorkshire and Duroc boar spermatozoa.
Collapse
Affiliation(s)
- Yongjie Xu
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Qiu Han
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Chaofeng Ma
- Xinyang Animal Disease Control and Prevention Center, Xinyang, China
| | - Yaling Wang
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Pengpeng Zhang
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Cencen Li
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Xiaofang Cheng
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Haixia Xu
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
6
|
Dunphy K, Dowling P, Bazou D, O’Gorman P. Current Methods of Post-Translational Modification Analysis and Their Applications in Blood Cancers. Cancers (Basel) 2021; 13:1930. [PMID: 33923680 PMCID: PMC8072572 DOI: 10.3390/cancers13081930] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/04/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modifications (PTMs) add a layer of complexity to the proteome through the addition of biochemical moieties to specific residues of proteins, altering their structure, function and/or localization. Mass spectrometry (MS)-based techniques are at the forefront of PTM analysis due to their ability to detect large numbers of modified proteins with a high level of sensitivity and specificity. The low stoichiometry of modified peptides means fractionation and enrichment techniques are often performed prior to MS to improve detection yields. Immuno-based techniques remain popular, with improvements in the quality of commercially available modification-specific antibodies facilitating the detection of modified proteins with high affinity. PTM-focused studies on blood cancers have provided information on altered cellular processes, including cell signaling, apoptosis and transcriptional regulation, that contribute to the malignant phenotype. Furthermore, the mechanism of action of many blood cancer therapies, such as kinase inhibitors, involves inhibiting or modulating protein modifications. Continued optimization of protocols and techniques for PTM analysis in blood cancer will undoubtedly lead to novel insights into mechanisms of malignant transformation, proliferation, and survival, in addition to the identification of novel biomarkers and therapeutic targets. This review discusses techniques used for PTM analysis and their applications in blood cancer research.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Paul Dowling
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| |
Collapse
|
7
|
Comparative phosphoproteomic analysis unravels MAPK1 regulated phosphoproteins in Leishmania donovani. J Proteomics 2021; 240:104189. [PMID: 33757882 DOI: 10.1016/j.jprot.2021.104189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/05/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Mitogen Activated Protein Kinase1 (MAPK1) of Leishmania donovani functions as key regulators of various cellular activities, which seem to be imperative for parasite survival, infectivity, drug resistance and post-translational modification of chaperones/co-chaperones. However, very less is known about LdMAPK1 target proteins. With recent advancements in proteomics, we aimed to identify phosphoproteins which were differentially expressed in LdMAPK1 overexpressing (Dd8++/++) and single replacement mutants (Dd8+/) as compared to wild type (Dd8+/+) parasites, utilizing LC-MS/MS approach. An in-depth label-free phospoproteomic analysis revealed that modulation of LdMAPK1 expression significantly modulates expression levels of miscellaneous phosphoproteins which may act as its targets/substrates. Out of 1974 quantified phosphoproteins in parasite, 140 were significantly differentially expressed in MAPK1 overexpressing and single replacement mutants. These differentially expressed phosphoproteins are majorly associated with metabolism, signal transduction, replication, transcription, translation, transporters and cytoskeleton/motor proteins, hence suggested that MAPK1 may act in concert to modulate global biological processes. The study further implicated possible role of LdMAPK1 in regulation and management of stress machinery in parasite through post translational modifications. Precisely, comparative phosphoproteomics study has elucidated significant role of LdMAPK1 in regulating various pathways contributing in parasite biology with relevance to future drug development. SIGNIFICANCE: MAPKinase1, the downstream kinase of MAPK signal transduction pathway, has drawn much attention as potential therapeutic drug target due to their indispensable role in survival and infectivity of Leishmania donovani. However, limited information is available about its downstream effector proteins/signaling networks. Utilizing label free LC-MS/MS analysis, phosphoproteome of LdMAPK1 over-expressing (Dd8++/++) and LdMAPK1 single replacement mutants (Dd8+/-) with wild type (Dd8+/+) parasites was compared and identified 140 LdMAPK1 modulated phosphoproteins, mainly involved in pathways like signal transduction, metabolism, transcriptional, translational, post-translational modification and regulation of heat shock proteins. Interestingly, LdMAPK1 interacts directly with only six phosphoproteins i.e. casein kinase, casein kinase II, HSP83/HSP90, LACK, protein kinase and serine/threonine protein kinase. Thus, the study elucidates significant role of LdMAPK1 in Leishmania biology which may drive drug-discovery efforts against visceral leishmaniasis.
Collapse
|
8
|
Yu JS. From discovery of tyrosine phosphorylation to targeted cancer therapies: The 2018 Tang Prize in Biopharmaceutical Science. Biomed J 2019; 42:80-83. [PMID: 31130251 PMCID: PMC6541884 DOI: 10.1016/j.bj.2019.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/11/2019] [Indexed: 01/13/2023] Open
Abstract
Protein tyrosine kinases (TKs) are a family of enzymes that catalyze the phosphorylation of proteins at tyrosine residues. TKs play key roles in controlling cell growth and many other functions by modulating the status of tyrosine phosphorylation of regulatory proteins critical for numerous cellular signaling pathways. Dysregulation of TKs caused by genetic abnormalities (mutation, amplification, fusion, etc.) results in uncontrolled cell growth, and ultimately leads to cancer. Thus, identification of dysregulated TK(s) in a specific cancer type and development of TK inhibitors (TKIs) that can potently block activity of the dysregulated TK establish the foundation of modern targeted cancer therapies. The 2018 Tang Prize in Biopharmaceutical Science was awarded to Tony Hunter as well as Brian Druker and John Mendelsohn for their great contributions in discovering oncogene src as a TK and developing small molecule TKIs or therapeutic monoclonal antibodies against receptor TK, respectively.
Collapse
Affiliation(s)
- Jau-Song Yu
- Department of Cell & Molecular Biology, Graduate Institute of Biomedical Sciences, and Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
9
|
Nixon B, Johnston SD, Skerrett-Byrne DA, Anderson AL, Stanger SJ, Bromfield EG, Martin JH, Hansbro PM, Dun MD. Modification of Crocodile Spermatozoa Refutes the Tenet That Post-testicular Sperm Maturation Is Restricted To Mammals. Mol Cell Proteomics 2019; 18:S58-S76. [PMID: 30072580 PMCID: PMC6427239 DOI: 10.1074/mcp.ra118.000904] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/24/2018] [Indexed: 12/24/2022] Open
Abstract
Competition to achieve paternity has contributed to the development of a multitude of elaborate male reproductive strategies. In one of the most well-studied examples, the spermatozoa of all mammalian species must undergo a series of physiological changes, termed capacitation, in the female reproductive tract before realizing their potential to fertilize an ovum. However, the evolutionary origin and adaptive advantage afforded by capacitation remains obscure. Here, we report the use of comparative and quantitative proteomics to explore the biological significance of capacitation in an ancient reptilian species, the Australian saltwater crocodile (Crocodylus porosus,). Our data reveal that exposure of crocodile spermatozoa to capacitation stimuli elicits a cascade of physiological responses that are analogous to those implicated in the functional activation of their mammalian counterparts. Indeed, among a total of 1119 proteins identified in this study, we detected 126 that were differentially phosphorylated (± 1.2 fold-change) in capacitated versus, noncapacitated crocodile spermatozoa. Notably, this subset of phosphorylated proteins shared substantial evolutionary overlap with those documented in mammalian spermatozoa, and included key elements of signal transduction, metabolic and cellular remodeling pathways. Unlike mammalian sperm, however, we noted a distinct bias for differential phosphorylation of serine (as opposed to tyrosine) residues, with this amino acid featuring as the target for ∼80% of all changes detected in capacitated spermatozoa. Overall, these results indicate that the phenomenon of sperm capacitation is unlikely to be restricted to mammals and provide a framework for understanding the molecular changes in sperm physiology necessary for fertilization.
Collapse
Affiliation(s)
- Brett Nixon
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia;; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;.
| | - Stephen D Johnston
- School of Agriculture and Food Science, The University of Queensland, Gatton, QLD 4343, Australia
| | | | - Amanda L Anderson
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Simone J Stanger
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Elizabeth G Bromfield
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia;; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Jacinta H Martin
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia;; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Philip M Hansbro
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;; Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, The University of Newcastle, Newcastle, NSW 2308, Australia
| | - Matthew D Dun
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;; Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
10
|
Meineke R, Rimmelzwaan GF, Elbahesh H. Influenza Virus Infections and Cellular Kinases. Viruses 2019; 11:E171. [PMID: 30791550 PMCID: PMC6410056 DOI: 10.3390/v11020171] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/24/2022] Open
Abstract
Influenza A viruses (IAVs) are a major cause of respiratory illness and are responsible for yearly epidemics associated with more than 500,000 annual deaths globally. Novel IAVs may cause pandemic outbreaks and zoonotic infections with, for example, highly pathogenic avian influenza virus (HPAIV) of the H5N1 and H7N9 subtypes, which pose a threat to public health. Treatment options are limited and emergence of strains resistant to antiviral drugs jeopardize this even further. Like all viruses, IAVs depend on host factors for every step of the virus replication cycle. Host kinases link multiple signaling pathways in respond to a myriad of stimuli, including viral infections. Their regulation of multiple response networks has justified actively targeting cellular kinases for anti-cancer therapies and immune modulators for decades. There is a growing volume of research highlighting the significant role of cellular kinases in regulating IAV infections. Their functional role is illustrated by the required phosphorylation of several IAV proteins necessary for replication and/or evasion/suppression of the innate immune response. Identified in the majority of host factor screens, functional studies further support the important role of kinases and their potential as host restriction factors. PKC, ERK, PI3K and FAK, to name a few, are kinases that regulate viral entry and replication. Additionally, kinases such as IKK, JNK and p38 MAPK are essential in mediating viral sensor signaling cascades that regulate expression of antiviral chemokines and cytokines. The feasibility of targeting kinases is steadily moving from bench to clinic and already-approved cancer drugs could potentially be repurposed for treatments of severe IAV infections. In this review, we will focus on the contribution of cellular kinases to IAV infections and their value as potential therapeutic targets.
Collapse
Affiliation(s)
- Robert Meineke
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), Bünteweg 17, 30559 Hannover, Germany.
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), Bünteweg 17, 30559 Hannover, Germany.
| | - Husni Elbahesh
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), Bünteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
11
|
Lee SH, Suk K. Emerging roles of protein kinases in microglia-mediated neuroinflammation. Biochem Pharmacol 2017; 146:1-9. [DOI: 10.1016/j.bcp.2017.06.137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/30/2017] [Indexed: 11/27/2022]
|
12
|
Pan J, Zha Z, Zhang P, Chen R, Ye C, Ye T. Serine/threonine protein kinase PpkA contributes to the adaptation and virulence in Pseudomonas aeruginosa. Microb Pathog 2017; 113:5-10. [PMID: 29038052 DOI: 10.1016/j.micpath.2017.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
Abstract
Pseudomonas aeruginosa is a leading cause of nosocomial infections worldwide and has become a serious public health threat, which is attributed to a large extent to its extraordinary environmental adaptability and diverse virulence factors that result in infection and progression of pathogenesis. The eukaryote-type serine/threonine (Ser/Thr) protein kinases, known for playing major regulatory roles in eukaryotes, have been demonstrated to play a central role in regulating various bacterial cellular processes via catalyzing protein phosphorylation. Although PpkA, a Ser/Thr protein kinase first identified in P. aeruginosa, has been implicated in association with bacterial virulence, little is known about the protein. Therefore, in this study, to assess the potential role of PpkA in the regulation of P. aeruginosa environmental adaptation and virulence, variations of biofilm formation, pyocyanin production, tolerance to stress, cell invasion and plant virulence were determined in wild type PAO1, ppkA gene-deleted and complemented mutant strains. Our results indicate that the mutant strain lacking ppkA exhibited a significant decrease of biofilm formation and pyocyanin production, less tolerance to oxidative and osmotic stresses, inefficient invasion of host cells and a reduction of bacterial virulence. These findings provide new insight into the regulation of various cellular processes by PpkA; this is an important mechanism for adaptation and virulence in P. aeruginosa.
Collapse
Affiliation(s)
- Jianyi Pan
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Zhenzhong Zha
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengfei Zhang
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ran Chen
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chen Ye
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ting Ye
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
13
|
MAPK1 of Leishmania donovani interacts and phosphorylates HSP70 and HSP90 subunits of foldosome complex. Sci Rep 2017; 7:10202. [PMID: 28860596 PMCID: PMC5579238 DOI: 10.1038/s41598-017-09725-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/17/2017] [Indexed: 01/14/2023] Open
Abstract
MAP kinases (MAPK) are the most downstream kinases in signal transduction cascades and regulate critical cellular activities such as cell proliferation, differentiation, mortality, stress response, and apoptosis. The Leishmania donovani MAPK1 (LdMAPK1) is involved in parasite viability and drug resistance, but its substrates have not been identified yet. Aiming to identify the possible targets(s) of LdMAPK1, we sought to isolate interacting partners by co-immunoprecipitation, gel electrophoresis and mass spectrometry. Out of fifteen analyzed protein bands, four were identified as subunits of the HSP90 foldosome complex, namely HSP 90, HSP70, STI and SGT. Western blot analysis not only confirmed that LdMAPK1 interacts with HSP70 and HSP90 but also demonstrated that MAPK1 abundance modulates their expression. The interaction is sensitive to treatment with AMTZD, a competitive ERK inhibitor. MAPK1 also displayed kinase activity with HSP90 or HSP70 as substrates. By phosphorylating HSPs in the foldosome complex, MAPK1 may regulate the stability and activity of the foldosome which in turn plays a pivotal role in the parasitic life cycle of L. donovani. Our study therefore implicates LdMAPK1 in the post-translational modification and possibly the regulation of heat shock proteins. Conversely, HSP90 and HSP70 are identified as the first substrates of LdMAPK1.
Collapse
|
14
|
Technological advances for interrogating the human kinome. Biochem Soc Trans 2017; 45:65-77. [PMID: 28202660 DOI: 10.1042/bst20160163] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/12/2022]
Abstract
There is increasing appreciation among researchers and clinicians of the value of investigating biology and pathobiology at the level of cellular kinase (kinome) activity. Kinome analysis provides valuable opportunity to gain insights into complex biology (including disease pathology), identify biomarkers of critical phenotypes (including disease prognosis and evaluation of therapeutic efficacy), and identify targets for therapeutic intervention through kinase inhibitors. The growing interest in kinome analysis has fueled efforts to develop and optimize technologies that enable characterization of phosphorylation-mediated signaling events in a cost-effective, high-throughput manner. In this review, we highlight recent advances to the central technologies currently available for kinome profiling and offer our perspectives on the key challenges remaining to be addressed.
Collapse
|
15
|
Bezabih G, Cheng H, Han B, Feng M, Xue Y, Hu H, Li J. Phosphoproteome Analysis Reveals Phosphorylation Underpinnings in the Brains of Nurse and Forager Honeybees (Apis mellifera). Sci Rep 2017; 7:1973. [PMID: 28512345 PMCID: PMC5434016 DOI: 10.1038/s41598-017-02192-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/24/2017] [Indexed: 11/09/2022] Open
Abstract
The honeybee brain is a central organ in regulating wide ranges of honeybee biology, including life transition from nurse to forager bees. Knowledge is still lacking on how protein phosphorylation governs the neural activity to drive the age-specific labor division. The cerebral phosphoproteome of nurse and forager honeybees was characterized using Ti4+-IMAC phosphopeptide enrichment mass-spectrometry-based proteomics and protein kinases (PKs) were predicted. There were 3,077 phosphosites residing on 3,234 phosphopeptides from 1004 phosphoproteins in the nurse bees. For foragers the numbers were 3,056, 3,110, and 958, respectively. Notably, among the total 231 PKs in honeybee proteome, 179 novel PKs were predicted in the honeybee brain, of which 88 were experimentally identified. Proteins involved in wide scenarios of pathways were phosphorylated depending on age: glycolysis/gluconeogenesis, AGE/RAGE and phosphorylation in nurse bees and metal ion transport, ATP metabolic process and phototransduction in forager bees. These observations suggest that phosphorylation is vital to the tuning of protein activity to regulate cerebral function according to the biological duties as nursing and foraging bees. The data provides valuable information on phosphorylation signaling in the honeybee brain and potentially useful resource to understand the signaling mechanism in honeybee neurobiology and in other social insects as well.
Collapse
Affiliation(s)
- Gebreamlak Bezabih
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, 100093, China
| | - Han Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Bin Han
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, 100093, China
| | - Mao Feng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, 100093, China
| | - Yu Xue
- Department of Bioinformatics & Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, 100093, China
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, 100093, China.
| |
Collapse
|
16
|
Moreira DDS, Pescher P, Laurent C, Lenormand P, Späth GF, Murta SMF. Phosphoproteomic analysis of wild-type and antimony-resistant Leishmania braziliensis lines by 2D-DIGE technology. Proteomics 2015; 15:2999-3019. [PMID: 25959087 DOI: 10.1002/pmic.201400611] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/30/2015] [Accepted: 05/07/2015] [Indexed: 12/21/2022]
Abstract
Protein phosphorylation is one of the most studied post-translational modifications that is involved in different cellular events in Leishmania. In this study, we performed a comparative phosphoproteomics analysis of potassium antimonyl tartrate (SbIII)-resistant and -susceptible lines of Leishmania braziliensis using a 2D-DIGE approach followed by MS. In order to investigate the differential phosphoprotein abundance associated with the drug-induced stress response and SbIII-resistance mechanisms, we compared nontreated and SbIII-treated samples of each line. Pair wise comparisons revealed a total of 116 spots that showed a statistically significant difference in phosphoprotein abundance, including 11 and 34 spots specifically correlated with drug treatment and resistance, respectively. We identified 48 different proteins distributed into seven biological process categories. The category "protein folding/chaperones and stress response" is mainly implicated in response to SbIII treatment, while the categories "antioxidant/detoxification," "metabolic process," "RNA/DNA processing," and "protein biosynthesis" are modulated in the case of antimony resistance. Multiple sequence alignments were performed to validate the conservation of phosphorylated residues in nine proteins identified here. Western blot assays were carried out to validate the quantitative phosphoproteome analysis. The results revealed differential expression level of three phosphoproteins in the lines analyzed. This novel study allowed us to profile the L. braziliensis phosphoproteome, identifying several potential candidates for biochemical or signaling networks associated with antimony resistance phenotype in this parasite.
Collapse
Affiliation(s)
- Douglas de Souza Moreira
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisas René Rachou CPqRR/Fiocruz, Belo Horizonte, MG, Brazil
| | - Pascale Pescher
- Institut Pasteur, CNRS URA2581, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Christine Laurent
- Department of Structural Biology and Chemistry, Pasteur-Genopole Ile-de-France, Plate-forme de Protéomique, Institut Pasteur, Paris, France
| | - Pascal Lenormand
- Department of Structural Biology and Chemistry, Pasteur-Genopole Ile-de-France, Plate-forme de Protéomique, Institut Pasteur, Paris, France
| | - Gerald F Späth
- Institut Pasteur, CNRS URA2581, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Silvane M F Murta
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisas René Rachou CPqRR/Fiocruz, Belo Horizonte, MG, Brazil
| |
Collapse
|
17
|
Gala A, Fang Y, Woltedji D, Zhang L, Han B, Feng M, Li J. Changes of proteome and phosphoproteome trigger embryo–larva transition of honeybee worker (Apis mellifera ligustica). J Proteomics 2013; 78:428-46. [DOI: 10.1016/j.jprot.2012.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/20/2012] [Accepted: 10/12/2012] [Indexed: 01/26/2023]
|
18
|
Zhang X, Ma H, Huang J, Dai Y. Characterization of the Phosphoproteome in SLE Patients. PLoS One 2012; 7:e53129. [PMID: 23285258 PMCID: PMC3532163 DOI: 10.1371/journal.pone.0053129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 11/23/2012] [Indexed: 12/31/2022] Open
Abstract
Protein phosphorylation is a complex regulatory event that is involved in the signaling networks that affect virtually every cellular process. The protein phosphorylation may be a novel source for discovering biomarkers and drug targets. However, a systematic analysis of the phosphoproteome in patients with SLE has not been performed. To clarify the pathogenesis of systemic lupus erythematosus (SLE), we compared phosphoprotein expression in PBMCs from SLE patients and normal subjects using proteomics analyses. Phosphopeptides were enriched using TiO₂ from PBMCs isolated from 15 SLE patients and 15 healthy subjects and then analyzed by automated LC-MS/MS analysis. Phosphorylation sites were identified and quantitated by MASCOT and MaxQuant. A total of 1035 phosphorylation sites corresponding to 618 NCBI-annotated genes were identified in SLE patients compared with normal subjects. Differentially expressed proteins, peptides and phosphorylation sites were then subjected to bioinformatics analyses. Gene ontology(GO) and pathway analyses showed that nucleic acid metabolism, cellular component organization, transport and multicellular organismal development pathways made up the largest proportions of the differentially expressed genes. Pathway analyses showed that the mitogen-activated protein kinase (MAPK) signaling pathway and actin cytoskeleton regulators made up the largest proportions of the metabolic pathways. Network analysis showed that rous sarcoma oncogene (SRC), v-rel reticuloendotheliosis viral oncogene homolog A (RELA), histone deacetylase (HDA1C) and protein kinase C, delta (PRKCD) play important roles in the stability of the network. These data suggest that aberrant protein phosphorylation may contribute to SLE pathogenesis.
Collapse
Affiliation(s)
- Xinzhou Zhang
- Department of Nephrology, Shenzhen People's Hospital, Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Hualin Ma
- Department of Nephrology, Shenzhen People's Hospital, Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Jianrong Huang
- Department of Nephrology, Shenzhen People's Hospital, Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Yong Dai
- Clinical Medical Research Center, Shenzhen People's Hospital, Second Clinical Medical College, Jinan University, Shenzhen, China
- * E-mail:
| |
Collapse
|
19
|
Husberg C, Agnetti G, Holewinski RJ, Christensen G, Van Eyk JE. Dephosphorylation of cardiac proteins in vitro - a matter of phosphatase specificity. Proteomics 2012; 12:973-8. [PMID: 22522803 DOI: 10.1002/pmic.201100116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein phosphorylation is reversibly regulated by the interplay between kinases and phosphatases. Recent developments within the field of proteomics have revealed the extent of this modification in nature. To date there is still a lack of information about phosphatase specificity for different proteomes and their conditions to achieve maximum enzyme activity. This information is important per se, and in addition often requested in functional and biochemical in vitro studies, where a dephosphorylated sample is needed as a negative control to define baseline conditions. In this study, we have addressed the effectiveness of two phosphatases endogenously present in the heart (protein phosphatases 1 and 2A) and two generic phosphatases (alkaline phosphatase and lambda protein phosphatase) on three cardiac subproteomes known to be regulated by phosphorylation. We optimized the dephoshorylating conditions on a cardiac tissue fraction comprising cytosolic and myofilament proteins using 2DE and MS. The two most efficient conditions were further investigated on a mitochondrial-enriched fraction. Dephosphorylation of specific proteins depends on the phosphatase, its concentration, as well as sample preparation including buffer composition. Finally, we analyzed the efficiency of alkaline phosphatase, the phosphatase with the broadest substrate specificity, using TiO(2) peptide enrichment and 2DLC-MS/MS. Under these conditions, 95% of the detected cardiac cytoplasmic-enriched phospho-proteome was dephosphorylated. In summary, targeting dephosphorylation of the cardiac muscle subproteomes or a specific protein will drive the selection of the specific phosphatase, and each requires different conditions for optimal performance.
Collapse
Affiliation(s)
- Cathrine Husberg
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
20
|
López E, Cho WCS. Phosphoproteomics and lung cancer research. Int J Mol Sci 2012; 13:12287-12314. [PMID: 23202899 PMCID: PMC3497273 DOI: 10.3390/ijms131012287] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/14/2012] [Accepted: 09/19/2012] [Indexed: 12/28/2022] Open
Abstract
Massive evidence suggests that genetic abnormalities contribute to the development of lung cancer. These molecular abnormalities may serve as diagnostic, prognostic and predictive biomarkers for this deadly disease. It is imperative to search these biomarkers in different tumorigenesis pathways so as to provide the most appropriate therapy for each individual patient with lung malignancy. Phosphoproteomics is a promising technology for the identification of biomarkers and novel therapeutic targets for cancer. Thousands of proteins interact via physical and chemical association. Moreover, some proteins can covalently modify other proteins post-translationally. These post-translational modifications ultimately give rise to the emergent functions of cells in sequence, space and time. Phosphoproteomics clinical researches imply the comprehensive analysis of the proteins that are expressed in cells or tissues and can be employed at different stages. In addition, understanding the functions of phosphorylated proteins requires the study of proteomes as linked systems rather than collections of individual protein molecules. In fact, proteomics approaches coupled with affinity chromatography strategies followed by mass spectrometry have been used to elucidate relevant biological questions. This article will discuss the relevant clues of post-translational modifications, phosphorylated proteins, and useful proteomics approaches to identify molecular cancer signatures. The recent progress in phosphoproteomics research in lung cancer will be also discussed.
Collapse
Affiliation(s)
- Elena López
- Hospital Universitario Niño Jesús, Department of Oncohematology of Children, Madrid 28009, Spain; E-Mail:
| | - William C. S. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong
| |
Collapse
|
21
|
Burnside K, Rajagopal L. Aspects of eukaryotic-like signaling in Gram-positive cocci: a focus on virulence. Future Microbiol 2011; 6:747-61. [PMID: 21797690 DOI: 10.2217/fmb.11.62] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Living organisms adapt to the dynamic external environment for their survival. Environmental adaptation in prokaryotes is thought to be primarily accomplished by signaling events mediated by two-component systems, consisting of histidine kinases and response regulators. However, eukaryotic-like serine/threonine kinases (STKs) have recently been described to regulate growth, antibiotic resistance and virulence of pathogenic bacteria. This article summarizes the role of STKs and their cognate phosphatases (STPs) in Gram-positive cocci that cause invasive infections in humans. Given that a large number of inhibitors to eukaryotic STKs are approved for use in humans, understanding how serine/threonine phosphorylation regulates virulence and antibiotic resistance will be beneficial for the development of novel therapeutic strategies against bacterial infections.
Collapse
Affiliation(s)
- Kellie Burnside
- Department of Pediatric Infectious Diseases, University of Washington & Seattle Children's Hospital Research Institute, 1900 Ninth Avenue, Seattle, WA 98101-1304, USA
| | | |
Collapse
|
22
|
Kučerová Z, Muselová H, Přikryl P, Tichá M. Phosphoprotein electrophoresis in the presence of Fe(III) ions. J Sep Sci 2011; 34:1875-9. [DOI: 10.1002/jssc.201100321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/09/2011] [Accepted: 05/11/2011] [Indexed: 11/10/2022]
|
23
|
Hu Y, Peng Y, Lin K, Shen H, Brousseau LC, Sakamoto J, Sun T, Ferrari M. Surface engineering on mesoporous silica chips for enriching low molecular weight phosphorylated proteins. NANOSCALE 2011; 3:421-8. [PMID: 21135976 PMCID: PMC3397147 DOI: 10.1039/c0nr00720j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous silica thin films with precisely engineered pore sizes that sterically select for molecular size combined with chemically selective surface modifications (i.e. Ga3+, Ti4+ and Zr4+) that target phosphoroproteins. These materials provide high reproducibility (CV=18%) and increase the stability of the captured proteins by excluding degrading enzymes, such as trypsin. The chemical and physical properties of the composite mesoporous thin films were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and ellipsometry. Using mass spectroscopy and biostatistics analysis, the enrichment efficiency of different metal ions immobilized on mesoporous silica chips was investigated. The novel technology reported provides a platform capable of efficiently profiling the serum proteome for biomarker discovery, forensic sampling, and routine diagnostic applications.
Collapse
Affiliation(s)
- Ye Hu
- Department of Nanomedicine and Biomedical Engineering, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yang Peng
- Department of Nanomedicine and Biomedical Engineering, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kevin Lin
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, TX, USA
| | - Haifa Shen
- Department of Nanomedicine and Biomedical Engineering, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Louis C. Brousseau
- Department of Nanomedicine and Biomedical Engineering, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jason Sakamoto
- Department of Nanomedicine and Biomedical Engineering, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tong Sun
- Department of Nanomedicine and Biomedical Engineering, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mauro Ferrari
- Department of Nanomedicine and Biomedical Engineering, the University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, TX, USA
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
24
|
Abstract
Phosphorylation of proteins is an essential signalling mechanism in eukaryotic and prokaryotic cells. Although N-phosphorylation of basic amino acid is known for its importance in biological systems, it is still poorly explored in terms of products and mechanisms. In the present study, two MS fragmentation methods, ECD (electron-capture dissociation) and CID (collision-induced dissociation), were tested as tools for analysis of N-phosphorylation of three model peptides, RKRSRAE, RKRARKE and PLSRTLSVAAKK. The peptides were phosphorylated by reaction with monopotassium phosphoramidate. The results were confirmed by 1H NMR and 31P NMR studies. The ECD method was found useful for the localization of phosphorylation sites in unstable lysine-phosphorylated peptides. Its main advantage is a significant reduction of the neutral losses related to the phosphoramidate moiety. Moreover, the results indicate that the ECD–MS may be useful for analysis of regioselectivity of the N-phosphorylation reaction. Stabilities of the obtained lysine-phosphorylated peptides under various conditions were also tested.
Collapse
|
25
|
Novotna L, Emmerova T, Horak D, Kucerova Z, Ticha M. Iminodiacetic acid-modified magnetic poly(2-hydroxyethyl methacrylate)-based microspheres for phosphopeptide enrichment. J Chromatogr A 2010; 1217:8032-40. [DOI: 10.1016/j.chroma.2010.08.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 08/06/2010] [Accepted: 08/23/2010] [Indexed: 11/25/2022]
|
26
|
Barrabés S, Sarrats A, Fort E, De Llorens R, Rudd PM, Peracaula R. Effect of sialic acid content on glycoprotein pI analyzed by two-dimensional electrophoresis. Electrophoresis 2010; 31:2903-12. [DOI: 10.1002/elps.200900764] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Burnside K, Lembo A, de los Reyes M, Iliuk A, BinhTran NT, Connelly JE, Lin WJ, Schmidt BZ, Richardson AR, Fang FC, Tao WA, Rajagopal L. Regulation of hemolysin expression and virulence of Staphylococcus aureus by a serine/threonine kinase and phosphatase. PLoS One 2010; 5:e11071. [PMID: 20552019 PMCID: PMC2884019 DOI: 10.1371/journal.pone.0011071] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 05/14/2010] [Indexed: 02/02/2023] Open
Abstract
Exotoxins, including the hemolysins known as the alpha (alpha) and beta (beta) toxins, play an important role in the pathogenesis of Staphylococcus aureus infections. A random transposon library was screened for S. aureus mutants exhibiting altered hemolysin expression compared to wild type. Transposon insertions in 72 genes resulting in increased or decreased hemolysin expression were identified. Mutations inactivating a putative cyclic di-GMP synthetase and a serine/threonine phosphatase (Stp1) were found to reduce hemolysin expression, and mutations in genes encoding a two component regulator PhoR, LysR family transcriptional regulator, purine biosynthetic enzymes and a serine/threonine kinase (Stk1) increased expression. Transcription of the hla gene encoding alpha toxin was decreased in a Deltastp1 mutant strain and increased in a Deltastk1 strain. Microarray analysis of a Deltastk1 mutant revealed increased transcription of additional exotoxins. A Deltastp1 strain is severely attenuated for virulence in mice and elicits less inflammation and IL-6 production than the Deltastk1 strain. In vivo phosphopeptide enrichment and mass spectrometric analysis revealed that threonine phosphorylated peptides corresponding to Stk1, DNA binding histone like protein (HU), serine-aspartate rich fibrinogen/bone sialoprotein binding protein (SdrE) and a hypothetical protein (NWMN_1123) were present in the wild type and not in the Deltastk1 mutant. Collectively, these studies suggest that Stk1 mediated phosphorylation of HU, SrdE and NWMN_1123 affects S. aureus gene expression and virulence.
Collapse
Affiliation(s)
- Kellie Burnside
- Department of Pediatric Infectious Diseases, University of Washington and Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
| | - Annalisa Lembo
- Department of Pediatric Infectious Diseases, University of Washington and Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
| | - Melissa de los Reyes
- Department of Pediatric Infectious Diseases, University of Washington and Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
| | - Anton Iliuk
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Nguyen-Thao BinhTran
- Department of Pediatric Infectious Diseases, University of Washington and Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
| | - James E. Connelly
- Department of Pediatric Infectious Diseases, University of Washington and Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
| | - Wan-Jung Lin
- Department of Pediatric Infectious Diseases, University of Washington and Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
| | - Byron Z. Schmidt
- Department of Pediatric Infectious Diseases, University of Washington and Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
| | - Anthony R. Richardson
- Departments of Laboratory Medicine and Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Ferric C. Fang
- Departments of Laboratory Medicine and Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Weiguo Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Lakshmi Rajagopal
- Department of Pediatric Infectious Diseases, University of Washington and Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
| |
Collapse
|
28
|
Levin Y, Jaros JAJ, Schwarz E, Bahn S. Multidimensional protein fractionation of blood proteins coupled to data-independent nanoLC-MS/MS analysis. J Proteomics 2009; 73:689-95. [PMID: 19896566 DOI: 10.1016/j.jprot.2009.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 09/29/2009] [Accepted: 10/30/2009] [Indexed: 11/19/2022]
Abstract
In order to exploit human blood as a source of protein disease biomarkers, robust analytical methods are needed to overcome the inherent molecular complexity of this bio-fluid. We present the coupling of label-free SAX chromatography and IMAC to a data-independent nanoLC-MS/MS (nanoLC-MS(E)) platform for analysis of blood plasma and serum proteins. The methods were evaluated using protein standards added at different concentrations to two groups of samples. The results demonstrate that both techniques enable accurate protein quantitation using low sample volumes and a minimal number of fractions. Combining both methods, 883 unique proteins were identified, of which 423 proteins showed high reproducibility. The two approaches resulted in identification of unique molecular signatures with an overlap of approximately 30%, thus providing complimentary information on sub-proteomes. These methods are potentially useful for systems biology, biomarker discovery, and investigation of phosphoproteins in blood.
Collapse
Affiliation(s)
- Yishai Levin
- Cambridge Centre for Neuropsychiatric Research, Institute of Biotechnology, Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, CB 2 1QT Cambridge, United Kingdom
| | | | | | | |
Collapse
|
29
|
Thiyagarajan V, Wong T, Qian PY. 2D gel-based proteome and phosphoproteome analysis during larval metamorphosis in two major marine biofouling invertebrates. J Proteome Res 2009; 8:2708-19. [PMID: 19341272 DOI: 10.1021/pr800976u] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Larvae of some benthic invertebrates respond (metamorphose or not) to chemical cues within minutes or hours and often without excessive transcription or translation. Although protein phosphorylation is one of the most important molecular switching mechanisms that govern variety of rapid cellular responses in higher organisms, this is the first study to analyze the global protein expression and protein phosphorylation status during larval metamorphosis in two major marine biofouling invertebrates (a bryozoan Bugula neritina and a barnacle Balanus amphitrite). Results indicate that larval proteomic response to metamorphosis (inhibiton or induction) involves substantial change in the phosphorylation status of proteins rather than de novo protein synthesis. An abundantly expressed and an unnamed phosphoprotein that appears to play key regulatory role in larval metamorphosis was identified. When larvae of bryozoan and barnacle were challenged with a metamorphosis (and kinase) inhibitor, the genistein, the number of phosphoproteins in bryozoan were substantially reduced but drastically increased in barnacle. Taken together, this is the first time that the usefulness of employing 2DE-based proteomic and phosphoproteomic approaches was demonstrated for us to understand the molecular mechanisms of larval metamorphosis and to study the mode-of-action of chemical cues in marine organisms.
Collapse
Affiliation(s)
- Vengatesen Thiyagarajan
- Department of Biology, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR
| | | | | |
Collapse
|
30
|
Andersen CA, Gotta S, Magnoni L, Raggiaschi R, Kremer A, Terstappen GC. Robust MS quantification method for phospho-peptides using 18O/16O labeling. BMC Bioinformatics 2009; 10:141. [PMID: 19432989 PMCID: PMC2693437 DOI: 10.1186/1471-2105-10-141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 05/11/2009] [Indexed: 11/10/2022] Open
Abstract
Background Quantitative measurements of specific protein phosphorylation sites, as presented here, can be used to investigate signal transduction pathways, which is an important aspect of cell dynamics. The presented method quantitatively compares peptide abundances from experiments using 18O/16O labeling starting from elaborated MS spectra. It was originally developed to study signaling cascades activated by amyloid-β treatment of neurons used as a cellular model system with relevance to Alzheimer's disease, but is generally applicable. Results The presented method assesses, in complete cell lysates, the degree of phosphorylation of specific peptide residues from MS spectra using 18O/16O labeling. The abundance of each observed phospho-peptide from two cell states was estimated from three overlapping isotope contours. The influence of peptide-specific labeling efficiency was removed by performing a label swapped experiment and assuming that the labeling efficiency was unchanged upon label swapping. Different degrees of phosphorylation were reported using the fold change measure which was extended with a confidence interval found to reflect the quality of the underlying spectra. Furthermore a new way of method assessment using simulated data is presented. Using simulated data generated in a manner mimicking real data it was possible to show the method's robustness both with increasing noise levels and with decreasing labeling efficiency. Conclusion The fold change error assessable on simulated data was on average 0.16 (median 0.10) with an error-to-signal ratio and labeling efficiency distributions similar to the ones found in the experimentally observed spectra. Applied to experimentally observed spectra a very good match was found to the model (<10% error for 85% of spectra) with a high degree of robustness, as assessed by data removal. This new method can thus be used for quantitative signal cascade analysis of total cell extracts in a high throughput mode.
Collapse
Affiliation(s)
- Claus A Andersen
- Siena Biotech SpA, Discovery Research, Via Fiorentina 1, 53100 Siena, Italy.
| | | | | | | | | | | |
Collapse
|
31
|
Popova M, Shimizu H, Yamamoto KI, Lebechec M, Takahashi M, Fleury F. Detection of c-Abl kinase-promoted phosphorylation of Rad51 by specific antibodies reveals that Y54 phosphorylation is dependent on that of Y315. FEBS Lett 2009; 583:1867-72. [PMID: 19427856 DOI: 10.1016/j.febslet.2009.04.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/28/2009] [Accepted: 04/29/2009] [Indexed: 11/30/2022]
Abstract
Rad51 plays a crucial role in homologous recombination and recombinational DNA repair. Its activity is regulated by phosphorylation by the c-Abl kinase. Either Tyr54 or Tyr315 have been reported as the target of phosphorylation but the interconnection between their phosphorylation is not known. We prepared two specific antibodies that selectively detected the Tyr54 or Tyr315 phosphorylation site of Rad51. By co-transfection of HeLa cells with c-Abl and Rad51, we clearly showed that both Tyr54 and Tyr315 of Rad51 are phosphorylated by c-Abl. Furthermore, we showed that the phosphorylation of Tyr315 stimulates that of Tyr54, which indicates that the phosphorylation of Rad51 by the c-Abl kinase is a sequential process.
Collapse
Affiliation(s)
- Milena Popova
- Unité U3B, UMR 6204 CNRS, Université de Nantes, Nantes, France
| | | | | | | | | | | |
Collapse
|
32
|
Silvestroni A, Jewell KA, Lin WJ, Connelly JE, Ivancic MM, Tao WA, Rajagopal L. Identification of serine/threonine kinase substrates in the human pathogen group B streptococcus. J Proteome Res 2009; 8:2563-74. [PMID: 19309132 PMCID: PMC2863997 DOI: 10.1021/pr900069n] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All living organisms respond to changes in their internal and external environment for their survival and existence. Signaling is primarily achieved through reversible phosphorylation of proteins in both prokaryotes and eukaryotes. A change in the phosphorylation state of a protein alters its function to enable the control of cellular responses. A number of serine/threonine kinases regulate the cellular responses of eukaryotes. Although common in eukaryotes, serine/threonine kinases have only recently been identified in prokaryotes. We have described that the human pathogen Group B Streptococcus (GBS, Streptococcus agalactiae) encodes a single membrane-associated, serine/threonine kinase (Stk1) that is important for virulence of this bacterium. In this study, we used a combination of phosphopeptide enrichment and mass spectrometry to enrich and identify serine (S) and threonine (T) phosphopeptides of GBS. A comparison of S/T phosphopeptides identified from the Stk1 expressing strains to the isogenic stk1 mutant indicates that 10 proteins are potential substrates of the GBS Stk1 enzyme. Some of these proteins are phosphorylated by Stk1 in vitro and a site-directed substitution of the phosphorylated threonine to an alanine abolished phosphorylation of an Stk1 substrate. Collectively, these studies provide a novel approach to identify serine/threonine kinase substrates for insight into their signaling in human pathogens like GBS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lakshmi Rajagopal
- Corresponding author. Mailing address: Seattle Children’s Hospital Research Institute, 1900 Ninth Ave., Seattle, WA 98101-1304. Phone: (206) 884-7336. Fax: (206) 884-7311.
| |
Collapse
|
33
|
Lin WJ, Walthers D, Connelly JE, Burnside K, Jewell KA, Kenney LJ, Rajagopal L. Threonine phosphorylation prevents promoter DNA binding of the Group B Streptococcus response regulator CovR. Mol Microbiol 2009; 71:1477-95. [PMID: 19170889 PMCID: PMC3133594 DOI: 10.1111/j.1365-2958.2009.06616.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
All living organisms communicate with the external environment for their survival and existence. In prokaryotes, communication is achieved by two-component systems (TCS) comprising histidine kinases and response regulators. In eukaryotes, signalling is accomplished by serine/threonine and tyrosine kinases. Although TCS and serine/threonine kinases coexist in prokaryotes, direct cross-talk between these families was first described in Group B Streptococcus (GBS). A serine/threonine kinase (Stk1) and a TCS (CovR/CovS) co-regulate toxin expression in GBS. Typically, promoter binding of regulators like CovR is controlled by phosphorylation of the conserved active site aspartate (D53). In this study, we show that Stk1 phosphorylates CovR at threonine 65. The functional consequence of threonine phosphorylation of CovR in GBS was evaluated using phosphomimetic and silencing substitutions. GBS encoding the phosphomimetic T65E allele are deficient for CovR regulation unlike strains encoding the non-phosphorylated T65A allele. Further, compared with wild-type or T65A CovR, the T65E CovR is unable to bind promoter DNA and is decreased for phosphorylation at D53, similar to Stk1-phosphorylated CovR. Collectively, we provide evidence for a novel mechanism of response regulator control that enables GBS (and possibly other prokaryotes) to fine-tune gene expression for environmental adaptation.
Collapse
Affiliation(s)
- Wan-Jung Lin
- Department of Pediatric Infectious Diseases, University of Washington School of Medicine and Seattle Children’s Hospital Research Institute, Seattle, WA 98101, USA
| | - Don Walthers
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - James E. Connelly
- Department of Pediatric Infectious Diseases, University of Washington School of Medicine and Seattle Children’s Hospital Research Institute, Seattle, WA 98101, USA
| | - Kellie Burnside
- Department of Pediatric Infectious Diseases, University of Washington School of Medicine and Seattle Children’s Hospital Research Institute, Seattle, WA 98101, USA
| | - Kelsea A. Jewell
- Department of Pediatric Infectious Diseases, University of Washington School of Medicine and Seattle Children’s Hospital Research Institute, Seattle, WA 98101, USA
| | - Linda J. Kenney
- Department of Pediatric Infectious Diseases, University of Washington School of Medicine and Seattle Children’s Hospital Research Institute, Seattle, WA 98101, USA
| | - Lakshmi Rajagopal
- Department of Pediatric Infectious Diseases, University of Washington School of Medicine and Seattle Children’s Hospital Research Institute, Seattle, WA 98101, USA
| |
Collapse
|
34
|
Seferovic MD, Ali R, Kamei H, Liu S, Khosravi JM, Nazarian S, Han VKM, Duan C, Gupta MB. Hypoxia and leucine deprivation induce human insulin-like growth factor binding protein-1 hyperphosphorylation and increase its biological activity. Endocrinology 2009; 150:220-31. [PMID: 18772238 PMCID: PMC2630895 DOI: 10.1210/en.2008-0657] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fetal growth restriction is often caused by uteroplacental insufficiency that leads to fetal hypoxia and nutrient deprivation. Elevated IGF binding protein (IGFBP)-1 expression associated with fetal growth restriction has been documented. In this study we tested the hypothesis that hypoxia and nutrient deprivation induce IGFBP-1 phosphorylation and increase its biological potency in inhibiting IGF actions. HepG2 cells were subjected to hypoxia and leucine deprivation to mimic the deprivation of metabolic substrates. The total IGFBP-1 levels measured by ELISA were approximately 2- to 2.5-fold higher in hypoxia and leucine deprivation-treated cells compared with the controls. Two-dimensional immunoblotting showed that whereas the nonphosphorylated isoform is the predominant IGFBP-1 in the controls, the highly phosphorylated isoforms were dominant in hypoxia and leucine deprivation-treated cells. Liquid chromatography-tandem mass spectrometry analysis revealed four serine phosphorylation sites: three known sites (pSer 101, pSer 119, and pSer 169); and a novel site (pSer 98). Liquid chromatography-mass spectrometry was used to estimate the changes of phosphorylation upon treatment. Biacore analysis indicated that the highly phosphorylated IGFBP-1 isoforms found in hypoxia and leucine deprivation-treated cells had greater affinity for IGF-I [dissociation constant 5.83E (times 10 to the power)--0 m and 6.40E-09 m] relative to the IGFBP-1 from the controls (dissociation constant approximately 1.54E-07 m). Furthermore, the highly phosphorylated IGFBP-1 had a stronger effect in inhibiting IGF-I-stimulated cell proliferation. These findings suggest that IGFBP-1 phosphorylation may be a novel mechanism of fetal adaptive response to hypoxia and nutrient restriction.
Collapse
Affiliation(s)
- Maxim D Seferovic
- Department of Pediatrics, University of Western Ontario, VRL Room A5-136 (WC), 800 Commissioners Road East, London, Ontario, Canada N6C 2V5
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kristensen LH, Nielsen PE, Jørgensen CI, Kragelund BB, Møllegaard NE. Phosphate selective uranyl photo-affinity cleavage of proteins. Determination of phosphorylation sites. Chembiochem 2008; 9:2377-81. [PMID: 18781566 DOI: 10.1002/cbic.200800387] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Line Hyltoft Kristensen
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
36
|
Abstract
Após seqüenciamento do genoma humano, os estudos genômicos têm se voltado à elucidação das funções de todos os genes, bem como à caracterização de suas interações com fatores ambientais. A nutrigenômica surgiu no contexto do pós-genoma humano e é considerada área-chave para a nutrição nesta década. Seu foco de estudo baseia-se na interação gene-nutriente. Esta ciência recente tem como objetivo principal o estabelecimento de dietas personalizadas, com base no genótipo, para a promoção da saúde e a redução do risco de doenças crônicas não transmissíveis como as cardiovasculares, o câncer, o diabetes, entre outras. Nesse contexto, é fundamental a aplicação na área de nutrição das ferramentas de genômica funcional para análise do transcritoma (transcritômica), do proteoma (proteômica) e do metaboloma (metabolômica). As aplicabilidades dessas metodologias em estudos nutricionais parecem ilimitadas, pois podem ser conduzidas em cultura de células, modelos de experimentação em animais, estudos pré-clinicos e clínicos. Tais técnicas apresentam potencial para identificar biomarcadores que respondem especificamente a um determinado nutriente ou composto bioativo dos alimentos e para estabelecer as melhores recomendações dietéticas individuais para redução do risco das doenças crônicas não transmissíveis e promoção da saúde.
Collapse
|
37
|
Sui S, Wang J, Yang B, Song L, Zhang J, Chen M, Liu J, Lu Z, Cai Y, Chen S, Bi W, Zhu Y, He F, Qian X. Phosphoproteome analysis of the human Chang liver cells using SCX and a complementary mass spectrometric strategy. Proteomics 2008; 8:2024-34. [PMID: 18491316 DOI: 10.1002/pmic.200700896] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The liver is the largest organ in the body, with many complex, essential functions, such as metabolism, deintoxication, and secretion, often regulated via post-translational modifications, especially phosphorylation. Thus, the detection of phosphoproteins and phosphorylation sites is important to comprehensively explore human liver biological function. The human Chang liver cell line is among the first derived from non-malignant tissue, and its phosphoproteome profile has never been globally analyzed. To develop the complete phosphoproteome and probe the roles of protein phosphorylation in normal human liver, we adopted a shotgun strategy based on strong cation exchange chromatograph, titanium dioxide and LC-MS/MS to isolate and identify phosphorylated proteins. Two types of MS approach, Q-TOF and IT, were used and compared to identify phosphosites from complex protein mixtures of these cells. A total of 1035 phosphorylation sites and 686 phosphorylated peptides were identified from 607 phosphoproteins. A search using the public database of PhosphoSite showed that approximately 344 phosphoproteins and 760 phosphorylation sites appeared to be novel. In addition, N-terminal phosphorylated peptides were a greater fraction of all identified phosphopeptides. With GOfact analysis, we found that most of the identified phosphoproteins are involved in regulating metabolism, consistent with the liver's role as a key metabolic organ.
Collapse
Affiliation(s)
- Shaohui Sui
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Patwa TH, Zhao J, Misek DE, Lubman DM. Two-Dimensional Liquid Separations, Protein Microarrays, and Mass Spectrometry in Comprehensive Analysis of Posttranslational Modifications and Biomarker Discovery in Cancers. Clin Proteomics 2008. [DOI: 10.1002/9783527622153.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
39
|
Kim JH, In YJ, Kim WK, Bae KH, Kang S, Lee SC. Differential signatures of protein glycosylation and phosphorylation in human Chang liver cells induced by TCDD treatment. Toxicol Lett 2008; 178:20-8. [DOI: 10.1016/j.toxlet.2008.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Revised: 01/28/2008] [Accepted: 01/28/2008] [Indexed: 10/22/2022]
|
40
|
Ryu SI, Kim WK, Cho HJ, Lee PY, Jung H, Yoon TS, Moon JH, Kang S, Poo H, Bae KH, Lee SC. Phosphoproteomic analysis of AML14.3D10 cell line as a model system of eosinophilia. BMB Rep 2008; 40:765-72. [PMID: 17927911 DOI: 10.5483/bmbrep.2007.40.5.765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eosinophils act as effectors in the inflammatory reactions of allergic diseases including atopic dermatitis. Atopic dermatitis patients and others with allergic disorders suffer from eosinophilia, an accumulation of eosinophils due to increased survival or decreased apoptosis of eosinophils. In this study, a differential phosphoproteome analysis of AML14.3D10 eosinophil cell line after treatment with IL-5 or dexamethasone was conducted in an effort to identify the phosphoproteins involved in the proliferation or apoptosis of eosinophils. Proteins were separated by 2-DE and alterations in phosphoproteins were then detected by Pro-Q Diamond staining. The significant quantitative changes were shown in nineteen phosphoproteins including retinoblastoma binding protein 7, MTHSP75, and lymphocyte cytosolic protein 1. In addition, seven phosphoproteins including galactokinase I, and proapolipoprotein, were appeared after treatment with IL-5 or dexamethasone. Especially, the phospho-APOE protein was down-regulated in IL-5 treated AML14.3D10, while the more heavily phosphorylated APOE form was induced after dexamethasone treatment. These phosphoproteome data for the AML14.3D10 cell line may provide clues to understand the mechanism of eosinophilia as well as allergic disorders including atopic dermatitis.
Collapse
Affiliation(s)
- Su In Ryu
- Translational Research Center, KRIBB, Daejeon, 305-806, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Shen W, Liu H, Yu Y. Proteomic Analysis of Cellular Responses to Different Concentrations of anti-Benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide in Human Amniotic Epithelial FL Cells. J Proteome Res 2007; 6:4737-48. [DOI: 10.1021/pr070406b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Wenyan Shen
- Department of Pathophysiology, Zhejiang University, School of Medicine, Hangzhou 310058, China
| | - Hui Liu
- Department of Pathophysiology, Zhejiang University, School of Medicine, Hangzhou 310058, China
| | - Yingnian Yu
- Department of Pathophysiology, Zhejiang University, School of Medicine, Hangzhou 310058, China
| |
Collapse
|
42
|
McDonald L, Beynon RJ. Positional proteomics: preparation of amino-terminal peptides as a strategy for proteome simplification and characterization. Nat Protoc 2007; 1:1790-8. [PMID: 17487161 DOI: 10.1038/nprot.2006.317] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We describe a protocol for selective extraction of the amino (N)-terminal-most peptide of a protein or a mixture of proteins after proteolysis. The first stage of the protocol blocks the free amino groups alpha and epsilon (the latter being lysyl residues) on the intact proteins by acetylation. In the second stage, proteolysis of the acetylated proteins yields a mixture of N-terminally acetylated (true N-terminal) and non-acetylated (internal and carboxy-terminal) peptides. Affinity capture of peptides bearing free amino groups using an immobilized amine-reactive reagent removes internal peptides from the mixture. The unbound fraction is highly enriched in N-terminal peptides, which can be analyzed without further treatment. This method is compatible with a range of proteolytic enzymes and fragmentation methods, and should take 2 d to complete. The N-terminal peptides can then be analyzed by mass spectrometry. This low cost, rapid method is readily adopted using off the shelf reagents.
Collapse
Affiliation(s)
- Lucy McDonald
- Proteomics and Functional Genomics Group, Faculty of Veterinary Science, University of Liverpool, Crown Street, Liverpool L69 7ZJ, UK
| | | |
Collapse
|
43
|
Wu J, Shakey Q, Liu W, Schuller A, Follettie MT. Global Profiling of Phosphopeptides by Titania Affinity Enrichment. J Proteome Res 2007; 6:4684-9. [DOI: 10.1021/pr070481m] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiang Wu
- Biological Technologies, Wyeth Research, Cambridge, Massachusetts 02140
| | - Quazi Shakey
- Biological Technologies, Wyeth Research, Cambridge, Massachusetts 02140
| | - Wei Liu
- Biological Technologies, Wyeth Research, Cambridge, Massachusetts 02140
| | - Alwin Schuller
- Biological Technologies, Wyeth Research, Cambridge, Massachusetts 02140
| | | |
Collapse
|
44
|
Kang TH, Bae KH, Yu MJ, Kim WK, Hwang HR, Jung H, Lee PY, Kang S, Yoon TS, Park SG, Ryu SE, Lee SC. Phosphoproteomic analysis of neuronal cell death by glutamate-induced oxidative stress. Proteomics 2007; 7:2624-35. [PMID: 17610204 DOI: 10.1002/pmic.200601028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oxidative stress is one of the major causes of neuronal cell death in disorders such as perinatal hypoxia and ischemia. Protein phosphorylation is the most significant PTM of proteins and plays an important role in stress-induced signal transduction. Thus, the analysis of alternative protein phosphorylation states which occur during oxidative stress-induced cell death could provide valuable information regarding cell death. In this study, a reference phosphoproteome map of the mouse hippocampal cell line HT22 was constructed based on 125 spots that were identified by MALDI-TOF or LC-ESI-Q-TOF-MS analysis. In addition, proteins of HT22 cells at various stages of oxidative stress-induced cell death were separated by 2-DE and alterations in phosphoproteins were detected by Pro-Q Diamond staining. A total of 17 spots showing significant quantitative changes and seven newly appearing spots were identified after glutamate treatment. Splicing factor 2, peroxiredoxin 2, S100 calcium binding protein A11, and purine nucleoside phosphorylase were identified as up- or down-regulated proteins. CDC25A, caspase-8, and cyp51 protein appeared during oxidative stress-induced cell death. The data in this study from phosphoproteomic analysis provide a valuable resource for the understanding of HT22 cell death mechanisms mediated by oxidative stress.
Collapse
Affiliation(s)
- Tae Hyuk Kang
- Translational Research Center, KRIBB, Daejeon, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gonzalez-Couto E, Matteoni S, Gotta S, Magnoni L, Heitz F, Raggiaschi R, Terstappen GC, Kremer A. Huntington's disease: from experimental results to interaction networks, patho-pathway construction and disease hypothesis. BMC SYSTEMS BIOLOGY 2007. [DOI: 10.1186/1752-0509-1-s1-p45] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Zhang X, Wei D, Yap Y, Li L, Guo S, Chen F. Mass spectrometry-based "omics" technologies in cancer diagnostics. MASS SPECTROMETRY REVIEWS 2007; 26:403-31. [PMID: 17405143 DOI: 10.1002/mas.20132] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Many "omics" techniques have been developed for one goal: biomarker discovery and early diagnosis of human cancers. A comprehensive review of mass spectrometry-based "omics" approaches performed on various biological samples for molecular diagnosis of human cancers is presented in this article. Furthermore, the existing and potential problems/solutions (both de facto experimental and bioinformatic challenges), and future prospects have been extensively discussed. Although the use of present omic methods as diagnostic tools are still in their infant stage and consequently not ready for immediate clinical use, it can be envisaged that the "omics"-based cancer diagnostics will gradually enter into the clinic in next 10 years as an important supplement to current clinical diagnostics.
Collapse
Affiliation(s)
- Xuewu Zhang
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, China.
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Blood-based therapeutics are cellular or plasma components derived from human blood. Their production requires appropriate selection and treatment of the donor and processing of cells or plasma proteins. In contrast to clearly defined, chemically synthesized drugs, blood-derived therapeutics are highly complex mixtures of plasma proteins or even more complex cells. Pathogen transmission by the product as well as changes in the integrity of blood constituents resulting in loss of function or immune modulation are currently important issues in transfusion medicine. Protein modifications can occur during various steps of the production process, such as acquisition, enrichment of separate components (e.g. coagulation factors, cell populations), virus inactivation, conservation, and storage. Contemporary proteomic strategies allow a comprehensive assessment of protein modifications with high coverage, offer capabilities for qualitative and even quantitative analysis, and for high-throughput protein identification. Traditionally, proteomics approaches predominantly relied on two-dimensional gel electrophoresis (2-DE). Even if 2-DE is still state of the art, it has inherent limitations that are mainly based on the physicochemical properties of the proteins analyzed; for example, proteins with extremes in molecular mass and hydrophobicity (most membrane proteins) are difficult to assess by 2-DE. These limitations have fostered the development of mass spectrometry centered on non-gel-based separation approaches, which have proven to be highly successful and are thus complementing and even partially replacing 2-DE-based approaches. Although blood constituents have been extensively analyzed by proteomics, this technology has not been widely applied to assess or even improve blood-derived therapeutics, or to monitor the production processes. As proteomic technologies have the capacity to provide comprehensive information about changes occurring during processing and storage of blood products, proteomics can potentially guide improvement of pathogen inactivation procedures and engineering of stem cells, and may also allow a better understanding of factors influencing the immunogenicity of blood-derived therapeutics. An important development in proteomics is the reduction of inter-assay variability. This now allows the screening of samples taken from the same product over time or before and after processing. Optimized preparation procedures and storage conditions will reduce the risk of protein alterations, which in turn may contribute to better recovery, reduced exposure to allogeneic proteins, and increased transfusion safety.
Collapse
Affiliation(s)
- Thomas Thiele
- Institute of Immunology and Transfusion Medicine, Ernst-Moritz-Arndt University, Greifswald, Germany
| | | | | | | |
Collapse
|
48
|
Vyetrogon K, Tebbji F, Olson DJH, Ross ARS, Matton DP. A comparative proteome and phosphoproteome analysis of differentially regulated proteins during fertilization in the self-incompatible speciesSolanum chacoense Bitt. Proteomics 2007; 7:232-47. [PMID: 17205606 DOI: 10.1002/pmic.200600399] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have used 2-DE for a time-course study of the changes in protein and phosphoprotein expression that occur immediately after fertilization in Solanum chacoense. The phosphorylation status of the detected proteins was determined with three methods: in vivo labeling, immunodetection, and phosphoprotein-specific staining. Using a pI range of 4-7, 262 phosphorylated proteins could be mapped to the 619 proteins detected by Sypro Ruby staining, representing 42% of the total proteins. Among these phosphoproteins, antibodies detected 184 proteins from which 78 were also detected with either of the other two methods (42%). Pro-Q Diamond phosphoprotein stain detected 111 proteins, of which 76 were also detected with either of the other two methods (68%). The 32P in vivo labeling method detected 90 spots from which 78 were also detected with either of other two methods (87%). On comparing before and after fertilization profiles, 38 proteins and phosphoproteins presented a reproducible change in their accumulation profiles. Among these, 24 spots were selected and analyzed by LC-MS/MS using a hybrid quadrupole-TOF (Q-TOF) instrument. Peptide data were searched against publicly available protein and EST databases, and the putative roles of the identified proteins in early fertilization events are discussed.
Collapse
Affiliation(s)
- Kateryna Vyetrogon
- Institut de Recherche en Biologie Végétale (IRBV), Département de sciences biologiques, Université de Montréal, Montréal, QC, Canada
| | | | | | | | | |
Collapse
|