1
|
Yuan M, Li F, Xue F, Wang Y, Li B, Tang R, Wang Y, Bi GQ, Pei W. Transparent, flexible graphene-ITO-based neural microelectrodes for simultaneous electrophysiology recording and calcium imaging of intracortical neural activity in freely moving mice. MICROSYSTEMS & NANOENGINEERING 2025; 11:32. [PMID: 39994180 PMCID: PMC11850855 DOI: 10.1038/s41378-025-00873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/24/2024] [Accepted: 01/11/2025] [Indexed: 02/26/2025]
Abstract
To understand the complex dynamics of neural activity in the brain across various temporal and spatial scales, it is crucial to record intracortical multimodal neural activity by combining electrophysiological recording and calcium imaging techniques. This poses significant constraints on the geometrical, mechanical, and optical properties of the electrodes. Here, transparent flexible graphene-ITO-based neural microelectrodes with small feature sizes are developed and validated for simultaneous electrophysiology recording and calcium imaging in the hippocampus of freely moving mice. A micro-etching technique and an oxygen plasma pre-treating method are introduced to facilitate large-area graphene transfer and establish stable low-impedance contacts between graphene and metals, leading to the batch production of high-quality microelectrodes with interconnect widths of 10 μm and recording sites diameters of 20 μm. These electrodes exhibit appropriate impedance and sufficient transparency in the field of view, enabling simultaneous recording of intracortical local field potentials and even action potentials along with calcium imaging in freely moving mice. Both types of electrophysiological signals are found to correlate with calcium activity. This proof-of-concept work demonstrates that transparent flexible graphene-ITO-based neural microelectrodes are promising tools for multimodal neuroscience research.
Collapse
Affiliation(s)
- Miao Yuan
- Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Institute of Semiconductors, University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Fei Li
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518055, China
| | - Feng Xue
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Wang
- Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Institute of Semiconductors, University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Baoqiang Li
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Rongyu Tang
- Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Institute of Semiconductors, University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Yijun Wang
- Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Institute of Semiconductors, University of Chinese Academy of Sciences, Beijing, 10049, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guo-Qiang Bi
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518055, China.
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
| | - Weihua Pei
- Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.
- Institute of Semiconductors, University of Chinese Academy of Sciences, Beijing, 10049, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Wang J, Wang T, Liu H, Wang K, Moses K, Feng Z, Li P, Huang W. Flexible Electrodes for Brain-Computer Interface System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211012. [PMID: 37143288 DOI: 10.1002/adma.202211012] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Brain-computer interface (BCI) has been the subject of extensive research recently. Governments and companies have substantially invested in relevant research and applications. The restoration of communication and motor function, the treatment of psychological disorders, gaming, and other daily and therapeutic applications all benefit from BCI. The electrodes hold the key to the essential, fundamental BCI precondition of electrical brain activity detection and delivery. However, the traditional rigid electrodes are limited due to their mismatch in Young's modulus, potential damages to the human body, and a decline in signal quality with time. These factors make the development of flexible electrodes vital and urgent. Flexible electrodes made of soft materials have grown in popularity in recent years as an alternative to conventional rigid electrodes because they offer greater conformance, the potential for higher signal-to-noise ratio (SNR) signals, and a wider range of applications. Therefore, the latest classifications and future developmental directions of fabricating these flexible electrodes are explored in this paper to further encourage the speedy advent of flexible electrodes for BCI. In summary, the perspectives and future outlook for this developing discipline are provided.
Collapse
Affiliation(s)
- Junjie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Haoyan Liu
- Department of Computer Science & Computer Engineering (CSCE), University of Arkansas, Fayetteville, AR, 72701, USA
| | - Kun Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Kumi Moses
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Zhuoya Feng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
3
|
Ji B, Sun F, Guo J, Zhou Y, You X, Fan Y, Wang L, Xu M, Zeng W, Liu J, Wang M, Hu H, Chang H. Brainmask: an ultrasoft and moist micro-electrocorticography electrode for accurate positioning and long-lasting recordings. MICROSYSTEMS & NANOENGINEERING 2023; 9:126. [PMID: 37829160 PMCID: PMC10564857 DOI: 10.1038/s41378-023-00597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Accepted: 09/02/2023] [Indexed: 10/14/2023]
Abstract
Bacterial cellulose (BC), a natural biomaterial synthesized by bacteria, has a unique structure of a cellulose nanofiber-weaved three-dimensional reticulated network. BC films can be ultrasoft with sufficient mechanical strength, strong water absorption and moisture retention and have been widely used in facial masks. These films have the potential to be applied to implantable neural interfaces due to their conformality and moisture, which are two critical issues for traditional polymer or silicone electrodes. In this work, we propose a micro-electrocorticography (micro-ECoG) electrode named "Brainmask", which comprises a BC film as the substrate and separated multichannel parylene-C microelectrodes bonded on the top surface. Brainmask can not only guarantee the precise position of microelectrode sites attached to any nonplanar epidural surface but also improve the long-lasting signal quality during acute implantation with an exposed cranial window for at least one hour, as well as the in vivo recording validated for one week. This novel ultrasoft and moist device stands as a next-generation neural interface regardless of complex surface or time of duration.
Collapse
Affiliation(s)
- Bowen Ji
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an, 710072 China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
- Collaborative Innovation Center of Northwestern Polytechnical University, Shanghai, 201108 China
| | - Fanqi Sun
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an, 710072 China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
- Collaborative Innovation Center of Northwestern Polytechnical University, Shanghai, 201108 China
| | - Jiecheng Guo
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Yuhao Zhou
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an, 710072 China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
- Collaborative Innovation Center of Northwestern Polytechnical University, Shanghai, 201108 China
| | - Xiaoli You
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an, 710072 China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
- Collaborative Innovation Center of Northwestern Polytechnical University, Shanghai, 201108 China
| | - Ye Fan
- College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018 China
| | - Longchun Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Mengfei Xu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Wen Zeng
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Minghao Wang
- College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018 China
| | - Huijing Hu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Honglong Chang
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
| |
Collapse
|
4
|
Won D, Bang J, Choi SH, Pyun KR, Jeong S, Lee Y, Ko SH. Transparent Electronics for Wearable Electronics Application. Chem Rev 2023; 123:9982-10078. [PMID: 37542724 PMCID: PMC10452793 DOI: 10.1021/acs.chemrev.3c00139] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Indexed: 08/07/2023]
Abstract
Recent advancements in wearable electronics offer seamless integration with the human body for extracting various biophysical and biochemical information for real-time health monitoring, clinical diagnostics, and augmented reality. Enormous efforts have been dedicated to imparting stretchability/flexibility and softness to electronic devices through materials science and structural modifications that enable stable and comfortable integration of these devices with the curvilinear and soft human body. However, the optical properties of these devices are still in the early stages of consideration. By incorporating transparency, visual information from interfacing biological systems can be preserved and utilized for comprehensive clinical diagnosis with image analysis techniques. Additionally, transparency provides optical imperceptibility, alleviating reluctance to wear the device on exposed skin. This review discusses the recent advancement of transparent wearable electronics in a comprehensive way that includes materials, processing, devices, and applications. Materials for transparent wearable electronics are discussed regarding their characteristics, synthesis, and engineering strategies for property enhancements. We also examine bridging techniques for stable integration with the soft human body. Building blocks for wearable electronic systems, including sensors, energy devices, actuators, and displays, are discussed with their mechanisms and performances. Lastly, we summarize the potential applications and conclude with the remaining challenges and prospects.
Collapse
Affiliation(s)
- Daeyeon Won
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Junhyuk Bang
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seok Hwan Choi
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Kyung Rok Pyun
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seongmin Jeong
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Youngseok Lee
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seung Hwan Ko
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
- Institute
of Engineering Research/Institute of Advanced Machinery and Design
(SNU-IAMD), Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
5
|
Lee S, Park K, Kum J, An S, Yu KJ, Kim H, Shin M, Son D. Stretchable Surface Electrode Arrays Using an Alginate/PEDOT:PSS-Based Conductive Hydrogel for Conformal Brain Interfacing. Polymers (Basel) 2022; 15:84. [PMID: 36616434 PMCID: PMC9824691 DOI: 10.3390/polym15010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
An electrocorticogram (ECoG) is the electrical activity obtainable from the cerebral cortex and an informative source with considerable potential for future advanced applications in various brain-interfacing technologies. Considerable effort has been devoted to developing biocompatible, conformal, soft, and conductive interfacial materials for bridging devices and brain tissue; however, the implementation of brain-adaptive materials with optimized electrical and mechanical characteristics remains challenging. Herein, we present surface electrode arrays using the soft tough ionic conductive hydrogel (STICH). The newly proposed STICH features brain-adaptive softness with Young's modulus of ~9.46 kPa, which is sufficient to form a conformal interface with the cortex. Additionally, the STICH has high toughness of ~36.85 kJ/mm3, highlighting its robustness for maintaining the solid structure during interfacing with wet brain tissue. The stretchable metal electrodes with a wavy pattern printed on the elastomer were coated with the STICH as an interfacial layer, resulting in an improvement of the impedance from 60 kΩ to 10 kΩ at 1 kHz after coating. Acute in vivo experiments for ECoG monitoring were performed in anesthetized rodents, thereby successfully realizing conformal interfacing to the animal's cortex and the sensitive recording of electrical activity using the STICH-coated electrodes, which exhibited a higher visual-evoked potential (VEP) amplitude than that of the control device.
Collapse
Affiliation(s)
- Sungjun Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Bionics of Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Kyuha Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jeungeun Kum
- Center for Bionics of Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Soojung An
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Ki Jun Yu
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyungmin Kim
- Center for Bionics of Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Mikyung Shin
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Donghee Son
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Superintelligence Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
6
|
Guo L, Zhao M, Tang Y, Han J, Gui Y, Ge J, Jiang S, Dai Q, Zhang W, Lin M, Zhou Z, Wang J. Modular Assembly of Ordered Hydrophilic Proteins Improve Salinity Tolerance in Escherichia coli. Int J Mol Sci 2021; 22:ijms22094482. [PMID: 33923104 PMCID: PMC8123400 DOI: 10.3390/ijms22094482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 11/24/2022] Open
Abstract
Most late embryogenesis abundant group 3 (G3LEA) proteins are highly hydrophilic and disordered, which can be transformed into ordered α-helices to play an important role in responding to diverse stresses in numerous organisms. Unlike most G3LEA proteins, DosH derived from Dinococcus radiodurans is a naturally ordered G3LEA protein, and previous studies have found that the N-terminal domain (position 1–103) of DosH protein is the key region for its folding into an ordered secondary structure. Synthetic biology provides the possibility for artificial assembling ordered G3LEA proteins or their analogues. In this report, we used the N-terminal domain of DosH protein as module A (named DS) and the hydrophilic domains (DrHD, BnHD, CeHD, and YlHD) of G3LEA protein from different sources as module B, and artificially assembled four non-natural hydrophilic proteins, named DS + DrHD, DS + BnHD, DS + CeHD, and DS + YlHD, respectively. Circular dichroism showed that the four hydrophile proteins were highly ordered proteins, in which the α-helix contents were DS + DrHD (56.1%), DS + BnHD (53.7%), DS + CeHD (49.1%), and DS + YLHD (64.6%), respectively. Phenotypic analysis showed that the survival rate of recombinant Escherichia coli containing ordered hydrophilic protein was more than 10% after 4 h treatment with 1.5 M NaCl, which was much higher than that of the control group. Meanwhile, in vivo enzyme activity results showed that they had higher activities of superoxide dismutase, catalase, lactate dehydrogenase and less malondialdehyde production. Based on these results, the N-terminal domain of DosH protein can be applied in synthetic biology due to the fact that it can change the order of hydrophilic domains, thus increasing stress resistance.
Collapse
Affiliation(s)
- Leizhou Guo
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China; (L.G.); (Y.T.); (Y.G.); (S.J.); (Q.D.)
| | - Mingming Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.Z.); (J.H.); (J.G.); (W.Z.); (M.L.)
| | - Yin Tang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China; (L.G.); (Y.T.); (Y.G.); (S.J.); (Q.D.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.Z.); (J.H.); (J.G.); (W.Z.); (M.L.)
| | - Jiahui Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.Z.); (J.H.); (J.G.); (W.Z.); (M.L.)
| | - Yuan Gui
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China; (L.G.); (Y.T.); (Y.G.); (S.J.); (Q.D.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.Z.); (J.H.); (J.G.); (W.Z.); (M.L.)
| | - Jiaming Ge
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.Z.); (J.H.); (J.G.); (W.Z.); (M.L.)
| | - Shijie Jiang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China; (L.G.); (Y.T.); (Y.G.); (S.J.); (Q.D.)
| | - Qilin Dai
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China; (L.G.); (Y.T.); (Y.G.); (S.J.); (Q.D.)
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.Z.); (J.H.); (J.G.); (W.Z.); (M.L.)
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.Z.); (J.H.); (J.G.); (W.Z.); (M.L.)
| | - Zhengfu Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.Z.); (J.H.); (J.G.); (W.Z.); (M.L.)
- Correspondence: (Z.Z.); (J.W.)
| | - Jin Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China; (L.G.); (Y.T.); (Y.G.); (S.J.); (Q.D.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.Z.); (J.H.); (J.G.); (W.Z.); (M.L.)
- Correspondence: (Z.Z.); (J.W.)
| |
Collapse
|