1
|
Saporito DC, King RD, Vickers SD, Wyda EA, Balaji S, King JA, Leonardi R. Deletion of Nudt19 Increases Albuminuria in Mice Fed a High Fat Diet. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.22.644727. [PMID: 40196498 PMCID: PMC11974676 DOI: 10.1101/2025.03.22.644727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Nudix hydrolase 19 (NUDT19) is a peroxisomal enzyme that hydrolyzes CoA species at the phosphodiester bond and has been linked to peroxisomal dysfunction in the context of diabetic kidney disease. Despite its predominant expression in mouse kidneys, the physiological role of NUDT19 remains poorly understood. To investigate its function under metabolic stress, we fed Nudt19 -/- mice a high fat diet (HFD) for 15 weeks. Nudt19 deletion exacerbated HFD-induced albuminuria, suggesting a previously unrecognized role in kidney function. This phenotype was associated with altered lipid metabolism in the kidneys, including reduced levels of non-esterified fatty acids and specific mono-acyl lipids, as well as differential expression of proteins involved in lipid metabolism. These included ECH1, THIKB, and ECHD2, enzymes involved in peroxisomal and mitochondrial β-oxidation; C19orf12, a lipid droplet-associated protein; and the lipolysis-stimulated lipoprotein receptor (LSR). These findings highlight NUDT19 as a key regulator of renal lipid homeostasis and suggest that its loss contributes to kidney dysfunction under conditions of dietary lipid overload.
Collapse
Affiliation(s)
- Dominique C. Saporito
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Rachel D. King
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Schuyler D. Vickers
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
- Current address:
| | - Emily A. Wyda
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Sruthi Balaji
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Judy A. King
- Foundational and Clinical Sciences Department, Thomas F. Frist, Jr. College of Medicine, Belmont University, 1900 Belmont Boulevard, Nashville, Tennessee 37212, USA
| | - Roberta Leonardi
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
| |
Collapse
|
2
|
Chen X, Chen B, Li Z, Ma L, Zhu Q, Liu C, He H, Zhang Z, Zhou C, Liu G, Zhou Y, Deng S, Guo S, Chen Y. The Extract of Camellia Seed Cake Alleviates Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in Mice by Promoting Coenzyme Q Synthesis. Nutrients 2025; 17:1032. [PMID: 40292441 PMCID: PMC11944731 DOI: 10.3390/nu17061032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent metabolic disorder. Camellia seed cake, a byproduct of oil extraction, contains a variety of bioactive compounds. This study investigated the regulatory effects and underlying mechanisms of camellia seed cake extract (CSCE) using a high-fat diet (HFD)-induced MASLD mouse model. Methods: Mice were divided into four groups: normal control (N, standard diet), HFD model (M), HFD-fed mice treated with low-dose CSCE (L), and HFD-fed mice treated with high-dose CSCE (H). CSCE was administered via oral gavage for eight weeks. Body weight, blood lipid levels, liver weight, hepatic lipid accumulation, oxidative stress markers, ATP levels, and the NADH/NAD+ ratio were measured. Transcriptomic and lipidomic analyses were performed to identify potential regulatory pathways, and qPCR analysis was conducted to confirm the expression levels of essential genes. Results: CSCE significantly reduced HFD-induced increases in body and liver weights, improved blood lipid profiles and hepatic lipid accumulation, alleviated oxidative stress, increased ATP levels, and reduced the NADH/NAD+ ratio. Transcriptomic analysis demonstrated notable enrichment of genes associated with oxidative phosphorylation, mitochondrial function, and lipid metabolism after treatment. The lipidomic analysis demonstrated that the hepatic lipid profile of the H group approached that of the N group, with Coenzyme Q9 (CoQ9) and Coenzyme Q10 (CoQ10) levels significantly increased by 173.32% and 202.73%, respectively, compared to the M group. qPCR validation confirmed that CoQ synthesis-related genes (Coq2-10, Pdss1, Pdss2, and Hmgcr) were significantly upregulated in the treatment groups. Conclusions: CSCE enhances mitochondrial function by promoting CoQ synthesis, alleviates metabolic dysfunction, and could represent a potential natural intervention for MASLD.
Collapse
Affiliation(s)
- Xinzhi Chen
- Hunan Engineering Research Center of Lotus Deep Processing and Nutritional Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (X.C.); (Q.Z.); (C.L.); (C.Z.); (G.L.); (Y.Z.)
| | - Bolin Chen
- Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (B.C.); (Z.L.); (L.M.)
| | - Zhigang Li
- Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (B.C.); (Z.L.); (L.M.)
| | - Li Ma
- Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (B.C.); (Z.L.); (L.M.)
| | - Qinhe Zhu
- Hunan Engineering Research Center of Lotus Deep Processing and Nutritional Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (X.C.); (Q.Z.); (C.L.); (C.Z.); (G.L.); (Y.Z.)
| | - Changwei Liu
- Hunan Engineering Research Center of Lotus Deep Processing and Nutritional Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (X.C.); (Q.Z.); (C.L.); (C.Z.); (G.L.); (Y.Z.)
| | - Haixiang He
- Hunan Xianglian Engineering Technology Research Center, Xiangtan 411201, China;
| | - Zhixu Zhang
- College of Horticulture, School of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Chuyi Zhou
- Hunan Engineering Research Center of Lotus Deep Processing and Nutritional Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (X.C.); (Q.Z.); (C.L.); (C.Z.); (G.L.); (Y.Z.)
| | - Guanying Liu
- Hunan Engineering Research Center of Lotus Deep Processing and Nutritional Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (X.C.); (Q.Z.); (C.L.); (C.Z.); (G.L.); (Y.Z.)
| | - Yuqiao Zhou
- Hunan Engineering Research Center of Lotus Deep Processing and Nutritional Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (X.C.); (Q.Z.); (C.L.); (C.Z.); (G.L.); (Y.Z.)
| | - Senwen Deng
- Hunan Engineering Research Center of Lotus Deep Processing and Nutritional Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (X.C.); (Q.Z.); (C.L.); (C.Z.); (G.L.); (Y.Z.)
| | - Shiyin Guo
- College of Horticulture, School of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Yongzhong Chen
- Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (B.C.); (Z.L.); (L.M.)
| |
Collapse
|
3
|
Zhang Y, Ye F, Fu X, Li S, Wang L, Chen Y, Li H, Hao S, Zhao K, Feng Q, Li P. Mitochondrial Regulation of Macrophages in Innate Immunity and Diverse Roles of Macrophages During Cochlear Inflammation. Neurosci Bull 2024; 40:255-267. [PMID: 37391607 PMCID: PMC10838870 DOI: 10.1007/s12264-023-01085-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/05/2023] [Indexed: 07/02/2023] Open
Abstract
Macrophages are essential components of the innate immune system and constitute a non-specific first line of host defense against pathogens and inflammation. Mitochondria regulate macrophage activation and innate immune responses in various inflammatory diseases, including cochlear inflammation. The distribution, number, and morphological characteristics of cochlear macrophages change significantly across different inner ear regions under various pathological conditions, including noise exposure, ototoxicity, and age-related degeneration. However, the exact mechanism underlying the role of mitochondria in macrophages in auditory function remains unclear. Here, we summarize the major factors and mitochondrial signaling pathways (e.g., metabolism, mitochondrial reactive oxygen species, mitochondrial DNA, and the inflammasome) that influence macrophage activation in the innate immune response. In particular, we focus on the properties of cochlear macrophages, activated signaling pathways, and the secretion of inflammatory cytokines after acoustic injury. We hope this review will provide new perspectives and a basis for future research on cochlear inflammation.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Fanglei Ye
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaolong Fu
- Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250000, China
| | - Shen Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Le Wang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongmin Li
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shaojuan Hao
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Kun Zhao
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qi Feng
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Province Research Center of Kidney Disease, Zhengzhou, 450052, China.
| | - Peipei Li
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Province Research Center of Kidney Disease, Zhengzhou, 450052, China.
| |
Collapse
|
4
|
Zhu Y, Wang K, Jia X, Fu C, Yu H, Wang Y. Antioxidant peptides, the guardian of life from oxidative stress. Med Res Rev 2024; 44:275-364. [PMID: 37621230 DOI: 10.1002/med.21986] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
Reactive oxygen species (ROS) are produced during oxidative metabolism in aerobic organisms. Under normal conditions, ROS production and elimination are in a relatively balanced state. However, under internal or external environmental stress, such as high glucose levels or UV radiation, ROS production can increase significantly, leading to oxidative stress. Excess ROS production not only damages biomolecules but is also closely associated with the pathogenesis of many diseases, such as skin photoaging, diabetes, and cancer. Antioxidant peptides (AOPs) are naturally occurring or artificially designed peptides that can reduce the levels of ROS and other pro-oxidants, thus showing great potential in the treatment of oxidative stress-related diseases. In this review, we discussed ROS production and its role in inducing oxidative stress-related diseases in humans. Additionally, we discussed the sources, mechanism of action, and evaluation methods of AOPs and provided directions for future studies on AOPs.
Collapse
Affiliation(s)
- Yiyun Zhu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Kang Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinyi Jia
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
- Department of Food Science and Technology, Food Science and Technology Center, National University of Singapore, Singapore, Singapore
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
| | - Haining Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
The Drp1-Mediated Mitochondrial Fission Protein Interactome as an Emerging Core Player in Mitochondrial Dynamics and Cardiovascular Disease Therapy. Int J Mol Sci 2023; 24:ijms24065785. [PMID: 36982862 PMCID: PMC10057413 DOI: 10.3390/ijms24065785] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Mitochondria, the membrane-bound cell organelles that supply most of the energy needed for cell function, are highly regulated, dynamic organelles bearing the ability to alter both form and functionality rapidly to maintain normal physiological events and challenge stress to the cell. This amazingly vibrant movement and distribution of mitochondria within cells is controlled by the highly coordinated interplay between mitochondrial dynamic processes and fission and fusion events, as well as mitochondrial quality-control processes, mainly mitochondrial autophagy (also known as mitophagy). Fusion connects and unites neighboring depolarized mitochondria to derive a healthy and distinct mitochondrion. In contrast, fission segregates damaged mitochondria from intact and healthy counterparts and is followed by selective clearance of the damaged mitochondria via mitochondrial specific autophagy, i.e., mitophagy. Hence, the mitochondrial processes encompass all coordinated events of fusion, fission, mitophagy, and biogenesis for sustaining mitochondrial homeostasis. Accumulated evidence strongly suggests that mitochondrial impairment has already emerged as a core player in the pathogenesis, progression, and development of various human diseases, including cardiovascular ailments, the leading causes of death globally, which take an estimated 17.9 million lives each year. The crucial factor governing the fission process is the recruitment of dynamin-related protein 1 (Drp1), a GTPase that regulates mitochondrial fission, from the cytosol to the outer mitochondrial membrane in a guanosine triphosphate (GTP)-dependent manner, where it is oligomerized and self-assembles into spiral structures. In this review, we first aim to describe the structural elements, functionality, and regulatory mechanisms of the key mitochondrial fission protein, Drp1, and other mitochondrial fission adaptor proteins, including mitochondrial fission 1 (Fis1), mitochondrial fission factor (Mff), mitochondrial dynamics 49 (Mid49), and mitochondrial dynamics 51 (Mid51). The core area of the review focuses on the recent advances in understanding the role of the Drp1-mediated mitochondrial fission adaptor protein interactome to unravel the missing links of mitochondrial fission events. Lastly, we discuss the promising mitochondria-targeted therapeutic approaches that involve fission, as well as current evidence on Drp1-mediated fission protein interactions and their critical roles in the pathogeneses of cardiovascular diseases (CVDs).
Collapse
|
6
|
Yang J, Griffin A, Qiang Z, Ren J. Organelle-targeted therapies: a comprehensive review on system design for enabling precision oncology. Signal Transduct Target Ther 2022; 7:379. [PMID: 36402753 PMCID: PMC9675787 DOI: 10.1038/s41392-022-01243-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer is a major threat to human health. Among various treatment methods, precision therapy has received significant attention since the inception, due to its ability to efficiently inhibit tumor growth, while curtailing common shortcomings from conventional cancer treatment, leading towards enhanced survival rates. Particularly, organelle-targeted strategies enable precise accumulation of therapeutic agents in organelles, locally triggering organelle-mediated cell death signals which can greatly reduce the therapeutic threshold dosage and minimize side-effects. In this review, we comprehensively discuss history and recent advances in targeted therapies on organelles, specifically including nucleus, mitochondria, lysosomes and endoplasmic reticulum, while focusing on organelle structures, organelle-mediated cell death signal pathways, and design guidelines of organelle-targeted nanomedicines based on intervention mechanisms. Furthermore, a perspective on future research and clinical opportunities and potential challenges in precision oncology is presented. Through demonstrating recent developments in organelle-targeted therapies, we believe this article can further stimulate broader interests in multidisciplinary research and technology development for enabling advanced organelle-targeted nanomedicines and their corresponding clinic translations.
Collapse
Affiliation(s)
- Jingjing Yang
- grid.24516.340000000123704535Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China
| | - Anthony Griffin
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Zhe Qiang
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Jie Ren
- grid.24516.340000000123704535Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China
| |
Collapse
|
7
|
Fujiki Y, Okumoto K, Honsho M, Abe Y. Molecular insights into peroxisome homeostasis and peroxisome biogenesis disorders. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119330. [PMID: 35917894 DOI: 10.1016/j.bbamcr.2022.119330] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Peroxisomes are single-membrane organelles essential for cell metabolism including the β-oxidation of fatty acids, synthesis of etherlipid plasmalogens, and redox homeostasis. Investigations into peroxisome biogenesis and the human peroxisome biogenesis disorders (PBDs) have identified 14 PEX genes encoding peroxins involved in peroxisome biogenesis and the mutation of PEX genes is responsible for the PBDs. Many recent findings have further advanced our understanding of the biology, physiology, and consequences of a functional deficit of peroxisomes. In this Review, we discuss cell defense mechanisms that counteract oxidative stress by 1) a proapoptotic Bcl-2 factor BAK-mediated release to the cytosol of H2O2-degrading catalase from peroxisomes and 2) peroxisomal import suppression of catalase by Ser232-phosphorylation of Pex14, a docking protein for the Pex5-PTS1 complex. With respect to peroxisome division, the important issue of how the energy-rich GTP is produced and supplied for the division process was recently addressed by the discovery of a nucleoside diphosphate kinase-like protein, termed DYNAMO1 in a lower eukaryote, which has a mammalian homologue NME3. In regard to the mechanisms underlying the pathogenesis of PBDs, a new PBD model mouse defective in Pex14 manifests a dysregulated brain-derived neurotrophic factor (BDNF)-TrkB pathway, an important signaling pathway for cerebellar morphogenesis. Communications between peroxisomes and other organelles are also addressed.
Collapse
Affiliation(s)
- Yukio Fujiki
- Medical Institute of Bioregulation, Institute of Rheological Functions of Food, Collaboration Program, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan.
| | - Kanji Okumoto
- Department of Biology and Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masanori Honsho
- Medical Institute of Bioregulation, Institute of Rheological Functions of Food, Collaboration Program, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | - Yuichi Abe
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
8
|
Nyunoya H, Ishibashi Y, Ito M, Okino N. Significance of mitochondrial fatty acid β-oxidation for the survivability of Aurantiochytrium limacinum ATCC MYA-1381 during sugar starvation. Biosci Biotechnol Biochem 2022; 86:1524-1535. [PMID: 35998312 DOI: 10.1093/bbb/zbac141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/10/2022] [Indexed: 11/12/2022]
Abstract
Thraustochytrids are marine protists that accumulate large amounts of palmitic acid and docosahexaenoic acid in lipid droplets. Random insertional mutagenesis was adopted for Aurantiochytrium limacinum ATCC MYA-1381 to search for genes that regulate lipid metabolism in thraustochytrids. A mutant strain, M17, was selected because of its significant decrease in myristic acid, palmitic acid, and triacylglycerol contents and cell growth defect. Genome analysis revealed that the gene encoding for mitochondrial electron-transfer flavoprotein ubiquinone oxidoreductase (ETFQO) was lacking in the M17 strain. This mutant strain exhibited a growth defect at the stationary phase, possibly due to stagnation of mitochondrial fatty acid β-oxidation and branched-chain amino acid degradation, both of which were caused by lack of ETFQO. This study shows the usability of random insertional mutagenesis to obtain mutants of lipid metabolism in A. limacinum and clarifies that ETFQO is integral for survival under sugar starvation in A. limacinum.
Collapse
Affiliation(s)
- Hayato Nyunoya
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yohei Ishibashi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nozomu Okino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
9
|
Peng X, Hou R, Yang Y, Luo Z, Cao Y. Current Studies of Mitochondrial Quality Control in the Preeclampsia. Front Cardiovasc Med 2022; 9:836111. [PMID: 35295266 PMCID: PMC8920482 DOI: 10.3389/fcvm.2022.836111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/02/2022] [Indexed: 01/22/2023] Open
Abstract
Mitochondria are cellular energy powerhouses that play important roles in regulating cellular processes. Mitochondrial quality control (mQC), including mitochondrial biogenesis, mitophagy, mitochondrial fusion and fission, maintains physiological demand and adapts to changed conditions. mQC has been widely investigated in neurodegeneration, cardiovascular disease and cancer because of the high demand for ATP in these diseases. Although placental implantation and fetal growth similarly require a large amount of energy, the investigation of mQC in placental-originated preeclampsia (PE) is limited. We elucidate mitochondrial morphology and function in different pregnancy stages, outline the role of mQC in cellular homeostasis and PE and summarize the current findings of mQC-related PE studies. This review also provides suggestions on the future investigation of mQC in PE, which will lead to the development of new prevention and therapy strategies for PE.
Collapse
Affiliation(s)
- Xiaoqing Peng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Ruirui Hou
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Yuanyuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhigang Luo
- Department of Cardiovascular, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Zhigang Luo
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- *Correspondence: Yunxia Cao
| |
Collapse
|
10
|
Ray B, Bhat A, Mahalakshmi AM, Tuladhar S, Bishir M, Mohan SK, Veeraraghavan VP, Chandra R, Essa MM, Chidambaram SB, Sakharkar MK. Mitochondrial and Organellar Crosstalk in Parkinson's Disease. ASN Neuro 2021; 13:17590914211028364. [PMID: 34304614 PMCID: PMC8317254 DOI: 10.1177/17590914211028364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/04/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial dysfunction is a well-established pathological event in Parkinson's disease (PD). Proteins misfolding and its impaired cellular clearance due to altered autophagy/mitophagy/pexophagy contribute to PD progression. It has been shown that mitochondria have contact sites with endoplasmic reticulum (ER), peroxisomes and lysosomes that are involved in regulating various physiological processes. In pathological conditions, the crosstalk at the contact sites initiates alterations in intracellular vesicular transport, calcium homeostasis and causes activation of proteases, protein misfolding and impairment of autophagy. Apart from the well-reported molecular changes like mitochondrial dysfunction, impaired autophagy/mitophagy and oxidative stress in PD, here we have summarized the recent scientific reports to provide the mechanistic insights on the altered communications between ER, peroxisomes, and lysosomes at mitochondrial contact sites. Furthermore, the manuscript elaborates on the contributions of mitochondrial contact sites and organelles dysfunction to the pathogenesis of PD and suggests potential therapeutic targets.
Collapse
Affiliation(s)
- Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Muhammed Bishir
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Surapaneni Krishna Mohan
- Department of Biochemistry, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai – 600123, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Aging and Dementia Research Group, Sultan Qaboos University, Muscat, Sultanate of Oman
- Visiting Professor, Biomedical Sciences department, University of Pacific, Sacramento, CA, USA
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK- S7N 5A2, Canada
| |
Collapse
|
11
|
Di Meo S, Venditti P. Evolution of the Knowledge of Free Radicals and Other Oxidants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9829176. [PMID: 32411336 PMCID: PMC7201853 DOI: 10.1155/2020/9829176] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
Free radicals are chemical species (atoms, molecules, or ions) containing one or more unpaired electrons in their external orbitals and generally display a remarkable reactivity. The evidence of their existence was obtained only at the beginning of the 20th century. Chemists gradually ascertained the involvement of free radicals in organic reactions and, in the middle of the 20th century, their production in biological systems. For several decades, free radicals were thought to cause exclusively damaging effects . This idea was mainly supported by the finding that oxygen free radicals readily react with all biological macromolecules inducing their oxidative modification and loss of function. Moreover, evidence was obtained that when, in the living organism, free radicals are not neutralized by systems of biochemical defences, many pathological conditions develop. However, after some time, it became clear that the living systems not only had adapted to the coexistence with free radicals but also developed methods to turn these toxic substances to their advantage by using them in critical physiological processes. Therefore, free radicals play a dual role in living systems: they are toxic by-products of aerobic metabolism, causing oxidative damage and tissue dysfunction, and serve as molecular signals activating beneficial stress responses. This discovery also changed the way we consider antioxidants. Their use is usually regarded as helpful to counteract the damaging effects of free radicals but sometimes is harmful as it can block adaptive responses induced by low levels of radicals.
Collapse
Affiliation(s)
- Sergio Di Meo
- Università degli Studi di Napoli Federico II Dipartimento di Biologia, Complesso, Universitario Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy
| | - Paola Venditti
- Università degli Studi di Napoli Federico II Dipartimento di Biologia, Complesso, Universitario Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy
| |
Collapse
|
12
|
Schrader M, Kamoshita M, Islinger M. Organelle interplay-peroxisome interactions in health and disease. J Inherit Metab Dis 2020; 43:71-89. [PMID: 30864148 PMCID: PMC7041636 DOI: 10.1002/jimd.12083] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 01/04/2023]
Abstract
Peroxisomes are multifunctional, dynamic, membrane-bound organelles with important functions in cellular lipid metabolism, rendering them essential for human health and development. Important roles for peroxisomes in signaling and the fine-tuning of cellular processes are emerging, which integrate them in a complex network of interacting cellular compartments. Like many other organelles, peroxisomes communicate through membrane contact sites. For example, peroxisomal growth, positioning, and lipid metabolism involves contacts with the endoplasmic reticulum (ER). Here, we discuss the most recent findings on peroxisome-organelle interactions including peroxisome-ER interplay at membrane contacts sites, and functional interplay with mitochondria, lysosomes, and lipid droplets in mammalian cells. We address tether proteins, metabolic cooperation, and the impact of peroxisome interactions on human health and disease.
Collapse
Affiliation(s)
- Michael Schrader
- College of Life and Environmental Sciences, BiosciencesUniversity of ExeterExeterUK
| | - Maki Kamoshita
- College of Life and Environmental Sciences, BiosciencesUniversity of ExeterExeterUK
| | - Markus Islinger
- Institute of Neuroanatomy, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty ManheimUniversity of HeidelbergMannheimGermany
| |
Collapse
|
13
|
Costello JL, Passmore JB, Islinger M, Schrader M. Multi-localized Proteins: The Peroxisome-Mitochondria Connection. Subcell Biochem 2019; 89:383-415. [PMID: 30378033 DOI: 10.1007/978-981-13-2233-4_17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peroxisomes and mitochondria are dynamic, multifunctional organelles that play pivotal cooperative roles in the metabolism of cellular lipids and reactive oxygen species. Their functional interplay, the "peroxisome-mitochondria connection", also includes cooperation in anti-viral signalling and defence, as well as coordinated biogenesis by sharing key division proteins. In this review, we focus on multi-localised proteins which are shared by peroxisomes and mitochondria in mammals. We first outline the targeting and sharing of matrix proteins which are involved in metabolic cooperation. Next, we discuss shared components of peroxisomal and mitochondrial dynamics and division, and we present novel insights into the dual targeting of tail-anchored membrane proteins. Finally, we provide an overview of what is currently known about the role of shared membrane proteins in disease. What emerges is that sharing of proteins between these two organelles plays a key role in their cooperative functions which, based on new findings, may be more extensive than originally envisaged. Gaining a better insight into organelle interplay and the targeting of shared proteins is pivotal to understanding how organelle cooperation contributes to human health and disease.
Collapse
Affiliation(s)
| | | | - Markus Islinger
- Institute of Neuroanatomy, Center for Biomedicine & Medical Technology Mannheim, Medical Faculty Manheim, University of Heidelberg, 68167, Mannheim, Germany
| | | |
Collapse
|
14
|
Esposito M, Hermann-Le Denmat S, Delahodde A. Contribution of ERMES subunits to mature peroxisome abundance. PLoS One 2019; 14:e0214287. [PMID: 30908556 PMCID: PMC6433259 DOI: 10.1371/journal.pone.0214287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/11/2019] [Indexed: 11/26/2022] Open
Abstract
Eukaryotic organelles share different components and establish physical contacts to communicate throughout the cell. One of the best-recognized examples of such interplay is the metabolic cooperation and crosstalk between mitochondria and peroxisomes, both organelles being functionally and physically connected and linked to the endoplasmic reticulum (ER). In Saccharomyces cerevisiae, mitochondria are linked to the ER by the ERMES complex that facilitates inter-organelle calcium and phospholipid exchanges. Recently, peroxisome-mitochondria contact sites (PerMit) have been reported and among Permit tethers, one component of the ERMES complex (Mdm34) was shown to interact with the peroxin Pex11, suggesting that the ERMES complex or part of it may be involved in two membrane contact sites (ER-mitochondria and peroxisome- mitochondria). This opens the possibility of exchanges between these three membrane compartments. Here, we investigated in details the role of each ERMES subunit on peroxisome abundance. First, we confirmed previous studies from other groups showing that absence of Mdm10 or Mdm12 leads to an increased number of mature peroxisomes. Secondly, we showed that this is not simply due to respiratory function defect, mitochondrial DNA (mtDNA) loss or mitochondrial network alteration. Finally, we present evidence that the contribution of ERMES subunits Mdm10 and Mdm12 to peroxisome number involves two different mechanisms.
Collapse
Affiliation(s)
- Michela Esposito
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette cedex, France
| | - Sylvie Hermann-Le Denmat
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette cedex, France
- Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Agnès Delahodde
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette cedex, France
- * E-mail:
| |
Collapse
|
15
|
Tanaka H, Okazaki T, Aoyama S, Yokota M, Koike M, Okada Y, Fujiki Y, Gotoh Y. Peroxisomes control mitochondrial dynamics and the mitochondrion-dependent pathway of apoptosis. J Cell Sci 2019; 132:jcs.224766. [DOI: 10.1242/jcs.224766] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 05/01/2019] [Indexed: 01/03/2023] Open
Abstract
Peroxisomes cooperate with mitochondria in the performance of cellular metabolic functions such as fatty acid oxidation and maintenance of redox homeostasis. Whether peroxisomes also regulate mitochondrial fission-fusion dynamics or mitochondrion-dependent apoptosis has remained unclear, however. We now show that genetic ablation of the peroxins Pex3 or Pex5, which are essential for peroxisome biogenesis, resulted in mitochondrial fragmentation in MEFs in a manner dependent on Drp1. Conversely, treatment with 4-PBA, a peroxisome proliferator, resulted in mitochondrial elongation in wild-type MEFs, but not in Pex3-deficient MEFs. We further found that peroxisome deficiency increased the levels of cytosolic cytochrome c and caspase activity under basal conditions without inducing apoptosis. It also greatly enhanced etoposide-induced caspase activation and apoptosis, indicative of an enhanced cellular sensitivity to death signals. Together, our data unveil a previously unrecognized role of peroxisomes in the regulation of mitochondrial dynamics and mitochondrion-dependent apoptosis. Effects of peroxin genes mutations on mitochondrion-dependent apoptosis may contribute to pathogenesis of peroxisome biogenesis disorders.
Collapse
Affiliation(s)
- Hideaki Tanaka
- Graduate School of Pharmaceutical Sciences, IRCN, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tomohiko Okazaki
- Graduate School of Pharmaceutical Sciences, IRCN, The University of Tokyo, Tokyo 113-0033, Japan
| | - Saeko Aoyama
- Graduate School of Pharmaceutical Sciences, IRCN, The University of Tokyo, Tokyo 113-0033, Japan
| | - Mutsumi Yokota
- Department of Cell Biology and Neuroscience, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Yasushi Okada
- Laboratory for Cell Dynamics Observation, Center for Biosystems Dynamics Research (BDR), RIKEN, Osaka 565-0874, Japan
- Department of Physics, Universal Biology Institute (UBI), and the International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo 113-0033, Japan
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, IRCN, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
16
|
Dietary rescue of lipotoxicity-induced mitochondrial damage in Peroxin19 mutants. PLoS Biol 2018; 16:e2004893. [PMID: 29920513 PMCID: PMC6025876 DOI: 10.1371/journal.pbio.2004893] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/29/2018] [Accepted: 06/01/2018] [Indexed: 11/19/2022] Open
Abstract
Mutations in peroxin (PEX) genes lead to loss of peroxisomes, resulting in the formation of peroxisomal biogenesis disorders (PBDs) and early lethality. Studying PBDs and their animal models has greatly contributed to our current knowledge about peroxisomal functions. Very-long-chain fatty acid (VLCFA) accumulation has long been suggested as a major disease-mediating factor, although the exact pathological consequences are unclear. Here, we show that a Drosophila Pex19 mutant is lethal due to a deficit in medium-chain fatty acids (MCFAs). Increased lipolysis mediated by Lipase 3 (Lip3) leads to accumulation of free fatty acids and lipotoxicity. Administration of MCFAs prevents lipolysis and decreases the free fatty acid load. This drastically increases the survival rate of Pex19 mutants without reducing VLCFA accumulation. We identified a mediator of MCFA-induced lipolysis repression, the ceramide synthase Schlank, which reacts to MCFA supplementation by increasing its repressive action on lip3. This shifts our understanding of the key defects in peroxisome-deficient cells away from elevated VLCFA levels toward elevated lipolysis and shows that loss of this important organelle can be compensated by a dietary adjustment. Peroxisomes are organelles that contain several enzymes and fatty acids required for many metabolic tasks in the cell, and upon peroxisome loss, their educts accumulate. One example is the accumulation of very-long-chain fatty acids (VLCFAs) with a chain length of more than 20 carbons. These fatty acids cannot be oxidized in mitochondria but are exclusively degraded in peroxisomes. Lowering increased VLCFA levels is sometimes attempted as a treatment option for human disorders with peroxisomal dysfunction, although its effectiveness remains unclear. Here, we have analyzed this process in Drosophila melanogaster and found that peroxisomal loss results not only in VLCFA accumulation but also in a reduction of medium-chain fatty acids (MCFAs). We could show that this is due to a state of high lipolysis and increased mitochondrial activity. By supplementation with MCFAs from coconut oil, we were able to rescue mitochondrial damage and lethality observed in peroxisome-deficient flies. We found that this process is mediated by the ceramide synthase Schlank, which acts as a transcription factor and shuttles between nuclear membrane and endoplasmic reticulum (ER) in response to MCFA availability. We conclude that peroxisome loss triggers the accumulation of free fatty acids and mitochondrial damage in flies and that these effects can be rescued by a diet rich in MCFAs.
Collapse
|
17
|
Walker CL, Pomatto LCD, Tripathi DN, Davies KJA. Redox Regulation of Homeostasis and Proteostasis in Peroxisomes. Physiol Rev 2018; 98:89-115. [PMID: 29167332 PMCID: PMC6335096 DOI: 10.1152/physrev.00033.2016] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 02/08/2023] Open
Abstract
Peroxisomes are highly dynamic intracellular organelles involved in a variety of metabolic functions essential for the metabolism of long-chain fatty acids, d-amino acids, and many polyamines. A byproduct of peroxisomal metabolism is the generation, and subsequent detoxification, of reactive oxygen and nitrogen species, particularly hydrogen peroxide (H2O2). Because of its relatively low reactivity (as a mild oxidant), H2O2 has a comparatively long intracellular half-life and a high diffusion rate, all of which makes H2O2 an efficient signaling molecule. Peroxisomes also have intricate connections to mitochondria, and both organelles appear to play important roles in regulating redox signaling pathways. Peroxisomal proteins are also subject to oxidative modification and inactivation by the reactive oxygen and nitrogen species they generate, but the peroxisomal LonP2 protease can selectively remove such oxidatively damaged proteins, thus prolonging the useful lifespan of the organelle. Peroxisomal homeostasis must adapt to the metabolic state of the cell, by a combination of peroxisome proliferation, the removal of excess or badly damaged organelles by autophagy (pexophagy), as well as by processes of peroxisome inheritance and motility. More recently the tumor suppressors ataxia telangiectasia mutate (ATM) and tuberous sclerosis complex (TSC), which regulate mTORC1 signaling, have been found to regulate pexophagy in response to variable levels of certain reactive oxygen and nitrogen species. It is now clear that any significant loss of peroxisome homeostasis can have devastating physiological consequences. Peroxisome dysregulation has been implicated in several metabolic diseases, and increasing evidence highlights the important role of diminished peroxisomal functions in aging processes.
Collapse
Affiliation(s)
- Cheryl L Walker
- Center for Precision Environmental Health and Departments of Molecular & Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas; and Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center and Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, California
| | - Laura C D Pomatto
- Center for Precision Environmental Health and Departments of Molecular & Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas; and Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center and Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, California
| | - Durga Nand Tripathi
- Center for Precision Environmental Health and Departments of Molecular & Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas; and Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center and Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, California
| | - Kelvin J A Davies
- Center for Precision Environmental Health and Departments of Molecular & Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas; and Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center and Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, California
| |
Collapse
|
18
|
Passmore JB, Pinho S, Gomez-Lazaro M, Schrader M. The respiratory chain inhibitor rotenone affects peroxisomal dynamics via its microtubule-destabilising activity. Histochem Cell Biol 2017; 148:331-341. [PMID: 28523458 PMCID: PMC5539279 DOI: 10.1007/s00418-017-1577-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2017] [Indexed: 12/21/2022]
Abstract
Peroxisomes and mitochondria in mammalian cells are closely linked subcellular organelles, which maintain a redox-sensitive relationship. Their interplay and role in ROS signalling are supposed to impact on age-related and degenerative disorders. Whereas the generation of peroxisome-derived oxidative stress can affect mitochondrial morphology and function, little is known about the impact of mitochondria-derived oxidative stress on peroxisomes. Here, we investigated the effect of the mitochondrial complex I inhibitor rotenone on peroxisomal and mitochondrial membrane dynamics. We show that rotenone treatment of COS-7 cells alters peroxisome morphology and distribution. However, this effect is related to its microtubule-destabilising activity rather than to the generation of oxidative stress. Rotenone also induced alterations in mitochondrial morphology, which-in contrast to its effect on peroxisomes-were dependent on the generation of ROS but independent of its microtubule-active properties. The importance of our findings for the peroxisome-mitochondria redox relationship and the interpretation of in cellulo and in vivo studies with rotenone, which is widely used to study Parkinson's disease, are discussed.
Collapse
Affiliation(s)
- Josiah B Passmore
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Sonia Pinho
- Centre for Cell Biology & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Maria Gomez-Lazaro
- Centre for Cell Biology & Department of Biology, University of Aveiro, Aveiro, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
- Centre for Cell Biology & Department of Biology, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
19
|
Di Meo S, Iossa S, Venditti P. Skeletal muscle insulin resistance: role of mitochondria and other ROS sources. J Endocrinol 2017; 233:R15-R42. [PMID: 28232636 DOI: 10.1530/joe-16-0598] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/31/2017] [Indexed: 12/12/2022]
Abstract
At present, obesity is one of the most important public health problems in the world because it causes several diseases and reduces life expectancy. Although it is well known that insulin resistance plays a pivotal role in the development of type 2 diabetes mellitus (the more frequent disease in obese people) the link between obesity and insulin resistance is yet a matter of debate. One of the most deleterious effects of obesity is the deposition of lipids in non-adipose tissues when the capacity of adipose tissue is overwhelmed. During the last decade, reduced mitochondrial function has been considered as an important contributor to 'toxic' lipid metabolite accumulation and consequent insulin resistance. More recent reports suggest that mitochondrial dysfunction is not an early event in the development of insulin resistance, but rather a complication of the hyperlipidemia-induced reactive oxygen species (ROS) production in skeletal muscle, which might promote mitochondrial alterations, lipid accumulation and inhibition of insulin action. Here, we review the literature dealing with the mitochondria-centered mechanisms proposed to explain the onset of obesity-linked IR in skeletal muscle. We conclude that the different pathways leading to insulin resistance may act synergistically because ROS production by mitochondria and other sources can result in mitochondrial dysfunction, which in turn can further increase ROS production leading to the establishment of a harmful positive feedback loop.
Collapse
Affiliation(s)
- Sergio Di Meo
- Department of BiologyUniversity of Naples 'Federico II', Naples, Italy
| | - Susanna Iossa
- Department of BiologyUniversity of Naples 'Federico II', Naples, Italy
| | - Paola Venditti
- Department of BiologyUniversity of Naples 'Federico II', Naples, Italy
| |
Collapse
|
20
|
Yang ZH, Emma-Okon B, Remaley AT. Dietary marine-derived long-chain monounsaturated fatty acids and cardiovascular disease risk: a mini review. Lipids Health Dis 2016; 15:201. [PMID: 27876051 PMCID: PMC5120510 DOI: 10.1186/s12944-016-0366-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/09/2016] [Indexed: 01/29/2023] Open
Abstract
Regular fish/fish oil consumption is widely recommended for protection against cardiovascular diseases (CVD). Fish and other marine life are rich sources of the cardioprotective long-chain n-3 polyunsaturated fatty acids (n-3 PUFA) eicosapentaenoic acid (C20:5 n-3; EPA) and docosahexaenoic acid (C22:6 n-3; DHA). The lipid content and fatty acid profile of fish, however, vary greatly among different fish species. In addition to n-3 PUFA, certain fish, such as saury, pollock, and herring, also contain high levels of long-chain monounsaturated fatty acids (LCMUFA), with aliphatic tails longer than 18 C atoms (i.e., C20:1 and C22:1 isomers). Compared with well-studied n-3 PUFA, limited information, however, is available on the health benefits of marine-derived LCMUFA, particularly in regard to CVD. Our objective in this review is to summarize the current knowledge and provide perspective on the potential therapeutic value of dietary LCMUFA-rich marine oil for improving CVD risk factors. We will also review the possible mechanisms of LCMUFA action on target tissues. Finally, we describe the epidemiologic data and small-scaled clinical studies that have been done on marine oils enriched in LCMUFA. Although there are still many unanswered questions about LCMUFA, this appears to be promising new area of research that may lead to new insights into the health benefits of a different component of fish oils besides n-3 PUFA.
Collapse
Affiliation(s)
- Zhi-Hong Yang
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, 20892-1666, USA.,Central Research Laboratory, Tokyo Innovation Center, Nippon Suisan Kaisha, 32-3 Nanakuni 1 Chome Hachioji, Tokyo, 192-0991, Japan
| | - Beatrice Emma-Okon
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, 20892-1666, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, 20892-1666, USA.
| |
Collapse
|
21
|
Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS Sources in Physiological and Pathological Conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1245049. [PMID: 27478531 PMCID: PMC4960346 DOI: 10.1155/2016/1245049] [Citation(s) in RCA: 849] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/04/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022]
Abstract
There is significant evidence that, in living systems, free radicals and other reactive oxygen and nitrogen species play a double role, because they can cause oxidative damage and tissue dysfunction and serve as molecular signals activating stress responses that are beneficial to the organism. Mitochondria have been thought to both play a major role in tissue oxidative damage and dysfunction and provide protection against excessive tissue dysfunction through several mechanisms, including stimulation of opening of permeability transition pores. Until recently, the functional significance of ROS sources different from mitochondria has received lesser attention. However, the most recent data, besides confirming the mitochondrial role in tissue oxidative stress and protection, show interplay between mitochondria and other ROS cellular sources, so that activation of one can lead to activation of other sources. Thus, it is currently accepted that in various conditions all cellular sources of ROS provide significant contribution to processes that oxidatively damage tissues and assure their survival, through mechanisms such as autophagy and apoptosis.
Collapse
Affiliation(s)
- Sergio Di Meo
- Dipartimento di Biologia, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Tanea T. Reed
- Department of Chemistry, Eastern Kentucky University, Richmond, KY 40475, USA
| | - Paola Venditti
- Dipartimento di Biologia, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Victor Manuel Victor
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46010 Valencia, Spain
| |
Collapse
|
22
|
Schönfeld P, Reiser G. Brain Lipotoxicity of Phytanic Acid and Very Long-chain Fatty Acids. Harmful Cellular/Mitochondrial Activities in Refsum Disease and X-Linked Adrenoleukodystrophy. Aging Dis 2016; 7:136-49. [PMID: 27114847 PMCID: PMC4809606 DOI: 10.14336/ad.2015.0823] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 08/23/2015] [Indexed: 02/02/2023] Open
Abstract
It is increasingly understood that in the aging brain, especially in the case of patients suffering from neurodegenerative diseases, some fatty acids at pathologically high concentrations exert detrimental activities. To study such activities, we here analyze genetic diseases, which are due to compromised metabolism of specific fatty acids, either the branched-chain phytanic acid or very long-chain fatty acids (VLCFAs). Micromolar concentrations of phytanic acid or of VLCFAs disturb the integrity of neural cells by impairing Ca2+ homeostasis, enhancing oxidative stress or de-energizing mitochondria. Finally, these combined harmful activities accelerate cell death. Mitochondria are more severely targeted by phytanic acid than by VLCFAs. The insertion of VLCFAs into the inner membrane distorts the arrangement of membrane constituents and their functional interactions. Phytanic acid exerts specific protonophoric activity, induces reactive oxygen species (ROS) generation, and reduces ATP generation. A clear inhibition of the Na+, K+-ATPase activity by phytanic acid has also been reported. In addition to the instantaneous effects, a chronic exposure of brain cells to low micromolar concentrations of phytanic acid may produce neuronal damage in Refsum disease by altering epigenetic transcriptional regulation. Myelin-producing oligodendrocytes respond with particular sensitivity to VLCFAs. Deleterious activity of VLCFAs on energy-dependent mitochondrial functions declines with increasing the hydrocarbon chain length (C22:0 > C24:0 > C26:0). In contrast, the reverse sequence holds true for cell death induction by VLCFAs (C22:0 < C24:0 < C26:0). In adrenoleukodystrophy, the uptake of VLCFAs by peroxisomes is impaired by defects of the ABCD1 transporter. Studying mitochondria from ABCD1-deficient and wild-type mice proves that the energy-dependent functions are not altered in the disease model. Thus, a defective ABCD1 apparently exerts no obvious adaptive pressure on mitochondria. Further research has to elucidate the detailed mechanistic basis for the failures causing fatty acid-mediated neurodegeneration and should help to provide possible therapeutic interventions.
Collapse
Affiliation(s)
| | - Georg Reiser
- Institut für Neurobiochemie (Institut für Inflammation und Neurodegeneration), Medizinische Fakultät der Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| |
Collapse
|
23
|
Hu F, Liu B. Organelle-specific bioprobes based on fluorogens with aggregation-induced emission (AIE) characteristics. Org Biomol Chem 2016; 14:9931-9944. [DOI: 10.1039/c6ob01414c] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A number of aggregation-induced emission (AIE) probes with high photostability and specificity have been developed for organelle imaging and image-guided cancer cell ablation.
Collapse
Affiliation(s)
- Fang Hu
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
- Nanoscience and Nanotechnology Institute
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
- Institute of Materials Research and Engineering (IMRE)
| |
Collapse
|
24
|
Schrader M, Godinho LF, Costello JL, Islinger M. The different facets of organelle interplay-an overview of organelle interactions. Front Cell Dev Biol 2015; 3:56. [PMID: 26442263 PMCID: PMC4585249 DOI: 10.3389/fcell.2015.00056] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/08/2015] [Indexed: 12/28/2022] Open
Abstract
Membrane-bound organelles such as mitochondria, peroxisomes, or the endoplasmic reticulum (ER) create distinct environments to promote specific cellular tasks such as ATP production, lipid breakdown, or protein export. During recent years, it has become evident that organelles are integrated into cellular networks regulating metabolism, intracellular signaling, cellular maintenance, cell fate decision, and pathogen defence. In order to facilitate such signaling events, specialized membrane regions between apposing organelles bear distinct sets of proteins to enable tethering and exchange of metabolites and signaling molecules. Such membrane associations between the mitochondria and a specialized site of the ER, the mitochondria associated-membrane (MAM), as well as between the ER and the plasma membrane (PAM) have been partially characterized at the molecular level. However, historical and recent observations imply that other organelles like peroxisomes, lysosomes, and lipid droplets might also be involved in the formation of such apposing membrane contact sites. Alternatively, reports on so-called mitochondria derived-vesicles (MDV) suggest alternative mechanisms of organelle interaction. Moreover, maintenance of cellular homeostasis requires the precise removal of aged organelles by autophagy—a process which involves the detection of ubiquitinated organelle proteins by the autophagosome membrane, representing another site of membrane associated-signaling. This review will summarize the available data on the existence and composition of organelle contact sites and the molecular specializations each site uses in order to provide a timely overview on the potential functions of organelle interaction.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Luis F Godinho
- Centre for Cell Biology and Department of Biology, University of Aveiro Aveiro, Portugal
| | - Joseph L Costello
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Markus Islinger
- Neuroanatomy, Center for Biomedicine and Medical Technology Mannheim, University of Heidelberg Mannheim, Germany
| |
Collapse
|
25
|
Pertega-Gomes N, Vizcaino JR, Felisbino S, Warren AY, Shaw G, Kay J, Whitaker H, Lynch AG, Fryer L, Neal DE, Massie CE. Epigenetic and oncogenic regulation of SLC16A7 (MCT2) results in protein over-expression, impacting on signalling and cellular phenotypes in prostate cancer. Oncotarget 2015; 6:21675-84. [PMID: 26035357 PMCID: PMC4673295 DOI: 10.18632/oncotarget.4328] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/30/2015] [Indexed: 12/01/2022] Open
Abstract
Monocarboxylate Transporter 2 (MCT2) is a major pyruvate transporter encoded by the SLC16A7 gene. Recent studies pointed to a consistent overexpression of MCT2 in prostate cancer (PCa) suggesting MCT2 as a putative biomarker and molecular target. Despite the importance of this observation the mechanisms involved in MCT2 regulation are unknown. Through an integrative analysis we have discovered that selective demethylation of an internal SLC16A7/MCT2 promoter is a recurrent event in independent PCa cohorts. This demethylation is associated with expression of isoforms differing only in 5'-UTR translational control motifs, providing one contributing mechanism for MCT2 protein overexpression in PCa. Genes co-expressed with SLC16A7/MCT2 also clustered in oncogenic-related pathways and effectors of these signalling pathways were found to bind at the SLC16A7/MCT2 gene locus. Finally, MCT2 knock-down attenuated the growth of PCa cells. The present study unveils an unexpected epigenetic regulation of SLC16A7/MCT2 isoforms and identifies a link between SLC16A7/MCT2, Androgen Receptor (AR), ETS-related gene (ERG) and other oncogenic pathways in PCa. These results underscore the importance of combining data from epigenetic, transcriptomic and protein level changes to allow more comprehensive insights into the mechanisms underlying protein expression, that in our case provide additional weight to MCT2 as a candidate biomarker and molecular target in PCa.
Collapse
Affiliation(s)
| | - Jose R Vizcaino
- Department of Pathology, Centro Hospitalar do Porto, Porto, Portugal
| | - Sergio Felisbino
- Department of Morphology, Institute of Biosciences, Sao Paulo State University (UNESP), Sao Paulo, Brazil
| | - Anne Y Warren
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Greg Shaw
- Uro-oncology Research Group, CRUK Cambridge Institute, Cambridge, UK
| | - Jonathan Kay
- Uro-oncology Research Group, CRUK Cambridge Institute, Cambridge, UK
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Hayley Whitaker
- Uro-oncology Research Group, CRUK Cambridge Institute, Cambridge, UK
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Andy G Lynch
- Statistics and Computational Biology Group, CRUK Cambridge Institute, Cambridge, UK
| | - Lee Fryer
- Uro-oncology Research Group, CRUK Cambridge Institute, Cambridge, UK
| | - David E Neal
- Uro-oncology Research Group, CRUK Cambridge Institute, Cambridge, UK
- Department of Urology, University of Cambridge, Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - Charles E Massie
- Uro-oncology Research Group, CRUK Cambridge Institute, Cambridge, UK
| |
Collapse
|
26
|
Flis VV, Fankl A, Ramprecht C, Zellnig G, Leitner E, Hermetter A, Daum G. Phosphatidylcholine Supply to Peroxisomes of the Yeast Saccharomyces cerevisiae. PLoS One 2015; 10:e0135084. [PMID: 26241051 PMCID: PMC4524607 DOI: 10.1371/journal.pone.0135084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/17/2015] [Indexed: 12/23/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, phosphatidylcholine (PC), the major phospholipid (PL) of all organelle membranes, is synthesized via two different pathways. Methylation of phosphatidylethanolamine (PE) catalyzed by the methyl transferases Cho2p/Pem1p and Opi3p/Pem2p as well as incorporation of choline through the CDP (cytidine diphosphate)-choline branch of the Kennedy pathway lead to PC formation. To determine the contribution of these two pathways to the supply of PC to peroxisomes (PX), yeast mutants bearing defects in the two pathways were cultivated under peroxisome inducing conditions, i.e. in the presence of oleic acid, and subjected to biochemical and cell biological analyses. Phenotype studies revealed compromised growth of both the cho20Δopi3Δ (mutations in the methylation pathway) and the cki1Δdpl1Δeki1Δ (mutations in the CDP-choline pathway) mutant when grown on oleic acid. Analysis of peroxisomes from the two mutant strains showed that both pathways produce PC for the supply to peroxisomes, although the CDP-choline pathway seemed to contribute with higher efficiency than the methylation pathway. Changes in the peroxisomal lipid pattern of mutants caused by defects in the PC biosynthetic pathways resulted in changes of membrane properties as shown by anisotropy measurements with fluorescent probes. In summary, our data define the origin of peroxisomal PC and demonstrate the importance of PC for peroxisome membrane formation and integrity.
Collapse
Affiliation(s)
- Vid V. Flis
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Ariane Fankl
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Claudia Ramprecht
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Günther Zellnig
- Institute of Plant Sciences, University of Graz, NAWI Graz, Graz, Austria
| | - Erich Leitner
- Institute of Analytical Chemistry and Food Technology, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Albin Hermetter
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Günther Daum
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Graz, Austria
- * E-mail:
| |
Collapse
|
27
|
Wang J, Li L, Zhang Z, Qiu H, Li D, Fang Y, Jiang H, Chai RY, Mao X, Wang Y, Sun G. One of Three Pex11 Family Members Is Required for Peroxisomal Proliferation and Full Virulence of the Rice Blast Fungus Magnaporthe oryzae. PLoS One 2015. [PMID: 26218097 PMCID: PMC4517885 DOI: 10.1371/journal.pone.0134249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Peroxisomes play important roles in metabolisms of eukaryotes and infection of plant fungal pathogens. These organelles proliferate by de novo formation or division in response to environmental stimulation. Although the assembly of peroxisomes was documented in fungal pathogens, their division and its relationship to pathogenicity remain obscure. In present work, we analyzed the roles of three Pex11 family members in peroxisomal division and pathogenicity of the rice blast fungus Magnaporthe oryzae. Deletion of MoPEX11A led to fewer but enlarged peroxisomes, and impaired the separation of Woronin bodies from peroxisomes, while deletion of MoPEX11B or MoPEX11C put no evident impacts to peroxisomal profiles. MoPEX11A mutant exhibited typical peroxisome related defects, delayed conidial germination and appressoria formation, and decreased appressorial turgor and host penetration. As a result, the virulence of MoPEX11A mutant was greatly reduced. Deletion of MoPEX11B and MoPEX11C did not alter the virulence of the fungus. Further, double or triple deletions of the three genes were unable to enhance the virulence decrease in MoPEX11A mutant. Our data indicated that MoPEX11A is the main factor modulating peroxisomal division and is required for full virulence of the fungus.
Collapse
Affiliation(s)
- Jiaoyu Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ling Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- School of Agricultural and Food Sciences, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Zhen Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haiping Qiu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Dongmei Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuan Fang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Hua Jiang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rong Yao Chai
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xueqin Mao
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanli Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guochang Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- * E-mail:
| |
Collapse
|
28
|
Schrader M, Costello J, Godinho LF, Islinger M. Peroxisome-mitochondria interplay and disease. J Inherit Metab Dis 2015; 38:681-702. [PMID: 25687155 DOI: 10.1007/s10545-015-9819-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 12/16/2022]
Abstract
Peroxisomes and mitochondria are ubiquitous, highly dynamic organelles with an oxidative type of metabolism in eukaryotic cells. Over the years, substantial evidence has been provided that peroxisomes and mitochondria exhibit a close functional interplay which impacts on human health and development. The so-called "peroxisome-mitochondria connection" includes metabolic cooperation in the degradation of fatty acids, a redox-sensitive relationship, an overlap in key components of the membrane fission machineries and cooperation in anti-viral signalling and defence. Furthermore, combined peroxisome-mitochondria disorders with defects in organelle division have been revealed. In this review, we present the latest progress in the emerging field of peroxisomal and mitochondrial interplay in mammals with a particular emphasis on cooperative fatty acid β-oxidation, redox interplay, organelle dynamics, cooperation in anti-viral signalling and the resulting implications for disease.
Collapse
Affiliation(s)
- Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK,
| | | | | | | |
Collapse
|
29
|
Weinberg SE, Sena LA, Chandel NS. Mitochondria in the regulation of innate and adaptive immunity. Immunity 2015; 42:406-17. [PMID: 25786173 DOI: 10.1016/j.immuni.2015.02.002] [Citation(s) in RCA: 667] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Indexed: 02/07/2023]
Abstract
Mitochondria are well appreciated for their role as biosynthetic and bioenergetic organelles. In the past two decades, mitochondria have emerged as signaling organelles that contribute critical decisions about cell proliferation, death, and differentiation. Mitochondria not only sustain immune cell phenotypes but also are necessary for establishing immune cell phenotype and their function. Mitochondria can rapidly switch from primarily being catabolic organelles generating ATP to anabolic organelles that generate both ATP and building blocks for macromolecule synthesis. This enables them to fulfill appropriate metabolic demands of different immune cells. Mitochondria have multiple mechanisms that allow them to activate signaling pathways in the cytosol including altering in AMP/ATP ratio, the release of ROS and TCA cycle metabolites, as well as the localization of immune regulatory proteins on the outer mitochondrial membrane. In this Review, we discuss the evidence and mechanisms that mitochondrial dependent signaling controls innate and adaptive immune responses.
Collapse
Affiliation(s)
- Samuel E Weinberg
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, IL 60615, USA
| | - Laura A Sena
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, IL 60615, USA
| | - Navdeep S Chandel
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, IL 60615, USA.
| |
Collapse
|
30
|
Valerio A, Nisoli E. Nitric oxide, interorganelle communication, and energy flow: a novel route to slow aging. Front Cell Dev Biol 2015; 3:6. [PMID: 25705617 PMCID: PMC4319459 DOI: 10.3389/fcell.2015.00006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/12/2015] [Indexed: 12/14/2022] Open
Abstract
The mitochondrial lifecycle (mitochondrial biogenesis, dynamics, and removal by mitophagy) is carefully orchestrated to ensure the efficient generation of cellular energy and to maintain reactive oxygen species (ROS) production within an optimal range for cellular health. Based on latest research, these processes largely depend on mitochondrial interactions with other cell organelles, so that the ER- and peroxisome-mitochondrial connections might intervene in the control of cellular energy flow. Damaged organelles are cleared by autophagic mechanisms to assure the quality and proper function of the intracellular organelle pool. Nitric oxide (NO) generated through the endothelial nitric oxide synthase (eNOS) acts a gas signaling mediator to promote mitochondrial biogenesis and bioenergetics, with a favorable impact in diverse chronic diseases of the elderly. Obesity, diabetes and aging share common pathophysiological mechanisms, including mitochondrial impairment and dysfunctional eNOS. Here we review the evidences that eNOS-dependent mitochondrial biogenesis and quality control, and possibly the complex interplay among cellular organelles, may be affected by metabolic diseases and the aging processes, contributing to reduce healthspan and lifespan. Drugs or nutrients able to sustain the eNOS-NO generating system might contribute to maintain organelle homeostasis and represent novel preventive and/or therapeutic approaches to chronic age-related diseases.
Collapse
Affiliation(s)
- Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia Brescia, Italy
| | - Enzo Nisoli
- Department of Medical Biotechnology and Translational Medicine, Center for Study and Research on Obesity, University of Milan Milan, Italy
| |
Collapse
|
31
|
Camões F, Islinger M, Guimarães SC, Kilaru S, Schuster M, Godinho LF, Steinberg G, Schrader M. New insights into the peroxisomal protein inventory: Acyl-CoA oxidases and -dehydrogenases are an ancient feature of peroxisomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:111-25. [DOI: 10.1016/j.bbamcr.2014.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 12/22/2022]
|
32
|
Munday DC, Howell G, Barr JN, Hiscox JA. Proteomic analysis of mitochondria in respiratory epithelial cells infected with human respiratory syncytial virus and functional implications for virus and cell biology. ACTA ACUST UNITED AC 2014; 67:300-18. [PMID: 25533920 DOI: 10.1111/jphp.12349] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 10/12/2014] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The aim of this study was to quantitatively characterise the mitochondrial proteome of airway epithelial cells infected with human respiratory syncytial virus (HRSV), a major cause of paediatric illness. METHODS Quantitative proteomics, underpinned by stable isotope labelling with amino acids in cell culture, coupled to LC-MS/MS, was applied to mitochondrial fractions prepared from HRSV-infected and mock-infected cells 12 and 24 h post-infection. Datasets were analysed using ingenuity pathway analysis, and the results were validated and characterised using bioimaging, targeted inhibition and gene depletion. KEY FINDINGS The data quantitatively indicated that antiviral signalling proteins converged on mitochondria during HRSV infection. The mitochondrial receptor protein Tom70 was found to act in an antiviral manner, while its chaperone, Hsp90, was confirmed to be a positive viral factor. Proteins associated with different organelles were also co-enriched in the mitochondrial fractions from HRSV-infected cells, suggesting that alterations in organelle dynamics and membrane associations occur during virus infection. CONCLUSIONS Protein and pathway-specific alterations occur to the mitochondrial proteome in a spatial and temporal manner during HRSV infection, suggesting that this organelle may have altered functions. These could be targeted as part of potential therapeutic strategies to disrupt virus biology.
Collapse
Affiliation(s)
- Diane C Munday
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | | | | | |
Collapse
|
33
|
Mitochondria in peroxisome-deficient hepatocytes exhibit impaired respiration, depleted DNA, and PGC-1α independent proliferation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:285-98. [PMID: 25450972 DOI: 10.1016/j.bbamcr.2014.11.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/04/2014] [Accepted: 11/13/2014] [Indexed: 02/01/2023]
Abstract
The tight interrelationship between peroxisomes and mitochondria is illustrated by their cooperation in lipid metabolism, antiviral innate immunity and shared use of proteins executing organellar fission. In addition, we previously reported that disruption of peroxisome biogenesis in hepatocytes severely impacts on mitochondrial integrity, primarily damaging the inner membrane. Here we investigated the molecular impairments of the dysfunctional mitochondria in hepatocyte selective Pex5 knockout mice. First, by using blue native electrophoresis and in-gel activity stainings we showed that the respiratory complexes were differentially affected with reduction of complexes I and III and incomplete assembly of complex V, whereas complexes II and IV were normally active. This resulted in impaired oxygen consumption in cultured Pex5(-/-) hepatocytes. Second, mitochondrial DNA was depleted causing an imbalance in the expression of mitochondrial- and nuclear-encoded subunits of the respiratory chain complexes. Third, mitochondrial membranes showed increased permeability and fluidity despite reduced content of the polyunsaturated fatty acid docosahexaenoic acid. Fourth, the affected mitochondria in peroxisome deficient hepatocytes displayed increased oxidative stress. Acute deletion of PEX5 in vivo using adeno-Cre virus phenocopied these effects, indicating that mitochondrial perturbations closely follow the loss of functional peroxisomes in time. Likely to compensate for the functional impairments, the volume of the mitochondrial compartment was increased several folds. This was not driven by PGC-1α but mediated by activation of PPARα, possibly through c-myc overexpression. In conclusion, loss of peroxisomal metabolism in hepatocytes perturbs the mitochondrial inner membrane, depletes mitochondrial DNA and causes mitochondrial biogenesis independent of PGC-1α.
Collapse
|
34
|
Delille HK, Dodt G, Schrader M. Pex11pβ-mediated maturation of peroxisomes. Commun Integr Biol 2014. [DOI: 10.4161/cib.13647] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
35
|
Liu Y, Long J, Liu J. Mitochondrial free radical theory of aging: who moved my premise? Geriatr Gerontol Int 2014; 14:740-9. [PMID: 24750368 DOI: 10.1111/ggi.12296] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2014] [Indexed: 12/31/2022]
Abstract
First proposed by D Harman in the 1950s, the Mitochondrial Free Radical Theory of Aging (MFRTA) has become one of the most tested and well-known theories in aging research. Its core statement is that aging results from the accumulation of oxidative damage, which is closely linked with the release of reactive oxygen species (ROS) from mitochondria. Although MFRTA has been well acknowledged for more than half a century, conflicting evidence is piling up in recent years querying the causal effect of ROS in aging. A critical idea thus emerges that contrary to their conventional image only as toxic agents, ROS at a non-toxic level function as signaling molecules that induce protective defense in responses to age-dependent damage. Furthermore, the peroxisome, another organelle in eukaryotic cells, might have a say in longevity modulation. Peroxisomes and mitochondria are two organelles closely related to each other, and their interaction has major implications for the regulation of aging. The present review particularizes the questionable sequiturs of the MFRTA, and recommends peroxisome, similarly as mitochondrion, as a possible candidate for the regulation of aging.
Collapse
Affiliation(s)
- Ye Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | | | | |
Collapse
|
36
|
Binder JX, Pletscher-Frankild S, Tsafou K, Stolte C, O'Donoghue SI, Schneider R, Jensen LJ. COMPARTMENTS: unification and visualization of protein subcellular localization evidence. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau012. [PMID: 24573882 PMCID: PMC3935310 DOI: 10.1093/database/bau012] [Citation(s) in RCA: 417] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Information on protein subcellular localization is important to understand the cellular functions of proteins. Currently, such information is manually curated from the literature, obtained from high-throughput microscopy-based screens and predicted from primary sequence. To get a comprehensive view of the localization of a protein, it is thus necessary to consult multiple databases and prediction tools. To address this, we present the COMPARTMENTS resource, which integrates all sources listed above as well as the results of automatic text mining. The resource is automatically kept up to date with source databases, and all localization evidence is mapped onto common protein identifiers and Gene Ontology terms. We further assign confidence scores to the localization evidence to facilitate comparison of different types and sources of evidence. To further improve the comparability, we assign confidence scores based on the type and source of the localization evidence. Finally, we visualize the unified localization evidence for a protein on a schematic cell to provide a simple overview. Database URL:http://compartments.jensenlab.org
Collapse
Affiliation(s)
- Janos X Binder
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany, Bioinformatics Core Facility, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg, Department of Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark, CSIRO Computational Informatics, Sydney, NSW 2113 Australia and Garvan Institute of Medical Research, Sydney, NSW 2100, Australia
| | | | | | | | | | | | | |
Collapse
|
37
|
Hartwig S, Knebel B, Goeddeke S, Koellmer C, Jacob S, Nitzgen U, Passlack W, Schiller M, Dicken HD, Haas J, Muller-Wieland D, Lehr S, Kotzka J. So close and yet so far: mitochondria and peroxisomes are one but with specific talents. Arch Physiol Biochem 2013; 119:126-35. [PMID: 23705958 DOI: 10.3109/13813455.2013.796994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cellular compartmentalization of central metabolic pathways as lipid metabolism to mitochondria and peroxisomes enables high efficient control processes. The basis to understand mitochondrial or peroxisomal function is exactly to determine proteins physically present. For proteomic investigations of mouse liver organelles, we developed 2-DE reference maps covering the range pH 4-9, available under ( www.diabesityprot.org ). MALDI-TOF-MS/MS analyses identified a total of 799 (mitochondria) and 681 (peroxisome) protein spots resembling 323 and 293 unique proteins, respectively. Direct comparison of mitochondrial and peroxisomal proteins indicated an approximate overlap of 2/3 of identified proteins. Gene Ontologies (GO) of the identified proteins in respect to physical presence confirmed functional specifications within the organelles. The 2-DE organelle reference maps will aid to point out functional differences and similarities. Our observations suggest that for functional analyses metabolic alterations focusing on one organelle are not sufficient and parallel comparison of both organelles is to be preferred.
Collapse
Affiliation(s)
- Sonja Hartwig
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Deusseldorf, Leibniz Center for Diabetes Research, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Charcot-Marie-Tooth disease-associated mutants of GDAP1 dissociate its roles in peroxisomal and mitochondrial fission. EMBO Rep 2013; 14:545-52. [PMID: 23628762 DOI: 10.1038/embor.2013.56] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 03/13/2013] [Accepted: 04/11/2013] [Indexed: 11/08/2022] Open
Abstract
Mitochondria and peroxisomes can be fragmented by the process of fission. The fission machineries of both organelles share a set of proteins. GDAP1 is a tail-anchored protein of mitochondria and induces mitochondrial fragmentation. Mutations in GDAP1 lead to Charcot-Marie-Tooth disease (CMT), an inherited peripheral neuropathy, and affect mitochondrial dynamics. Here, we show that GDAP1 is also targeted to peroxisomes mediated by the import receptor Pex19. Knockdown of GDAP1 leads to peroxisomal elongation that can be rescued by re-expressing GDAP1 and by missense mutated forms found in CMT patients. GDAP1-induced peroxisomal fission is dependent on the integrity of its hydrophobic domain 1, and on Drp1 and Mff, as is mitochondrial fission. Thus, GDAP1 regulates mitochondrial and peroxisomal fission by a similar mechanism. However, our results reveal also a more critical role of the amino-terminal GDAP1 domains, carrying most CMT-causing mutations, in the regulation of mitochondrial compared to peroxisomal fission.
Collapse
|
39
|
Platta HW, Hagen S, Erdmann R. The exportomer: the peroxisomal receptor export machinery. Cell Mol Life Sci 2013; 70:1393-411. [PMID: 22983384 PMCID: PMC11113987 DOI: 10.1007/s00018-012-1136-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 07/30/2012] [Accepted: 08/13/2012] [Indexed: 12/21/2022]
Abstract
Peroxisomes constitute a dynamic compartment of almost all eukaryotic cells. Depending on environmental changes and cellular demands peroxisomes can acquire diverse metabolic roles. The compartmentalization of peroxisomal matrix enzymes is a prerequisite to carry out their physiologic function. The matrix proteins are synthesized on free ribosomes in the cytosol and are ferried to the peroxisomal membrane by specific soluble receptors. Subsequent to cargo release into the peroxisomal matrix, the receptors are exported back to the cytosol to facilitate further rounds of matrix protein import. This dislocation step is accomplished by a remarkable machinery, which comprises enzymes required for the ubiquitination as well as the ATP-dependent extraction of the receptor from the membrane. Interestingly, receptor ubiquitination and dislocation are the only known energy-dependent steps in the peroxisomal matrix protein import process. The current view is that the export machinery of the receptors might function as molecular motor not only in the dislocation of the receptors but also in the import step of peroxisomal matrix protein by coupling ATP-dependent removal of the peroxisomal import receptor with cargo translocation into the organelle. In this review we will focus on the architecture and function of the peroxisomal receptor export machinery, the peroxisomal exportomer.
Collapse
Affiliation(s)
- Harald W. Platta
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Stefanie Hagen
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Ralf Erdmann
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
40
|
Bonekamp NA, Schrader M. Transient complex peroxisomal interactions: A new facet of peroxisome dynamics in mammalian cells. Commun Integr Biol 2013; 5:534-7. [PMID: 23336019 PMCID: PMC3541316 DOI: 10.4161/cib.21508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mitochondria and peroxisomes are ubiquitous subcellular organelles that fulfill essential metabolic functions, rendering them indispensable for human development and health. Both are highly dynamic organelles that can undergo remarkable changes in morphology and number to accomplish cellular needs. While mitochondrial dynamics are also regulated by frequent fusion events, the fusion of mature peroxisomes in mammalian cells remained a matter of debate. In our recent study, we clarified systematically that there is no complete fusion of mature peroxisomes analogous to mitochondria. Moreover, in contrast to key division components such as DLP1, Fis1 or Mff, mitochondrial fusion proteins were not localized to peroxisomes. However, we discovered and characterized novel transient, complex interactions between individual peroxisomes which may contribute to the homogenization of the often heterogeneous peroxisomal compartment, e.g., by distribution of metabolites, signals or other “molecular information” via interperoxisomal contact sites.
Collapse
Affiliation(s)
- Nina A Bonekamp
- Centre for Cell Biology & Dept. of Biology; University of Aveiro; Campus Universitário de Santiago; Portugal
| | | |
Collapse
|
41
|
Bonekamp NA, Grille S, Cardoso MJ, Almeida M, Aroso M, Gomes S, Magalhaes AC, Ribeiro D, Islinger M, Schrader M. Self-interaction of human Pex11pβ during peroxisomal growth and division. PLoS One 2013; 8:e53424. [PMID: 23308220 PMCID: PMC3538539 DOI: 10.1371/journal.pone.0053424] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/28/2012] [Indexed: 12/15/2022] Open
Abstract
Pex11 proteins are involved in membrane elongation and division processes associated with the multiplication of peroxisomes. Human Pex11pβ has recently been linked to a new disorder affecting peroxisome morphology and dynamics. Here, we have analyzed the exact membrane topology of Pex11pβ. Studies with an epitope-specific antibody and protease protection assays show that Pex11pβ is an integral membrane protein with two transmembrane domains flanking an internal region exposed to the peroxisomal matrix and N- and C-termini facing the cytosol. A glycine-rich internal region within Pex11pβ is dispensable for peroxisome membrane elongation and division. However, we demonstrate that an amphipathic helix (Helix 2) within the first N-terminal 40 amino acids is crucial for membrane elongation and self-interaction of Pex11pβ. Interestingly, we find that Pex11pβ self-interaction strongly depends on the detergent used for solubilization. We also show that N-terminal cysteines are not essential for membrane elongation, and that putative N-terminal phosphorylation sites are dispensable for Pex11pβ function. We propose that self-interaction of Pex11pβ regulates its membrane deforming activity in conjunction with membrane lipids.
Collapse
Affiliation(s)
- Nina A. Bonekamp
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Sandra Grille
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Maria Joao Cardoso
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Monica Almeida
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Miguel Aroso
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Silvia Gomes
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Ana Cristina Magalhaes
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Daniela Ribeiro
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Markus Islinger
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Michael Schrader
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, Devon, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Schrader M, Grille S, Fahimi HD, Islinger M. Peroxisome interactions and cross-talk with other subcellular compartments in animal cells. Subcell Biochem 2013; 69:1-22. [PMID: 23821140 DOI: 10.1007/978-94-007-6889-5_1] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Peroxisomes are remarkably plastic and dynamic organelles, which fulfil important functions in hydrogen peroxide and lipid metabolism rendering them essential for human health and development. Despite great advances in the identification and characterization of essential components and molecular mechanisms associated with the biogenesis and function of peroxisomes, our understanding of how peroxisomes are incorporated into metabolic pathways and cellular communication networks is just beginning to emerge. Here we address the interaction of peroxisomes with other subcellular compartments including the relationship with the endoplasmic reticulum, the peroxisome-mitochondria connection and the association with lipid droplets. We highlight metabolic cooperations and potential cross-talk and summarize recent findings on peroxisome-peroxisome interactions and the interaction of peroxisomes with microtubules in mammalian cells.
Collapse
Affiliation(s)
- Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK,
| | | | | | | |
Collapse
|
43
|
Scharwey M, Tatsuta T, Langer T. Mitochondrial lipid transport at a glance. J Cell Sci 2013; 126:5317-23. [DOI: 10.1242/jcs.134130] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lipids are the building blocks of cellular membranes and are synthesized at distinct parts of the cell. A precise control of lipid synthesis and distribution is crucial for cell function and survival. The endoplasmic reticulum (ER) is the major lipid-synthesizing organelle. However, a subset of lipids is synthesized within mitochondria, and this aspect has become a focus of recent lipid research. Mitochondria form a dynamic membrane network that is reshaped by fusion and fission events. Their functionality therefore depends on a continuous lipid supply from the ER and the distribution of lipids between both mitochondrial membranes. The mechanisms of mitochondrial lipid trafficking are only now emerging and appear to involve membrane contact sites and lipid transfer proteins. In this Cell Science at a Glance article, we will discuss recent discoveries in the field of mitochondrial lipid trafficking that build on long-standing observations and shed new light on the shuttling of membrane lipids between mitochondria and other organelles.
Collapse
|
44
|
Buskiewicz IA, Koenig A, Huber SA, Budd RC. Caspase-8 and FLIP regulate RIG-I/MDA5-induced innate immune host responses to picornaviruses. Future Virol 2012; 7:1221-1236. [PMID: 23503762 DOI: 10.2217/fvl.12.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Picornaviruses are small, nonenveloped, positive-stranded RNA viruses, which cause a wide range of animal and human diseases, based on their distinct tissue and cell type tropisms. Myocarditis, poliomyelitis, hepatitis and the common cold are the most significant human illnesses caused by picornaviruses. The host response to picornaviruses is complex, and the damage to tissues occurs not only from direct viral replication within infected cells. Picornaviruses exhibit an exceptional ability to evade the early innate immune response, resulting in chronic infection and autoimmunity. This review discusses the detailed aspects of the early innate host response to picornaviruses infection mediated by RIG-I-like helicases, their adaptor, mitochondrial ant iviral signaling protein, innate immune-induced apoptosis, and the role of caspase-8 and its regulatory paralog, FLIP, in these processes.
Collapse
Affiliation(s)
- Iwona A Buskiewicz
- Department of Pathology, Vermont Center for Immunology & Infectious Diseases, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
45
|
Amaral A, Castillo J, Estanyol JM, Ballescà JL, Ramalho-Santos J, Oliva R. Human sperm tail proteome suggests new endogenous metabolic pathways. Mol Cell Proteomics 2012; 12:330-42. [PMID: 23161514 DOI: 10.1074/mcp.m112.020552] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteomic studies are contributing greatly to our understanding of the sperm cell, and more detailed descriptions are expected to clarify additional cellular and molecular sperm attributes. The aim of this study was to characterize the subcellular proteome of the human sperm tail and, hopefully, identify less concentrated proteins (not found in whole cell proteome studies). Specifically, we were interested in characterizing the sperm metabolic proteome and gaining new insights into the sperm metabolism issue. Sperm were isolated from normozoospermic semen samples and depleted of any contaminating leukocytes. Tail fractions were obtained by means of sonication followed by sucrose-gradient ultracentrifugation, and their purity was confirmed via various techniques. Liquid chromatography and tandem mass spectrometry of isolated sperm tail peptides resulted in the identification of 1049 proteins, more than half of which had not been previously described in human sperm. The categorization of proteins according to their function revealed two main groups: proteins related to metabolism and energy production (26%), and proteins related to sperm tail structure and motility (11%). Interestingly, a great proportion of the metabolic proteome (24%) comprised enzymes involved in lipid metabolism, including enzymes for mitochondrial beta-oxidation. Unexpectedly, we also identified various peroxisomal proteins, some of which are known to be involved in the oxidation of very long chain fatty acids. Analysis of our data using Reactome suggests that both mitochondrial and peroxisomal pathways might indeed be active in sperm, and that the use of fatty acids as fuel might be more preponderant than previously thought. In addition, incubation of sperm with the fatty acid oxidation inhibitor etomoxir resulted in a significant decrease in sperm motility. Contradicting a common concept in the literature, we suggest that the male gamete might have the capacity to obtain energy from endogenous pools, and thus to adapt to putative exogenous fluctuations.
Collapse
Affiliation(s)
- Alexandra Amaral
- Human Genetics Research Group, IDIBAPS, Faculty of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Peroxisomes are remarkably versatile cell organelles whose size, shape, number, and protein content can vary greatly depending on the organism, the developmental stage of the organism’s life cycle, and the environment in which the organism lives. The main functions usually associated with peroxisomes include the metabolism of lipids and reactive oxygen species. However, in recent years, it has become clear that these organelles may also act as intracellular signaling platforms that mediate developmental decisions by modulating extraperoxisomal concentrations of several second messengers. To fulfill their functions, peroxisomes physically and functionally interact with other cell organelles, including mitochondria and the endoplasmic reticulum. Defects in peroxisome dynamics can lead to organelle dysfunction and have been associated with various human disorders. The purpose of this paper is to thoroughly summarize and discuss the current concepts underlying peroxisome formation, multiplication, and degradation. In addition, this paper will briefly highlight what is known about the interplay between peroxisomes and other cell organelles and explore the physiological and pathological implications of this interorganellar crosstalk.
Collapse
Affiliation(s)
- Marc Fransen
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, P.O. Box 601, 3000 Leuven, Belgium
| |
Collapse
|
47
|
Ng CS, Kato H, Fujita T. Recognition of viruses in the cytoplasm by RLRs and other helicases--how conformational changes, mitochondrial dynamics and ubiquitination control innate immune responses. Int Immunol 2012; 24:739-49. [DOI: 10.1093/intimm/dxs099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
48
|
Hou L, Lian K, Yao M, Shi Y, Lu X, Fang L, He T, Jiang L. Reduction of n-3 PUFAs, specifically DHA and EPA, and enhancement of peroxisomal beta-oxidation in type 2 diabetic rat heart. Cardiovasc Diabetol 2012; 11:126. [PMID: 23057715 PMCID: PMC3490815 DOI: 10.1186/1475-2840-11-126] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/09/2012] [Indexed: 01/10/2023] Open
Abstract
Background There is overwhelming evidence that dietary supplementation with n-3 polyunsaturated fatty acids (PUFAs), mainly EPA (C20:5n-3) and DHA (C22:6n-3), has cardiovascular protective effects on patients with type 2 diabetes mellitus (T2DM) but not on healthy people. Because the T2DM heart increases fatty acid oxidation (FAO) to compensate for the diminished utilization of glucose, we hypothesize that T2DM hearts consume more n-3 PUFAs and, therefore, need more n-3 PUFAs. In the present study, we investigated the changes in cardiac n-3 PUFAs and peroxisomal beta-oxidation, which are responsible for the degradation of PUFAs in a high-fat diet (HFD) and low-dose streptozotocin- (STZ) induced type 2 diabetic rat model. Methods and results The capillary gas chromatography results showed that all the n-3 (or omega-3) PUFAs, especially DHA (~50%) and EPA (~100%), were significantly decreased, and the n-6/n-3 ratio (~115%) was significantly increased in the hearts of diabetic rats. The activity of peroxisomal beta-oxidation, which is crucial to very-long-chain and unsaturated FA metabolism (including DHA), was significantly elevated in DM hearts. Additionally, the real-time PCR results showed that the mRNA expression of most peroxisomal beta-oxidation key enzymes were up-regulated in T2DM rat hearts, which might contribute to the reduction of n-3 (or omega-3) PUFAs. Conclusion In conclusion, our results indicate that T2DM hearts consume more n-3 PUFAs, especially DHA and EPA, due to exaggerated peroxisomal beta-oxidation.
Collapse
Affiliation(s)
- Lianguo Hou
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neurobiology and Vascular Biology, China Administration of Education, Hebei Medical University, No, 361 Zhongshan East Road, Shijiazhuang, 050017, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Role of peroxisomes in ROS/RNS-metabolism: Implications for human disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1363-73. [DOI: 10.1016/j.bbadis.2011.12.001] [Citation(s) in RCA: 383] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/25/2011] [Accepted: 12/02/2011] [Indexed: 12/27/2022]
|
50
|
Postfixation detergent treatment liberates the membrane modelling protein Pex11β from peroxisomal membranes. Histochem Cell Biol 2012; 138:541-7. [PMID: 22875152 DOI: 10.1007/s00418-012-1010-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2012] [Indexed: 10/28/2022]
Abstract
Pex11 proteins are involved in membrane remodelling processes of peroxisomes, and are key components of peroxisomal division and proliferation. In mammals, three Pex11 isoforms, Pex11α, Pex11β, and Pex11γ exist. Here we demonstrate that Pex11β, but not Pex11α or Pex11γ, is almost exclusively extracted from peroxisomal membranes of paraformaldehyde-fixed cells by permeabilisation with the non-ionic detergent Triton X-100. This results in diminished detection of Myc-Pex11β in immunofluorescence preparations and appearance of the protein in the Triton X-100 extract. To our knowledge, Pex11β is the first peroxisomal membrane protein showing such a peculiar behaviour. Loss of Pex11β can be avoided by permeabilisation with digitonin, the addition of glutaraldehyde to the fixative, or the expression of a Pex11 fusion protein with a larger protein tag (e.g. YFP). Our observations further point to different functions and biochemical properties of the Pex11 isoforms within the peroxisomal membrane and during peroxisome proliferation.
Collapse
|