1
|
Liu J, Guo B, Liu Q, Zhu G, Wang Y, Wang N, Yang Y, Fu S. Cellular Senescence: A Bridge Between Diabetes and Microangiopathy. Biomolecules 2024; 14:1361. [PMID: 39595537 PMCID: PMC11591988 DOI: 10.3390/biom14111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Cellular senescence is a state of permanent cell cycle arrest and plays an important role in many vascular lesions. This study found that the cells of diabetic patients have more characteristics of senescence, which may cause microvascular complications. Cell senescence, as one of the common fates of cells, links microangiopathy and diabetes. Cell senescence in a high-glucose environment can partially elucidate the mechanism of diabetic microangiopathy, and various types of cellular senescence induced by it can promote the progression of diabetic microangiopathy. Still, the molecular mechanism of microangiopathy-related cellular senescence has not yet been clearly studied. Building on recent research evidence, we herein summarize the fundamental mechanisms underlying the development of cellular senescence in various microangiopathies associated with diabetes. We gradually explain how cellular senescence serves as a key driver of diabetic microangiopathy. At the same time, the treatment of basic senescence mechanisms such as cellular senescence may have a great impact on the pathogenesis of the disease, may be more effective in preventing the development of diabetic microangiopathy, and may provide new ideas for the clinical treatment and prognosis of diabetic microangiopathy.
Collapse
Affiliation(s)
- Jiahui Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Buyu Guo
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Qianqian Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Guomao Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Yaqi Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Na Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Yichen Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Songbo Fu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Endocrine Disease, Lanzhou 730000, China
| |
Collapse
|
2
|
Lee H, Ha TY, Jung CH, Nirmala FS, Park SY, Huh YH, Ahn J. Mitochondrial dysfunction in skeletal muscle contributes to the development of acute insulin resistance in mice. J Cachexia Sarcopenia Muscle 2021; 12:1925-1939. [PMID: 34605225 PMCID: PMC8718067 DOI: 10.1002/jcsm.12794] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/12/2021] [Accepted: 08/23/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Although mounting evidence indicates that insulin resistance (IR) co-occurs with mitochondrial dysfunction in skeletal muscle, there is no clear causal link between mitochondrial dysfunction and IR pathogenesis. In this study, the exact role of mitochondria in IR development was determined. METHODS Six-week-old C57BL/6 mice were fed a high-fat diet for 2 weeks to induce acute IR or for 24 weeks to induce chronic IR (n = 8 per group). To characterize mitochondrial function, we measured citrate synthase activity, ATP content, mitochondrial DNA (mtDNA) content, and oxygen consumption rate in gastrocnemius and liver tissues. We intraperitoneally administered mitochondrial division inhibitor 1 (mdivi-1) to mice with acute IR and measured mitochondrial adaptive responses such as mitophagy, mitochondrial unfolded protein response (UPRmt), and oxidative stress (n = 6 per group). RESULTS Acute IR occurred coincidently with impaired mitochondrial function, including reduced citrate synthase activity (-37.8%, P < 0.01), ATP production (-88.0%, P < 0.01), mtDNA (-53.1%, P < 0.01), and mitochondrial respiration (-52.2% for maximal respiration, P < 0.05) in skeletal muscle but not in liver. Administration of mdivi-1 attenuated IR development by increasing mitochondrial function (+58.5% for mtDNA content, P < 0.01; 4.06 ± 0.69 to 5.84 ± 0.95 pmol/min/mg for citrate synthase activity, P < 0.05; 13.06 ± 0.70 to 34.87 ± 0.70 pmol/min/g for maximal respiration, P < 0.001). Western blot analysis showed acute IR resulted in increased autophagy (mitophagy) and UPRmt induction in muscle tissue. This adaptive response was inhibited by mdivi-1, which reduced the mitochondrial oxidative stress of skeletal muscle during acute IR. CONCLUSIONS Acute IR induced mitochondrial oxidative stress that impaired mitochondrial function in skeletal muscle. Improving mitochondrial function has important potential for treating acute IR.
Collapse
Affiliation(s)
- Hyunjung Lee
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju, Republic of Korea
| | - Tae Youl Ha
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju, Republic of Korea.,Department of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Chang Hwa Jung
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju, Republic of Korea.,Department of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Farida Sukma Nirmala
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju, Republic of Korea.,Department of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Yang Hoon Huh
- Center for Electron Microscopy Research, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jiyun Ahn
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju, Republic of Korea.,Department of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
3
|
Ding XW, Robinson M, Li R, Aldhowayan H, Geetha T, Babu JR. Mitochondrial dysfunction and beneficial effects of mitochondria-targeted small peptide SS-31 in Diabetes Mellitus and Alzheimer's disease. Pharmacol Res 2021; 171:105783. [PMID: 34302976 DOI: 10.1016/j.phrs.2021.105783] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022]
Abstract
Diabetes and Alzheimer's disease are common chronic illnesses in the United States and lack clearly demonstrated therapeutics. Mitochondria, the "powerhouse of the cell", is involved in the homeostatic regulation of glucose, energy, and reduction/oxidation reactions. The mitochondria has been associated with the etiology of metabolic and neurological disorders through a dysfunction of regulation of reactive oxygen species. Mitochondria-targeted chemicals, such as the Szeto-Schiller-31 peptide, have advanced therapeutic potential through the inhibition of oxidative stress and the restoration of normal mitochondrial function as compared to traditional antioxidants, such as vitamin E. In this article, we summarize the pathophysiological relevance of the mitochondria and the beneficial effects of Szeto-Schiller-31 peptide in the treatment of Diabetes and Alzheimer's disease.
Collapse
Affiliation(s)
- Xiao-Wen Ding
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Megan Robinson
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Rongzi Li
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Hadeel Aldhowayan
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
4
|
Schönke M, Björnholm M, Chibalin AV, Zierath JR, Deshmukh AS. Proteomics Analysis of Skeletal Muscle from Leptin-Deficient ob/ob Mice Reveals Adaptive Remodeling of Metabolic Characteristics and Fiber Type Composition. Proteomics 2018; 18:e1700375. [PMID: 29350465 DOI: 10.1002/pmic.201700375] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 01/07/2018] [Indexed: 11/10/2022]
Abstract
Skeletal muscle insulin resistance, an early metabolic defect in the pathogenesis of type 2 diabetes (T2D), may be a cause or consequence of altered protein expression profiles. Proteomics technology offers enormous promise to investigate molecular mechanisms underlying pathologies, however, the analysis of skeletal muscle is challenging. Using state-of-the-art multienzyme digestion and filter-aided sample preparation (MED-FASP) and a mass spectrometry (MS)-based workflow, we performed a global proteomics analysis of skeletal muscle from leptin-deficient, obese, insulin resistant (ob/ob) and lean mice in mere two fractions in a short time (8 h per sample). We identified more than 6000 proteins with 118 proteins differentially regulated in obesity. This included protein kinases, phosphatases, and secreted and fiber type associated proteins. Enzymes involved in lipid metabolism in skeletal muscle from ob/ob mice were increased, providing evidence against reduced fatty acid oxidation in lipid-induced insulin resistance. Mitochondrial and peroxisomal proteins, as well as components of pyruvate and lactate metabolism, were increased. Finally, the skeletal muscle proteome from ob/ob mice displayed a shift toward the "slow fiber type." This detailed characterization of an obese rodent model of T2D demonstrates an efficient workflow for skeletal muscle proteomics, which may easily be adapted to other complex tissues.
Collapse
Affiliation(s)
- Milena Schönke
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Marie Björnholm
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.,Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Atul S Deshmukh
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany.,Novo Nordisk Foundation Center for Protein Research, Clinical Proteomics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Hesselink MKC, Schrauwen-Hinderling V, Schrauwen P. Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat Rev Endocrinol 2016; 12:633-645. [PMID: 27448057 DOI: 10.1038/nrendo.2016.104] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Low levels of physical activity and the presence of obesity are associated with mitochondrial dysfunction. In addition, mitochondrial dysfunction has been associated with the development of insulin resistance and type 2 diabetes mellitus (T2DM). Although the evidence for a causal relationship between mitochondrial function and insulin resistance is still weak, emerging evidence indicates that boosting mitochondrial function might be beneficial to patient health. Exercise training is probably the most recognized promoter of mitochondrial function and insulin sensitivity and hence is still regarded as the best strategy to prevent and treat T2DM. Animal data, however, have revealed several new insights into the regulation of mitochondrial metabolism, and novel targets for interventions to boost mitochondrial function have emerged. Importantly, many of these targets seem to be regulated by factors such as nutrition, ambient temperature and circadian rhythms, which provides a basis for nonpharmacological strategies to prevent or treat T2DM in humans. Here, we will review the current evidence that mitochondrial function can be targeted therapeutically to improve insulin sensitivity and to prevent T2DM, focusing mainly on human intervention studies.
Collapse
Affiliation(s)
- Matthijs K C Hesselink
- Department of Human Biology and Human Movement Sciences, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
- NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
| | - Vera Schrauwen-Hinderling
- Department of Human Biology and Human Movement Sciences, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
- NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
- Department of Radiology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, Netherlands
| | - Patrick Schrauwen
- Department of Human Biology and Human Movement Sciences, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
- NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
| |
Collapse
|
6
|
Habicht KL, Singh NS, Indig FE, Wainer IW, Moaddel R, Shimmo R. The development of mitochondrial membrane affinity chromatography columns for the study of mitochondrial transmembrane proteins. Anal Biochem 2015; 484:154-61. [PMID: 26049098 DOI: 10.1016/j.ab.2015.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 11/18/2022]
Abstract
Mitochondrial membrane fragments from U-87 MG (U87MG) and HEK-293 cells were successfully immobilized onto immobilized artificial membrane (IAM) chromatographic support and surface of activated open tubular (OT) silica capillary, resulting in mitochondrial membrane affinity chromatography (MMAC) columns. Translocator protein (TSPO), located in mitochondrial outer membrane as well as sulfonylurea and mitochondrial permeability transition pore (mPTP) receptors, localized to the inner membrane, were characterized. Frontal displacement experiments with multiple concentrations of dipyridamole (DIPY) and PK-11195 were run on MMAC (U87MG) column, and the binding affinities (Kd) determined were 1.08±0.49 and 0.0086±0.0006μM, respectively, consistent with previously reported values. Furthermore, binding affinities (Ki) for DIPY binding site were determined for TSPO ligands, PK-11195, mesoporphyrin IX, protoporphyrin IX, and rotenone. In addition, the relative ranking of these TSPO ligands based on single displacement studies using DIPY as marker on MMAC (U87MG) was consistent with the obtained Ki values. The immobilization of mitochondrial membrane fragments was also confirmed by confocal microscopy.
Collapse
Affiliation(s)
- K-L Habicht
- Department of Natural Sciences, Institute of Mathematics and Natural Sciences, Tallinn University, 10120 Tallinn, Estonia; Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - N S Singh
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - F E Indig
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - I W Wainer
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - R Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - R Shimmo
- Department of Natural Sciences, Institute of Mathematics and Natural Sciences, Tallinn University, 10120 Tallinn, Estonia.
| |
Collapse
|
7
|
Song J, Kang SM, Kim E, Kim CH, Song HT, Lee JE. Adiponectin receptor-mediated signaling ameliorates cerebral cell damage and regulates the neurogenesis of neural stem cells at high glucose concentrations: an in vivo and in vitro study. Cell Death Dis 2015; 6:e1844. [PMID: 26247729 PMCID: PMC4558511 DOI: 10.1038/cddis.2015.220] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 01/06/2023]
Abstract
In the central nervous system (CNS), hyperglycemia leads to neuronal damage and cognitive decline. Recent research has focused on revealing alterations in the brain in hyperglycemia and finding therapeutic solutions for alleviating the hyperglycemia-induced cognitive dysfunction. Adiponectin is a protein hormone with a major regulatory role in diabetes and obesity; however, its role in the CNS has not been studied yet. Although the presence of adiponectin receptors has been reported in the CNS, adiponectin receptor-mediated signaling in the CNS has not been investigated. In the present study, we investigated adiponectin receptor (AdipoR)-mediated signaling in vivo using a high-fat diet and in vitro using neural stem cells (NSCs). We showed that AdipoR1 protects cell damage and synaptic dysfunction in the mouse brain in hyperglycemia. At high glucose concentrations in vitro, AdipoR1 regulated the survival of NSCs through the p53/p21 pathway and the proliferation- and differentiation-related factors of NSCs via tailless (TLX). Hence, we suggest that further investigations are necessary to understand the cerebral AdipoR1-mediated signaling in hyperglycemic conditions, because the modulation of AdipoR1 might alleviate hyperglycemia-induced neuropathogenesis.
Collapse
Affiliation(s)
- J Song
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - S M Kang
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, South Korea
- BK21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - E Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - C-H Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - H-T Song
- Department of Diagnostic Radiology, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - J E Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, South Korea
- BK21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul 120-752, South Korea
| |
Collapse
|
8
|
Chaperoning to the metabolic party: The emerging therapeutic role of heat-shock proteins in obesity and type 2 diabetes. Mol Metab 2014; 3:781-93. [PMID: 25379403 PMCID: PMC4216407 DOI: 10.1016/j.molmet.2014.08.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/19/2014] [Accepted: 08/22/2014] [Indexed: 12/17/2022] Open
Abstract
Background From their initial, accidental discovery 50 years ago, the highly conserved Heat Shock Proteins (HSPs) continue to exhibit fundamental roles in the protection of cell integrity. Meanwhile, in the midst of an obesity epidemic, research demonstrates a key involvement of low grade inflammation, and mitochondrial dysfunction amongst other mechanisms, in the pathology of insulin resistance and type 2 diabetes mellitus (T2DM). In particular, tumor necrosis factor alpha (TNFα), endoplasmic reticulum (ER) and oxidative stress all appear to be associated with obesity and stimulate inflammatory kinases such as c jun amino terminal kinase (JNK), inhibitor of NF-κβ kinase (IKK) and protein kinase C (PKC) which in turn, inhibit insulin signaling. Mitochondrial dysfunction in skeletal muscle has also been proposed to be prominent in the pathogenesis of T2DM either by reducing the ability to oxidize fatty acids, leading to the accumulation of deleterious lipid species in peripheral tissues such as skeletal muscle and liver, or by altering the cellular redox state. Since HSPs act as molecular chaperones and demonstrate crucial protective functions in stressed cells, we and others have postulated that the manipulation of HSP expression in metabolically relevant tissues represents a therapeutic avenue for obesity-induced insulin resistance. Scope of Review This review summarizes the literature from both animal and human studies, that has examined how HSPs, particularly the inducible HSP, Heat Shock Protein 72 (Hsp72) alters glucose homeostasis and the possible approaches to modulating Hsp72 expression. A summation of the role of chemical chaperones in metabolic disorders is also included. Major Conclusions Targeted manipulation of Hsp72 or use of chemical chaperiones may have clinical utility in treating metabolic disorders such as insulin resistance and T2DM.
Collapse
|
9
|
Trevellin E, Scorzeto M, Olivieri M, Granzotto M, Valerio A, Tedesco L, Fabris R, Serra R, Quarta M, Reggiani C, Nisoli E, Vettor R. Exercise training induces mitochondrial biogenesis and glucose uptake in subcutaneous adipose tissue through eNOS-dependent mechanisms. Diabetes 2014; 63:2800-11. [PMID: 24622799 DOI: 10.2337/db13-1234] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Insulin resistance and obesity are associated with a reduction of mitochondrial content in various tissues of mammals. Moreover, a reduced nitric oxide (NO) bioavailability impairs several cellular functions, including mitochondrial biogenesis and insulin-stimulated glucose uptake, two important mechanisms of body adaptation in response to physical exercise. Although these mechanisms have been thoroughly investigated in skeletal muscle and heart, few studies have focused on the effects of exercise on mitochondria and glucose metabolism in adipose tissue. In this study, we compared the in vivo effects of chronic exercise in subcutaneous adipose tissue of wild-type (WT) and endothelial NO synthase (eNOS) knockout (eNOS(-/-)) mice after a swim training period. We then investigated the in vitro effects of NO on mouse 3T3-L1 and human subcutaneous adipose tissue-derived adipocytes after a chronic treatment with an NO donor: diethylenetriamine-NO (DETA-NO). We observed that swim training increases mitochondrial biogenesis, mitochondrial DNA content, and glucose uptake in subcutaneous adipose tissue of WT but not eNOS(-/-) mice. Furthermore, we observed that DETA-NO promotes mitochondrial biogenesis and elongation, glucose uptake, and GLUT4 translocation in cultured murine and human adipocytes. These results point to the crucial role of the eNOS-derived NO in the metabolic adaptation of subcutaneous adipose tissue to exercise training.
Collapse
Affiliation(s)
- Elisabetta Trevellin
- Internal Medicine 3, Endocrine-Metabolic Laboratory, Department of Medicine DIMED, University of Padua, Padua, Italy
| | - Michele Scorzeto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Massimiliano Olivieri
- Internal Medicine 3, Endocrine-Metabolic Laboratory, Department of Medicine DIMED, University of Padua, Padua, Italy
| | - Marnie Granzotto
- Internal Medicine 3, Endocrine-Metabolic Laboratory, Department of Medicine DIMED, University of Padua, Padua, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Laura Tedesco
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Roberto Fabris
- Internal Medicine 3, Endocrine-Metabolic Laboratory, Department of Medicine DIMED, University of Padua, Padua, Italy
| | - Roberto Serra
- Internal Medicine 3, Endocrine-Metabolic Laboratory, Department of Medicine DIMED, University of Padua, Padua, Italy
| | - Marco Quarta
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Roberto Vettor
- Internal Medicine 3, Endocrine-Metabolic Laboratory, Department of Medicine DIMED, University of Padua, Padua, Italy
| |
Collapse
|
10
|
Jia G, Aroor AR, Sowers JR. Estrogen and mitochondria function in cardiorenal metabolic syndrome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 127:229-49. [PMID: 25149220 DOI: 10.1016/b978-0-12-394625-6.00009-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The cardiorenal metabolic syndrome (CRS) consists of a constellation of cardiac, renal, and metabolic disorders including insulin resistance (IR), obesity, metabolic dyslipidemia, high-blood pressure, and evidence of early cardiac and renal disease. Mitochondria dysfunction often occurs in the CRS, and this dysfunction is promoted by excess reactive oxygen species, genetic factors, IR, aging, and altered mitochondrial biogenesis. Recently, it has been shown that there are important sex-related differences in mitochondria function and metabolic, cardiovascular, and renal components. Sex differences in the CRS have mainly been attributed to the estrogen's effects that are mainly mediated by estrogen receptor (ER) α, ERβ, and G-protein coupled receptor 30. In this review, we discuss the effects of estrogen on the mitochondrial function, insulin metabolic signaling, glucose transport, lipid metabolism, and inflammatory responses from liver, pancreatic β cells, adipocytes, skeletal muscle, and cardiovascular tissue.
Collapse
Affiliation(s)
- Guanghong Jia
- Division of Endocrinology, Diabetes, and Metabolism, Diabetes Cardiovascular Center, Columbia, Missouri, USA; Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, USA
| | - Annayya R Aroor
- Division of Endocrinology, Diabetes, and Metabolism, Diabetes Cardiovascular Center, Columbia, Missouri, USA; Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, USA
| | - James R Sowers
- Division of Endocrinology, Diabetes, and Metabolism, Diabetes Cardiovascular Center, Columbia, Missouri, USA; Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, USA; Department of Medical Pharmacology and Physiology, Columbia, Missouri, USA
| |
Collapse
|
11
|
Harasym AC, Thrush AB, Harper ME, Wright DC, Chan CB. Enhanced glucose homeostasis in BHE/cdb rats with mutated ATP synthase. Mitochondrion 2013; 13:320-9. [DOI: 10.1016/j.mito.2013.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 03/06/2013] [Accepted: 04/03/2013] [Indexed: 10/27/2022]
|
12
|
Redox homeostasis in pancreatic β cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:932838. [PMID: 23304259 PMCID: PMC3532876 DOI: 10.1155/2012/932838] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/30/2012] [Indexed: 12/20/2022]
Abstract
We reviewed mechanisms that determine reactive oxygen species (redox) homeostasis, redox information signaling and metabolic/regulatory function of autocrine insulin signaling in pancreatic β cells, and consequences of oxidative stress and dysregulation of redox/information signaling for their dysfunction. We emphasize the role of mitochondrion in β cell molecular physiology and pathology, including the antioxidant role of mitochondrial uncoupling protein UCP2. Since in pancreatic β cells pyruvate cannot be easily diverted towards lactate dehydrogenase for lactate formation, the respiration and oxidative phosphorylation intensity are governed by the availability of glucose, leading to a certain ATP/ADP ratio, whereas in other cell types, cell demand dictates respiration/metabolism rates. Moreover, we examine the possibility that type 2 diabetes mellitus might be considered as an inevitable result of progressive self-accelerating oxidative stress and concomitantly dysregulated information signaling in peripheral tissues as well as in pancreatic β cells. It is because the redox signaling is inherent to the insulin receptor signaling mechanism and its impairment leads to the oxidative and nitrosative stress. Also emerging concepts, admiting participation of redox signaling even in glucose sensing and insulin release in pancreatic β cells, fit in this view. For example, NADPH has been firmly established to be a modulator of glucose-stimulated insulin release.
Collapse
|
13
|
Chung JH, Manganiello V, Dyck JRB. Resveratrol as a calorie restriction mimetic: therapeutic implications. Trends Cell Biol 2012; 22:546-54. [PMID: 22885100 PMCID: PMC3462230 DOI: 10.1016/j.tcb.2012.07.004] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/28/2012] [Accepted: 07/06/2012] [Indexed: 11/26/2022]
Abstract
It is widely believed that calorie restriction (CR) can extend the lifespan of model organisms and protect against aging-related diseases. A potential CR mimetic is resveratrol, which may have beneficial effects against numerous diseases such as type 2 diabetes, cardiovascular diseases, and cancer in tissue culture and animal models. However, resveratrol in its current form is not ideal as therapy, because even at very high doses it has modest efficacy and many downstream effects. Identifying the cellular targets responsible for the effects of resveratrol and developing target-specific therapies will be helpful in increasing the efficacy of this drug without increasing its potential adverse effects. A recent discovery suggests that the metabolic effects of resveratrol may be mediated by inhibiting cAMP phosphodiesterases (PDEs), particularly PDE4. Here, we review the current literature on the metabolic and cardiovascular effects of resveratrol and attempt to shed light on the controversies surrounding its action.
Collapse
Affiliation(s)
- Jay H Chung
- Laboratory of Obesity and Aging Research, Genetics and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
14
|
Abstract
Mitochondria have a crucial role in cellular bioenergetics and apoptosis, and thus are important to support cell function and in determination of cell death pathways. Inherited mitochondrial diseases can be caused by mutations of mitochondrial DNA or of nuclear genes that encode mitochondrial proteins. Although many mitochondrial disorders are multisystemic, some are tissue specific--eg, optic neuropathy, sensorineural deafness, and type 2 diabetes mellitus. In the past few years, several disorders have been associated with mutations of nuclear genes responsible for mitochondrial DNA maintenance and function, and the potential contribution of mitochondrial abnormalities to progressive neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease has been recognised. The process of mitochondrial fission-fusion has become a focus of attention in human disease. Importantly, the mitochondrion is now a target for therapeutic interventions that encompass small molecules, transcriptional regulation, and genetic manipulation, offering opportunities to treat a diverse range of diseases.
Collapse
Affiliation(s)
- Anthony H V Schapira
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London, UK.
| |
Collapse
|
15
|
Complete failure of insulin-transmitted signaling, but not obesity-induced insulin resistance, impairs respiratory chain function in muscle. J Mol Med (Berl) 2012; 90:1145-60. [DOI: 10.1007/s00109-012-0887-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 02/09/2012] [Accepted: 02/21/2012] [Indexed: 01/22/2023]
|
16
|
Vantyghem MC, Dobbelaere D, Mention K, Wemeau JL, Saudubray JM, Douillard C. Endocrine manifestations related to inherited metabolic diseases in adults. Orphanet J Rare Dis 2012; 7:11. [PMID: 22284844 PMCID: PMC3349544 DOI: 10.1186/1750-1172-7-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 01/28/2012] [Indexed: 02/07/2023] Open
Abstract
Most inborn errors of metabolism (IEM) are recessive, genetically transmitted diseases and are classified into 3 main groups according to their mechanisms: cellular intoxication, energy deficiency, and defects of complex molecules. They can be associated with endocrine manifestations, which may be complications from a previously diagnosed IEM of childhood onset. More rarely, endocrinopathies can signal an IEM in adulthood, which should be suspected when an endocrine disorder is associated with multisystemic involvement (neurological, muscular, hepatic features, etc.). IEM can affect all glands, but diabetes mellitus, thyroid dysfunction and hypogonadism are the most frequent disorders. A single IEM can present with multiple endocrine dysfunctions, especially those involving energy deficiency (respiratory chain defects), and metal (hemochromatosis) and storage disorders (cystinosis). Non-autoimmune diabetes mellitus, thyroid dysfunction and/or goiter and sometimes hypoparathyroidism should steer the diagnosis towards a respiratory chain defect. Hypogonadotropic hypogonadism is frequent in haemochromatosis (often associated with diabetes), whereas primary hypogonadism is reported in Alström disease and cystinosis (both associated with diabetes, the latter also with thyroid dysfunction) and galactosemia. Hypogonadism is also frequent in X-linked adrenoleukodystrophy (with adrenal failure), congenital disorders of glycosylation, and Fabry and glycogen storage diseases (along with thyroid dysfunction in the first 3 and diabetes in the last). This is a new and growing field and is not yet very well recognized in adulthood despite its consequences on growth, bone metabolism and fertility. For this reason, physicians managing adult patients should be aware of these diagnoses.
Collapse
Affiliation(s)
- Marie-Christine Vantyghem
- Service d'Endocrinologie et Maladies Métaboliques, 1, Rue Polonovski, Hôpital C Huriez, Centre Hospitalier Régional et Universitaire de Lille, 59037 Lille cedex, France.
| | | | | | | | | | | |
Collapse
|
17
|
Cao M, Jiang J, Du Y, Yan P. Mitochondria-targeted antioxidant attenuates high glucose-induced P38 MAPK pathway activation in human neuroblastoma cells. Mol Med Rep 2012; 5:929-34. [PMID: 22245807 PMCID: PMC3493100 DOI: 10.3892/mmr.2012.746] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 12/27/2011] [Indexed: 12/15/2022] Open
Abstract
Excessive mitochondrial free radical production and the related mitogen-activated protein kinase P38 (P38 MAPK) activation are key regulators in the pathogenesis of high glucose-induced cell stress. Increasing evidence has emphasized the impact of hyperglycemia on neurons and the consequent neuronal stresses eventually resulting in neurodegeneration and neuronal death. In this study, we employed a novel mitochondria-targeted antioxidant, SS31 peptide, on high glucose-insulted neuroblastoma cells (SH-SY5Y). Our results showed that high glucose promoted significantly increased P38 phosphorylation which was efficiently suppressed by the application of the SS31 peptide under the experimental conditions. The inhibition of high glucose-induced P38 activation by the SS31 peptide was associated with the impact of the SS31 peptide on attenuating high glucose-induced mitochondrial ROS (reactive oxygen species) elevation and mitochondrial membrane potential collapse. The addition of SS31 peptide significantly attenuated high-gluose-induced apoptosis. Therefore, our study suggests that elimination of high glucose-induced mitochondrial oxidative stress helps to rescue SH-SY5Y cells from high glucose-related P38 MAPK pathway disturbances, and the SS31 peptide has the potential to serve as a new treatment strategy against hyperglycemia-instigated neuronal perturbations.
Collapse
Affiliation(s)
- Mingfeng Cao
- Department of Endocrinology Provincial Hospital Affiliated to Shandong University, Jinan 250021, PR China
| | | | | | | |
Collapse
|
18
|
Szendroedi J, Phielix E, Roden M. The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol 2011; 8:92-103. [PMID: 21912398 DOI: 10.1038/nrendo.2011.138] [Citation(s) in RCA: 438] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Type 2 diabetes mellitus (T2DM) has been related to alterations of oxidative metabolism in insulin-responsive tissues. Overt T2DM can present with acquired or inherited reductions of mitochondrial oxidative phosphorylation capacity, submaximal ADP-stimulated oxidative phosphorylation and plasticity of mitochondria and/or lower mitochondrial content in skeletal muscle cells and potentially also in hepatocytes. Acquired insulin resistance is associated with reduced insulin-stimulated mitochondrial activity as the result of blunted mitochondrial plasticity. Hereditary insulin resistance is frequently associated with reduced mitochondrial activity at rest, probably due to diminished mitochondrial content. Lifestyle and pharmacological interventions can enhance the capacity for oxidative phosphorylation and mitochondrial content and improve insulin resistance in some (pre)diabetic cases. Various mitochondrial features can be abnormal but are not necessarily responsible for all forms of insulin resistance. Nevertheless, mitochondrial abnormalities might accelerate progression of insulin resistance and subsequent organ dysfunction via increased production of reactive oxygen species. This Review discusses the association between mitochondrial function and insulin sensitivity in various tissues, such as skeletal muscle, liver and heart, with a main focus on studies in humans, and addresses the effects of therapeutic strategies that affect mitochondrial function and insulin sensitivity.
Collapse
Affiliation(s)
- Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
19
|
Zhang Y, Jiang L, Hu W, Zheng Q, Xiang W. Mitochondrial dysfunction during in vitro hepatocyte steatosis is reversed by omega-3 fatty acid-induced up-regulation of mitofusin 2. Metabolism 2011; 60:767-75. [PMID: 20817187 DOI: 10.1016/j.metabol.2010.07.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/01/2010] [Accepted: 07/14/2010] [Indexed: 12/17/2022]
Abstract
We examined the effects and mechanisms of omega-3 polyunsaturated fatty acid (PUFA) administration on mitochondrial morphology and function in an in vitro steatotic hepatocyte model created using HepG2 cells. Reverse transcriptase polymerase chain reaction and Western blot analyses were performed to determine the expression levels of mitofusin 2 (Mfn2), and immunofluorescent MitoTracker Mitochondrion-Selective Probes were used to detect changes in mitochondrial morphology. Adenosine triphosphate (ATP) synthesis and reactive oxygen species (ROS) production were measured to assess mitochondrial function. Mitofusin 2 expression was significantly suppressed (P < .05), ATP levels were decreased (P < .05), ROS production was increased (P < .05), and the normal tubular network of mitochondria was fragmented into short rods or spheres. Model cells were incubated with eicosapentaenoic acid or docosahexaenoic acid at a final concentration of 50 μmol/L for 1 hour. Both eicosapentaenoic acid and docosahexaenoic acid increased the expression of Mfn2 (P < .01) and caused an increase in the length of mitochondrial tubules. The omega-3 PUFAs also increased the levels of ATP (P < .05) and decreased the ROS production (P < .05). However, these changes were not seen in Mfn2-depleted steatotic HepG2 cells, created by RNA interference before incubation with the omega-3 PUFAs. This study demonstrated that, in steatotic hepatocytes, omega-3 PUFAs may change mitochondrial morphology and have beneficial effects on recovery of mitochondrial function by increasing the expression of Mfn2.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Azo Compounds
- Blotting, Western
- Cells, Cultured
- Coloring Agents
- Fatty Acids, Omega-3/therapeutic use
- Fatty Liver/drug therapy
- Fatty Liver/pathology
- Fluorometry
- GTP Phosphohydrolases
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Humans
- Image Processing, Computer-Assisted
- Membrane Proteins/biosynthesis
- Microscopy, Fluorescence
- Mitochondria, Liver/drug effects
- Mitochondria, Liver/pathology
- Mitochondria, Liver/ultrastructure
- Mitochondrial Proteins/biosynthesis
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Small Interfering/pharmacology
- Reactive Oxygen Species/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Yong Zhang
- Department of General Surgery, Union Hospital, Huazhong University of Science and Technology, China, 430022
| | | | | | | | | |
Collapse
|
20
|
Makino A, Suarez J, Gawlowski T, Han W, Wang H, Scott BT, Dillmann WH. Regulation of mitochondrial morphology and function by O-GlcNAcylation in neonatal cardiac myocytes. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1296-302. [PMID: 21346246 DOI: 10.1152/ajpregu.00437.2010] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria are crucial organelles in cell life serving as a source of energy production and as regulators of Ca(2+) homeostasis, apoptosis, and development. Mitochondria frequently change their shape by fusion and fission, and recent research on these morphological dynamics of mitochondria has highlighted their role in normal cell physiology and disease. In this study, we investigated the effect of high glucose on mitochondrial dynamics in neonatal cardiac myocytes (NCMs). High-glucose treatment of NCMs significantly decreased the level of optical atrophy 1 (OPA1) (mitochondrial fusion-related protein) protein expression. NCMs exhibit two different kinds of mitochondrial structure: round shape around the nuclear area and elongated tubular structures in the pseudopod area. High-glucose-treated NCMs exhibited augmented mitochondrial fragmentation in the pseudopod area. This effect was significantly decreased by OPA1 overexpression. High-glucose exposure also led to increased O-GlcNAcylation of OPA1 in NCMs. GlcNAcase (GCA) overexpression in high-glucose-treated NCMs decreased OPA1 protein O-GlcNAcylation and significantly increased mitochondrial elongation. In addition to the morphological change caused by high glucose, we observed that high glucose decreased mitochondrial membrane potential and complex IV activity and that OPA1 overexpression increased both levels to the control level. These data suggest that decreased OPA1 protein level and increased O-GlcNAcylation of OPA1 protein by high glucose lead to mitochondrial dysfunction by increasing mitochondrial fragmentation, decreasing mitochondrial membrane potential, and attenuating the activity of mitochondrial complex IV, and that overexpression of OPA1 and GCA in cardiac myocytes may help improve the cardiac dysfunction in diabetes.
Collapse
Affiliation(s)
- Ayako Makino
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Exercise, together with a low-energy diet, is the first-line treatment for type 2 diabetes type 2 diabetes . Exercise improves insulin sensitivity insulin sensitivity by increasing the number or function of muscle mitochondria mitochondria and the capacity for aerobic metabolism, all of which are low in many insulin-resistant subjects. Cannabinoid 1-receptor antagonists and β-adrenoceptor agonists improve insulin sensitivity in humans and promote fat oxidation in rodents independently of reduced food intake. Current drugs for the treatment of diabetes are not, however, noted for their ability to increase fat oxidation, although the thiazolidinediones increase the capacity for fat oxidation in skeletal muscle, whilst paradoxically increasing weight gain.There are a number of targets for anti-diabetic drugs that may improve insulin sensitivity insulin sensitivity by increasing the capacity for fat oxidation. Their mechanisms of action are linked, notably through AMP-activated protein kinase, adiponectin, and the sympathetic nervous system. If ligands for these targets have obvious acute thermogenic activity, it is often because they increase sympathetic activity. This promotes fuel mobilisation, as well as fuel oxidation. When thermogenesis thermogenesis is not obvious, researchers often argue that it has occurred by using the inappropriate device of treating animals for days or weeks until there is weight (mainly fat) loss and then expressing energy expenditure energy expenditure relative to body weight. In reality, thermogenesis may have occurred, but it is too small to detect, and this device distracts us from really appreciating why insulin sensitivity has improved. This is that by increasing fatty acid oxidation fatty acid oxidation more than fatty acid supply, drugs lower the concentrations of fatty acid metabolites that cause insulin resistance. Insulin sensitivity improves long before any anti-obesity effect can be detected.
Collapse
Affiliation(s)
- Jonathan R S Arch
- Clore Laboratory, University of Buckingham, Buckingham, MK18 1EG, UK
| |
Collapse
|
22
|
Ceretta LB, Réus GZ, Rezin GT, Scaini G, Streck EL, Quevedo J. Brain energy metabolism parameters in an animal model of diabetes. Metab Brain Dis 2010; 25:391-6. [PMID: 21088877 DOI: 10.1007/s11011-010-9220-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 10/27/2010] [Indexed: 12/30/2022]
Abstract
A growing body of evidence has indicated that altered mitochondrial function may be involved in mechanism for the development of diabetic complications. Thus, we investigated whether animal model of diabetes induced by alloxan alters energy metabolism parameters. Wistar rats received one single injection of alloxan (250 mg/kg) and after 15 days we evaluated mitochondrial respiratory chain complexes I, II, II-III and IV, creatine kinase and citrate synthase activities in prefrontal cortex, hippocampus and striatum. We observed that animal model of diabetes induced by alloxan increased complexes I and IV activities in hippocampus, complexes II and II-III activities in prefrontal cortex and striatum and complex IV in prefrontal cortex; however decreased complex IV activity in striatum. Moreover, diabetes rats decreased creatine kinase activity in striatum and increased citrate synthase activity in hippocampus. In conclusion, this study indicates that the alteration in mitochondrial function is probably involved in the pathophysiology of diabetes.
Collapse
Affiliation(s)
- Luciane B Ceretta
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000, Criciúma, SC, Brazil
| | | | | | | | | | | |
Collapse
|
23
|
Segrè AV, DIAGRAM Consortium, MAGIC investigators, Groop L, Mootha VK, Daly MJ, Altshuler D. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet 2010; 6. [PMID: 20714348 PMCID: PMC2920848 DOI: 10.1371/journal.pgen.1001058] [Citation(s) in RCA: 367] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 07/08/2010] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial dysfunction has been observed in skeletal muscle of people with diabetes and insulin-resistant individuals. Furthermore, inherited mutations in mitochondrial DNA can cause a rare form of diabetes. However, it is unclear whether mitochondrial dysfunction is a primary cause of the common form of diabetes. To date, common genetic variants robustly associated with type 2 diabetes (T2D) are not known to affect mitochondrial function. One possibility is that multiple mitochondrial genes contain modest genetic effects that collectively influence T2D risk. To test this hypothesis we developed a method named Meta-Analysis Gene-set Enrichment of variaNT Associations (MAGENTA; http://www.broadinstitute.org/mpg/magenta). MAGENTA, in analogy to Gene Set Enrichment Analysis, tests whether sets of functionally related genes are enriched for associations with a polygenic disease or trait. MAGENTA was specifically designed to exploit the statistical power of large genome-wide association (GWA) study meta-analyses whose individual genotypes are not available. This is achieved by combining variant association p-values into gene scores and then correcting for confounders, such as gene size, variant number, and linkage disequilibrium properties. Using simulations, we determined the range of parameters for which MAGENTA can detect associations likely missed by single-marker analysis. We verified MAGENTA's performance on empirical data by identifying known relevant pathways in lipid and lipoprotein GWA meta-analyses. We then tested our mitochondrial hypothesis by applying MAGENTA to three gene sets: nuclear regulators of mitochondrial genes, oxidative phosphorylation genes, and ∼1,000 nuclear-encoded mitochondrial genes. The analysis was performed using the most recent T2D GWA meta-analysis of 47,117 people and meta-analyses of seven diabetes-related glycemic traits (up to 46,186 non-diabetic individuals). This well-powered analysis found no significant enrichment of associations to T2D or any of the glycemic traits in any of the gene sets tested. These results suggest that common variants affecting nuclear-encoded mitochondrial genes have at most a small genetic contribution to T2D susceptibility. Mitochondria play a crucial role in metabolic homeostasis, and alteration of mitochondrial function is a hallmark of diabetes. While mitochondrial activity is reduced in people with diabetes, it is unclear whether mitochondrial dysfunction is a cause or effect of type 2 diabetes. Genome-wide association studies for type 2 diabetes have explained ≈10% of the heritability of the disease, but none of the loci are known to affect mitochondrial activity. It is possible though that a mitochondrial contribution is hidden in the remaining 90%. Hence, we tested the hypothesis that multiple mitochondria-related genes encoded in the nucleus, each having a weak effect (hard to detect individually), can collectively influence type 2 diabetes. To address this, we developed a computational method (MAGENTA) that allowed us to adequately analyze large collective datasets of human genetic variation obtained from collaborative studies of type 2 diabetes and related glycemic traits. Despite the increased sensitivity of MAGENTA compared to single-DNA variant analysis, we found no support for a causal relationship between mitochondrial dysfunction and type 2 diabetes. These results may help steer future efforts in understanding the pathogenesis of the disease. MAGENTA is broadly applicable to testing associations between other biological pathways and common diseases or traits.
Collapse
Affiliation(s)
- Ayellet V. Segrè
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail: (DA); (AVS)
| | | | | | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology Research Unit, University Hospital Malmö, Lund University, Malmö, Sweden
| | - Vamsi K. Mootha
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark J. Daly
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Altshuler
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (DA); (AVS)
| |
Collapse
|
24
|
Abstract
Each cell in the body possesses hundreds to thousands of mitochondria, known as 'powerhouses' for the energy they provide. But gene mutations can cause these important organelles to fail, often resulting in devastating disease. Erica Westly reports on the patient advocates--and politicians--pushing for new treatments for mitochondrial disease.
Collapse
|