1
|
Cantarero L, Roldán M, Rodríguez-Sanz M, Mathison AJ, Díaz-Osorio Y, Pijuan J, Frías M, Urrutia R, Hoenicka J, Palau F. Abnormal redox balance at membrane contact sites causes axonopathy in GDAP1-related Charcot-Marie-Tooth disease. RESEARCH SQUARE 2024:rs.3.rs-5682984. [PMID: 39801517 PMCID: PMC11722552 DOI: 10.21203/rs.3.rs-5682984/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Pathogenic variants of GDAP1 cause Charcot-Marie-Tooth disease (CMT), an inherited neuropathy characterized by axonal degeneration. GDAP1, an atypical glutathione S-transferase, localizes to the outer mitochondrial membrane (OMM), regulating this organelle's dynamics, transport, and membrane contact sites (MCSs). It has been proposed that GDAP1 functions as a cellular redox sensor. However, its precise contribution to redox homeostasis remains poorly understood, as does the possible redox regulation at mitochondrial MCSs. Given the relationship between the peroxisomal redox state and overall cellular redox balance, we investigated the role of GDAP1 in peroxisomal function and mitochondrial MCSs maintenance by using high-resolution microscopy, live cell imaging with pH-sensitive fluorescent probes, and transcriptomic and lipidomic analyses in the Gdap1 -/- mice and patient-derived fibroblasts. We demonstrate that GDAP1 deficiency disrupts mitochondria-peroxisome MCSs and leads to peroxisomal abnormalities, which are reversible upon pharmacological activation of PPARγ or glutathione supplementation. These results identify GDAP1 as a new tether of mitochondria-peroxisome MCSs that maintain peroxisomal number and integrity. The supply of glutathione (GSH-MEE) or GDAP1 overexpression suffices to rescue these MCSs. Furthermore, GDAP1 may regulate the redox state within the microdomain of mitochondrial MCSs, as suggested by decreased pH at mitochondria-lysosome contacts in patient-derived fibroblasts, highlighting the relationship between GDAP1 and redox-sensitive targets. Finally, in vivo analysis of sciatic nerve tissue in Gdap1 -/- mice revealed significant axonal structural abnormalities, including nodes of Ranvier disruption and defects in the distribution and morphology of mitochondria, lysosomes, and peroxisomes, emphasizing the importance of GDAP1 in sustaining axon integrity in the peripheral nervous system. Taken together, this study positions GDAP1 as a multifunctional protein that mediates mitochondrial interaction with cellular organelles of diverse functions, contributes to redox state sensing, and helps maintain axonal homeostasis. In addition, we identify PPAR as a novel therapeutic target, based on knowledge of the underlying pathogenetic mechanisms.
Collapse
Affiliation(s)
- Lara Cantarero
- Laboratory of Neurogenetics and Molecular Medicine, Center for Genomic Sciences in Medicine, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Mònica Roldán
- Confocal Microscopy Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - María Rodríguez-Sanz
- Laboratory of Neurogenetics and Molecular Medicine, Center for Genomic Sciences in Medicine, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Angela J. Mathison
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Surgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Yaiza Díaz-Osorio
- Laboratory of Neurogenetics and Molecular Medicine, Center for Genomic Sciences in Medicine, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Jordi Pijuan
- Laboratory of Neurogenetics and Molecular Medicine, Center for Genomic Sciences in Medicine, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Marcos Frías
- Confocal Microscopy Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - Raul Urrutia
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Surgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Janet Hoenicka
- Laboratory of Neurogenetics and Molecular Medicine, Center for Genomic Sciences in Medicine, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Francesc Palau
- Laboratory of Neurogenetics and Molecular Medicine, Center for Genomic Sciences in Medicine, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
- Únicas SJD Center, Hospital Sant Joan de Déu, Barcelona, Spain
- Division of Pediatrics, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Karuntu JS, Almushattat H, Nguyen XTA, Plomp AS, Wanders RJA, Hoyng CB, van Schooneveld MJ, Schalij-Delfos NE, Brands MM, Leroy BP, van Karnebeek CDM, Bergen AA, van Genderen MM, Boon CJF. Syndromic retinitis pigmentosa. Prog Retin Eye Res 2024; 107:101324. [PMID: 39733931 DOI: 10.1016/j.preteyeres.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Retinitis pigmentosa (RP) is a progressive inherited retinal dystrophy, characterized by the degeneration of photoreceptors, presenting as a rod-cone dystrophy. Approximately 20-30% of patients with RP also exhibit extra-ocular manifestations in the context of a syndrome. This manuscript discusses the broad spectrum of syndromes associated with RP, pathogenic mechanisms, clinical manifestations, differential diagnoses, clinical management approaches, and future perspectives. Given the diverse clinical and genetic landscape of syndromic RP, the diagnosis may be challenging. However, an accurate and timely diagnosis is essential for optimal clinical management, prognostication, and potential treatment. Broadly, the syndromes associated with RP can be categorized into ciliopathies, inherited metabolic disorders, mitochondrial disorders, and miscellaneous syndromes. Among the ciliopathies associated with RP, Usher syndrome and Bardet-Biedl syndrome are the most well-known. Less common ciliopathies include Cohen syndrome, Joubert syndrome, cranioectodermal dysplasia, asphyxiating thoracic dystrophy, Mainzer-Saldino syndrome, and RHYNS syndrome. Several inherited metabolic disorders can present with RP, including Zellweger spectrum disorders, adult Refsum disease, α-methylacyl-CoA racemase deficiency, certain mucopolysaccharidoses, ataxia with vitamin E deficiency, abetalipoproteinemia, several neuronal ceroid lipofuscinoses, mevalonic aciduria, PKAN/HARP syndrome, PHARC syndrome, and methylmalonic acidaemia with homocystinuria type cobalamin (cbl) C disease. Due to the mitochondria's essential role in supplying continuous energy to the retina, disruption of mitochondrial function can lead to RP, as seen in Kearns-Sayre syndrome, NARP syndrome, primary coenzyme Q10 deficiency, SSBP1-associated disease, and long chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Lastly, Cockayne syndrome and PERCHING syndrome can present with RP, but they do not fit the abovementioned hierarchy and are thus categorized as miscellaneous. Several first-in-human clinical trials are underway or in preparation for some of these syndromic forms of RP.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hind Almushattat
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam Reproduction & Development, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Ronald J A Wanders
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam, the Netherlands; Department of Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mary J van Schooneveld
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands; Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Marion M Brands
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Bart P Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Division of Ophthalmology and Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Clara D M van Karnebeek
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Arthur A Bergen
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands; Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Department of Human Genetics, Section Ophthalmogenetics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Maria M van Genderen
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands; Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Engelen M. Peroxisomal leukodystrophy. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:139-145. [PMID: 39322376 DOI: 10.1016/b978-0-323-99209-1.00021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Peroxisomal disorders can be classified as single-enzyme deficiencies or peroxisomal biogenesis disorders (characterized by multiple peroxisomal enzyme deficiencies or complete absence of peroxisomes). Most peroxisomal disorders give rise to complex multisystem disorders. Peroxisomal disorders associated with leukodystrophy are discussed in more detail, specifically X-linked adrenoleukodystrophy, Zellweger spectrum disorders, D-bifunctional protein deficiency, Acyl-CoA oxidase 1 deficiency, and Alpha-Methylacyl-CoA Racemase (AMACR) deficiency.
Collapse
Affiliation(s)
- Marc Engelen
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Helman G, Orthmann-Murphy JL, Vanderver A. Approaches to diagnosis for individuals with a suspected inherited white matter disorder. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:21-35. [PMID: 39322380 DOI: 10.1016/b978-0-323-99209-1.00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Leukodystrophies are heritable disorders with white matter abnormalities observed on central nervous system magnetic resonance imaging. Pediatric leukodystrophies have long been known for their classically high, "unsolved" rate. Indeed, these disorders provide a diagnostic dilemma for many clinicians as over 100 genetic disorders alone may present with white matter abnormalities, with this figure not taking into account the substantial number of infectious agents, toxicities, and acquired disorders that may affect the white matter of the brain. Achieving a diagnosis may be the single most important step in the clinical course of a leukodystrophy-affected individual, with important implications for care and quality of life. For certain disorders, prompt recognition can direct therapeutic intervention with significant implications and requires urgent recognition. In this review, we cover newborn screening efforts, standard-of-care testing methodologies, and next generation sequencing approaches that continue to change the landscape of leukodystrophy diagnosis. Early studies have shown that next generation sequencing approaches, particularly exome and now genome sequencing have proven to be powerful in helping resolve many cases that were refractory to a single gene or linkage analysis approach. In addition, other methods are required for cases that remain persistently unsolved after next generation sequencing methods have been used. In the past more than half of affected individuals never achieved an etiologic diagnosis, and when they did, the reported times to diagnosis were >5 years although molecular testing has allowed this to be reduced to closer to 16 months. For affected families, next generation sequencing technologies have finally provided a way to fill gaps in diagnosis.
Collapse
Affiliation(s)
- Guy Helman
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jennifer L Orthmann-Murphy
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Adeline Vanderver
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| |
Collapse
|
5
|
Waterham HR, Koster J, Ebberink MS, Ješina P, Zeman J, Nosková L, Kmoch S, Devic P, Cheillan D, Wanders RJA, Ferdinandusse S. Autosomal dominant Zellweger spectrum disorder caused by de novo variants in PEX14 gene. Genet Med 2023; 25:100944. [PMID: 37493040 DOI: 10.1016/j.gim.2023.100944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
PURPOSE Zellweger spectrum disorders (ZSDs) are known as autosomal recessive disorders caused by defective peroxisome biogenesis due to bi-allelic pathogenic variants in any of at least 13 different PEX genes. Here, we report 2 unrelated patients who present with an autosomal dominant ZSD. METHODS We performed biochemical and genetic studies in blood and skin fibroblasts of the patients and demonstrated the pathogenicity of the identified PEX14 variants by functional cell studies. RESULTS We identified 2 different single heterozygous de novo variants in the PEX14 genes of 2 patients diagnosed with ZSD. Both variants cause messenger RNA mis-splicing, leading to stable expression of similar C-terminally truncated PEX14 proteins. Functional studies indicated that the truncated PEX14 proteins lost their function in peroxisomal matrix protein import and cause increased degradation of peroxisomes, ie, pexophagy, thus exerting a dominant-negative effect on peroxisome functioning. Inhibition of pexophagy by different autophagy inhibitors or genetic knockdown of the peroxisomal autophagy receptor NBR1 resulted in restoration of peroxisomal functions in the patients' fibroblasts. CONCLUSION Our finding of an autosomal dominant ZSD expands the genetic repertoire of ZSDs. Our study underscores that single heterozygous variants should not be ignored as possible genetic cause of diseases with an established autosomal recessive mode of inheritance.
Collapse
Affiliation(s)
- Hans R Waterham
- Amsterdam UMC - AMC, Department of Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands; Amsterdam Reproduction & Development, Amsterdam, The Netherlands; United for Metabolic Diseases, The Netherlands.
| | - Janet Koster
- Amsterdam UMC - AMC, Department of Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
| | - Merel S Ebberink
- Amsterdam UMC - AMC, Department of Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
| | - Pavel Ješina
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General Faculty Hospital, Prague 2, Czech Republic
| | - Jiri Zeman
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General Faculty Hospital, Prague 2, Czech Republic
| | - Lenka Nosková
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General Faculty Hospital, Prague 2, Czech Republic
| | - Stanislav Kmoch
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General Faculty Hospital, Prague 2, Czech Republic
| | - Perrine Devic
- Centre Hospitalier Universitaire de Lyon, CHU Lyon·U 301, Hopital Neurologique, Bron, France
| | - David Cheillan
- Service Biochimie et Biologie Moléculaire Grand Est, UM Pathologies Métaboliques, Erythrocytaires et Dépistage Périnatal, Centre de Biologie et de Pathologie Est, Groupement Hospitalier Est - Hospices Civils de Lyon, Bron Cedex, France
| | - Ronald J A Wanders
- Amsterdam UMC - AMC, Department of Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands; Amsterdam Reproduction & Development, Amsterdam, The Netherlands; United for Metabolic Diseases, The Netherlands
| | - Sacha Ferdinandusse
- Amsterdam UMC - AMC, Department of Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Mohan S, Mayers M, Weaver M, Baudet H, De Biase I, Goldstein J, Mao R, McGlaughon J, Moser A, Pujol A, Suchy S, Yuzyuk T, Braverman NE. Evaluating the strength of evidence for genes implicated in peroxisomal disorders using the ClinGen clinical validity framework and providing updates to the peroxisomal disease nomenclature. Mol Genet Metab 2023; 139:107604. [PMID: 37236006 PMCID: PMC10484331 DOI: 10.1016/j.ymgme.2023.107604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/09/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023]
Abstract
Peroxisomal disorders are heterogeneous in nature, with phenotypic overlap that is indistinguishable without molecular testing. Newborn screening and gene sequencing for a panel of genes implicated in peroxisomal diseases are critical tools for the early and accurate detection of these disorders. It is therefore essential to evaluate the clinical validity of the genes included in sequencing panels for peroxisomal disorders. The Peroxisomal Gene Curation Expert Panel (GCEP) assessed genes frequently included on clinical peroxisomal testing panels using the Clinical Genome Resource (ClinGen) gene-disease validity curation framework and classified gene-disease relationships as Definitive, Strong, Moderate, Limited, Disputed, Refuted, or No Known Disease Relationship. Subsequent to gene curation, the GCEP made recommendations to update the disease nomenclature and ontology in the Monarch Disease Ontology (Mondo) database. Thirty-six genes were assessed for the strength of evidence supporting their role in peroxisomal disease, leading to 36 gene-disease relationships, after two genes were removed for their lack of a role in peroxisomal disease and two genes were curated for two different disease entities each. Of these, 23 were classified as Definitive (64%), one as Strong (3%), eight as Moderate (23%), two as Limited (5%), and two as No known disease relationship (5%). No contradictory evidence was found to classify any relationships as Disputed or Refuted. The gene-disease relationship curations are publicly available on the ClinGen website (https://clinicalgenome.org/affiliation/40049/). The changes to peroxisomal disease nomenclature are displayed on the Mondo website (http://purl.obolibrary.org/obo/MONDO_0019053). The Peroxisomal GCEP-curated gene-disease relationships will inform clinical and laboratory diagnostics and enhance molecular testing and reporting. As new data will emerge, the gene-disease classifications asserted by the Peroxisomal GCEP will be re-evaluated periodically.
Collapse
Affiliation(s)
- Shruthi Mohan
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - Megan Mayers
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - Meredith Weaver
- American College of Medical Genetics and Genomics, Bethesda, MD, USA
| | - Heather Baudet
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | | | - Jennifer Goldstein
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - Rong Mao
- ARUP Laboratories, Salt Lake City, UT, USA
| | | | - Ann Moser
- Kennedy Krieger Institute, Baltimore, MD, USA
| | - Aurora Pujol
- Bellvitge Biomedical Research Institute (IDIBELL Instituto de Investigación Biomédica de Bellvitge), Barcelona, Spain
| | | | | | - Nancy E Braverman
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
7
|
Liang JS, Hung KL, Lin LJ, Ong WP, Keng WT, Lu JF. Novel PEX1 mutations in fibroblasts from children with Zellweger spectrum disorders exhibit temperature sensitive characteristics. Epilepsy Behav 2023; 145:109266. [PMID: 37385119 DOI: 10.1016/j.yebeh.2023.109266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 07/01/2023]
Abstract
Zellweger spectrum disorders (ZSD) are rare autosomal recessive disorders caused by defects in peroxisome biogenesis factor (PEX; peroxin) genes leading to impaired transport of peroxisomal proteins with peroxisomal targeting signals (PTS). Four patients, including a pair of homozygotic twins, diagnosed as ZSD by genetic study with different clinical presentations and outcomes as well as various novel mutations are described here. A total of 3 novel mutations, including a nonsense, a frameshift, and a splicing mutation, in PEX1 from ZSD patients were identified and unequivocally confirmed that the p.Ile989Thr mutant PEX1 exhibited temperature-sensitive characteristics and is associated with milder ZSD. The nature of the p.Ile989Thr mutant exhibited different characteristics from that of the other previously identified temperature-sensitive p.Gly843Asp PEX1 mutant. Transcriptome profiles under nonpermissive vs. permissive conditions were explored to facilitate the understanding of p.Ile989Thr mutant PEX1. Further investigation of molecular mechanisms may help to clarify potential genetic causes that could modify the clinical presentation of ZSD.
Collapse
Affiliation(s)
- Jao-Shwann Liang
- Departments of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Department of Nursing, Asia Eastern University of Science and Technology, New Taipei City, Taiwan
| | - Kun-Long Hung
- Departments of Pediatrics, Fu Jen Catholic University Hospital, New Taipei City, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Li-Ju Lin
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Winnie Peitee Ong
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Wee Teik Keng
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Jyh-Feng Lu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
8
|
Ott J, Sehr J, Schmidt N, Schliebs W, Erdmann R. Comparison of human PEX knockout cell lines suggests a dual role of PEX1 in peroxisome biogenesis. Biol Chem 2023; 404:209-219. [PMID: 36534601 DOI: 10.1515/hsz-2022-0223] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
For the biogenesis and maintenance of peroxisomes several proteins, called peroxins, are essential. Malfunctions of these proteins lead to severe diseases summarized as peroxisome biogenesis disorders. The different genetic background of patient-derived cell lines and the residual expression of mutated PEX genes impede analysis of the whole spectrum of cellular functions of affected peroxins. To overcome these difficulties, we have generated a selected PEX knockout resource of HEK T-REx293 cells using the CRISPR/Cas9 technique. Comparative analyses of whole cell lysates revealed PEX-KO specific alterations in the steady-state level of peroxins and variations in the import efficacy of matrix proteins with a Type 2 peroxisomal targeting signal. One of the observed differences concerned PEX1 as in the complete absence of the protein, the number of peroxisomal ghosts is significantly increased. Upon expression of PEX1, import competence and abundance of peroxisomes was adjusted to the level of normal HEK cells. In contrast, expression of an alternatively spliced PEX1 isoform lacking 321 amino acids of the N-terminal region failed to rescue the peroxisomal import defects but reduced the number of peroxisomal vesicles. All in all, the data suggest a novel 'moonlighting' function of human PEX1 in the regulation of pre-peroxisomal vesicles.
Collapse
Affiliation(s)
- Julia Ott
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Jessica Sehr
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Nadine Schmidt
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Wolfgang Schliebs
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Ralf Erdmann
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
9
|
Chornyi S, Koster J, Waterham HR. Applying CRISPR-Cas9 Genome Editing to Study Genes Involved in Peroxisome Biogenesis or Peroxisomal Functions. Methods Mol Biol 2023; 2643:233-245. [PMID: 36952190 DOI: 10.1007/978-1-0716-3048-8_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The development and application of the CRISPR-Cas9 technology for genome editing of mammalian cells have opened up a wealth of possibilities for genetically modifying and manipulating human cells, and use in functional studies or therapeutic approaches.Here we describe the approach that we have been using successfully to generate multiple human cell lines with targeted (partial) gene deletions, i.e., knockout cells, or human cells with modified genomic nucleotide sequences, i.e., knock-in cells, in genes encoding known or putative proteins involved in peroxisome biogenesis or peroxisomal functions.
Collapse
Affiliation(s)
- Serhii Chornyi
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam UMC - University of Amsterdam, AZ, Amsterdam, the Netherlands
| | - Janet Koster
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam UMC - University of Amsterdam, AZ, Amsterdam, the Netherlands
| | - Hans R Waterham
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam UMC - University of Amsterdam, AZ, Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Ren R, Guo J, Liu G, Kang H, Machens HG, Schilling AF, Slobodianski A, Zhang Z. Nucleic acid direct delivery to fibroblasts: a review of nucleofection and applications. J Biol Eng 2022; 16:30. [PMID: 36329479 PMCID: PMC9635183 DOI: 10.1186/s13036-022-00309-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The fibroblast is one of the ideal target cell candidates for cell-based gene therapy approaches to promote tissue repair. Gene delivery to fibroblasts by viral transfection has been confirmed to have high transfection efficiency. However, in addition to immunogenic effects of viruses, the random integration of viral genes may damage the genome, affect the cell phenotype or even cause cancerous mutations in the transfected cells. Due to these potential biohazards and unknown long-term risks, the clinical use of viral transfection has been very limited. In contrast, initial non-viral transfection methods have been simple and safe to implement, with low immunogenicity, insertional mutagenesis, and risk of carcinogenesis, but their transfection efficiency has been relatively low. Nucleofection, a more recent non-viral transfection method, now combines the advantages of high transfection efficiency and direct nucleic acid delivery to the nucleus with a high safety.Here, we reviewed recent articles on fibroblast nucleofection, summarized different research points, improved methods and application scopes, and opened up ideas for promoting the further improvement and development of fibroblast nucleofection to meet the needs of a variety of disease research and clinical applications.
Collapse
Affiliation(s)
- Ranyue Ren
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Jiachao Guo
- grid.412793.a0000 0004 1799 5032Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Guangwu Liu
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Hao Kang
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Hans-Günther Machens
- grid.15474.330000 0004 0477 2438Department of Plastic Surgery and Hand Surgery, Faculty of Medicine, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Arndt F. Schilling
- grid.411984.10000 0001 0482 5331Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Alex Slobodianski
- grid.15474.330000 0004 0477 2438Department of Plastic Surgery and Hand Surgery, Faculty of Medicine, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Ziyang Zhang
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| |
Collapse
|
11
|
Fujiki Y, Okumoto K, Honsho M, Abe Y. Molecular insights into peroxisome homeostasis and peroxisome biogenesis disorders. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119330. [PMID: 35917894 DOI: 10.1016/j.bbamcr.2022.119330] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Peroxisomes are single-membrane organelles essential for cell metabolism including the β-oxidation of fatty acids, synthesis of etherlipid plasmalogens, and redox homeostasis. Investigations into peroxisome biogenesis and the human peroxisome biogenesis disorders (PBDs) have identified 14 PEX genes encoding peroxins involved in peroxisome biogenesis and the mutation of PEX genes is responsible for the PBDs. Many recent findings have further advanced our understanding of the biology, physiology, and consequences of a functional deficit of peroxisomes. In this Review, we discuss cell defense mechanisms that counteract oxidative stress by 1) a proapoptotic Bcl-2 factor BAK-mediated release to the cytosol of H2O2-degrading catalase from peroxisomes and 2) peroxisomal import suppression of catalase by Ser232-phosphorylation of Pex14, a docking protein for the Pex5-PTS1 complex. With respect to peroxisome division, the important issue of how the energy-rich GTP is produced and supplied for the division process was recently addressed by the discovery of a nucleoside diphosphate kinase-like protein, termed DYNAMO1 in a lower eukaryote, which has a mammalian homologue NME3. In regard to the mechanisms underlying the pathogenesis of PBDs, a new PBD model mouse defective in Pex14 manifests a dysregulated brain-derived neurotrophic factor (BDNF)-TrkB pathway, an important signaling pathway for cerebellar morphogenesis. Communications between peroxisomes and other organelles are also addressed.
Collapse
Affiliation(s)
- Yukio Fujiki
- Medical Institute of Bioregulation, Institute of Rheological Functions of Food, Collaboration Program, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan.
| | - Kanji Okumoto
- Department of Biology and Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masanori Honsho
- Medical Institute of Bioregulation, Institute of Rheological Functions of Food, Collaboration Program, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | - Yuichi Abe
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
12
|
Bose M, Yergeau C, D’Souza Y, Cuthbertson DD, Lopez MJ, Smolen AK, Braverman NE. Characterization of Severity in Zellweger Spectrum Disorder by Clinical Findings: A Scoping Review, Meta-Analysis and Medical Chart Review. Cells 2022; 11:1891. [PMID: 35741019 PMCID: PMC9221082 DOI: 10.3390/cells11121891] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Zellweger spectrum disorder (ZSD) is a rare, debilitating genetic disorder of peroxisome biogenesis that affects multiple organ systems and presents with broad clinical heterogeneity. Although severe, intermediate, and mild forms of ZSD have been described, these designations are often arbitrary, presenting difficulty in understanding individual prognosis and treatment effectiveness. The purpose of this study is to conduct a scoping review and meta-analysis of existing literature and a medical chart review to determine if characterization of clinical findings can predict severity in ZSD. Our PubMed search for articles describing severity, clinical findings, and survival in ZSD resulted in 107 studies (representing 307 patients) that were included in the review and meta-analysis. We also collected and analyzed these same parameters from medical records of 136 ZSD individuals from our natural history study. Common clinical findings that were significantly different across severity categories included seizures, hypotonia, reduced mobility, feeding difficulties, renal cysts, adrenal insufficiency, hearing and vision loss, and a shortened lifespan. Our primary data analysis also revealed significant differences across severity categories in failure to thrive, gastroesophageal reflux, bone fractures, global developmental delay, verbal communication difficulties, and cardiac abnormalities. Univariable multinomial logistic modeling analysis of clinical findings and very long chain fatty acid (VLCFA) hexacosanoic acid (C26:0) levels showed that the number of clinical findings present among seizures, abnormal EEG, renal cysts, and cardiac abnormalities, as well as plasma C26:0 fatty acid levels could differentiate severity categories. We report the largest characterization of clinical findings in relation to overall disease severity in ZSD. This information will be useful in determining appropriate outcomes for specific subjects in clinical trials for ZSD.
Collapse
Affiliation(s)
- Mousumi Bose
- Department of Nutrition and Food Studies, College of Education and Human Services, Montclair State University, Montclair, NJ 07043, USA; (M.J.L.); (A.K.S.)
| | - Christine Yergeau
- Department of Human Genetics, McGill University, Montreal, QC H4A 3J1, Canada;
| | - Yasmin D’Souza
- Department of Human Genetics, McGill University, Montreal, QC H4A 3J1, Canada;
| | - David D. Cuthbertson
- Health Informatics Institute, College of Medicine, University of South Florida, 3650 Spectrum Blvd., Tampa, FL 33612, USA;
| | - Melisa J. Lopez
- Department of Nutrition and Food Studies, College of Education and Human Services, Montclair State University, Montclair, NJ 07043, USA; (M.J.L.); (A.K.S.)
| | - Alyssa K. Smolen
- Department of Nutrition and Food Studies, College of Education and Human Services, Montclair State University, Montclair, NJ 07043, USA; (M.J.L.); (A.K.S.)
| | - Nancy E. Braverman
- Departments of Human Genetics and Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada;
| |
Collapse
|
13
|
Nava E, Hartmann B, Boxheimer L, Capone Mori A, Nuoffer JM, Sargsyan Y, Thoms S, Rosewich H, Boltshauser E. How to Detect Isolated PEX10-Related Cerebellar Ataxia? Neuropediatrics 2022; 53:159-166. [PMID: 35038753 DOI: 10.1055/s-0041-1741383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A 4-year-old boy presented with subacute onset of cerebellar ataxia. Neuroimaging revealed cerebellar atrophy. Metabolic screening tests aiming to detect potentially treatable ataxias showed an increased value (fourfold upper limit of normal) for phytanic acid and elevated very-long-chain fatty acid (VLCFA) ratios (C24:0/C22:0 and C26:0/C22:0), while absolute concentrations of VLCFA were normal. Genetic analysis identified biallelic variants in PEX10. Immunohistochemistry confirmed pathogenicity in the patients' cultured fibroblasts demonstrating peroxisomal mosaicism with a general catalase import deficiency as well as conspicuous peroxisome morphology as an expression of impaired peroxisomal function. We describe for the first time an elongated peroxisome morphology in a patient with PEX10-related cerebellar ataxia.A literature search yielded 14 similar patients from nine families with PEX10-related cerebellar ataxia, most of them presenting their first symptoms between 3 and 8 years of age. In 11/14 patients, the first and main symptom was cerebellar ataxia; in three patients, it was sensorineural hearing impairment. Finally, all 14 patients developed ataxia. Polyneuropathy (9/14) and cognitive impairment (9/14) were common associated findings. In 12/13 patients brain MRI showed cerebellar atrophy. Phytanic acid was elevated in 8/12 patients, while absolute concentrations of VLCFA levels were in normal limits in several patients. VLCFA ratios (C24:0/C22:0 and/or C26:0/C22:0), though, were elevated in 11/11 cases. We suggest including measurement of phytanic acid and VLCFA ratios in metabolic screening tests in unexplained autosomal recessive ataxias with cerebellar atrophy, especially when there is an early onset and symptoms are mild.
Collapse
Affiliation(s)
- Esmeralda Nava
- Department of Pediatric Neurology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Britta Hartmann
- Department of Medical Genetics, Cantonal Hospital Aarau, Institute of Laboratory Medicine, Aarau, Switzerland
| | - Larissa Boxheimer
- Department of Neuroradiology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Andrea Capone Mori
- Department of Pediatric Neurology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Jean-Marc Nuoffer
- University Institute of Clinical Chemistry, Bern University Hospital, Bern, Switzerland.,University Children's Hospital Pediatric Endocrinology, Diabetology and Metabolism, Bern, Switzerland
| | - Yelena Sargsyan
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Sven Thoms
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany.,Department of Biochemistry and Molecular Medicine, Medical School, Bielefeld University, Bielefeld, Germany
| | - Hendrik Rosewich
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Eugen Boltshauser
- Department of Pediatric Neurology (emeritus), University Children's Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
14
|
Werner KM, Cox AJ, Qian E, Jain P, Ji W, Tikhonova I, Castaldi C, Bilguvar K, Knight J, Ferdinandusse S, Fawaz R, Jiang YH, Gallagher PG, Bizzarro M, Gruen JR, Bale A, Zhang H. D-bifunctional protein deficiency caused by splicing variants in a neonate with severe peroxisomal dysfunction and persistent hypoglycemia. Am J Med Genet A 2021; 188:357-363. [PMID: 34623748 DOI: 10.1002/ajmg.a.62520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 01/27/2023]
Abstract
D-bifunctional protein (DBP) deficiency is a rare, autosomal recessive peroxisomal enzyme deficiency resulting in a high burden of morbidity and early mortality. Patients with DBP deficiency resemble those with a severe Zellweger phenotype, with neonatal hypotonia, seizures, craniofacial dysmorphisms, psychomotor delay, deafness, blindness, and death typically within the first 2 years of life, although patients with residual enzyme function can survive longer. The clinical severity of the disease depends on the degree of enzyme deficiency. Loss-of-function variants typically result in no residual enzyme activity; however, splice variants may result in protein with residual function. We describe a full-term newborn presenting with hypotonia, seizures, and unexplained hypoglycemia, who was later found to have rickets at follow up. Rapid whole genome sequencing identified two HSD17B4 variants in trans; one likely pathogenic variant and one variant of uncertain significance (VUS) located in the polypyrimidine tract of intron 13. To determine the functional consequence of the VUS, we analyzed RNA from the patient's father with RNA-seq which showed skipping of Exon 14, resulting in a frameshift mutation three amino acids from the new reading frame. This RNA-seq analysis was correlated with virtually absent enzyme activity, elevated very-long-chain fatty acids in fibroblasts, and a clinically severe phenotype. Both variants are reclassified as pathogenic. Due to the clinical spectrum of DBP deficiency, this provides important prognostic information, including early mortality. Furthermore, we add persistent hypoglycemia to the clinical spectrum of the disease, and advocate for the early management of fat-soluble vitamin deficiencies to reduce complications.
Collapse
Affiliation(s)
- Kelly M Werner
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Allison J Cox
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.,PreventionGenetics LLC, Marshfield, Wisconsin, USA
| | - Emily Qian
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Preti Jain
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.,Sema4, Stanford, CT, USA
| | - Weizhen Ji
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Irina Tikhonova
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Christopher Castaldi
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kaya Bilguvar
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - James Knight
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sacha Ferdinandusse
- Department of Clinical Chemistry, Amsterdam UMC Locatie AMC, Amsterdam, Netherlands
| | - Rima Fawaz
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yong-Hui Jiang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Patrick G Gallagher
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Matthew Bizzarro
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jeffrey R Gruen
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Allen Bale
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hui Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Radha Rama Devi A, Naushad SM, Jain R, Lingappa L. A rare case of fatty acyl-CoA reductase 1 deficiency in an Indian infant manifesting rhizomelic chondrodystrophy phenotype. Clin Genet 2021; 99:744-745. [PMID: 33586168 DOI: 10.1111/cge.13934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/26/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Akella Radha Rama Devi
- Rainbow Children Hospital, Hyderabad, India.,Sandor Speciality Diagnostics Pvt Ltd, Hyderabad, India
| | | | - Romit Jain
- Rainbow Children Hospital, Hyderabad, India
| | | |
Collapse
|
16
|
Dutta RK, Maharjan Y, Lee JN, Park C, Ho YS, Park R. Catalase deficiency induces reactive oxygen species mediated pexophagy and cell death in the liver during prolonged fasting. Biofactors 2021; 47:112-125. [PMID: 33496364 DOI: 10.1002/biof.1708] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022]
Abstract
Peroxisomes are dynamic organelles that participate in a diverse array of cellular processes, including β-oxidation, which produces a considerable amount of reactive oxygen species (ROS). Although we showed that catalase depletion induces ROS-mediated pexophagy in cells, the effect of catalase deficiency during conditions that favor ROS generation remains elusive in mice. In this study, we reported that prolonged fasting in catalase-knockout (KO) mice drastically increased ROS production, which induced liver-specific pexophagy, an autophagic degradation of peroxisomes. In addition, increased ROS generation induced the production of pro-inflammatory cytokines in the liver tissues of catalase-KO mice. Furthermore, there was a significant increase in the levels of aspartate transaminase and alanine transaminase as well as apparent cell death in the liver of catalase-KO mice during prolonged fasting. However, an intra-peritoneal injection of the antioxidant N-acetyl-l-cysteine (NAC) and autophagy inhibitor chloroquine inhibited the inflammatory response, liver damage, and pexophagy in the liver of catalase-KO mice during prolonged fasting. Consistently, genetic ablation of autophagy, Atg5 led to suppression of pexophagy during catalase inhibition by 3-aminotriazole (3AT). Moreover, treatment with chloroquine also ameliorated the inflammatory response and cell death in embryonic fibroblast cells from catalase-KO mice. Taken together, our data suggest that ROS-mediated liver-specific pexophagy observed during prolonged fasting in catalase-KO mice may be responsible for the process associated with hepatic cell death.
Collapse
Affiliation(s)
- Raghbendra Kumar Dutta
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, Republic of Korea
| | - Yunash Maharjan
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, Republic of Korea
| | - Joon No Lee
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, Republic of Korea
| | - Channy Park
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, Republic of Korea
| | - Ye-Shih Ho
- Institute of Environmental Health Sciences and Department of Biochemistry and Molecular Biology, Wayne State University, Detroit, Michigan, USA
| | - Raekil Park
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, Republic of Korea
| |
Collapse
|
17
|
Wegrzyn AB, Herzog K, Gerding A, Kwiatkowski M, Wolters JC, Dolga AM, van Lint AEM, Wanders RJA, Waterham HR, Bakker BM. Fibroblast-specific genome-scale modelling predicts an imbalance in amino acid metabolism in Refsum disease. FEBS J 2020; 287:5096-5113. [PMID: 32160399 PMCID: PMC7754141 DOI: 10.1111/febs.15292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/25/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022]
Abstract
Refsum disease (RD) is an inborn error of metabolism that is characterised by a defect in peroxisomal α‐oxidation of the branched‐chain fatty acid phytanic acid. The disorder presents with late‐onset progressive retinitis pigmentosa and polyneuropathy and can be diagnosed biochemically by elevated levels of phytanate in plasma and tissues of patients. To date, no cure exists for RD, but phytanate levels in patients can be reduced by plasmapheresis and a strict diet. In this study, we reconstructed a fibroblast‐specific genome‐scale model based on the recently published, FAD‐curated model, based on Recon3D reconstruction. We used transcriptomics (available via GEO database with identifier GSE138379), metabolomics and proteomics (available via ProteomeXchange with identifier PXD015518) data, which we obtained from healthy controls and RD patient fibroblasts incubated with phytol, a precursor of phytanic acid. Our model correctly represents the metabolism of phytanate and displays fibroblast‐specific metabolic functions. Using this model, we investigated the metabolic phenotype of RD at the genome scale, and we studied the effect of phytanate on cell metabolism. We identified 53 metabolites that were predicted to discriminate between healthy and RD patients, several of which with a link to amino acid metabolism. Ultimately, these insights in metabolic changes may provide leads for pathophysiology and therapy. Databases Transcriptomics data are available via GEO database with identifier GSE138379, and proteomics data are available via ProteomeXchange with identifier PXD015518.
Collapse
Affiliation(s)
- Agnieszka B Wegrzyn
- Systems Medicine of Metabolism and Signalling, Laboratory of Paediatrics, University of Groningen, University Medical Centre Groningen, The Netherlands.,Analytical Biosciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| | - Katharina Herzog
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, Location AMC, University of Amsterdam, The Netherlands.,Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Sweden
| | - Albert Gerding
- Systems Medicine of Metabolism and Signalling, Laboratory of Paediatrics, University of Groningen, University Medical Centre Groningen, The Netherlands.,Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Marcel Kwiatkowski
- Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, The Netherlands.,Mass Spectrometric Proteomics and Metabolomics, Institute of Biochemistry, University of Innsbruck, Austria
| | - Justina C Wolters
- Laboratory of Paediatrics, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Alida E M van Lint
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, Location AMC, University of Amsterdam, The Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, Location AMC, University of Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, Location AMC, University of Amsterdam, The Netherlands
| | - Barbara M Bakker
- Systems Medicine of Metabolism and Signalling, Laboratory of Paediatrics, University of Groningen, University Medical Centre Groningen, The Netherlands
| |
Collapse
|
18
|
Passmore JB, Carmichael RE, Schrader TA, Godinho LF, Ferdinandusse S, Lismont C, Wang Y, Hacker C, Islinger M, Fransen M, Richards DM, Freisinger P, Schrader M. Mitochondrial fission factor (MFF) is a critical regulator of peroxisome maturation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118709. [PMID: 32224193 PMCID: PMC7262603 DOI: 10.1016/j.bbamcr.2020.118709] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/21/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Peroxisomes are highly dynamic subcellular compartments with important functions in lipid and ROS metabolism. Impaired peroxisomal function can lead to severe metabolic disorders with developmental defects and neurological abnormalities. Recently, a new group of disorders has been identified, characterised by defects in the membrane dynamics and division of peroxisomes rather than by loss of metabolic functions. However, the contribution of impaired peroxisome plasticity to the pathophysiology of those disorders is not well understood. Mitochondrial fission factor (MFF) is a key component of both the peroxisomal and mitochondrial division machinery. Patients with MFF deficiency present with developmental and neurological abnormalities. Peroxisomes (and mitochondria) in patient fibroblasts are highly elongated as a result of impaired organelle division. The majority of studies into MFF-deficiency have focused on mitochondrial dysfunction, but the contribution of peroxisomal alterations to the pathophysiology is largely unknown. Here, we show that MFF deficiency does not cause alterations to overall peroxisomal biochemical function. However, loss of MFF results in reduced import-competency of the peroxisomal compartment and leads to the accumulation of pre-peroxisomal membrane structures. We show that peroxisomes in MFF-deficient cells display alterations in peroxisomal redox state and intra-peroxisomal pH. Removal of elongated peroxisomes through induction of autophagic processes is not impaired. A mathematical model describing key processes involved in peroxisome dynamics sheds further light into the physical processes disturbed in MFF-deficient cells. The consequences of our findings for the pathophysiology of MFF-deficiency and related disorders with impaired peroxisome plasticity are discussed. Peroxisomes are highly elongated in cells from patients lacking fission factor MFF. Peroxisomal proteins are not uniformly distributed in highly elongated peroxisomes. Peroxisomal metabolism is unaltered in MFF-deficient patients. Peroxisomal elongations are stabilised through interaction with microtubules. Highly elongated peroxisomes are not spared from degradation.
Collapse
Affiliation(s)
| | | | | | | | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, the Netherlands
| | - Celien Lismont
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Yunhong Wang
- Institute of Neuroanatomy, Medical Faculty Manheim, University of Heidelberg, Mannheim, Germany
| | | | - Markus Islinger
- Institute of Neuroanatomy, Medical Faculty Manheim, University of Heidelberg, Mannheim, Germany
| | - Marc Fransen
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | - Peter Freisinger
- Department of Pediatrics, Kreiskliniken Reutlingen, Reutlingen, Germany
| | | |
Collapse
|
19
|
Wanders RJA, Vaz FM, Waterham HR, Ferdinandusse S. Fatty Acid Oxidation in Peroxisomes: Enzymology, Metabolic Crosstalk with Other Organelles and Peroxisomal Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1299:55-70. [PMID: 33417207 DOI: 10.1007/978-3-030-60204-8_5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peroxisomes play a central role in metabolism as exemplified by the fact that many genetic disorders in humans have been identified through the years in which there is an impairment in one or more of these peroxisomal functions, in most cases associated with severe clinical signs and symptoms. One of the key functions of peroxisomes is the β-oxidation of fatty acids which differs from the oxidation of fatty acids in mitochondria in many respects which includes the different substrate specificities of the two organelles. Whereas mitochondria are the main site of oxidation of medium-and long-chain fatty acids, peroxisomes catalyse the β-oxidation of a distinct set of fatty acids, including very-long-chain fatty acids, pristanic acid and the bile acid intermediates di- and trihydroxycholestanoic acid. Peroxisomes require the functional alliance with multiple subcellular organelles to fulfil their role in metabolism. Indeed, peroxisomes require the functional interaction with lysosomes, lipid droplets and the endoplasmic reticulum, since these organelles provide the substrates oxidized in peroxisomes. On the other hand, since peroxisomes lack a citric acid cycle as well as respiratory chain, oxidation of the end-products of peroxisomal fatty acid oxidation notably acetyl-CoA, and different medium-chain acyl-CoAs, to CO2 and H2O can only occur in mitochondria. The same is true for the reoxidation of NADH back to NAD+. There is increasing evidence that these interactions between organelles are mediated by tethering proteins which bring organelles together in order to allow effective exchange of metabolites. It is the purpose of this review to describe the current state of knowledge about the role of peroxisomes in fatty acid oxidation, the transport of metabolites across the peroxisomal membrane, its functional interaction with other subcellular organelles and the disorders of peroxisomal fatty acid β-oxidation identified so far in humans.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Departments of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases and Emma Children's hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Frédéric M Vaz
- Departments of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases and Emma Children's hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans R Waterham
- Departments of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases and Emma Children's hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sacha Ferdinandusse
- Departments of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases and Emma Children's hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Okumoto K, Tamura S, Honsho M, Fujiki Y. Peroxisome: Metabolic Functions and Biogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1299:3-17. [PMID: 33417203 DOI: 10.1007/978-3-030-60204-8_1] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peroxisome is an organelle conserved in almost all eukaryotic cells with a variety of functions in cellular metabolism, including fatty acid β-oxidation, synthesis of ether glycerolipid plasmalogens, and redox homeostasis. Such metabolic functions and the exclusive importance of peroxisomes have been highlighted in fatal human genetic disease called peroxisomal biogenesis disorders (PBDs). Recent advances in this field have identified over 30 PEX genes encoding peroxins as essential factors for peroxisome biogenesis in various species from yeast to humans. Functional delineation of the peroxins has revealed that peroxisome biogenesis comprises the processes, involving peroxisomal membrane assembly, matrix protein import, division, and proliferation. Catalase, the most abundant peroxisomal enzyme, catalyzes decomposition of hydrogen peroxide. Peroxisome plays pivotal roles in the cellular redox homeostasis and the response to oxidative stresses, depending on intracellular localization of catalase.
Collapse
Affiliation(s)
- Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | | | | | - Yukio Fujiki
- Institute of Rheological Functions of Food, Fukuoka, Japan. .,Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
21
|
Abe Y, Tamura S, Honsho M, Fujiki Y. A Mouse Model System to Study Peroxisomal Roles in Neurodegeneration of Peroxisome Biogenesis Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1299:119-143. [PMID: 33417212 DOI: 10.1007/978-3-030-60204-8_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fourteen PEX genes are currently identified as genes responsible for peroxisome biogenesis disorders (PBDs). Patients with PBDs manifest as neurodegenerative symptoms such as neuronal migration defect and malformation of the cerebellum. To address molecular mechanisms underlying the pathogenesis of PBDs, mouse models for the PBDs have been generated by targeted disruption of Pex genes. Pathological phenotypes and metabolic abnormalities in Pex-knockout mice well resemble those of the patients with PBDs. The mice with tissue- or cell type-specific inactivation of Pex genes have also been established by using a Cre-loxP system. The genetically modified mice reveal that pathological phenotypes of PBDs are mediated by interorgan and intercellular communications. Despite the illustrations of detailed pathological phenotypes in the mutant mice, mechanistic insights into pathogenesis of PBDs are still underway. In this chapter, we overview the phenotypes of Pex-inactivated mice and the current understanding of the pathogenesis underlying PBDs.
Collapse
Affiliation(s)
- Yuichi Abe
- Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| | | | | | - Yukio Fujiki
- Institute of Rheological Functions of Food, Fukuoka, Japan. .,Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
22
|
Cheillan D. Zellweger Syndrome Disorders: From Severe Neonatal Disease to Atypical Adult Presentation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1299:71-80. [PMID: 33417208 DOI: 10.1007/978-3-030-60204-8_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Zellweger syndrome disorders (ZSD) is the principal group of peroxisomal disorders characterized by a defect of peroxisome biogenesis due to mutations in one of the 13 PEX genes. The clinical spectrum is very large with a continuum from antenatal forms to adult presentation. Whereas biochemical profile in body fluids is classically used for their diagnosis, the revolution of high-throughput sequencing has extended the knowledge about these disorders. The aim of this review is to offer a large panorama on molecular basis, clinical presentation and treatment of ZSD, and to update the diagnosis strategy of these disorders in the era of next-generation sequencing (NGS).
Collapse
Affiliation(s)
- David Cheillan
- Inserm U1060 - CarMeN Laboratory, Lyon University, Pierre-Bénite, France.
- Service Biochimie et Biologie Moléculaire Grand Est - Centre de Biologie Est, Hospices Civils de Lyon, Bron, France.
| |
Collapse
|
23
|
Honsho M, Okumoto K, Tamura S, Fujiki Y. Peroxisome Biogenesis Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1299:45-54. [PMID: 33417206 DOI: 10.1007/978-3-030-60204-8_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peroxisomes are presented in all eukaryotic cells and play essential roles in many of lipid metabolic pathways, including β-oxidation of fatty acids and synthesis of ether-linked glycerophospholipids, such as plasmalogens. Impaired peroxisome biogenesis, including defects of membrane assembly, import of peroxisomal matrix proteins, and division of peroxisome, causes peroxisome biogenesis disorders (PBDs). Fourteen complementation groups of PBDs are found, and their complementing genes termed PEXs are isolated. Several new mutations in peroxins from patients with mild PBD phenotype or patients with phenotypes unrelated to the commonly observed impairments of PBD patients are found by next-generation sequencing. Exploring a dysfunctional step(s) caused by the mutation is important for unveiling the pathogenesis of novel mutation by means of cellular and biochemical analyses.
Collapse
Affiliation(s)
| | - Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | | | - Yukio Fujiki
- Institute of Rheological Functions of Food, Fukuoka, Japan. .,Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
24
|
Laboratory diagnosis of disorders of peroxisomal biogenesis and function: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2019; 22:686-697. [PMID: 31822849 DOI: 10.1038/s41436-019-0713-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 01/02/2023] Open
Abstract
Peroxisomal disorders are a clinically and genetically heterogeneous group of diseases caused by defects in peroxisomal biogenesis or function, usually impairing several metabolic pathways. Peroxisomal disorders are rare; however, the incidence may be underestimated due to the broad spectrum of clinical presentations. The inclusion of X-linked adrenoleukodystrophy to the Recommended Uniform Screening Panel for newborn screening programs in the United States may increase detection of this and other peroxisomal disorders. The current diagnostic approach relies heavily on biochemical genetic tests measuring peroxisomal metabolites, including very long-chain and branched-chain fatty acids in plasma and plasmalogens in red blood cells. Molecular testing can confirm biochemical findings and identify the specific genetic defect, usually utilizing a multiple-gene panel or exome/genome approach. When next-generation sequencing is used as a first-tier test, evaluation of peroxisome metabolism is often necessary to assess the significance of unknown variants and establish the extent of peroxisome dysfunction. This document provides a resource for laboratories developing and implementing clinical biochemical genetic testing for peroxisomal disorders, emphasizing technical considerations for sample collection, test performance, and result interpretation. Additionally, considerations on confirmatory molecular testing are discussed.
Collapse
|
25
|
Takahashi T, Honsho M, Abe Y, Fujiki Y. Plasmalogen mediates integration of adherens junction. J Biochem 2019; 166:423-432. [PMID: 31236591 DOI: 10.1093/jb/mvz049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/19/2019] [Indexed: 11/13/2022] Open
Abstract
Ether glycerolipids, plasmalogens are found in various mammalian cells and tissues. However, physiological role of plasmalogens in epithelial cells remains unknown. We herein show that synthesis of ethanolamine-containing plasmalogens, plasmenylethanolamine (PlsEtn), is deficient in MCF7 cells, an epithelial cell line, with severely reduced expression of alkyl-dihydroxyacetonephosphate synthase (ADAPS), the second enzyme in the PlsEtn biosynthesis. Moreover, expression of ADAPS or supplementation of PlsEtn containing C18-alkenyl residue delays the migration of MCF7 cells as compared to that mock-treated MCF7 and C16-alkenyl-PlsEtn-supplemented MCF7 cells. Localization of E-cadherin to cell-cell junctions is highly augmented in cells containing C18-alkenyl-PlsEtn. Together, these results suggest that PlsEtn containing C18-alkenyl residue plays a distinct role in the integrity of E-cadherin-mediated adherens junction.
Collapse
Affiliation(s)
- Takanori Takahashi
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Masanori Honsho
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yuichi Abe
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
26
|
Honsho M, Dorninger F, Abe Y, Setoyama D, Ohgi R, Uchiumi T, Kang D, Berger J, Fujiki Y. Impaired plasmalogen synthesis dysregulates liver X receptor-dependent transcription in cerebellum. J Biochem 2019; 166:353-361. [PMID: 31135054 DOI: 10.1093/jb/mvz043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
Synthesis of ethanolamine plasmalogen (PlsEtn) is regulated by modulating the stability of fatty acyl-CoA reductase 1 (Far1) on peroxisomal membrane, a rate-limiting enzyme in plasmalogen synthesis. Dysregulation of plasmalogen homeostasis impairs cholesterol biosynthesis in cultured cells by altering the stability of squalene epoxidase (SQLE). However, regulation of PlsEtn synthesis and physiological consequences of plasmalogen homeostasis in tissues remain unknown. In the present study, we found that the protein but not the transcription level of Far1 in the cerebellum of the Pex14 mutant mouse expressing Pex14p lacking its C-terminal region (Pex14ΔC/ΔC) is higher than that from wild-type mouse, suggesting that Far1 is stabilized by the lowered level of PlsEtn. The protein level of SQLE was increased, whereas the transcriptional activity of the liver X receptors (LXRs), ligand-activated transcription factors of the nuclear receptor superfamily, is lowered in the cerebellum of Pex14ΔC/ΔC and the mice deficient in dihydroxyacetonephosphate acyltransferase, the initial enzyme for the synthesis of PlsEtn. These results suggest that the reduction of plasmalogens in the cerebellum more likely compromises the cholesterol homeostasis, thereby reducing the transcriptional activities of LXRs, master regulators of cholesterol homeostasis.
Collapse
Affiliation(s)
- Masanori Honsho
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Yuichi Abe
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Ryohei Ohgi
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
27
|
Wanders RJA, Vaz FM, Ferdinandusse S, Kemp S, Ebberink MS, Waterham HR. Laboratory Diagnosis of Peroxisomal Disorders in the -Omics Era and the Continued Importance of Biomarkers and Biochemical Studies. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2018. [DOI: 10.1177/2326409818810285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Ronald J. A. Wanders
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, EmmaChildren’s Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Frédéric M. Vaz
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, EmmaChildren’s Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, EmmaChildren’s Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, EmmaChildren’s Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Merel S. Ebberink
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, EmmaChildren’s Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Hans R. Waterham
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, EmmaChildren’s Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
28
|
Guder P, Lotz-Havla AS, Woidy M, Reiß DD, Danecka MK, Schatz UA, Becker M, Ensenauer R, Pagel P, Büttner L, Muntau AC, Gersting SW. Isoform-specific domain organization determines conformation and function of the peroxisomal biogenesis factor PEX26. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:518-531. [PMID: 30366024 DOI: 10.1016/j.bbamcr.2018.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
Peroxisomal biogenesis factor PEX26 is a membrane anchor for the multi-subunit PEX1-PEX6 protein complex that controls ubiquitination and dislocation of PEX5 cargo receptors for peroxisomal matrix protein import. PEX26 associates with the peroxisomal translocation pore via PEX14 and a splice variant (PEX26Δex5) of unknown function has been reported. Here, we demonstrate PEX26 homooligomerization mediated by two heptad repeat domains adjacent to the transmembrane domain. We show that isoform-specific domain organization determines PEX26 oligomerization and impacts peroxisomal β-oxidation and proliferation. PEX26 and PEX26Δex5 displayed different patterns of interaction with PEX2-PEX10 or PEX13-PEX14 complexes, which relate to distinct pre-peroxisomes in the de novo synthesis pathway. Our data support an alternative PEX14-dependent mechanism of peroxisomal membrane association for the splice variant, which lacks a transmembrane domain. Structure-function relationships of PEX26 isoforms explain an extended function in peroxisomal homeostasis and these findings may improve our understanding of the broad phenotype of PEX26-associated human disorders.
Collapse
Affiliation(s)
- Philipp Guder
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Amelie S Lotz-Havla
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Mathias Woidy
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dunja D Reiß
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Marta K Danecka
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ulrich A Schatz
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Marc Becker
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; Labor Becker Olgemöller und Kollegen, 81671 Munich, Germany
| | - Regina Ensenauer
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; Experimental Pediatrics, Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Philipp Pagel
- Lehrstuhl für Genomorientierte Bioinformatik, Technische Universität, 85350 Freising, Germany; numares GmbH, Josef-Engert-Str. 9, 93053 Regensburg, Germany
| | - Lars Büttner
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Ania C Muntau
- Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Søren W Gersting
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
29
|
Lopes-Marques M, Kabeya N, Qian Y, Ruivo R, Santos MM, Venkatesh B, Tocher DR, Castro LFC, Monroig Ó. Retention of fatty acyl desaturase 1 (fads1) in Elopomorpha and Cyclostomata provides novel insights into the evolution of long-chain polyunsaturated fatty acid biosynthesis in vertebrates. BMC Evol Biol 2018; 18:157. [PMID: 30340454 PMCID: PMC6194568 DOI: 10.1186/s12862-018-1271-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/02/2018] [Indexed: 12/22/2022] Open
Abstract
Background Provision of long-chain polyunsaturated fatty acids (LC-PUFA) in vertebrates occurs through the diet or via endogenous production from C18 precursors through consecutive elongations and desaturations. It has been postulated that the abundance of LC-PUFA in the marine environment has remarkably modulated the gene complement and function of Fads in marine teleosts. In vertebrates two fatty acyl desaturases, namely Fads1 and Fads2, encode ∆5 and ∆6 desaturases, respectively. To fully clarify the evolutionary history of LC-PUFA biosynthesis in vertebrates, we investigated the gene repertoire and function of Fads from species placed at key evolutionary nodes. Results We demonstrate that functional Fads1Δ5 and Fads2∆6 arose from a tandem gene duplication in the ancestor of vertebrates, since they are present in the Arctic lamprey. Additionally, we show that a similar condition was retained in ray-finned fish such as the Senegal bichir and spotted gar, with the identification of fads1 genes in these lineages. Functional characterisation of the isolated desaturases reveals the first case of a Fads1 enzyme with ∆5 desaturase activity in the Teleostei lineage, the Elopomorpha. In contrast, in Osteoglossomorpha genomes, while no fads1 was identified, two separate fads2 duplicates with ∆6 and ∆5 desaturase activities respectively were uncovered. Conclusions We conclude that, while the essential genetic components involved LC-PUFA biosynthesis evolved in the vertebrate ancestor, the full completion of the LC-PUFA biosynthesis pathway arose uniquely in gnathostomes. Electronic supplementary material The online version of this article (10.1186/s12862-018-1271-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mónica Lopes-Marques
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U. Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.,Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), U.Porto - University of Porto, Rua Jorge Viterbo Ferreira 228, P 4050-313, Porto, Portugal
| | - Naoki Kabeya
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yu Qian
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Raquel Ruivo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U. Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Miguel M Santos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U. Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.,Faculty of Sciences (FCUP), Department of Biology, U.Porto - University of Porto, Rua do Campo Alegre, P 4169-007, Porto, Portugal
| | - Byrappa Venkatesh
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore, 138673, Singapore
| | - Douglas R Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - L Filipe C Castro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U. Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal. .,Faculty of Sciences (FCUP), Department of Biology, U.Porto - University of Porto, Rua do Campo Alegre, P 4169-007, Porto, Portugal.
| | - Óscar Monroig
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK. .,Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595, Castellón, Spain.
| |
Collapse
|
30
|
Kumar KR, Wali G, Davis RL, Mallawaarachchi AC, Palmer EE, Gayevskiy V, Minoche AE, Veivers D, Dinger ME, Mackay-Sim A, Cowley MJ, Sue CM. Expanding the spectrum of PEX16 mutations and novel insights into disease mechanisms. Mol Genet Metab Rep 2018; 16:46-51. [PMID: 30094183 PMCID: PMC6072801 DOI: 10.1016/j.ymgmr.2018.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/13/2018] [Indexed: 02/04/2023] Open
Abstract
Zellweger syndrome spectrum disorders are caused by mutations in any of at least 12 different PEX genes. This includes PEX16, an important regulator of peroxisome biogenesis. Using whole genome sequencing, we detected previously unreported, biallelic variants in PEX16 [NM_004813.2:c.658G>A, p.(Ala220Thr) and NM_004813.2:c.830G>A, p.(Arg277Gln)] in an individual with leukodystrophy, spastic paraplegia, cerebellar ataxia, and craniocervical dystonia with normal plasma very long chain fatty acids. Using olfactory-neurosphere derived cells, a population of neural stem cells, we showed patient cells had reduced peroxisome density and increased peroxisome size, replicating previously reported findings in PEX16 cell lines. Along with alterations in peroxisome morphology, patient cells also had impaired peroxisome function with reduced catalase activity. Furthermore, patient cells had reduced oxidative stress levels after exposure to hydrogen-peroxide (H2O2), which may be a result of compensation by H2O2 metabolising enzymes other than catalase to preserve peroxisome-related cell functions. Our findings of impaired catalase activity and altered oxidative stress response are novel. Our study expands the phenotype of PEX16 mutations by including dystonia and provides further insights into the pathological mechanisms underlying PEX16-associated disorders. Additional studies of the full spectrum of peroxisomal dysfunction could improve our understanding of the mechanism underlying PEX16-associated disorders.
Collapse
Affiliation(s)
- Kishore R. Kumar
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Department of Neurogenetics, Kolling Institute, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Gautam Wali
- Department of Neurogenetics, Kolling Institute, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Ryan L. Davis
- Department of Neurogenetics, Kolling Institute, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | | | - Elizabeth E. Palmer
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Sydney Children's Hospital, Randwick, NSW, Australia
- School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, Sydney, NSW, Australia
- Genetics of Learning Disability Service, Waratah, NSW, Australia
| | - Velimir Gayevskiy
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Andre E. Minoche
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - David Veivers
- ENT Department, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Marcel E. Dinger
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent's Hospital Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Alan Mackay-Sim
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Mark J. Cowley
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent's Hospital Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Carolyn M. Sue
- Department of Neurogenetics, Kolling Institute, Royal North Shore Hospital, St. Leonards, NSW, Australia
| |
Collapse
|
31
|
Herzog K, Pras-Raves ML, Ferdinandusse S, Vervaart MAT, Luyf ACM, van Kampen AHC, Wanders RJA, Waterham HR, Vaz FM. Plasma lipidomics as a diagnostic tool for peroxisomal disorders. J Inherit Metab Dis 2018; 41:489-498. [PMID: 29209936 PMCID: PMC5959966 DOI: 10.1007/s10545-017-0114-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/30/2017] [Accepted: 11/07/2017] [Indexed: 10/27/2022]
Abstract
Peroxisomes are ubiquitous cell organelles that play an important role in lipid metabolism. Accordingly, peroxisomal disorders, including the peroxisome biogenesis disorders and peroxisomal single-enzyme deficiencies, are associated with aberrant lipid metabolism. Lipidomics is an emerging tool for diagnosis, disease-monitoring, identifying lipid biomarkers, and studying the underlying pathophysiology in disorders of lipid metabolism. In this study, we demonstrate the potential of lipidomics for the diagnosis of peroxisomal disorders using plasma samples from patients with different types of peroxisomal disorders. We show that the changes in the plasma profiles of phospholipids, di- and triglycerides, and cholesterol esters correspond with the characteristic metabolite abnormalities that are currently used in the metabolic screening for peroxisomal disorders. The lipidomics approach, however, gives a much more detailed overview of the metabolic changes that occur in the lipidome. Furthermore, we identified novel unique lipid species for specific peroxisomal diseases that are candidate biomarkers. The results presented in this paper show the power of lipidomics approaches to enable the specific diagnosis of different peroxisomal disorders.
Collapse
Affiliation(s)
- Katharina Herzog
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Mia L Pras-Raves
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
- Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Martin A T Vervaart
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Angela C M Luyf
- Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Antoine H C van Kampen
- Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands.
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands.
| |
Collapse
|
32
|
Lin Lin Lee V, Kar Meng Choo B, Chung YS, P Kundap U, Kumari Y, Shaikh MF. Treatment, Therapy and Management of Metabolic Epilepsy: A Systematic Review. Int J Mol Sci 2018; 19:ijms19030871. [PMID: 29543761 PMCID: PMC5877732 DOI: 10.3390/ijms19030871] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 01/17/2023] Open
Abstract
Metabolic epilepsy is a metabolic abnormality which is associated with an increased risk of epilepsy development in affected individuals. Commonly used antiepileptic drugs are typically ineffective against metabolic epilepsy as they do not address its root cause. Presently, there is no review available which summarizes all the treatment options for metabolic epilepsy. Thus, we systematically reviewed literature which reported on the treatment, therapy and management of metabolic epilepsy from four databases, namely PubMed, Springer, Scopus and ScienceDirect. After applying our inclusion and exclusion criteria as per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we reviewed a total of 43 articles. Based on the reviewed articles, we summarized the methods used for the treatment, therapy and management of metabolic epilepsy. These methods were tailored to address the root causes of the metabolic disturbances rather than targeting the epilepsy phenotype alone. Diet modification and dietary supplementation, alone or in combination with antiepileptic drugs, are used in tackling the different types of metabolic epilepsy. Identification, treatment, therapy and management of the underlying metabolic derangements can improve behavior, cognitive function and reduce seizure frequency and/or severity in patients.
Collapse
Affiliation(s)
- Vanessa Lin Lin Lee
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Brandon Kar Meng Choo
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Yin-Sir Chung
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Uday P Kundap
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
33
|
Wanders RJA. Peroxisomal disorders: Improved laboratory diagnosis, new defects and the complicated route to treatment. Mol Cell Probes 2018; 40:60-69. [PMID: 29438773 DOI: 10.1016/j.mcp.2018.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 12/15/2022]
Abstract
Peroxisomes catalyze a number of essential metabolic functions of which fatty acid alpha- and beta-oxidation, ether phospholipid biosynthesis, glyoxylate detoxification and bile acid synthesis are the most important. The key role of peroxisomes in humans is exemplified by the existence of a group of peroxisomal disorders, caused by mutations in > 30 different genes which code for proteins with a role in either peroxisome biogenesis or one of the metabolic pathways in peroxisomes. Technological advances in laboratory methods at the metabolite-, enzyme-, and molecular level have not only allowed the identification of new peroxisomal disorders but also new phenotypes associated with already identified genetic defects thus extending the clinical spectrum. Unfortunately, progress in the field of pathogenesis and treatment has lagged behind although there are certainly new and hopeful developments with respect to X-linked adrenoleukodystrophy and hyperoxaluria type 1.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Department of Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Honsho M, Fujiki Y. Plasmalogen homeostasis - regulation of plasmalogen biosynthesis and its physiological consequence in mammals. FEBS Lett 2017; 591:2720-2729. [PMID: 28686302 DOI: 10.1002/1873-3468.12743] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 06/28/2015] [Accepted: 06/29/2016] [Indexed: 11/06/2022]
Abstract
Plasmalogens, mostly ethanolamine-containing alkenyl ether phospholipids, are a major subclass of glycerophospholipids. Plasmalogen synthesis is initiated in peroxisomes and completed in the endoplasmic reticulum. The absence of plasmalogens in several organs of peroxisome biogenesis-defective patients suggests that the de novo synthesis of plasmalogens plays a pivotal role in its homeostasis in tissues. Plasmalogen synthesis is regulated by modulating the stability of fatty acyl-CoA reductase 1 on peroxisomal membranes, a rate-limiting enzyme in plasmalogen synthesis, by sensing plasmalogens in the inner leaflet of plasma membranes. Dysregulation of plasmalogen homeostasis impairs cholesterol biosynthesis by altering the stability of squalene monooxygenase, a key enzyme in cholesterol biosynthesis, implying physiological consequences of plasmalogen homeostasis with respect to cholesterol metabolism in cells, as well as in organs such as the liver.
Collapse
Affiliation(s)
- Masanori Honsho
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
35
|
Herzog K, van Lenthe H, Wanders RJA, Vaz FM, Waterham HR, Ferdinandusse S. Identification and diagnostic value of phytanoyl- and pristanoyl-carnitine in plasma from patients with peroxisomal disorders. Mol Genet Metab 2017; 121:279-282. [PMID: 28566232 DOI: 10.1016/j.ymgme.2017.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 01/19/2023]
Abstract
Phytanic acid is a branched-chain fatty acid, the level of which is elevated in patients with a variety of peroxisomal disorders, including Refsum disease, and Rhizomelic chondrodysplasia punctata type 1 and 5. Elevated levels of both phytanic and pristanic acid are found in patients with Zellweger Spectrum Disorders, and pristanic acid is elevated in patients with α-methylacyl-CoA racemase deficiency. For the diagnosis of peroxisomal disorders, a variety of metabolites can be measured in blood samples from suspected patients, including very long-chain fatty acids, phytanic and pristanic acid. Based on the fact that very long-chain fatty acylcarnitines are elevated in tissues and plasma from patients with certain peroxisomal disorders, we investigated whether phytanoyl- and pristanoyl-carnitine are also present in plasma from patients with different peroxisomal disorders. Our study shows that phytanoyl- and pristanoyl-carnitine are indeed present in plasma samples from patients with different types of peroxisomal disorders, but only when the total plasma levels of their corresponding fatty acids, phytanic acid and pristanic acid, are markedly elevated. We conclude that the measurement of phytanoyl- and pristanoyl-carnitine is not sensitive and specific enough to use these acylcarnitines as conclusive diagnostic markers for peroxisomal disorders.
Collapse
Affiliation(s)
- Katharina Herzog
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, 1105, AZ, The Netherlands
| | - Henk van Lenthe
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, 1105, AZ, The Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, 1105, AZ, The Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, 1105, AZ, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, 1105, AZ, The Netherlands.
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, 1105, AZ, The Netherlands
| |
Collapse
|
36
|
Koster J, Waterham HR. Transfection of Primary Human Skin Fibroblasts for Peroxisomal Studies. Methods Mol Biol 2017; 1595:63-67. [PMID: 28409452 DOI: 10.1007/978-1-4939-6937-1_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Functional studies with primary human skin fibroblasts from patients with a peroxisomal disorder often require efficient transfection with plasmids to correct the genetic defect or to express heterologous reporter proteins. Here, we describe a protocol we commonly use for efficient nonviral transfection of primary human skin fibroblasts.
Collapse
Affiliation(s)
- Janet Koster
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
37
|
Abstract
The peroxisomal disorders (PDs) are a heterogeneous group of genetic diseases in man caused by an impairment in peroxisome biogenesis or one of the metabolic functions of peroxisomes. Thanks to the revolutionary technical developments in gene sequencing methods and their increased use in patient diagnosis, the field of genetic diseases in general and peroxisomal disorders in particular has dramatically changed in the last few years. Indeed, several novel peroxisomal disorders have been identified recently and in addition it has been realized that the phenotypic spectrum of patients affected by a PD keeps widening, which makes clinical recognition of peroxisomal patients increasingly difficult. Here, we describe these new developments and provide guidelines for the clinical and laboratory diagnosis of peroxisomal patients.
Collapse
|
38
|
Costa A, Frezza C. Metabolic Reprogramming and Oncogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:213-231. [DOI: 10.1016/bs.ircmb.2017.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Affiliation(s)
| | - Maria Daniela D'Agostino
- McGill University Department of Human Genetics and McGill University Health Center, Department of Medical Genetics, Montreal, QC, Canada
| | - Nancy Braverman
- McGill University Department of Human Genetics and Pediatrics, and The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
40
|
Ferdinandusse S, Falkenberg KD, Koster J, Mooyer PA, Jones R, van Roermund CWT, Pizzino A, Schrader M, Wanders RJA, Vanderver A, Waterham HR. ACBD5 deficiency causes a defect in peroxisomal very long-chain fatty acid metabolism. J Med Genet 2016; 54:330-337. [PMID: 27799409 DOI: 10.1136/jmedgenet-2016-104132] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/07/2016] [Indexed: 11/04/2022]
Abstract
BACKGROUND Acyl-CoA binding domain containing protein 5 (ACBD5) is a peroxisomal membrane protein with a cytosolic acyl-CoA binding domain. Because of its acyl-CoA binding domain, ACBD5 has been assumed to function as an intracellular carrier of acyl-CoA esters. In addition, a role for ACBD5 in pexophagy has been suggested. However, the precise role of ACBD5 in peroxisomal metabolism and/or functioning has not yet been established. Previously, a genetic ACBD5 deficiency was identified in three siblings with retinal dystrophy and white matter disease. We identified a pathogenic mutation in ACBD5 in another patient and studied the consequences of the ACBD5 defect in patient material and in ACBD5-deficient HeLa cells to uncover this role. METHODS We studied a girl who presented with progressive leukodystrophy, syndromic cleft palate, ataxia and retinal dystrophy. We performed biochemical, cell biological and molecular studies in patient material and in ACBD5-deficient HeLa cells generated by CRISPR-Cas9 genome editing. RESULTS We identified a homozygous deleterious indel mutation in ACBD5, leading to complete loss of ACBD5 protein in the patient. Our studies showed that ACBD5 deficiency leads to accumulation of very long-chain fatty acids (VLCFAs) due to impaired peroxisomal β-oxidation. No effect on pexophagy was found. CONCLUSIONS Our investigations strongly suggest that ACBD5 plays an important role in sequestering C26-CoA in the cytosol and thereby facilitates transport into the peroxisome and subsequent β-oxidation. Accordingly, ACBD5 deficiency is a novel single peroxisomal enzyme deficiency caused by impaired VLCFA metabolism, leading to retinal dystrophy and white matter disease.
Collapse
Affiliation(s)
- Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Kim D Falkenberg
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Janet Koster
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Petra A Mooyer
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Carlo W T van Roermund
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Amy Pizzino
- Department of Neurology, Children's National Health System, Washington DC, USA
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, Devon, UK
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Adeline Vanderver
- Department of Neurology, Children's National Health System, Washington DC, USA
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|