1
|
Latacz E, Verheul SML, Sillis Y, van Dam PJ, Doukas M, Grunhagen DJ, Nyström H, Dirix P, Dirix L, Van Laere S, Verhoef C, Vermeulen P. Molecular characterization of the histopathological growth patterns of colorectal cancer liver metastases by RNA sequencing of targeted samples at the tumor-liver interface. Clin Exp Metastasis 2024; 42:1. [PMID: 39666203 DOI: 10.1007/s10585-024-10319-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024]
Abstract
The behaviour of metastases in patients with liver-metastatic colorectal cancer (CRC) is still not adequately considered during treatment planning. However, studies in large cohorts have shown that the disease course in these patients depends on the histopathological growth pattern (HGP) of the liver metastases, with the desmoplastic (or encapsulated) pattern responsible for a favourable outcome and the replacement pattern for an unfavourable course. To increase our knowledge of cancer biology in general as well as to design clinical trials that take into account the diverse behaviour of liver metastases, it is necessary to know the cellular and molecular determinants of these growth patterns. For that purpose, we compared the transcriptome of tumour tissue (prospective cohort; n = 57) sampled very precisely at the transition of metastasis and adjacent liver, between the desmoplastic and replacement HGP. In addition, the mutational profiles for 46 genes related to CRC were extracted from the RNA sequencing reads. First, we show that the genetic constitution of a liver metastasis from colorectal cancer does not determine its HGP. Second, we show clear differences between HGPs regarding the expression of genes belonging to the Molecular Signatures Database hallmark gene sets. Biological themes of the replacement HGP reflect cancer cell proliferation and glucose metabolism, while the desmoplastic HGP is characterized by inflammation and immune response, and angiogenesis. This study supports the view that HGPs are a reflection of the biology of CRC liver metastases and suggests the HGPs are driven epigenetically rather than by specific gene mutations.
Collapse
Affiliation(s)
- Emily Latacz
- Translational Cancer Research Unit, Ziekenhuis aan de Stroom (ZAS), Campus Augustinus, Antwerp, Belgium
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Sanne M L Verheul
- Department of Gastrointestinal Surgery and Surgical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Yasmine Sillis
- Translational Cancer Research Unit, Ziekenhuis aan de Stroom (ZAS), Campus Augustinus, Antwerp, Belgium
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | | | - Michail Doukas
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dirk J Grunhagen
- Department of Gastrointestinal Surgery and Surgical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hanna Nyström
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden
| | - Piet Dirix
- Translational Cancer Research Unit, Ziekenhuis aan de Stroom (ZAS), Campus Augustinus, Antwerp, Belgium
| | - Luc Dirix
- Translational Cancer Research Unit, Ziekenhuis aan de Stroom (ZAS), Campus Augustinus, Antwerp, Belgium
| | - Steven Van Laere
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Cornelis Verhoef
- Department of Gastrointestinal Surgery and Surgical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Peter Vermeulen
- Translational Cancer Research Unit, Ziekenhuis aan de Stroom (ZAS), Campus Augustinus, Antwerp, Belgium.
- Department of Gastrointestinal Surgery and Surgical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Wang X, Zhao L, Song X, Wu X, Krishnamurthy S, Semba T, Shao S, Knafl M, Coffer LW, Alexander A, Vines A, Bopparaju S, Woodward WA, Chu R, Zhang J, Yam C, Loo LWM, Nasrazadani A, Huong LP, Woodman SE, Futreal A, Tripathy D, Ueno NT. Genomic and transcriptomic analyses identify distinctive features of triple-negative inflammatory breast cancer. NPJ Precis Oncol 2024; 8:265. [PMID: 39558017 PMCID: PMC11574056 DOI: 10.1038/s41698-024-00729-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/01/2024] [Indexed: 11/20/2024] Open
Abstract
Triple-negative inflammatory breast cancer (TN-IBC) is the most aggressive type of breast cancer, yet its defining genomic, molecular, and immunological features remain largely unknown. In this study, we performed the largest and most comprehensive genomic and transcriptomic analyses of prospectively collected TN-IBC patient samples from a phase II clinical trial (ClinicalTrials.gov, NCT02876107, registered on August 22, 2016) and compared them to similarly analyzed stage III TN-non-IBC patient samples (ClinicalTrials.gov, NCT02276443, registered on October 21, 2014). We found that TN-IBC tumors have distinctive genomic, molecular, and immunological characteristics, including a lower tumor mutation load than TN-non-IBC, and an association of immunosuppressive tumor-infiltrating immune components with an unfavorable response to neoadjuvant chemotherapy. To our knowledge, this is the only study in which TN-IBC and TN-non-IBC samples were collected prospectively. Our analysis improves the understanding of the molecular landscape of the most aggressive subtype of breast cancer. Further studies are needed to discover novel prognostic biomarkers and druggable targets for TN-IBC.
Collapse
Affiliation(s)
- Xiaoping Wang
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- University of Hawai'i Cancer Center, Honolulu, HI, USA.
| | - Li Zhao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaogang Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Savitri Krishnamurthy
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Takashi Semba
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shan Shao
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Knafl
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Larry W Coffer
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Angela Alexander
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anita Vines
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Swetha Bopparaju
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wendy A Woodward
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Randy Chu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Azadeh Nasrazadani
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Le-Petross Huong
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott E Woodman
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoto T Ueno
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- University of Hawai'i Cancer Center, Honolulu, HI, USA.
| |
Collapse
|
3
|
Zhou K, Zhang M, Zhai D, Wang Z, Liu T, Xie Y, Shi Y, Shi H, Chen Q, Li X, Xu J, Cai Z, Zhang Y, Shao N, Lin Y. Genomic and transcriptomic profiling of inflammatory breast cancer reveals distinct molecular characteristics to non-inflammatory breast cancers. Breast Cancer Res Treat 2024; 208:441-459. [PMID: 39030466 DOI: 10.1007/s10549-024-07437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
PURPOSE Inflammatory breast cancer (IBC), a rare and highly aggressive form of breast cancer, accounts for 10% of breast cancer-related deaths. Previous omics studies of IBC have focused solely on one of genomics or transcriptomics and did not discover common differences that could distinguish IBC from non-IBC. METHODS Seventeen IBC patients and five non-IBC patients as well as additional thirty-three Asian breast cancer samples from TCGA-BRCA were included for the study. We performed whole-exon sequencing (WES) to investigate different somatic genomic alterations, copy number variants, and large structural variants between IBC and non-IBC. Bulk RNA sequencing (RNA-seq) was performed to examine the differentially expressed genes, pathway enrichment, and gene fusions. WES and RNA-seq data were further investigated in combination to discover genes that were dysregulated in both genomics and transcriptomics. RESULTS Copy number variation analysis identified 10 cytobands that showed higher frequency in IBC. Structural variation analysis showed more frequent deletions in IBC. Pathway enrichment and immune infiltration analysis indicated increased immune activation in IBC samples. Gene fusions including CTSC-RAB38 were found to be more common in IBC. We demonstrated more commonly dysregulated RAS pathway in IBC according to both WES and RNA-seq. Inhibitors targeting RAS signaling and its downstream pathways were predicted to possess promising effects in IBC treatment. CONCLUSION We discovered differences unique in Asian women that could potentially explain IBC etiology and presented RAS signaling pathway as a potential therapeutic target in IBC treatment.
Collapse
Affiliation(s)
- Kaiwen Zhou
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mengmeng Zhang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Duanyang Zhai
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zilin Wang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ting Liu
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yubin Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yawei Shi
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huijuan Shi
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qianjun Chen
- Department of Breast Oncology, Traditional Chinese Medicine Hospital of Guangdong Province, Guangzhou, Guangdong, China
| | - Xiaoping Li
- Department of Breast Oncology, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Juan Xu
- Department of Breast Oncology, Maternal and Child Health Care Hospital of Guangdong Province, Guangzhou, China
| | - Zhenhai Cai
- Department of Breast Oncology, Jieyang People's Hospital, Jieyang, Guangdong, China
| | - Yunjian Zhang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Nan Shao
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Ying Lin
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
4
|
Wylie D, Wang X, Yao J, Xu H, Ferrick-Kiddie EA, Iwase T, Krishnamurthy S, Ueno NT, Lambowitz AM. TGIRT-seq of Inflammatory Breast Cancer Tumor and Blood Samples Reveals Widespread Enhanced Transcription Impacting RNA Splicing and Intronic RNAs in Plasma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.05.26.23290469. [PMID: 37398275 PMCID: PMC10312853 DOI: 10.1101/2023.05.26.23290469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Inflammatory breast cancer (IBC) is the most aggressive and lethal breast cancer subtype but lacks unequivocal genomic differences or robust biomarkers that differentiate it from non-IBC. Here, Thermostable Group II intron Reverse Transcriptase RNA-sequencing (TGIRT-seq) revealed myriad differences in tumor samples, Peripheral Blood Mononuclear Cells (PBMCs), and plasma that distinguished IBC from non-IBC patients and healthy donors across all tested receptor-based subtypes. These included numerous differentially expressed protein-coding gene and non-coding RNAs in all three sample types, a granulocytic immune response in IBC PBMCs, and over-expression of antisense RNAs, suggesting wide-spread enhanced transcription in both IBC tumors and PBMCs. By using TGIRT-seq to quantitate Intron-exon Depth Ratios (IDRs) and mapping reads to both genome and transcriptome reference sequences, we developed methods for parallel analysis of transcriptional and post-transcriptional gene regulation. This analysis identified numerous differentially and non-differentially expressed protein-coding genes in IBC tumors and PBMCs with high IDRs, the latter reflecting rate-limiting RNA splicing that negatively impacts mRNA production. Mirroring gene expression differences in tumors and PBMCs, over-represented protein-coding gene RNAs in IBC patient plasma were largely intronic RNAs, while those in non-IBC patients and healthy donor plasma were largely mRNA fragments. Potential IBC biomarkers in plasma included T-cell receptor pre-mRNAs and intronic, LINE-1, and antisense RNAs. Our findings provide new insights into IBC and set the stage for monitoring disease progression and response to treatment by liquid biopsy. The methods developed for parallel transcriptional and post-transcriptional gene regulation analysis have potentially broad RNA-seq and clinical applications.
Collapse
Affiliation(s)
- Dennis Wylie
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712
| | - Xiaoping Wang
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Inflammatory Breast Cancer Research Program and Clinic, University of Hawai'i Cancer Center, Honolulu, HI 96813
- Cancer Biology Research Program, University of Hawai'i Cancer Center, Honolulu, HI 96813
| | - Jun Yao
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712
| | - Hengyi Xu
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712
| | | | - Toshiaki Iwase
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Inflammatory Breast Cancer Research Program and Clinic, University of Hawai'i Cancer Center, Honolulu, HI 96813
- Translational Clinical Research Program, University of Hawai'i Cancer Center, Honolulu, HI 96813
| | - Savitri Krishnamurthy
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Inflammatory Breast Cancer Research Program and Clinic, University of Hawai'i Cancer Center, Honolulu, HI 96813
- Cancer Biology Research Program, University of Hawai'i Cancer Center, Honolulu, HI 96813
- Translational Clinical Research Program, University of Hawai'i Cancer Center, Honolulu, HI 96813
| | - Alan M Lambowitz
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
5
|
Rypens C, Van Berckelaer C, Berditchevski F, van Dam P, Van Laere S. Deciphering the molecular biology of inflammatory breast cancer through molecular characterization of patient samples and preclinical models. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 384:77-112. [PMID: 38637101 DOI: 10.1016/bs.ircmb.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Inflammatory breast cancer is an aggressive subtype of breast cancer with dismal patient prognosis and a unique clinical presentation. In the past two decades, molecular profiling technologies have been used in order to gain insight into the molecular biology of IBC and to search for possible targets for treatment. Although a gene signature that accurately discriminates between IBC and nIBC patient samples and preclinical models was identified, the overall genomic and transcriptomic differences are small and ambiguous, mainly due to the limited sample sizes of the evaluated patient series and the failure to correct for confounding effects of the molecular subtypes. Nevertheless, data collected over the past 20 years by independent research groups increasingly support the existence of several IBC-specific biological characteristics. In this review, these features are classified as established, emerging and conceptual hallmarks based on the level of evidence reported in the literature. In addition, a synoptic model is proposed that integrates all hallmarks and that can explain how cancer cell intrinsic mechanisms (i.e. NF-κB activation, genomic instability, MYC-addiction, TGF-β resistance, adaptive stress response, chromatin remodeling, epithelial-to-mesenchymal transition) can contribute to the establishment of the dynamic immune microenvironment associated with IBC. It stands to reason that future research projects are needed to further refine (parts of) this model and to investigate its clinical translatability.
Collapse
Affiliation(s)
- Charlotte Rypens
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; CellCarta N V, Wilrijk, Belgium
| | - Christophe Van Berckelaer
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Fedor Berditchevski
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Peter van Dam
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Multidisciplinary Oncological Centre Antwerp (MOCA), Antwerp University Hospital, Drie Eikenstraat 655, Edegem, Belgium
| | - Steven Van Laere
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
6
|
Kircher M, Säurich J, Selle M, Jung K. Assessing Outlier Probabilities in Transcriptomics Data When Evaluating a Classifier. Genes (Basel) 2023; 14:genes14020387. [PMID: 36833313 PMCID: PMC9956321 DOI: 10.3390/genes14020387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Outliers in the training or test set used to fit and evaluate a classifier on transcriptomics data can considerably change the estimated performance of the model. Hence, an either too weak or a too optimistic accuracy is then reported and the estimated model performance cannot be reproduced on independent data. It is then also doubtful whether a classifier qualifies for clinical usage. We estimate classifier performances in simulated gene expression data with artificial outliers and in two real-world datasets. As a new approach, we use two outlier detection methods within a bootstrap procedure to estimate the outlier probability for each sample and evaluate classifiers before and after outlier removal by means of cross-validation. We found that the removal of outliers changed the classification performance notably. For the most part, removing outliers improved the classification results. Taking into account the fact that there are various, sometimes unclear reasons for a sample to be an outlier, we strongly advocate to always report the performance of a transcriptomics classifier with and without outliers in training and test data. This provides a more diverse picture of a classifier's performance and prevents reporting models that later turn out to be not applicable for clinical diagnoses.
Collapse
|
7
|
Steenbrugge J, Bellemans J, Vander Elst N, Demeyere K, De Vliegher J, Perera T, De Wever O, Van Den Broeck W, De Spiegelaere W, Sanders NN, Meyer E. One cisplatin dose provides durable stimulation of anti-tumor immunity and alleviates anti-PD-1 resistance in an intraductal model for triple-negative breast cancer. Oncoimmunology 2022; 11:2103277. [PMID: 35898705 PMCID: PMC9311321 DOI: 10.1080/2162402x.2022.2103277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aggressive triple-negative breast cancer (TNBC) is classically treated with chemotherapy. Besides direct tumor cell killing, some chemotherapeutics such as cisplatin provide additional disease reduction through stimulation of anti-tumor immunity. The cisplatin-induced immunomodulation in TNBC was here investigated in-depth using immunocompetent intraductal mouse models. Upon primary tumor transition to invasive carcinoma, cisplatin was injected systemically and significantly reduced tumor progression. Flow cytometric immunophenotyping was corroborated by immunohistochemical analyses and revealed both differential immune cell compositions and positivity for their programmed death (PD)-1 and PD-ligand (L)1 markers across body compartments, including the primary tumor, axillary lymph nodes and spleen. As key findings, a significant decrease in immunosuppressive and a concomitant increase in anti-tumor lymphocytic cell numbers were observed in the axillary lymph nodes and spleen, highlighting their importance in cisplatin-stimulated anti-tumor immunity. These immunomodulatory effects were already established following the first cisplatin dose, indicating that early cisplatin-mediated events may determine (immuno)therapeutic outcome. Furthermore, a single cisplatin dose sufficed to alleviate anti-PD-1 resistance in a 4T1-based model, providing add-on disease reduction without toxic side effects as seen upon multiple cisplatin dosing. Overall, these results highlight cisplatin as immunotherapeutic ally in TNBC, providing durable immunostimulation, even after a single dose.
Collapse
Affiliation(s)
- Jonas Steenbrugge
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Julie Bellemans
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Niels Vander Elst
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kristel Demeyere
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Josephine De Vliegher
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Olivier De Wever
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Wim Van Den Broeck
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ward De Spiegelaere
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Niek N. Sanders
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evelyne Meyer
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
8
|
Zhang M, Wu K, Wang M, Bai F, Chen H. CASP9 As a Prognostic Biomarker and Promising Drug Target Plays a Pivotal Role in Inflammatory Breast Cancer. Int J Anal Chem 2022; 2022:1043445. [PMID: 36199443 PMCID: PMC9527435 DOI: 10.1155/2022/1043445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/02/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Background Inflammatory breast cancer (IBC) is one of the most rare and aggressive subtypes of primary breast cancer (BC). Our study aimed to explore hub genes related to the pathogenesis of IBC, which could be considered as novel molecular biomarkers for IBC diagnosis and prognosis. Material and Methods. Two datasets from gene expression omnibus database (GEO) were selected. Enrichment analysis and protein-protein interaction (PPI) network for the DEGs were performed. We analyzed the prognostic values of hub genes in the Kaplan-Meier Plotter. Connectivity Map (CMap) and Comparative Toxicogenomics Database (CTD) was used to find candidate small molecules capable to reverse the gene status of IBC. Results 157 DEGs were selected in total. We constructed the PPI network with 154 nodes interconnected by 128 interactions. The KEGG pathway analysis indicated that the DEGs were enriched in apoptosis, pathways in cancer and insulin signaling pathway. PTEN, PSMF1, PSMC6, AURKB, FZR1, CASP9, CASP6, CASP8, BAD, AKR7A2, ZNF24, SSX2IP, SIGLEC1, MS4A4A, and VSIG4 were selected as hub genes based on the high degree of connectivity. Six hub genes (PSMC6, AURKB, CASP9, BAD, ZNF24, and SSX2IP) that were significantly associated with the prognosis of breast cancer. The expression of CASP9 protein was associated with prognosis and immune cells infiltration of breast cancer. CASP9- naringenin (NGE) is expected to be the most promising candidate gene-compound interaction for the treatment of IBC. Conclusion Taken together, CASP9 can be used as a prognostic biomarker and a novel therapeutic target in IBC.
Collapse
Affiliation(s)
- Mingdi Zhang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Kejin Wu
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Maoli Wang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Fang Bai
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Hongliang Chen
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
9
|
Zampedri C, Martínez-Flores WA, Melendez-Zajgla J. The Use of Zebrafish Xenotransplant Assays to Analyze the Role of lncRNAs in Breast Cancer. Front Oncol 2021; 11:687594. [PMID: 34123857 PMCID: PMC8190406 DOI: 10.3389/fonc.2021.687594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022] Open
Abstract
Breast cancer represents a great challenge since it is the first cause of death by cancer in women worldwide. LncRNAs are a newly described class of non-coding RNAs that participate in cancer progression. Their use as cancer markers and possible therapeutic targets has recently gained strength. Animal xenotransplants allows for in vivo monitoring of disease development, molecular elucidation of pathogenesis and the design of new therapeutic strategies. Nevertheless, the cost and complexities of mice husbandry makes medium to high throughput assays difficult. Zebrafishes (Danio rerio) represent a novel model for these assays, given the ease with which xenotransplantation trials can be performed and the economic and experimental advantages it offers. In this review we propose the use of xenotransplants in zebrafish to study the role of breast cancer lncRNAs using low to medium high throughput assays.
Collapse
Affiliation(s)
- Cecilia Zampedri
- Functional Genomics Laboratories, Instituto Nacional de Medicina Genomica, Mexico City, Mexico
| | | | - Jorge Melendez-Zajgla
- Functional Genomics Laboratories, Instituto Nacional de Medicina Genomica, Mexico City, Mexico
| |
Collapse
|
10
|
Chakraborty P, George JT, Woodward WA, Levine H, Jolly MK. Gene expression profiles of inflammatory breast cancer reveal high heterogeneity across the epithelial-hybrid-mesenchymal spectrum. Transl Oncol 2021; 14:101026. [PMID: 33535154 PMCID: PMC7851345 DOI: 10.1016/j.tranon.2021.101026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/09/2021] [Accepted: 01/18/2021] [Indexed: 01/10/2023] Open
Abstract
No unique genome signature or molecular therapy exists for inflammatory breast cancer (IBC), a highly aggressive breast cancer with a 5-year survival rate of less than 30%. We show that various gene lists proposed as molecular footprints of IBC have no overlap and thus very limited predictive accuracy in identifying IBC samples. We observed that single-sample gene set enrichment analysis (ssGSEA) of IBC samples along the epithelial-hybrid-mesenchymal spectrum can help IBC identification. IBC samples robustly displayed a higher coefficient of variation in terms of EMT scores, as compared to non-IBC samples. Higher heterogeneity along the epithelial-hybrid-mesenchymal spectrum can be regarded to be a hallmark of IBC and a possibly useful biomarker.
Inflammatory breast cancer (IBC) is a highly aggressive breast cancer that metastasizes largely via tumor emboli, and has a 5-year survival rate of less than 30%. No unique genomic signature has yet been identified for IBC nor has any specific molecular therapeutic been developed to manage the disease. Thus, identifying gene expression signatures specific to IBC remains crucial. Here, we compare various gene lists that have been proposed as molecular footprints of IBC using different clinical samples as training and validation sets and using independent training algorithms, and determine their accuracy in identifying IBC samples in three independent datasets. We show that these gene lists have little to no mutual overlap, and have limited predictive accuracy in identifying IBC samples. Despite this inconsistency, single-sample gene set enrichment analysis (ssGSEA) of IBC samples correlate with their position on the epithelial-hybrid-mesenchymal spectrum. This positioning, together with ssGSEA scores, improves the accuracy of IBC identification across the three independent datasets. Finally, we observed that IBC samples robustly displayed a higher coefficient of variation in terms of EMT scores, as compared to non-IBC samples. Pending verification that this patient-to-patient variability extends to intratumor heterogeneity within a single patient, these results suggest that higher heterogeneity along the epithelial-hybrid-mesenchymal spectrum can be regarded to be a hallmark of IBC and a possibly useful biomarker.
Collapse
Affiliation(s)
- Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jason T George
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77005, USA
| | - Wendy A Woodward
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; MD Anderson Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA; Departments of Physics and Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
11
|
Targeting Signaling Pathways in Inflammatory Breast Cancer. Cancers (Basel) 2020; 12:cancers12092479. [PMID: 32883032 PMCID: PMC7563157 DOI: 10.3390/cancers12092479] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
Inflammatory breast cancer (IBC), although rare, is the most aggressive type of breast cancer. Only 2-4% of breast cancer cases are classified as IBC, but-owing to its high rate of metastasis and poor prognosis-8% to 10% of breast cancer-related mortality occur in patients with IBC. Currently, IBC-specific targeted therapies are not available, and there is a critical need for novel therapies derived via understanding novel targets. In this review, we summarize the biological functions of critical signaling pathways in the progression of IBC and the preclinical and clinical studies of targeting these pathways in IBC. We also discuss studies of crosstalk between several signaling pathways and the IBC tumor microenvironment.
Collapse
|
12
|
Steenbrugge J, Vander Elst N, Demeyere K, De Wever O, Sanders NN, Van Den Broeck W, Dirix L, Van Laere S, Meyer E. Comparative Profiling of Metastatic 4T1- vs. Non-metastatic Py230-Based Mammary Tumors in an Intraductal Model for Triple-Negative Breast Cancer. Front Immunol 2019; 10:2928. [PMID: 31921184 PMCID: PMC6927949 DOI: 10.3389/fimmu.2019.02928] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/28/2019] [Indexed: 12/30/2022] Open
Abstract
The transition of ductal carcinoma in situ (DCIS) to invasive carcinoma (IC) in breast cancer can be faithfully reproduced by the intraductal mouse model. Envisaging to use this model for therapeutic testing, we aimed to in-depth characterize the tumor immunity associated with the differential progression of two types of intraductal tumors. More specifically, we focused on triple-negative breast cancer (TNBC) and intraductally inoculated luciferase-expressing metastatic 4T1 and locally invasive Py230 cells in lactating mammary glands of syngeneic BALB/c and C57BL/6 female mice, respectively. Although the aggressive 4T1 cells rapidly formed solid tumors, Py230 tumors eventually grew to a similar size through enhanced proliferation. Yet, ductal tumor cell breakthrough and metastasis occurred earlier in the 4T1- compared to the Py230-based intraductal model and was associated with high expression of matrix metalloproteinase (MMP)-9, vascular endothelial growth factor (VEGF), chitinase 3-like 1 (CHI3L1) and lipocalin 2 (LCN2) as well as an increased influx of immune cells (mainly macrophages, neutrophils and T-cells). Moreover, activated cytotoxic T-cells, B-cells and programmed death-1 (PD-1)-positive cells were more prominent in the 4T1-based intraductal model in line with enhanced pro-inflammatory cytokine and gene expression profiles. Py230-based tumors showed a more immunosuppressed anti-inflammatory profile with a high amount of regulatory T-cells, which may account for the decreased T-cell activation but increased proliferation compared to the 4T1-based tumors. Taken together, our results highlight the differential immunological aspects of aggressive metastatic and non-aggressive intraductal progression of 4T1- vs. Py230-based tumors, providing a base for future studies to explore therapy using these intraductal TNBC models.
Collapse
Affiliation(s)
- Jonas Steenbrugge
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Translational Cancer Research Unit Antwerp, Center for Oncological Research, General Hospital Sint-Augustinus, Wilrijk, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Niels Vander Elst
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kristel Demeyere
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Olivier De Wever
- Cancer Research Institute Ghent, Ghent, Belgium.,Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Niek N Sanders
- Cancer Research Institute Ghent, Ghent, Belgium.,Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Wim Van Den Broeck
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luc Dirix
- Translational Cancer Research Unit Antwerp, Center for Oncological Research, General Hospital Sint-Augustinus, Wilrijk, Belgium
| | - Steven Van Laere
- Translational Cancer Research Unit Antwerp, Center for Oncological Research, General Hospital Sint-Augustinus, Wilrijk, Belgium
| | - Evelyne Meyer
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
13
|
Inflammatory Breast Cancer: Diagnostic, Molecular and Therapeutic Considerations. CURRENT BREAST CANCER REPORTS 2019. [DOI: 10.1007/s12609-019-00337-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Valeta-Magara A, Gadi A, Volta V, Walters B, Arju R, Giashuddin S, Zhong H, Schneider RJ. Inflammatory Breast Cancer Promotes Development of M2 Tumor-Associated Macrophages and Cancer Mesenchymal Cells through a Complex Chemokine Network. Cancer Res 2019; 79:3360-3371. [PMID: 31043378 DOI: 10.1158/0008-5472.can-17-2158] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 02/14/2019] [Accepted: 04/26/2019] [Indexed: 01/04/2023]
Abstract
Inflammatory breast cancer (IBC) is a highly aggressive form of breast cancer that displays profound cancer stem cell (CSC) and mesenchymal features that promote rapid metastasis. Another hallmark of IBC is high infiltration of M2 tumor-associated (immune-suppressing) macrophages. The molecular mechanism that drives these IBC phenotypes is not well understood. Using patient breast tumor specimens, breast cancer cell lines, and a patient-derived xenograft model of IBC, we demonstrate that IBC strongly expresses IL8 and growth-regulated oncogene (GRO) chemokines that activate STAT3, which promotes development of high levels of CSC-like cells and a mesenchymal phenotype. We also show that IBC expresses high levels of many monocyte recruitment and macrophage polarization factors that attract and differentiate monocytes into tumor-promoting, immune-suppressing M2-like macrophages. The M2 macrophages in turn were found to secrete high levels of IL8 and GRO chemokines, thereby creating a feed-forward chemokine loop that further drives an IBC epithelial-to-mesenchymal transition. Our study uncovers an intricate IBC-initiated autocrine-paracrine signaling network between IBC cells and monocytes that facilitates development of this highly aggressive form of breast cancer. SIGNIFICANCE: This study uncovers a signaling network in which IBC cells commandeer macrophages to become tumor-promoting, and they in turn drive IBC cells to be more cancer stem-like, mesenchymal, and aggressive.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/13/3360/F1.large.jpg.
Collapse
Affiliation(s)
| | - Abhilash Gadi
- Department of Microbiology, NYU School of Medicine, New York, New York
| | - Viviana Volta
- Department of Microbiology, NYU School of Medicine, New York, New York
| | - Beth Walters
- Department of Microbiology, NYU School of Medicine, New York, New York
| | - Rezina Arju
- Department of Microbiology, NYU School of Medicine, New York, New York
| | | | - Hua Zhong
- Division of Biostatistics, Department of Population Health, NYU School of Medicine, New York, New York
| | - Robert J Schneider
- Department of Microbiology, NYU School of Medicine, New York, New York. .,Division of Biostatistics, Department of Population Health, NYU School of Medicine, New York, New York.,NYU Perlmutter Cancer Center, NYU School of Medicine, New York, New York
| |
Collapse
|
15
|
Qi Y, Wang X, Kong X, Zhai J, Fang Y, Guan X, Wang J. Expression signatures and roles of microRNAs in inflammatory breast cancer. Cancer Cell Int 2019; 19:23. [PMID: 30733644 PMCID: PMC6357482 DOI: 10.1186/s12935-018-0709-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
Inflammatory breast cancer (IBC) is an infrequent but aggressive manifestation of breast cancer, which accounts for 2-4% of all breast cancer cases but responsible for 7-10% of breast cancer-related deaths, and with a 20-30% 10-year overall survival compared with 80% for patients with non-IBC with an unordinary phenotype, whose molecular mechanisms are still largely unknown to date. Discovering and identifying novel bio-markers responsible for diagnosis and therapeutic targets is a pressing need. MicroRNAs are a class of small non-coding RNAs that are capable to post-transcriptionally regulate gene expression of genes by targeting mRNAs, exerting vital and tremendous affects in numerous malignancy-related biological processes, including cell apoptosis, metabolism, proliferation and differentiation. In this study, we review present and high-quality evidences regarding the potential applications of inflammatory breast cancer associated microRNAs for diagnosis and prognosis of this lethal disease.
Collapse
Affiliation(s)
- Yihang Qi
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
- Department of Laboratory Medicine, Mayo Clinic, Rochester, MN 55902 USA
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Jie Zhai
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| |
Collapse
|
16
|
Raposo TP, Arias-Pulido H, Chaher N, Fiering SN, Argyle DJ, Prada J, Pires I, Queiroga FL. Comparative aspects of canine and human inflammatory breast cancer. Semin Oncol 2018. [PMID: 29526258 DOI: 10.1053/j.seminoncol.2017.10.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammatory breast cancer (IBC) in humans is the most aggressive form of mammary gland cancer and shares clinical, pathologic, and molecular patterns of disease with canine inflammatory mammary carcinoma (CIMC). Despite the use of multimodal therapeutic approaches, including targeted therapies, the prognosis for IBC/CIMC remains poor. The aim of this review is to critically analyze IBC and CIMC in terms of biology and clinical features. While rodent cancer models have formed the basis of our understanding of cancer biology, the translation of this knowledge into improved outcomes has been limited. However, it is possible that a comparative "one health" approach to research, using a natural canine model of the disease, may help advance our knowledge on the biology of the disease. This will translate into better clinical outcomes for both species. We propose that CIMC has the potential to be a useful model for developing and testing novel therapies for IBC. Further, this strategy could significantly improve and accelerate the design and establishment of new clinical trials to identify novel and improved therapies for this devastating disease in a more predictable way.
Collapse
Affiliation(s)
- Teresa P Raposo
- Division of Cancer and Stem Cells, Faculty of Medicine, University of Nottingham, United Kingdom
| | - Hugo Arias-Pulido
- Department of Microbiology and Immunology and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | - Nabila Chaher
- Department of Pathology, Centre Pierre et Marie Curie, 1, Avenue Battendier, Place May 1st, Algiers, Algeria
| | - Steven N Fiering
- Department of Microbiology and Immunology and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | - David J Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, Easter Bush Campus, Midlothian, University of Edinburgh, United Kingdom
| | - Justina Prada
- Departament of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Animal and Veterinary research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Isabel Pires
- Departament of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Animal and Veterinary research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Felisbina Luísa Queiroga
- Departament of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Center for the Study of Animal Sciences, CECA-ICETA, University of Porto, Porto, Portugal; Center for Research and Technology of Agro-Environment and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.
| |
Collapse
|
17
|
Mohamed HT, El-Husseiny N, El-Ghonaimy EA, Ibrahim SA, Bazzi ZA, Cavallo-Medved D, Boffa MB, El-Shinawi M, Mohamed MM. IL-10 correlates with the expression of carboxypeptidase B2 and lymphovascular invasion in inflammatory breast cancer: The potential role of tumor infiltrated macrophages. Curr Probl Cancer 2018; 42:215-230. [PMID: 29459177 DOI: 10.1016/j.currproblcancer.2018.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/26/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022]
Abstract
Pro-carboxypeptidase B2 (pro-CPB2) or thrombin-activatable fibrinolysis inhibitor (TAFI) is a glycoprotein encoded by the CPB2 gene and deregulated in several cancer types, including breast cancer. Thrombin binding to thrombomodulin (TM), encoded by THBD, is important for TAFI activation. CPB2 gene expression is influenced by genetic polymorphism and cytokines such as interleukin 10 (IL-10). Our previous results showed that tumor infiltrating monocytes/macrophages (CD14+/CD16+) isolated from inflammatory breast cancer (IBC) patients' secrete high levels of IL-10. The aim of the present study is to test genetic polymorphism and expression of CPB2 in healthy breast tissues and carcinoma tissues of non-IBC and IBC patients. Furthermore, to investigate whether IL-10 modulates the expression of CPB2 and THBD in vivo and in-vitro. We tested CPB2 Thr325Ile polymorphism using restriction fragment length polymorphism, (RFLP) technique in healthy and carcinoma breast tissues. The mRNA expression of CPB2, THBD and IL10 were assessed by RT-qPCR. Infiltration of CD14+ cells was assessed by immunohistochemistry. In addition, we investigated the correlation between infiltration of CD14+ cells and expression of IL10 and CPB2. Furthermore, we correlated IL10 expression with the expression of both CPB2 and THBD in breast carcinoma tissues. Finally, we validated the role of recombinant IL-10 in regulating the expression of CPB2 and THBD using different breast cancer cell lines. Our results showed that CPB2 genotypes carrying the high-risk allele [Thr/Ile (CT) and Ile/Ile (TT)] were more frequent in both IBC and non-IBC patients compared to control group. CPB2 genotypes did not show any statistical correlation with CPB2 mRNA expression levels or patients' clinical pathological properties. Interestingly, CPB2 and IL10 expression were significantly higher and positively correlated with the incidence of CD14+ cells in carcinoma tissues of IBC as compared to non-IBC. On the other hand, THBD expression was significantly lower in IBC carcinoma versus non-IBC tissues. Based on molecular subtypes, CPB2 and IL10 expression were significantly higher in triple negative (TN) as compared to hormonal positive (HP) carcinoma tissues of IBC. Moreover, CPB2 expression was positively correlated with presence of lymphovascular invasion and the expression of IL10 in carcinoma tissues of IBC patients. Furthermore, recombinant human IL-10 stimulated CPB2 expression in SUM-149 (IBC cell line) but not in MDA-MB-231 (non-IBC cell line), while there was no significant effect THBD expression. In conclusion, carcinoma tissues of IBC patients are characterized by higher expression of CPB2 and lower expression of THBD. Moreover, CPB2 positively correlates with IL10 mRNA expression, incidence of CD14+ cells and lymphovascular invasion in IBC patients. IL-10 stimulated CPB2 expression in TN-IBC cell line suggests a relevant role of CPB2 in the aggressive phenotype of IBC.
Collapse
Affiliation(s)
| | - Noura El-Husseiny
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | | | | | - Zainab A Bazzi
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Dora Cavallo-Medved
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Michael B Boffa
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Breast-Gynecological International Cancer Society, Cairo, Egypt
| | - Mona Mostafa Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt; Breast-Gynecological International Cancer Society, Cairo, Egypt.
| |
Collapse
|
18
|
Challenging a Misnomer? The Role of Inflammatory Pathways in Inflammatory Breast Cancer. Mediators Inflamm 2017; 2017:4754827. [PMID: 28607534 PMCID: PMC5457777 DOI: 10.1155/2017/4754827] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/18/2017] [Indexed: 12/26/2022] Open
Abstract
Inflammatory breast cancer is a rare, yet highly aggressive form of breast cancer, which accounts for less than 5% of all locally advanced presentations. The clinical presentation of inflammatory breast cancer often differs significantly from that of noninflammatory breast cancer; however, immunohistochemistry reveals few, if any, distinguishing features. The more aggressive triple-negative and HER2-positive breast cancer subtypes are overrepresented in inflammatory breast cancer compared with noninflammatory breast cancer, with a poorer prognosis in response to conventional therapies. Despite its name, there remains some controversy regarding the role of inflammation in inflammatory breast cancer. This review summarises the current molecular evidence suggesting that inflammatory signaling pathways are upregulated in this disease, including NF-κB activation and excessive IL-6 production among others, which may provide an avenue for novel therapeutics. The role of the tumor microenvironment, through tumor-associated macrophages, infiltrating lymphocytes, and cancer stem cells is also discussed, suggesting that these tumor extrinsic factors may help account for the differences in behavior between inflammatory breast cancer and noninflammatory breast cancer. While there are various novel treatment strategies already underway in clinical trials, the need for further development of preclinical models of this rare but aggressive disease is paramount.
Collapse
|
19
|
Identification of frequent somatic mutations in inflammatory breast cancer. Breast Cancer Res Treat 2017; 163:263-272. [PMID: 28243898 DOI: 10.1007/s10549-017-4165-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/15/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE Inflammatory breast cancer is an aggressive form of breast cancer that shows distinct clinical features from non-inflammatory breast cancer. Genomic understanding of inflammatory breast cancer will shed light on biological targets for this disease. Our objective was to identify targeted hotspot mutations using multiplex genome sequencing in inflammatory breast cancer and compare the findings with those for patients with non-inflammatory breast cancer to further recognize novel targets. METHODS We studied 400 patients with metastatic breast cancer who had somatic hotspot mutation testing using a 46- or 50-gene multiplex platform from March 2012 to December 2014. Among this population, 24 patients had inflammatory breast cancer and 376 patients had non-inflammatory breast cancer. We tested a total of 26 samples from 24 patients with inflammatory breast cancer. RESULTS The average number of mutations per patient was higher in inflammatory breast cancer than in non-inflammatory breast cancer (1.23 vs. 0.65, respectively). Identified somatic mutations in inflammatory breast cancer were TP53 (n = 18, 75%), PIK3CA (n = 10, 41.7%), and ERBB2 (n = 4, 16.7%). TP53 and ERBB2 mutations were significantly more prevalent in inflammatory breast cancer than in non-inflammatory breast cancer (P < 0.01). All patients with ERBB2 mutations had hormone receptor (HR)+ primary tumors. CONCLUSIONS TP53, PIK3CA, and ERBB2 were detected as three major somatic mutations in metastatic inflammatory breast cancer patients. While the inflammatory breast cancer TP53 and PIK3CA mutations mirrored previously reported data for metastatic non-inflammatory breast cancer, this is the first report of higher frequency of ERBB2 mutation in inflammatory breast cancer, especially in the HR+ subtype. Once validated in a larger cohort of inflammatory breast cancer patients, this novel finding could lead to development of treatments for HR+ inflammatory breast cancer.
Collapse
|
20
|
Kumar A, Jha S, Pattanayak SP. Daphnetin ameliorates 7,12-dimethylbenz[a]anthracene-induced mammary carcinogenesis through Nrf-2-Keap1 and NF-κB pathways. Biomed Pharmacother 2016; 82:439-48. [DOI: 10.1016/j.biopha.2016.05.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 01/29/2023] Open
|
21
|
Hamm CA, Moran D, Rao K, Trusk PB, Pry K, Sausen M, Jones S, Velculescu VE, Cristofanilli M, Bacus S. Genomic and Immunological Tumor Profiling Identifies Targetable Pathways and Extensive CD8+/PDL1+ Immune Infiltration in Inflammatory Breast Cancer Tumors. Mol Cancer Ther 2016; 15:1746-56. [PMID: 27196778 DOI: 10.1158/1535-7163.mct-15-0353] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 04/13/2016] [Indexed: 11/16/2022]
Abstract
Inflammatory breast cancer (IBC) is a rare and aggressive form of breast cancer that remains poorly understood at the molecular level. Comprehensive tumor profiling was performed to understand clinically actionable alterations in IBC. Targeted next-generation sequencing (NGS) and IHC were performed to identify activated pathways in IBC tumor tissues. siRNA studies examined the impact of IBC genomic variants in cellular models. IBC tumor tissues were further characterized for immune infiltration and immune checkpoint expression by IHC. Genomic analysis identified recurrent alterations in core biologic pathways, including activating and targetable variants in HER/PI3K/mTOR signaling. High rates of activating HER3 point mutations were discovered in IBC tumors. Cell line studies confirmed a role for mutant HER3 in IBC cell proliferation. Immunologic analysis revealed a subset of IBC tumors associated with high CD8(+)/PD-L1(+) lymphocyte infiltration. Immune infiltration positively correlated with an NGS-based estimate of neoantigen exposure derived from the somatic mutation rate and mutant allele frequency, iScore. Additionally, DNA mismatch repair alterations, which may contribute to higher iScores, occurred at greater frequency in tumors with higher immune infiltration. Our study identifies genomic alterations that mechanistically contribute to oncogenic signaling in IBC and provides a genetic basis for the selection of clinically relevant targeted and combination therapeutic strategies. Furthermore, an NGS-based estimate of neoantigen exposure developed in this study (iScore) may be a useful biomarker to predict immune infiltration in IBC and other cancers. The iScore may be associated with greater levels of response to immunotherapies, such as PD-L1/PD-1-targeted therapies. Mol Cancer Ther; 15(7); 1746-56. ©2016 AACR.
Collapse
Affiliation(s)
| | - Diarmuid Moran
- Translational R&D Oncology Group, Quintiles, Westmont, Illinois. Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois.
| | - Kakuturu Rao
- Translational R&D Oncology Group, Quintiles, Westmont, Illinois
| | | | - Karen Pry
- Translational R&D Oncology Group, Quintiles, Westmont, Illinois
| | - Mark Sausen
- Personal Genome Diagnostics, Inc., Baltimore, Maryland
| | - Siân Jones
- Personal Genome Diagnostics, Inc., Baltimore, Maryland
| | - Victor E Velculescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Massimo Cristofanilli
- Department of Medical Oncology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Sarah Bacus
- Translational R&D Oncology Group, Quintiles, Westmont, Illinois. Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
22
|
Huo L, Wang Y, Gong Y, Krishnamurthy S, Wang J, Diao L, Liu CG, Liu X, Lin F, Symmans WF, Wei W, Zhang X, Sun L, Alvarez RH, Ueno NT, Fouad TM, Harano K, Debeb BG, Wu Y, Reuben J, Cristofanilli M, Zuo Z. MicroRNA expression profiling identifies decreased expression of miR-205 in inflammatory breast cancer. Mod Pathol 2016; 29:330-46. [PMID: 26916073 PMCID: PMC11793840 DOI: 10.1038/modpathol.2016.38] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/09/2016] [Accepted: 01/09/2016] [Indexed: 02/07/2023]
Abstract
Inflammatory breast cancer is the most aggressive form of breast cancer. Identifying new biomarkers to be used as therapeutic targets is in urgent need. Messenger RNA expression profiling studies have indicated that inflammatory breast cancer is a transcriptionally heterogeneous disease, and specific molecular targets for inflammatory breast cancer have not been well established. We performed microRNA expression profiling in inflammatory breast cancer in comparison with locally advanced noninflammatory breast cancer in this study. Although many microRNAs were differentially expressed between normal breast tissue and tumor tissue, most of them did not show differential expression between inflammatory and noninflammatory tumor samples. However, by microarray analysis, quantitative reverse transcription PCR, and in situ hybridization, we showed that microRNA-205 expression was decreased not only in tumor compared with normal breast tissue, but also in inflammatory breast cancer compared with noninflammatory breast cancer. Lower expression of microRNA-205 correlated with worse distant metastasis-free survival and overall survival in our cohort. A small-scale immunohistochemistry analysis showed coexistence of decreased microRNA-205 expression and decreased E-cadherin expression in some ductal tumors. MicroRNA-205 may serve as a therapeutic target in advanced breast cancer including inflammatory breast cancer.
Collapse
Affiliation(s)
- Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Yan Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Yun Gong
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Savitri Krishnamurthy
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Chang-Gong Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Xiuping Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Feng Lin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - William F. Symmans
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Wei Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Xinna Zhang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Li Sun
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Ricardo H. Alvarez
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Naoto T. Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Tamer M. Fouad
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Kenichi Harano
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Bisrat G. Debeb
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Yun Wu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - James Reuben
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | | | - Zhuang Zuo
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| |
Collapse
|
23
|
Jansen MPHM, Sas L, Sieuwerts AM, Van Cauwenberghe C, Ramirez-Ardila D, Look M, Ruigrok-Ritstier K, Finetti P, Bertucci F, Timmermans MM, van Deurzen CHM, Martens JWM, Simon I, Roepman P, Linn SC, van Dam P, Kok M, Lardon F, Vermeulen PB, Foekens JA, Dirix L, Berns EMJJ, Van Laere S. Decreased expression of ABAT and STC2 hallmarks ER-positive inflammatory breast cancer and endocrine therapy resistance in advanced disease. Mol Oncol 2015; 9:1218-33. [PMID: 25771305 DOI: 10.1016/j.molonc.2015.02.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Patients with Estrogen Receptor α-positive (ER+) Inflammatory Breast Cancer (IBC) are less responsive to endocrine therapy compared with ER+ non-IBC (nIBC) patients. The study of ER+ IBC samples might reveal biomarkers for endocrine resistant breast cancer. MATERIALS & METHODS Gene expression profiles of ER+ samples from 201 patients were explored for genes that discriminated between IBC and nIBC. Classifier genes were applied onto clinically annotated expression data from 947 patients with ER+ breast cancer and validated with RT-qPCR for 231 patients treated with first-line tamoxifen. Relationships with metastasis-free survival (MFS) and progression-free survival (PFS) following adjuvant and first-line endocrine treatment, respectively, were investigated using Cox regression analysis. RESULTS A metagene of six genes including the genes encoding for 4-aminobutyrate aminotransferase (ABAT) and Stanniocalcin-2 (STC2) were identified to distinguish 22 ER+ IBC from 43 ER+ nIBC patients and remained discriminatory in an independent series of 136 patients. The metagene and two genes were not prognostic in 517 (neo)adjuvant untreated lymph node-negative ER+ nIBC breast cancer patients. Only ABAT was related to outcome in 250 patients treated with adjuvant tamoxifen. Three independent series of in total 411 patients with advanced disease showed increased metagene scores and decreased expression of ABAT and STC2 to be correlated with poor first-line endocrine therapy outcome. The biomarkers remained predictive for first-line tamoxifen treatment outcome in multivariate analysis including traditional factors or published signatures. In an exploratory analysis, ABAT and STC2 protein expression levels had no relation with PFS after first-line tamoxifen. CONCLUSIONS This study utilized ER+ IBC to identify a metagene including ABAT and STC2 as predictive biomarkers for endocrine therapy resistance.
Collapse
Affiliation(s)
- Maurice P H M Jansen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3000 CA Rotterdam, The Netherlands.
| | - Leen Sas
- Translational Cancer Research Unit, GZA Hospitals St-Augustinus, Oosterveldlaan 24, Antwerp B2610, Belgium; Department of Medical Oncology, University Hospital Antwerp, Wilrijkstraat 10, B2650 Antwerp, Belgium
| | - Anieta M Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3000 CA Rotterdam, The Netherlands
| | - Caroline Van Cauwenberghe
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Diana Ramirez-Ardila
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3000 CA Rotterdam, The Netherlands
| | - Maxime Look
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3000 CA Rotterdam, The Netherlands
| | - Kirsten Ruigrok-Ritstier
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3000 CA Rotterdam, The Netherlands
| | - Pascal Finetti
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
| | - François Bertucci
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
| | - Mieke M Timmermans
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3000 CA Rotterdam, The Netherlands
| | - Carolien H M van Deurzen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3000 CA Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3000 CA Rotterdam, The Netherlands
| | - Iris Simon
- Research and Development, Agendia BV, Amsterdam, The Netherlands
| | - Paul Roepman
- Research and Development, Agendia BV, Amsterdam, The Netherlands
| | - Sabine C Linn
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Peter van Dam
- Translational Cancer Research Unit, GZA Hospitals St-Augustinus, Oosterveldlaan 24, Antwerp B2610, Belgium
| | - Marleen Kok
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Filip Lardon
- Department of Medical Oncology, University Hospital Antwerp, Wilrijkstraat 10, B2650 Antwerp, Belgium
| | - Peter B Vermeulen
- Translational Cancer Research Unit, GZA Hospitals St-Augustinus, Oosterveldlaan 24, Antwerp B2610, Belgium
| | - John A Foekens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3000 CA Rotterdam, The Netherlands
| | - Luc Dirix
- Translational Cancer Research Unit, GZA Hospitals St-Augustinus, Oosterveldlaan 24, Antwerp B2610, Belgium
| | - Els M J J Berns
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3000 CA Rotterdam, The Netherlands
| | - Steven Van Laere
- Translational Cancer Research Unit, GZA Hospitals St-Augustinus, Oosterveldlaan 24, Antwerp B2610, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Abstract
Locally advanced breast cancer (LABC) constitutes a heterogeneous entity that includes advanced-stage primary tumours, cancers with extensive nodal involvement and inflammatory breast carcinomas. Although the definition of LABC can be broadened to include some large operable breast tumours, we use this term to strictly refer to inoperable cancers that are included in the above-mentioned categories. The prognosis of such tumours is often unfavourable; despite aggressive treatment, many patients eventually develop distant metastases and die from the disease. Advances in systemic therapy, including radiation treatment, surgical techniques and the development of new targeted agents have significantly improved clinical outcomes for patients with this disease. Notwithstanding these advances, LABC remains an important clinical problem, particularly in developing countries and those without widely adapted breast cancer awareness programmes. The optimal management of LABC requires a multidisciplinary approach, a well-coordinated treatment schedule and close cooperation between medical, surgical and radiation oncologists. In this Review, we discuss the current state of the art and possible future treatment strategies for patients with LABC.
Collapse
|
25
|
Mandal A, Bishayee A. Trianthema portulacastrum Linn. displays anti-inflammatory responses during chemically induced rat mammary tumorigenesis through simultaneous and differential regulation of NF-κB and Nrf2 signaling pathways. Int J Mol Sci 2015; 16:2426-45. [PMID: 25622256 PMCID: PMC4346844 DOI: 10.3390/ijms16022426] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/13/2015] [Indexed: 12/19/2022] Open
Abstract
Trianthema portulacastrum, a medicinal and dietary plant, has gained substantial importance due to its various pharmacological properties, including anti-inflammatory and anticarcinogenic activities. We have recently reported that a characterized T. portulacastrum extract (TPE) affords a considerable chemoprevention of 7,12-dimethylbenz(a)anthracene (DMBA)-induced rat mammary tumorigenesis though the underlying mechanisms are not completely understood. The objective of this study was to investigate anti-inflammatory mechanisms of TPE during DMBA mammary carcinogenesis in rats by monitoring cyclooxygenase-2 (COX-2), heat shock protein 90 (HSP90), nuclear factor-kappaB (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2). Mammary tumors were harvested from our previous study in which TPE (50-200 mg/kg) was found to inhibit mammary tumorigenesis in a dose-response manner. The expressions of intratumor COX-2, HSP90, NF-κB, inhibitory kappaB-alpha (IκBα) and Nrf2 were determined by immunohistochemistry. TPE downregulated the expression of COX-2 and HSP90, blocked the degradation of IκBα, hampered the translocation of NF-κB from cytosol to nucleus and upregulated the expression and nuclear translocation of Nrf2 during DMBA mammary carcinogenesis. These results in conjunction with our previous findings suggest that TPE prevents DMBA-induced breast neoplasia by anti-inflammatory mechanisms mediated through simultaneous and differential modulation of two interconnected molecular circuits, namely NF-κB and Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Animesh Mandal
- Cancer Therapeutics and Chemoprevention Group, Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| | - Anupam Bishayee
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA.
| |
Collapse
|
26
|
Hamdi K, Goerlitz D, Stambouli N, Islam M, Baroudi O, Neili B, Benayed F, Chivi S, Loffredo C, Jillson IA, Benammar Elgaaied A, Blancato JK, Marrakchi R. miRNAs in Sera of Tunisian patients discriminate between inflammatory breast cancer and non-inflammatory breast cancer. SPRINGERPLUS 2014; 3:636. [PMID: 26034677 PMCID: PMC4447743 DOI: 10.1186/2193-1801-3-636] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 09/15/2014] [Indexed: 01/04/2023]
Abstract
In recent years, circulating miRNAs have attracted interest as stable, non-invasive biomarkers for various pathological conditions. Here, we investigated their potential to serve as minimally invasive, early detection markers for inflammatory breast cancer (IBC) and non-inflammatory breast cancer (non-IBC) in serum. miRNA profiling was performed on serum from 20 patients with non-IBC, 20 with IBC, and 20 normal control subjects. Real-time reverse transcription-polymerase chain reaction (qRT-PCR) was applied to measure the level of 12 candidate miRNAs previously identified in other research(miR-342-5p, miR-342--3p, miR-320, miR-30b, miR-29a, miR-24, miR-15a, miR-548d-5p, miR-486-3p, miR-451, miR-337-5p, miR-335).We found that 4 miRNAs (miR-24, miR-342-3p, miR-337-5p and miR-451) were differentially expressed in serum of IBC patients compared to non-IBC, and 3 miRNAs (miR-337-5p ,miR-451and miR-30b) were differentially expressed in IBC and non-IBC patients combined compared to healthy controls. miR-24, miR-342-3p, miR-337-5p and miR-451 were found to be significantly down-regulated in IBC patients compared to non-IBC. Likewise, the expression level of mir-451 showed significant down-regulation in IBC serum, while mir-30b and miR-337-5p were up-regulated in non-IBC serum comparatively to normal controls. Using receiver operational curve (ROC) analysis, we show that dysregulated miRNAs can discriminate patients with IBC and non-IBC from healthy controls with sensitivity ranging from 76 to 81% and specificity from 66 to 80%, for three separate miRNAs. In conclusion, our data suggest that circulating miRNAs are potential biomarkers for classifying IBC and non-IBC, and may also be candidates for early detection of breast cancer.
Collapse
Affiliation(s)
- Khouloud Hamdi
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences, University of Tunis El Manar, El Mannar I, Tunis, 2092 Tunisia
| | - David Goerlitz
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007 USA
| | - Neila Stambouli
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences, University of Tunis El Manar, El Mannar I, Tunis, 2092 Tunisia
| | - Mohammed Islam
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007 USA
| | - Olfa Baroudi
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences, University of Tunis El Manar, El Mannar I, Tunis, 2092 Tunisia
| | - Bilel Neili
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences, University of Tunis El Manar, El Mannar I, Tunis, 2092 Tunisia
| | - Farhat Benayed
- Department of Medical Oncology, Hannibal International Clinic, Les Berges du Lac 2, Tunis, Tunisia
| | - Simon Chivi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007 USA
| | - Christopher Loffredo
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007 USA
| | - Irene A Jillson
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007 USA
| | - Amel Benammar Elgaaied
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences, University of Tunis El Manar, El Mannar I, Tunis, 2092 Tunisia
| | - Jan K Blancato
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007 USA
| | - Raja Marrakchi
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences, University of Tunis El Manar, El Mannar I, Tunis, 2092 Tunisia
| |
Collapse
|
27
|
Shkurnikov MY, Nechaev IN, Khaustova NA, Krainova NA, Savelov NA, Grinevich VN, Saribekyan EK. Expression profile of inflammatory breast cancer. Bull Exp Biol Med 2014; 155:667-72. [PMID: 24288735 DOI: 10.1007/s10517-013-2221-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammatory breast cancer is characterized by high malignancy, early and rapid lymphogenic and hematogenic metastasizing, and high mortality. The diagnosis of this form of cancer is based fully on the clinical criteria. Whole transcriptome analysis of tumor tissue specimens from patients with inflammatory breast cancer detected 137 differentially expressed mRNA (17 genes with low expression and 120 with high expression). Genes involved in the organization of inflammatory process, chemotaxis, and transcription regulation were active in the process of pathogenesis of inflammatory breast cancer.
Collapse
Affiliation(s)
- M Yu Shkurnikov
- Institue of General Pathology and Pathophysiology, the Russian Academy of Medical Sciences; BioClinicum Laboratory; BioClinicum Research and Technological Center, Moscow; Moscow Municipal Oncological Hospital No. 62, Department of Health of Moscow, Moscow Region, Istra; P. A. Hertsen Moscow Cancer Institute, Ministry of Health and Social Development of the Russian Federation, Russia.
| | | | | | | | | | | | | |
Collapse
|
28
|
Bertucci F, Finetti P, Vermeulen P, Van Dam P, Dirix L, Birnbaum D, Viens P, Van Laere S. Genomic profiling of inflammatory breast cancer: a review. Breast 2014; 23:538-45. [PMID: 24998451 DOI: 10.1016/j.breast.2014.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 06/02/2014] [Accepted: 06/08/2014] [Indexed: 01/04/2023] Open
Abstract
Inflammatory breast cancer (IBC) is a rare but aggressive form of breast cancer. Despite efforts in the past decade to delineate the molecular biology of IBC by applying high-throughput molecular profiling technologies to clinical samples, IBC remains insufficiently characterized. The reasons for that include limited sizes of the study population, heterogeneity with respect to the composition of the IBC and non-IBC control groups and technological differences across studies. In 2008, the World IBC Consortium was founded to foster collaboration between research groups focusing on IBC. One of the initial projects was to redefine the molecular profile of IBC using an unprecedented number of samples and search for gene signatures associated with survival and response to neo-adjuvant chemotherapy. Here, we provide an overview of all the molecular profiling studies that have been performed on IBC clinical samples to date.
Collapse
Affiliation(s)
- François Bertucci
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes and UMR1068 Inserm, Marseille, France; Département d'Oncologie Médicale, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes and UMR1068 Inserm, Marseille, France; Faculté de Médecine, Université de la Méditerranée, Marseille, France.
| | - Pascal Finetti
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes and UMR1068 Inserm, Marseille, France
| | - Peter Vermeulen
- Translational Cancer Research Unit, GZA Hospitals Sint-Augustinus, Wilrijk, Belgium; Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter Van Dam
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Luc Dirix
- Translational Cancer Research Unit, GZA Hospitals Sint-Augustinus, Wilrijk, Belgium; Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Daniel Birnbaum
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes and UMR1068 Inserm, Marseille, France
| | - Patrice Viens
- Département d'Oncologie Médicale, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes and UMR1068 Inserm, Marseille, France; Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Steven Van Laere
- Translational Cancer Research Unit, GZA Hospitals Sint-Augustinus, Wilrijk, Belgium; Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
29
|
Sas L, Vermeulen PB, van Dam P, Dirix LY, Lardon F, Van Laere SJ. Contribution of ER and NF-κB to endocrine resistance in inflammatory breast cancer. BREAST CANCER MANAGEMENT 2014. [DOI: 10.2217/bmt.13.72] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
SUMMARY Inflammatory breast cancer (IBC) is a very aggressive form of breast cancer with a high mortality rate. Most patients have lymph node metastasis at the time of diagnosis and 30% of patients already have metastases in distant organs. IBC is normally treated with multimodality therapy. Endocrine therapy is administered in cases of ER-positive tumors. Nevertheless, IBC has a high HOXB13:Il17RB ratio, predicting a poor response to tamoxifen treatment. These data suggest a possible role for IBC as a model for endocrine resistance. Previous studies have shown that NF-κB, a transcription factor regulating different cellular processes, is more highly activated in IBC than in non-IBC, while ER is often downregulated in this tumor type. This article summarizes the activity of ER and NF-κB in IBC and their possible contribution to endocrine resistance in this breast cancer subtype.
Collapse
Affiliation(s)
- Leen Sas
- Department of Oncology, University of Antwerp, Antwerp, Belgium
- Translational Cancer Research Unit Antwerp, Laboratory of Pathology GZA, Hospitals Sint Augustinus, Antwerp, Belgium.
| | - Peter B Vermeulen
- Translational Cancer Research Unit Antwerp, Laboratory of Pathology GZA, Hospitals Sint Augustinus, Antwerp, Belgium
| | - Peter van Dam
- Translational Cancer Research Unit Antwerp, Laboratory of Pathology GZA, Hospitals Sint Augustinus, Antwerp, Belgium
- Department of Oncology, University of Antwerp, Antwerp, Belgium
| | - Luc Y Dirix
- Translational Cancer Research Unit Antwerp, Laboratory of Pathology GZA, Hospitals Sint Augustinus, Antwerp, Belgium
| | - Filip Lardon
- Department of Oncology, University of Antwerp, Antwerp, Belgium
| | - Steven J Van Laere
- Translational Cancer Research Unit Antwerp, Laboratory of Pathology GZA, Hospitals Sint Augustinus, Antwerp, Belgium
- Division of Gyneacological Oncology, Department of Oncology, University Hospital Leuven, Catholic University Leuven, Leuven, Belgium
| |
Collapse
|
30
|
The role of inflammation in inflammatory breast cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 816:53-73. [PMID: 24818719 DOI: 10.1007/978-3-0348-0837-8_3] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Inflammatory breast cancer (IBC) is the most aggressive form of breast cancer. Despite extensive study, whether inflammation contributes to the tumorigenicity or aggressiveness of IBC remains largely unknown. In this chapter, we will review the potential role played by inflammation in IBC based on the results of in vitro, in vivo, and patient studies. Current evidence suggests that several major inflammatory signaling pathways are constitutively active in IBC and breast cancer. Among them, the NF-κB, COX-2, and JAK/STAT signaling systems seem to play a major role in the tumorigenesis of IBC. Inflammatory molecules such as interleukin-6, tumor necrosis factor alpha (TNF-α), and gamma interferon have been shown to contribute to malignant transformation in preclinical studies of IBC, while transforming growth factor-β, interleukins 8 and 1β, as well as TNF-α appear to play a role in proliferation, survival, epithelial-mesenchymal transition, invasion, and metastasis. In this chapter, we also describe work thus far involving inhibitors of inflammation in the development of prevention and treatment strategies for IBC.
Collapse
|
31
|
Bertucci F, Ueno NT, Finetti P, Vermeulen P, Lucci A, Robertson FM, Marsan M, Iwamoto T, Krishnamurthy S, Masuda H, Van Dam P, Woodward WA, Cristofanilli M, Reuben JM, Dirix L, Viens P, Symmans WF, Birnbaum D, Van Laere SJ. Gene expression profiles of inflammatory breast cancer: correlation with response to neoadjuvant chemotherapy and metastasis-free survival. Ann Oncol 2013; 25:358-65. [PMID: 24299959 DOI: 10.1093/annonc/mdt496] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Inflammatory breast cancer (IBC) is an aggressive disease. To date, no molecular feature reliably predicts either the response to chemotherapy (CT) or the survival. Using DNA microarrays, we searched for multigene predictors. PATIENTS AND METHODS The World IBC Consortium generated whole-genome expression profiles of 137 IBC and 252 non-IBC (nIBC) samples. We searched for transcriptional profiles associated with pathological complete response (pCR) to neoadjuvant anthracycline-based CT and distant metastasis-free survival (DMFS) in respective subsets of 87 and 106 informative IBC samples. Correlations were investigated with predictive and prognostic gene expression signatures published in nIBC (nIBC-GES). Supervised analyses tested genes and activation signatures of 19 biological pathways and 234 transcription factors. RESULTS Three of five tested prognostic nIBC-GES and the two tested predictive nIBC-GES discriminated between IBC with and without pCR, as well as two interferon activation signatures. We identified a 107-gene signature enriched for immunity-related genes that distinguished between responders and nonresponders in IBC. Its robustness was demonstrated by external validation in three independent sets including two IBC sets and one nIBC set, with independent significant predictive value in IBC and nIBC validation sets in multivariate analysis. We found no robust signature associated with DMFS in patients with IBC, and neither of the tested prognostic GES, nor the molecular subtypes were informative, whereas they were in our nIBC series (220 stage I-III informative samples). CONCLUSION Despite the relatively small sample size, we show that response to neoadjuvant CT in IBC is, as in nIBC, associated with immunity-related processes, suggesting that similar mechanisms responsible for pCR exist. Analysis of a larger IBC series is warranted regarding the correlation of gene expression profiles and DMFS.
Collapse
|
32
|
Van Laere SJ, Ueno NT, Finetti P, Vermeulen P, Lucci A, Robertson FM, Marsan M, Iwamoto T, Krishnamurthy S, van Dam P, Woodward WA, Viens P, Cristofanilli M, Birnbaum D, Dirix L, Reuben JM, Bertucci F. Uncovering the molecular secrets of inflammatory breast cancer biology: an integrated analysis of three distinct affymetrix gene expression datasets. Clin Cancer Res 2013; 19:4685-96. [PMID: 23396049 PMCID: PMC6156084 DOI: 10.1158/1078-0432.ccr-12-2549] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Inflammatory breast cancer (IBC) is a poorly characterized form of breast cancer. So far, the results of expression profiling in IBC are inconclusive due to various reasons including limited sample size. Here, we present the integration of three Affymetrix expression datasets collected through the World IBC Consortium allowing us to interrogate the molecular profile of IBC using the largest series of IBC samples ever reported. EXPERIMENTAL DESIGN Affymetrix profiles (HGU133-series) from 137 patients with IBC and 252 patients with non-IBC (nIBC) were analyzed using unsupervised and supervised techniques. Samples were classified according to the molecular subtypes using the PAM50-algorithm. Regression models were used to delineate IBC-specific and molecular subtype-independent changes in gene expression, pathway, and transcription factor activation. RESULTS Four robust IBC-sample clusters were identified, associated with the different molecular subtypes (P<0.001), all of which were identified in IBC with a similar prevalence as in nIBC, except for the luminal A subtype (19% vs. 42%; P<0.001) and the HER2-enriched subtype (22% vs. 9%; P<0.001). Supervised analysis identified and validated an IBC-specific, molecular subtype-independent 79-gene signature, which held independent prognostic value in a series of 871 nIBCs. Functional analysis revealed attenuated TGF-β signaling in IBC. CONCLUSION We show that IBC is transcriptionally heterogeneous and that all molecular subtypes described in nIBC are detectable in IBC, albeit with a different frequency. The molecular profile of IBC, bearing molecular traits of aggressive breast tumor biology, shows attenuation of TGF-β signaling, potentially explaining the metastatic potential of IBC tumor cells in an unexpected manner.
Collapse
Affiliation(s)
- Steven J. Van Laere
- Translational Cancer Research Unit Antwerp, Oncology Center, General Hospital Sint-Augustinus, Wilrijk, Belgium
- Department Oncology, KU Leuven, Leuven, Belgium
| | - Naoto T. Ueno
- Morgan Welch Inflammatory Breast Cancer Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pascal Finetti
- Département d’Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, UMR891 Inserm, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Peter Vermeulen
- Translational Cancer Research Unit Antwerp, Oncology Center, General Hospital Sint-Augustinus, Wilrijk, Belgium
| | - Anthony Lucci
- Morgan Welch Inflammatory Breast Cancer Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fredika M. Robertson
- Morgan Welch Inflammatory Breast Cancer Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melike Marsan
- Translational Cancer Research Unit Antwerp, Oncology Center, General Hospital Sint-Augustinus, Wilrijk, Belgium
- Department Oncology, KU Leuven, Leuven, Belgium
| | - Takayuki Iwamoto
- Morgan Welch Inflammatory Breast Cancer Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Savitri Krishnamurthy
- Morgan Welch Inflammatory Breast Cancer Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter van Dam
- Translational Cancer Research Unit Antwerp, Oncology Center, General Hospital Sint-Augustinus, Wilrijk, Belgium
| | - Wendy A. Woodward
- Morgan Welch Inflammatory Breast Cancer Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrice Viens
- Département d’Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, UMR891 Inserm, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Massimo Cristofanilli
- Department of Medical Oncology,G. Morris Dorrance Jr. Endowed Chair in Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniel Birnbaum
- Département d’Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, UMR891 Inserm, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Luc Dirix
- Translational Cancer Research Unit Antwerp, Oncology Center, General Hospital Sint-Augustinus, Wilrijk, Belgium
| | - James M. Reuben
- Morgan Welch Inflammatory Breast Cancer Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - François Bertucci
- Département d’Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, UMR891 Inserm, Institut Paoli-Calmettes (IPC), Marseille, France
| |
Collapse
|
33
|
Mohamed MM, Al-Raawi D, Sabet SF, El-Shinawi M. Inflammatory breast cancer: New factors contribute to disease etiology: A review. J Adv Res 2013; 5:525-36. [PMID: 25685520 PMCID: PMC4294279 DOI: 10.1016/j.jare.2013.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 05/16/2013] [Accepted: 06/07/2013] [Indexed: 12/11/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a highly metastatic and fatal form of breast cancer. In fact, IBC is characterized by specific morphological, phenotypic, and biological properties that distinguish it from non-IBC. The aggressive behavior of IBC being more common among young women and the low survival rate alarmed researchers to explore the disease biology. Despite the basic and translational studies needed to understand IBC disease biology and identify specific biomarkers, studies are limited by few available IBC cell lines, experimental models, and paucity of patient samples. Above all, in the last decade, researchers were able to identify new factors that may play a crucial role in IBC progression. Among identified factors are cytokines, chemokines, growth factors, and proteases. In addition, viral infection was also suggested to participate in the etiology of IBC disease. In this review, we present novel factors suggested by different studies to contribute to the etiology of IBC and the proposed new therapeutic insights.
Collapse
Affiliation(s)
- Mona M Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Diaa Al-Raawi
- Department of Zoology, Faculty of Science, Sana'a University, Yemen
| | - Salwa F Sabet
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
34
|
Abstract
The purpose of this review article is to highlight articles and new research regarding the link between NF-ĸB and several cancers. This review presents the most up-to-date NF-ĸB research and how it links this important transcription factor with hematology and oncology. It was written by conducting a thorough search of Pubmed as well as several journals such as Cancer, Nature, Science, Cell and those of one of the authors. The articles relating to the link between NF-ĸB and cancer were used to write this review. The results of this study clarified that there is a critical link between NF-ĸB and cancer. NF-ĸB has often been implicated in a variety of different diseases and it plays a variety of roles in cell survival, differentiation, and proliferation of cells. In cancer, NF-ĸB plays a pivotal role by facilitating oncogenesis as well as metastasis. A thorough understanding of NF-ĸB and its role in cancer can lead to future studies and drug development which could provide a novel option in the treatment of this disease.
Collapse
Affiliation(s)
- Adeel Zubair
- Division of Allergy Immunology, Department of Medicine and NSLIJ Health Care Systems, Nassau University Medical Center, 2201Hempstead Turnpike, East Meadow, NY 11554, USA.
| | | |
Collapse
|
35
|
Lerebours F, Cizeron-Clairac G, Susini A, Vacher S, Mouret-Fourme E, Belichard C, Brain E, Alberini JL, Spyratos F, Lidereau R, Bieche I. miRNA expression profiling of inflammatory breast cancer identifies a 5-miRNA signature predictive of breast tumor aggressiveness. Int J Cancer 2013; 133:1614-23. [PMID: 23526361 DOI: 10.1002/ijc.28171] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 03/07/2013] [Indexed: 12/19/2022]
Abstract
IBC (inflammatory breast cancer) is a rare but very aggressive form of breast cancer with a particular phenotype. The molecular mechanisms responsible for IBC remain largely unknown. In particular, genetic and epigenetic alterations specific to IBC remain to be identified. MicroRNAs, a class of small noncoding RNAs able to regulate gene expression, are deregulated in breast cancer and may therefore serve as tools for diagnosis and prediction. This study was designed to determine miRNA expression profiling (microRNAome) in IBC. Quantitative RT-PCR was used to determine expression levels of 804 miRNAs in a screening series of 12 IBC compared to 31 non-stage-matched non-IBC and 8 normal breast samples. The differentially expressed miRNAs were then validated in a series of 65 IBC and 95 non-IBC. From a set of 18 miRNAs of interest selected from the screening series, 13 were differentially expressed with statistical significance in the validation series of IBC compared to non-IBC. Among these, a 5-miRNA signature comprising miR-421, miR-486, miR-503, miR-720 and miR-1303 was shown to be predictive for IBC phenotype with an overall accuracy of 89%. Moreover, multivariate analysis showed that this signature was an independent predictor of poor Metastasis-Free Survival in non-IBC patients.
Collapse
Affiliation(s)
- Florence Lerebours
- Laboratoire d'oncogénétique, Institut Curie, Hopital Rene Huguenin, 35 rue Dailly, Saint-Cloud, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Woodward WA, Krishnamurthy S, Yamauchi H, El-Zein R, Ogura D, Kitadai E, Niwa SI, Cristofanilli M, Vermeulen P, Dirix L, Viens P, van Laere S, Bertucci F, Reuben JM, Ueno NT. Genomic and expression analysis of microdissected inflammatory breast cancer. Breast Cancer Res Treat 2013; 138:761-72. [PMID: 23568481 DOI: 10.1007/s10549-013-2501-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/23/2013] [Indexed: 12/01/2022]
Abstract
Inflammatory breast cancer (IBC) is a unique clinical entity characterized by rapid onset of erythema and swelling of the breast often without an obvious breast mass. Many studies have examined and compared gene expression between IBC and non-IBC (nIBC), repeatedly finding clusters associated with receptor subtype, but no consistent gene signature associated with IBC has been validated. Here we compared microdissected IBC tumor cells to microdissected nIBC tumor cells matched based on estrogen and HER-2/neu receptor status. Gene expression analysis and comparative genomic hybridization were performed. An IBC gene set and genomic set were identified using a training set and validated on the remaining data. The IBC gene set was further tested using data from IBC consortium samples and publicly available data. Receptor driven clusters were identified in IBC; however, no IBC-specific gene signature was identified. Fifteen genes were correlated between increased genomic copy number and gene overexpression data. An expression-guided gene set upregulated in the IBC training set clustered the validation set into two clusters independent of receptor subtype but segregated only 75 % of samples in each group into IBC or nIBC. In a larger consortium cohort and in published data, the gene set failed to optimally enrich for IBC samples. However, this gene set had a high negative predictive value for excluding the diagnosis of IBC in publicly available data (100 %). An IBC enriched genomic data set accurately identified 10/16 cases in the validation data set. Even with microdissection, no IBC-specific gene signature distinguishes IBC from nIBC. Using microdissected data, a validated gene set was identified that is associated with IBC tumor cells. Inflammatory breast cancer comparative genomic hybridization data are presented, but a validated genomic data set that identifies IBC is not demonstrated.
Collapse
Affiliation(s)
- Wendy A Woodward
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Human cytomegalovirus infection enhances NF-κB/p65 signaling in inflammatory breast cancer patients. PLoS One 2013; 8:e55755. [PMID: 23418456 PMCID: PMC3572094 DOI: 10.1371/journal.pone.0055755] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/31/2012] [Indexed: 01/29/2023] Open
Abstract
Human Cytomegalovirus (HCMV) is an endemic herpes virus that re-emerges in cancer patients enhancing oncogenic potential. Recent studies have shown that HCMV infection is associated with certain types of cancer morbidity such as glioblastoma. Although HCMV has been detected in breast cancer tissues, its role, if any, in the etiology of specific forms of breast cancer has not been investigated. In the present study we investigated the presence of HCMV infection in inflammatory breast cancer (IBC), a rapidly progressing form of breast cancer characterized by specific molecular signature. We screened for anti-CMV IgG antibodies in peripheral blood of 49 non-IBC invasive ductal carcinoma (IDC) and 28 IBC patients. In addition, we screened for HCMV-DNA in postsurgical cancer and non-cancer breast tissues of non-IBC and IBC patients. We also tested whether HCMV infection can modulate the expression and activation of transcriptional factor NF-κB/p65, a hallmark of IBC. Our results reveal that IBC patients are characterized by a statistically significant increase in HCMV IgG antibody titers compared to non-IBC patients. HCMV-DNA was significantly detected in cancer tissues than in the adjacent non-carcinoma tissues of IBC and IDC, and IBC cancer tissues were significantly more infected with HCMV-DNA compared to IDC. Further, HCMV sequence analysis detected different HCMV strains in IBC patients tissues, but not in the IDC specimens. Moreover, HCMV-infected IBC cancer tissues were found to be enhanced in NF-κB/p65 signaling compared to non-IBC patients. The present results demonstrated a correlation between HCMV infection and IBC. Etiology and causality of HCMV infection with IBC now needs to be rigorously examined.
Collapse
|
38
|
Lehman HL, Van Laere SJ, van Golen CM, Vermeulen PB, Dirix LY, van Golen KL. Regulation of inflammatory breast cancer cell invasion through Akt1/PKBα phosphorylation of RhoC GTPase. Mol Cancer Res 2012; 10:1306-18. [PMID: 22896661 DOI: 10.1158/1541-7786.mcr-12-0173] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With a 42% and 18% 5- and 10-year respective disease-free survival rate, inflammatory breast cancer (IBC) is arguably the deadliest form of breast cancer. IBC invades the dermal lymphatic vessels of the skin overlying the breast and as a consequence nearly all women have lymph node involvement and ~1/3 have gross distant metastases at the time of diagnosis. One year after diagnosis ~90% of patients have detectable metastases, making IBC a paradigm for lymphovascular invasion. Understanding the underlying mechanisms of the IBC metastatic phenotype is essential for new therapies. Work from our laboratory and others show distinct molecular differences between IBC and non-IBCs (nIBCs). Previously we showed that RhoC GTPase is a metastatic switch responsible for the invasive phenotype of IBC. In this study we integrate observations made in IBC patients with in vitro analysis. We show that the PI3K/Akt signaling pathway is crucial in IBC invasion. Key molecules involved in cytoskeletal control and cell motility are specifically upregulated in IBC patients compared with stage and cell-type-of-origin matched nIBCs patients. Distinctively, RhoC GTPase is a substrate for Akt1 and its phosphorylation is absolutely essential for IBC cell invasion. Further our data show that Akt3, not Akt1 has a role in IBC cell survival. Together our data show a unique and targetable pathway for IBC invasion and survival.
Collapse
Affiliation(s)
- Heather L Lehman
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | |
Collapse
|
39
|
Yamauchi H, Woodward WA, Valero V, Alvarez RH, Lucci A, Buchholz TA, Iwamoto T, Krishnamurthy S, Yang W, Reuben JM, Hortobágyi GN, Ueno NT. Inflammatory breast cancer: what we know and what we need to learn. Oncologist 2012; 17:891-9. [PMID: 22584436 DOI: 10.1634/theoncologist.2012-0039] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
PURPOSE We review the current status of multidisciplinary care for patients with inflammatory breast cancer (IBC) and discuss what further research is needed to advance the care of patients with this disease. DESIGN We performed a comprehensive review of the English-language literature on IBC through computerized literature searches. RESULTS Significant advances in imaging, including digital mammography, high-resolution ultrasonography with Doppler capabilities, magnetic resonance imaging, and positron emission tomography-computed tomography, have improved the diagnosis and staging of IBC. There are currently no established molecular criteria for distinguishing IBC from noninflammatory breast cancer. Such criteria would be helpful for the diagnosis and development of novel targeted therapies. Combinations of neoadjuvant systemic chemotherapy, surgery, and radiation therapy have led to an improved prognosis; however, the overall 5-year survival rate for patients with IBC remains very low (∼30%). Sentinel lymph node biopsy and skin-sparing mastectomy are not recommended for patients with IBC. CONCLUSION Optimal management of IBC requires close coordination among medical, surgical, and radiation oncologists, as well as radiologists and pathologists. There is a need to identify molecular changes that define the pathogenesis of IBC to enable eradication of IBC with the use of IBC-specific targeted therapies.
Collapse
Affiliation(s)
- Hideko Yamauchi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pre-clinical studies of Notch signaling inhibitor RO4929097 in inflammatory breast cancer cells. Breast Cancer Res Treat 2012; 134:495-510. [PMID: 22547109 DOI: 10.1007/s10549-012-2075-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 04/17/2012] [Indexed: 02/06/2023]
Abstract
Basal breast cancer, common among patients presenting with inflammatory breast cancer (IBC), has been shown to be resistant to radiation and enriched in cancer stem cells. The Notch pathway plays an important role in self-renewal of breast cancer stem cells and contributes to inflammatory signaling which promotes the breast cancer stem cell phenotype. Herein, we inhibited Notch signaling using a gamma secretase inhibitor, RO4929097, in an in vitro model that enriches for cancer initiating cells (3D clonogenic assay) and conventional 2D clonogenic assay to compare the effect on radiosensitization of the SUM149 and SUM190 IBC cell lines. RO4929097 downregulated the Notch target genes Hes1, Hey1, and HeyL, and showed a significant reduction in anchorage independent growth in SUM190 and SUM149. However, the putative self-renewal assay mammosphere formation efficiency was increased with the drug. To assess radiosensitization of putative cancer stem cells, cells were exposed to increasing doses of radiation with or without 1 μM RO4929097 in their standard (2D) and self-renewal enriching (3D) culture conditions. In the conventional 2D clonogenic assay, RO4929097 significantly sensitized SUM190 cells to ionizing radiation and has a modest radiosensitization effect in SUM149 cells. In the 3D clonogenic assays, however, a radioprotective effect was seen in both SUM149 and SUM190 cells at higher doses. Both cell lines express IL-6 and IL-8 cytokines known to mediate the efficacy of Notch inhibition and to promote self-renewal of stem cells. We further showed that RO429097 inhibits normal T-cell synthesis of some inflammatory cytokines, including TNF-α, a potential mediator of IL-6 and IL-8 production in the microenvironment. These data suggest that additional targeting agents may be required to selectively target IBC stem cells through Notch inhibition, and that evaluation of microenvironmental influences may shed further light on the potential effects of this inhibitor.
Collapse
|
41
|
Wang J, Chen G, Li M, Pan Y. Integration of breast cancer gene signatures based on graph centrality. BMC SYSTEMS BIOLOGY 2011; 5 Suppl 3:S10. [PMID: 22784616 PMCID: PMC3287565 DOI: 10.1186/1752-0509-5-s3-s10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Various gene-expression signatures for breast cancer are available for the prediction of clinical outcome. However due to small overlap between different signatures, it is challenging to integrate existing disjoint signatures to provide a unified insight on the association between gene expression and clinical outcome. RESULTS In this paper, we propose a method to integrate different breast cancer gene signatures by using graph centrality in a context-constrained protein interaction network (PIN). The context-constrained PIN for breast cancer is built by integrating complete PIN and various gene signatures reported in literatures. Then, we use graph centralities to quantify the importance of genes to breast cancer. Finally, we get reliable gene signatures that are consisted by the genes with high graph centrality. The genes which are well-known breast cancer genes, such as TP53 and BRCA1, are ranked extremely high in our results. Compared with previous results by functional enrichment analysis, graph centralities, especially the eigenvector centrality and subgraph centrality, based gene signatures are more tightly related to breast cancer. We validate these signatures on genome-wide microarray dataset and found strong association between the expression of these signature genes and pathologic parameters. CONCLUSIONS In summary, graph centralities provide a novel way to connect different cancer signatures and to understand the mechanism of relationship between gene expression and clinical outcome of breast cancer. Moreover, this method is not only can be used on breast cancer, but also can be used on other gene expression related diseases and drug studies.
Collapse
Affiliation(s)
- Jianxin Wang
- School of Information Science and Engineering, Central South University, Changsha, 410083, China.
| | | | | | | |
Collapse
|
42
|
Inhibition of cathepsin B activity attenuates extracellular matrix degradation and inflammatory breast cancer invasion. Breast Cancer Res 2011; 13:R115. [PMID: 22093547 PMCID: PMC3326557 DOI: 10.1186/bcr3058] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 11/14/2011] [Accepted: 11/17/2011] [Indexed: 12/14/2022] Open
Abstract
Introduction Inflammatory breast cancer (IBC) is an aggressive, metastatic and highly angiogenic form of locally advanced breast cancer with a relatively poor three-year survival rate. Breast cancer invasion has been linked to proteolytic activity at the tumor cell surface. Here we explored a role for active cathepsin B on the cell surface in the invasiveness of IBC. Methods We examined expression of the cysteine protease cathepsin B and the serine protease urokinase plasminogen activator (uPA), its receptor uPAR and caveolin-1 in two IBC cell lines: SUM149 and SUM190. We utilized a live cell proteolysis assay to localize in real time the degradation of type IV collagen by IBC cells. IBC patient biopsies were examined for expression of cathepsin B and caveolin-1. Results Both cell lines expressed comparable levels of cathepsin B and uPA. In contrast, levels of caveolin-1 and uPAR were greater in SUM149 cells. We observed that uPA, uPAR and enzymatically active cathepsin B were colocalized in caveolae fractions isolated from SUM149 cells. Using a live-cell proteolysis assay, we demonstrated that both IBC cell lines degrade type IV collagen. The SUM149 cells exhibit predominantly pericellular proteolysis, consistent with localization of proteolytic pathway constitutents to caveolar membrane microdomains. A functional role for cathepsin B was confirmed by the ability of CA074, a cell impermeable and highly selective cathepsin B inhibitor, to significantly reduce pericellular proteolysis and invasion by SUM149 cells. A statistically significant co-expression of cathepsin B and caveolin-1 was found in IBC patient biopsies, thus validating our in vitro data. Conclusion Our study is the first to show that the proteolytic activity of cathepsin B and its co-expression with caveolin-1 contributes to the aggressiveness of IBC.
Collapse
|
43
|
Martínez-Montemayor MM, Acevedo RR, Otero-Franqui E, Cubano LA, Dharmawardhane SF. Ganoderma lucidum (Reishi) inhibits cancer cell growth and expression of key molecules in inflammatory breast cancer. Nutr Cancer 2011; 63:1085-94. [PMID: 21888505 DOI: 10.1080/01635581.2011.601845] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell-cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy. Reishi contains biological compounds that are cytotoxic against cancer cells. We report the effects of Reishi on viability, apoptosis, invasion, and its mechanism of action in IBC cells (SUM-149). Results show that Reishi selectively inhibits cancer cell viability although it does not affect the viability of noncancerous mammary epithelial cells. Apoptosis induction is consistent with decreased cell viability. Reishi inhibits cell invasion and disrupts the cell spheroids that are characteristic of the IBC invasive pathology. Reishi decreases the expression of genes involved in cancer cell survival and proliferation (BCL-2, TERT, PDGFB), and invasion and metastasis (MMP-9), whereas it increases the expression of IL8. Reishi reduces BCL-2, BCL-XL, E-cadherin, eIF4G, p120-catenin, and c-Myc protein expression and gelatinase activity. These findings suggest that Reishi is an effective anti-IBC therapeutic.
Collapse
|
44
|
Bekhouche I, Finetti P, Adelaïde J, Ferrari A, Tarpin C, Charafe-Jauffret E, Charpin C, Houvenaeghel G, Jacquemier J, Bidaut G, Birnbaum D, Viens P, Chaffanet M, Bertucci F. High-resolution comparative genomic hybridization of inflammatory breast cancer and identification of candidate genes. PLoS One 2011; 6:e16950. [PMID: 21339811 PMCID: PMC3037286 DOI: 10.1371/journal.pone.0016950] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 01/18/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Inflammatory breast cancer (IBC) is an aggressive form of BC poorly defined at the molecular level. We compared the molecular portraits of 63 IBC and 134 non-IBC (nIBC) clinical samples. METHODOLOGY/FINDINGS Genomic imbalances of 49 IBCs and 124 nIBCs were determined using high-resolution array-comparative genomic hybridization, and mRNA expression profiles of 197 samples using whole-genome microarrays. Genomic profiles of IBCs were as heterogeneous as those of nIBCs, and globally relatively close. However, IBCs showed more frequent "complex" patterns and a higher percentage of genes with CNAs per sample. The number of altered regions was similar in both types, although some regions were altered more frequently and/or with higher amplitude in IBCs. Many genes were similarly altered in both types; however, more genes displayed recurrent amplifications in IBCs. The percentage of genes whose mRNA expression correlated with CNAs was similar in both types for the gained genes, but ∼7-fold lower in IBCs for the lost genes. Integrated analysis identified 24 potential candidate IBC-specific genes. Their combined expression accurately distinguished IBCs and nIBCS in an independent validation set, and retained an independent prognostic value in a series of 1,781 nIBCs, reinforcing the hypothesis for a link with IBC aggressiveness. Consistent with the hyperproliferative and invasive phenotype of IBC these genes are notably involved in protein translation, cell cycle, RNA processing and transcription, metabolism, and cell migration. CONCLUSIONS Our results suggest a higher genomic instability of IBC. We established the first repertory of DNA copy number alterations in this tumor, and provided a list of genes that may contribute to its aggressiveness and represent novel therapeutic targets.
Collapse
Affiliation(s)
- Ismahane Bekhouche
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
| | - Pascal Finetti
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
| | - José Adelaïde
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
| | - Anthony Ferrari
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
| | - Carole Tarpin
- Department of Medical Oncology, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Emmanuelle Charafe-Jauffret
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
- Université de la Méditerranée, Marseille, France
- Department of BioPathology, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Colette Charpin
- Université de la Méditerranée, Marseille, France
- Department of Pathology, Hôpital Nord, Marseille, France
| | | | - Jocelyne Jacquemier
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
- Department of BioPathology, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Ghislain Bidaut
- Bioinformatics, Marseille Cancer Research Center (CRCM), Marseille, France
| | - Daniel Birnbaum
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
| | - Patrice Viens
- Department of Medical Oncology, Institut Paoli-Calmettes (IPC), Marseille, France
- Université de la Méditerranée, Marseille, France
| | - Max Chaffanet
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
| | - François Bertucci
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
- Department of Medical Oncology, Institut Paoli-Calmettes (IPC), Marseille, France
- Université de la Méditerranée, Marseille, France
- * E-mail:
| |
Collapse
|
45
|
Iwamoto T, Bianchini G, Qi Y, Cristofanilli M, Lucci A, Woodward WA, Reuben JM, Matsuoka J, Gong Y, Krishnamurthy S, Valero V, Hortobagyi GN, Robertson F, Symmans WF, Pusztai L, Ueno NT. Different gene expressions are associated with the different molecular subtypes of inflammatory breast cancer. Breast Cancer Res Treat 2010; 125:785-95. [PMID: 21153052 DOI: 10.1007/s10549-010-1280-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 11/18/2010] [Indexed: 01/04/2023]
Abstract
The goal of this study was to determine whether gene expression differences exist between inflammatory breast cancers (IBC) and T stage-matched non-IBC patients stratified by hormone receptor and HER2 status. We used Affymetrix GeneChips to analyze 82 tumor samples (25 T4d patients, and 57 T4a-c patients) of newly diagnosed breast cancers. Genes that were differentially expressed between the IBC and non-IBC specimens were identified using the t test, and differential expression of gene sets was assessed using gene set analysis. Three distinct clinical subtypes of IBC and non-IBC were compared: ER-positive/HER2-normal, HER2-amplified, and ER-negative/HER2-normal. When we compared expression data from all IBC with all non-IBC, we found no significant differences after adjusting for multiple testing. When IBC and non-IBC tumors were compared by clinical subtype, however, significant differences emerged. Complement and immune system-related pathways were overexpressed in ER-positive/HER2-normal IBC. Protein translation and mTOR signaling were overexpressed in HER2-amplified IBC. Apoptosis-, neural-, and lipid metabolism-related pathways were overexpressed in ER-negative/HER2-normal IBC compared with non-IBC of the same receptor phenotype. In this T stage-matched case-control study, the survival curves of patients with IBC and non-IBC were similar for all three clinical subtypes. IBC tumors can be divided into molecular and clinical subtypes similar to those of non-IBC. Clinical subtypes of IBC show molecular differences compared with similar subtypes of non-IBC.
Collapse
Affiliation(s)
- Takayuki Iwamoto
- Breast Cancer Translational Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Background: MicroRNAs (miRNAs) are key regulators of gene expression. In this study, we explored whether altered miRNA expression has a prominent role in defining the inflammatory breast cancer (IBC) phenotype. Methods: We used quantitative PCR technology to evaluate the expression of 384 miRNAs in 20 IBC and 50 non-IBC samples. To gain understanding on the biological functions deregulated by aberrant miRNA expression, we looked for direct miRNA targets by performing pair-wise correlation coefficient analysis on expression levels of 10 962 messenger RNAs (mRNAs) and by comparing these results with predicted miRNA targets from TargetScan5.1. Results: We identified 13 miRNAs for which expression levels were able to correctly predict the nature of the sample analysed (IBC vs non-IBC). For these miRNAs, we detected a total of 17 295 correlated miRNA–mRNA pairs, of which 7012 and 10 283 pairs showed negative and positive correlations, respectively. For four miRNAs (miR-29a, miR-30b, miR-342-3p and miR-520a-5p), correlated genes were concordant with predicted targets. A gene set enrichment analysis on these genes demonstrated significant enrichment in biological processes related to cell proliferation and signal transduction. Conclusions: This study represents, to the best of our knowledge, the first integrated analysis of miRNA and mRNA expression in IBC. We identified a set of 13 miRNAs of which expression differed between IBC and non-IBC, making these miRNAs candidate markers for the IBC subtype.
Collapse
|
47
|
Bertucci F, Finetti P, Birnbaum D, Viens P. Gene expression profiling of inflammatory breast cancer. Cancer 2010; 116:2783-93. [PMID: 20503410 DOI: 10.1002/cncr.25165] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Inflammatory breast cancer (IBC) is a rare but aggressive form of breast cancer. Despite multimodality treatment, the long-term survival rate for patients with IBC has remained inferior at 50%. Until recently, IBC was understudied at the molecular level. Since 2004, new high-throughput molecular profiling technologies have been applied to clinical samples with the aim of identifying genes or pathways potentially involved in disease development that may represent new, clinically relevant targets. METHODS The authors conducted gene expression profiling studies of IBC clinical samples and investigated issues that may be addressed in the future to allow the "omics" approach to reach its full potential in IBC. RESULTS Starting in December 2004, 6 research groups compared the expression profiles of IBC samples and non-IBC samples. The series of samples were small (37 IBCs for the largest study) and heterogeneous (various tumor selection criteria and technologic platforms were used). The results indicated the feasibility of messenger RNA expression profiling from IBC biopsies, and they demonstrated the great transcriptional heterogeneity of IBC and the existence of molecular subtypes similar to non-IBC that more frequently were basal and positive for ERBB2. Supervised analyses demonstrated differences in gene expression levels between the IBC and non-IBC variable across studies with sometimes no or very subtle differences and, to date, no gene overlap across the reported signatures. No signature predictive of therapeutic response or clinical outcome has been reliably identified or validated. CONCLUSIONS Because of the great heterogeneity of IBC, future studies will have to include larger series of IBC samples that are selected using homogeneous criteria. This calls for urgent international collaborations.
Collapse
Affiliation(s)
- François Bertucci
- Department of Molecular Oncology, Cancer Research Center of Marseille, Paoli-Calmettes Institute, UMR891 Inserm, Marseille, France.
| | | | | | | |
Collapse
|
48
|
Aird KM, Ghanayem RB, Peplinski S, Lyerly HK, Devi GR. X-linked inhibitor of apoptosis protein inhibits apoptosis in inflammatory breast cancer cells with acquired resistance to an ErbB1/2 tyrosine kinase inhibitor. Mol Cancer Ther 2010; 9:1432-42. [PMID: 20406946 DOI: 10.1158/1535-7163.mct-10-0160] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Inflammatory breast cancer (IBC) is a highly aggressive subtype of breast cancer that is often characterized by ErbB2 overexpression. ErbB2 targeting is clinically relevant using trastuzumab (anti-ErbB2 antibody) and lapatinib (small-molecule ErbB1/2 inhibitor). However, acquired resistance is a common outcome even in IBC patients who show an initial clinical response, which limits the efficacy of these agents. In the present study, using a clonal population of GW583340 (lapatinib analogue, ErbB1/2 inhibitor)-resistant IBC cells, we identified the overexpression of an antiapoptotic protein, X-linked inhibitor of apoptosis protein (XIAP), in acquired resistance to GW583340 in both ErbB2-overexpressing SUM190 and ErbB1-activated SUM149 cell lines derived from primary IBC tumors. A marked decrease in p-ErbB2, p-ErbB1, and downstream signaling was evident in the GW583340-resistant cells (rSUM190 and rSUM149) similar to parental counterparts treated with the drug, suggesting that the primary mechanism of action of GW583340 was not compromised in resistant cells. However, rSUM190 and rSUM149 cells growing in GW583340 had significant XIAP overexpression and resistance to GW583340-mediated apoptosis. Additionally, stable XIAP overexpression using a lentiviral system reversed sensitivity to GW583340 in parental cells. The observed overexpression was identified to be caused by IRES-mediated XIAP translation. XIAP downregulation in rSUM190 and rSUM149 cells using a small-molecule inhibitor (embelin), which abrogates the XIAP/procaspase-9 interaction, resulted in decreased viability, showing that XIAP is required for survival of cells with acquired resistance to GW583340. These studies establish the feasibility of development of an XIAP inhibitor that potentiates apoptosis for use in IBC patients with resistance to ErbB2-targeting agents.
Collapse
Affiliation(s)
- Katherine M Aird
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
Inflammatory breast cancer is an aggressive subtype of a locally advanced breast cancer that is thought to account for approximately 1-5% of all newly diagnosed breast cancers diagnosed in the USA. Historically, IBC was considered to be a uniformly fatal disease with less than 5% of patients surviving past 5 years. With the advent of a multidisciplinary approach to management, survival outcomes have improved with 5-year survival rates of over 40% being reported. Research efforts are now focused on trying to better understand the epidemiological and molecular characteristics of this disease to further improve survival. Two genes, Rhoc GTPase and WISP3, have been identified that have been found to be concordantly altered in the majority of inflammatory breast cancer tumors and may serve as potential targets for future therapeutic agents. The purpose of this review is to summarize the latest epidemiological and molecular characteristics of IBC, describe the difficulties encountered in trying to clinically diagnose this entity, highlight the importance of a multidisciplinary approach and present some of the latest data on the management of this disease.
Collapse
Affiliation(s)
- Shaheenah Dawood
- Department of Medical Oncology, Dubai Health Authority, PO Box 8179, Dubai, UAE.
| |
Collapse
|
50
|
Chen J, Sam L, Huang Y, Lee Y, Li J, Liu Y, Xing HR, Lussier YA. Protein interaction network underpins concordant prognosis among heterogeneous breast cancer signatures. J Biomed Inform 2010; 43:385-96. [PMID: 20350617 DOI: 10.1016/j.jbi.2010.03.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 03/20/2010] [Accepted: 03/23/2010] [Indexed: 01/05/2023]
Abstract
Characterizing the biomolecular systems' properties underpinning prognosis signatures derived from gene expression profiles remains a key clinical and biological challenge. In breast cancer, while different "poor-prognosis" sets of genes have predicted patient survival outcome equally well in independent cohorts, these prognostic signatures have surprisingly little genetic overlap. We examine 10 such published expression-based signatures that are predictors or distinct breast cancer phenotypes, uncover their mechanistic interconnectivity through a protein-protein interaction network, and introduce a novel cross-"gene expression signature" analysis method using (i) domain knowledge to constrain multiple comparisons in a mechanistically relevant single-gene network interactions and (ii) scale-free permutation re-sampling to statistically control for hubness (SPAN - Single Protein Analysis of Network with constant node degree per protein). At adjusted p-values<5%, 54-genes thus identified have a significantly greater connectivity than those through meticulous permutation re-sampling of the context-constrained network. More importantly, eight of 10 genetically non-overlapping signatures are connected through well-established mechanisms of breast cancer oncogenesis and progression. Gene Ontology enrichment studies demonstrate common markers of cell cycle regulation. Kaplan-Meier analysis of three independent historical gene expression sets confirms this network-signature's inherent ability to identify "poor outcome" in ER(+) patients without the requirement of machine learning. We provide a novel demonstration that genetically distinct prognosis signatures, developed from independent clinical datasets, occupy overlapping prognostic space of breast cancer via shared mechanisms that are mediated by genetically different yet mechanistically comparable interactions among proteins of differentially expressed genes in the signatures. This is the first study employing a networks' approach to aggregate established gene expression signatures in order to develop a phenotype/pathway-based cancer roadmap with the potential for (i) novel drug development applications and for (ii) facilitating the clinical deployment of prognostic gene signatures with improved mechanistic understanding of biological processes and functions associated with gene expression changes. http://www.lussierlab.org/publication/networksignature/.
Collapse
Affiliation(s)
- James Chen
- Sections of Hematology/Oncology, The University of Chicago Cancer Research Center, The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|