1
|
Luo F, Manse Y, Chaipech S, Pongpiriyadacha Y, Muraoka O, Morikawa T. Phytochemicals with Chemopreventive Activity Obtained from the Thai Medicinal Plant Mammea siamensis (Miq.) T. Anders.: Isolation and Structure Determination of New Prenylcoumarins with Inhibitory Activity against Aromatase. Int J Mol Sci 2022; 23:ijms231911233. [PMID: 36232534 PMCID: PMC9570088 DOI: 10.3390/ijms231911233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
With the aim of searching for phytochemicals with aromatase inhibitory activity, five new prenylcoumarins, mammeasins K (1), L (2), M (3), N (4), and O (5), were isolated from the methanolic extract of Mammea siamensis (Miq.) T. Anders. flowers (fam. Calophyllaceae), originating in Thailand. The stereostructures of 1–5 were elucidated based on their spectroscopic properties. Among the new compounds, 1 (IC50 = 7.6 µM) and 5 (9.1 µM) possessed relatively strong inhibitory activity against aromatase, which is a target of drugs already used in clinical practice for the treatment and prevention of estrogen-dependent breast cancer. The analysis through Lineweaver–Burk plots showed that they competitively inhibit aromatase (1, Ki = 3.4 µM and 5, 2.3 µM). Additionally, the most potent coumarin constituent, mammea B/AB cyclo D (31, Ki = 0.84 µM), had a competitive inhibitory activity equivalent to that of aminoglutethimide (0.84 µM), an aromatase inhibitor used in therapeutics.
Collapse
Affiliation(s)
- Fenglin Luo
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka 577-8502, Osaka, Japan
| | - Yoshiaki Manse
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka 577-8502, Osaka, Japan
| | - Saowanee Chaipech
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka 577-8502, Osaka, Japan
- Faculty of Agro-Industry, Rajamangala University of Technology Srivijaya, Thungyai, Nakhon Si Thammarat 80240, Thailand
| | - Yutana Pongpiriyadacha
- Faculty of Science and Technology, Rajamangala University of Technology Srivijaya, Thungyai, Nakhon Si Thammarat 80240, Thailand
| | - Osamu Muraoka
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka 577-8502, Osaka, Japan
| | - Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka 577-8502, Osaka, Japan
- Correspondence: ; Tel.: +81-6-4307-4306; Fax: +81-6-6729-3577
| |
Collapse
|
2
|
Abstract
PURPOSE Current concepts regarding estrogen and its mechanistic effects on breast cancer in women are evolving. This article reviews studies that address estrogen-mediated breast cancer development, the prevalence of occult tumors at autopsy, and the natural history of breast cancer as predicted by a newly developed tumor kinetic model. METHODS This article reviews previously published studies from the authors and articles pertinent to the data presented. RESULTS We discuss the concepts of adaptive hypersensitivity that develops in response to long-term deprivation of estrogen and results in both increased cell proliferation and apoptosis. The effects of menopausal hormonal therapy on breast cancer in postmenopausal women are interpreted based on the tumor kinetic model. Studies of the administration of a tissue selective estrogen complex in vitro, in vivo, and in patients are described. We review the various clinical studies of breast cancer prevention with selective estrogen receptor modulators and aromatase inhibitors. Finally, the effects of the underlying risk of breast cancer on the effects of menopausal hormone therapy are outlined. DISCUSSION The overall intent of this review is to present data supporting recent concepts, discuss pertinent literature, and critically examine areas of controversy.
Collapse
|
3
|
Calhoun S, Duan L, Maki CG. Acetyl-CoA synthetases ACSS1 and ACSS2 are 4-hydroxytamoxifen responsive factors that promote survival in tamoxifen treated and estrogen deprived cells. Transl Oncol 2022; 19:101386. [PMID: 35263700 PMCID: PMC8904238 DOI: 10.1016/j.tranon.2022.101386] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/22/2022] Open
Affiliation(s)
- Sarah Calhoun
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Ave, AcFac Suite 507, Chicago, IL 60612, USA
| | - Lei Duan
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Ave, AcFac Suite 507, Chicago, IL 60612, USA
| | - Carl G Maki
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Ave, AcFac Suite 507, Chicago, IL 60612, USA.
| |
Collapse
|
4
|
Li Y, Li J, Shen Y, Xiong Y, Li X, Qin Z. Identification of estrogen receptor target genes involved in gonadal feminization caused by estrogen in Xenopus laevis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 232:105760. [PMID: 33515924 DOI: 10.1016/j.aquatox.2021.105760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Estrogens and estrogenic endocrine disrupting chemicals can cause gonadal feminization in some vertebrates mainly through estrogen receptor (ER), but the underlying molecular mechanisms are unclear. The present study aimed to identify ER target genes involved in estrogen-caused gonadal feminization in Xenopus laevis. Based on our recent transcriptomic data that 10 nM 17β-estradiol (E2) altered gene transcription in feminizing gonads of male X. laevis at NF stages 48, 50, and 52, we searched estrogen response element (ERE) using the Dragon ERE Finder software in the promoter region of all the E2-regulated genes. As a result, 163 genes containing ERE sequence were identified as predicted ER target genes at NF stage 50 (on the 14th day postfertilization), a crucial stage for gonadal feminization. Then, some of these predicted ER target genes were further investigated, mainly including the genes that were suggested to be involved in E2-caused gonadal feminization and genes being dramatically up or down-regulated by E2. Fifteen genes were demonstrated to be responsive to E2, in turn ER antagonist blocked the E2-regulated transcription. Finally, we identified 10 genes that can bind to ERα by a chromatin immunoprecipitation-qPCR. Taken together, we identified the 10 genes that contain predicted ERE sequences, are responsive to estrogen and ER antagonist, and have ability to bind to ER as ER target genes, including pglyrp2, apoa1, fgb, tdo2, ca6, nags, cpb2, tmprss6, nudc, zwilch. Our results could help to improve the understanding of the molecular mechanisms for gonadal feminization caused by estrogenic endocrine disrupting chemicals in X. laevis, and even in other species.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinbo Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanping Shen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiming Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinghong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Desai R, East DA, Hardy L, Faccenda D, Rigon M, Crosby J, Alvarez MS, Singh A, Mainenti M, Hussey LK, Bentham R, Szabadkai G, Zappulli V, Dhoot GK, Romano LE, Xia D, Coppens I, Hamacher-Brady A, Chapple JP, Abeti R, Fleck RA, Vizcay-Barrena G, Smith K, Campanella M. Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response. SCIENCE ADVANCES 2020; 6:eabc9955. [PMID: 33355129 PMCID: PMC11206220 DOI: 10.1126/sciadv.abc9955] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/13/2020] [Indexed: 05/25/2023]
Abstract
Mitochondria drive cellular adaptation to stress by retro-communicating with the nucleus. This process is known as mitochondrial retrograde response (MRR) and is induced by mitochondrial dysfunction. MRR results in the nuclear stabilization of prosurvival transcription factors such as the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Here, we demonstrate that MRR is facilitated by contact sites between mitochondria and the nucleus. The translocator protein (TSPO) by preventing the mitophagy-mediated segregation o mitochonria is required for this interaction. The complex formed by TSPO with the protein kinase A (PKA), via the A-kinase anchoring protein acyl-CoA binding domain containing 3 (ACBD3), established the tethering. The latter allows for cholesterol redistribution of cholesterol in the nucleus to sustain the prosurvival response by blocking NF-κB deacetylation. This work proposes a previously unidentified paradigm in MRR: the formation of contact sites between mitochondria and nucleus to aid communication.
Collapse
Affiliation(s)
- Radha Desai
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Daniel A East
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Liana Hardy
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Danilo Faccenda
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Manuel Rigon
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - James Crosby
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - María Soledad Alvarez
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Aarti Singh
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Marta Mainenti
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Laura Kuhlman Hussey
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Robert Bentham
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, London WC1E 6BT, UK
| | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, London WC1E 6BT, UK
- Department of Biomedical Science, University of Padua, Via Ugo Bassi, 35131 Padua, Italy
- Francis Crick Institute, Midland Road, London NW1 AT, UK
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Sciences, University of Padua, Viale dell'Universita' 16, 35020 Legnaro (PD), Italy
| | - Gurtej K Dhoot
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Lisa E Romano
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Dong Xia
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Isabelle Coppens
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Baltimore, Baltimore, MD 21205, USA
| | - Anne Hamacher-Brady
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Baltimore, Baltimore, MD 21205, USA
| | - J Paul Chapple
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Rosella Abeti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Roland A Fleck
- Centre for Ultrastructural Imaging, King's College London, London SE1 1UL, UK
| | - Gema Vizcay-Barrena
- Centre for Ultrastructural Imaging, King's College London, London SE1 1UL, UK
| | - Kenneth Smith
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK.
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
6
|
Fu F, Yang X, Zheng M, Zhao Q, Zhang K, Li Z, Zhang H, Zhang S. Role of Transmembrane 4 L Six Family 1 in the Development and Progression of Cancer. Front Mol Biosci 2020; 7:202. [PMID: 33015133 PMCID: PMC7461813 DOI: 10.3389/fmolb.2020.00202] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
Transmembrane 4 L six family 1 (TM4SF1) is a protein with four transmembrane domains that belongs to the transmembrane 4 L six family members (TM4SFs). Structurally, TM4SF1 consists of four transmembrane domains (TM1-4), N- and C-terminal intracellular domains, two extracellular domains, a smaller domain between TM1 and TM2, and a larger domain between TM3 and TM4. Within the cell, TM4SF1 is located at the cell surface where it transmits extracellular signals into the cytoplasm. TM4SF1 interacts with tetraspanins, integrin, receptor tyrosine kinases, and other proteins to form tetraspanin-enriched microdomains. This interaction affects the pro-migratory activity of the cells, and thus it plays important roles in the development and progression of cancer. TM4SF1 has been shown to be overexpressed in many malignant tumors, including gliomas; malignant melanomas; and liver, prostate, breast, pancreatic, bladder, colon, lung, gastric, ovarian, and thyroid cancers. TM4SF1 promotes the migration and invasion of cancer cells by inducing epithelial-mesenchymal transition, self-renewal ability, tumor angiogenesis, invadopodia formation, and regulating the related signaling pathway. TM4SF1 is an independent prognostic indicator and biomarker in several cancers. It also promotes drug resistance, which is a major cause of therapeutic failure. These characteristics make TM4SF1 an attractive target for antibody-based immunotherapy. Here, we review the many functions of TM4SF1 in malignant tumors, with the aim to understand the interaction between its expression and the biological behaviors of cancer and to supply a basis for exploring new therapeutic targets.
Collapse
Affiliation(s)
- Fangmei Fu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xudong Yang
- Tianjin Rehabilitation Center, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Qi Zhao
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Kexin Zhang
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Zugui Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
7
|
Ding CL, Qian CL, Qi ZT, Wang W. Identification of retinoid acid induced 16 as a novel androgen receptor target in prostate cancer cells. Mol Cell Endocrinol 2020; 506:110745. [PMID: 32014455 DOI: 10.1016/j.mce.2020.110745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Retinoid acid induced 16 (RAI16) was reported to enhance tumorigenesis in hepatocellular carcinoma (HCC). The androgen receptor (AR) is a nuclear hormone receptor that functions as a critical oncogene in several cancer progressions. However, whether RAI16 is a candidate AR target gene that may involve in prostate cancer progression was unclear. MATERIALS & METHODS RAI16 expression was detected in prostate cancer cells with or without the AR agonist R1881 treatment by quantitative RT-PCR and Western blot. Direct AR binding to the RAI16 promoter was tested using AR chromatin immunoprecipitation (ChIP) and luciferase assay. Cell viability and colony formation assays in response to R1881 were analyzed in cells with RAI16 knockdown by specific siRNA. RESULTS The expression of RAI16 was high in LNCaP(AI), LNCaP(AD), C4-2 expressing AR, but low in Du145 and Pc-3 cells without AR expressing. In addition, the expression of RAI16 could be induced by 10 nM R1881 treatment LNCaP(AD) and C4-2 cells, but inhibited by AR specific siRNA treatment. Furthermore, AR binds directly to ARE3 (-2003~-1982bp) of RAI16 promoter region by ChIP and luciferase assay. RAI16 knockdown inhibited the enhancement of cell viability and colony formation of AR stimulation. CONCLUSIONS We demonstrate for the first time that RAI16 is a direct target gene of AR. RAI16 may involved in cell growth of prostate cancer cells in response to AR signaling.
Collapse
Affiliation(s)
- Cui-Ling Ding
- Department of Microbiology, Second Military Medical University, Shanghai, 200433, China.
| | - Chun-Lin Qian
- Department of Microbiology, Second Military Medical University, Shanghai, 200433, China.
| | - Zhong-Tian Qi
- Department of Microbiology, Second Military Medical University, Shanghai, 200433, China.
| | - Wen Wang
- Department of Microbiology, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
8
|
Assessment of the Aromatase Inhibitory Activity of Ma-Huang-Tang (MHT) and Its Active Compounds. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2019:4809846. [PMID: 31929813 PMCID: PMC6935813 DOI: 10.1155/2019/4809846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/13/2019] [Indexed: 11/26/2022]
Abstract
Aromatase, a cytochrome P450 enzyme that converts androgens into estrogens, is an important drug target for hormone-dependent diseases. The purpose of this study was to elucidate the aromatase inhibitory effects of Ma-Huang-Tang (MHT), a traditional Korean herbal medicine prescription, and to identify its active ingredients. In this study, the inhibitory effect of MHT on aromatase activity was observed using dibenzylfluorescein (DBF) and KGN cells, and the dose-dependent effect of MHT was verified (IC50 values of 251 μg/mL and 246 μg/mL as determined by the two methods, respectively). Furthermore, among the six herbal medicines that constitute MHT, Ephedrae Herba, Cinnamomi Ramulus, and Glycyrrhizae Radix et Rhizoma showed the most potent inhibition of aromatase activity. Furthermore, upon identification of the active MHT compounds, three markers from Glycyrrhizae Radix et Rhizoma, liquiritin (5), liquiritin apioside (6), and liquiritigenin (7), were verified (IC50 values of 530 μM, 508 μM, and 1.611 mM and 499 μM, 522 μM, and 1.41 mM as determined by the two methods, respectively). In addition, their contents were confirmed to be 15.58, 19.80, and 2.22 mg/g, respectively, by HPLC/DAD analysis. These results indicate that the aromatase inhibitory effect of MHT results from the synergistic action of its active components and that MHT has potential as a preventive agent against aromatase activity.
Collapse
|
9
|
Pingaew R, Prachayasittikul V, Anuwongcharoen N, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Synthesis and molecular docking of N,N′-disubstituted thiourea derivatives as novel aromatase inhibitors. Bioorg Chem 2018; 79:171-178. [DOI: 10.1016/j.bioorg.2018.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 12/15/2022]
|
10
|
Pingaew R, Mandi P, Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Synthesis, molecular docking, and QSAR study of sulfonamide-based indoles as aromatase inhibitors. Eur J Med Chem 2018; 143:1604-1615. [DOI: 10.1016/j.ejmech.2017.10.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/27/2017] [Accepted: 10/19/2017] [Indexed: 12/24/2022]
|
11
|
Yang T, Zhang H, Qiu H, Li B, Wang J, Du G, Ren C, Wan X. EFEMP1 is repressed by estrogen and inhibits the epithelial-mesenchymal transition via Wnt/β-catenin signaling in endometrial carcinoma. Oncotarget 2017; 7:25712-25. [PMID: 27015552 PMCID: PMC5041938 DOI: 10.18632/oncotarget.8263] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/02/2016] [Indexed: 01/06/2023] Open
Abstract
Epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) acted as a tumor suppressor in endometrial carcinoma (EC). However, the correlation between EFEMP1 and estrogen is unknown. Here, we reported that the expression of EFEMP1 was conversely associated with ERα in endometrial carcinoma tissues. In endometrial carcinoma cells, estrogen/ERα signaling significantly suppressed the expression of EFEMP1. Moreover, chromatin immunoprecipitation (CHIP) and dual-luciferase reporter assays demonstrate that estrogen/ERα bound to the estrogen response element (ERE) located in EFEMP1 promoter and repressed its expression. Besides, in vitro and in vivo, EFEMP1 could remarkably suppress the expression of epithelial-mesenchymal transition (EMT) markers such as Vimentin, Snail and the Wnt/β-catenin target genes like Cyclin-D1 and c-Myc, which could be restored when EFEMP1 was silenced. In addition, XAV93920 (the inhibitor of the Wnt/β-catenin pathway) blocked and LiCl (the activator of the Wnt/β-catenin pathway) enhanced the effect of EFEMP1 on EMT. In conclusion, we demonstrated that estrogen/ERα signal suppresses EFEMP1. Besides, EFEMP1 inhibits EMT via interfering the Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Huilin Zhang
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Department of Gynecology and Obstetrics, Nanjing Maternal and Children Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Haifeng Qiu
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Bilan Li
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingyun Wang
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guiqiang Du
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chune Ren
- Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaoping Wan
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Ahmad I, Shagufta. Recent developments in steroidal and nonsteroidal aromatase inhibitors for the chemoprevention of estrogen-dependent breast cancer. Eur J Med Chem 2015; 102:375-86. [PMID: 26301554 DOI: 10.1016/j.ejmech.2015.08.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/02/2015] [Accepted: 08/04/2015] [Indexed: 01/01/2023]
Abstract
Aromatase, a cytochrome P450 enzyme complex present in breast tissues, plays a significant role in the biosynthesis of important endogenous estrogens from androgens. The source of estrogen production in breast cancer tissues is intra-tumoral aromatase, and inhibition of aromatase may inhibit the growth stimulation effect of estrogens in breast cancer tissues. Consequently, aromatase is considered a useful therapeutic target in the treatment and prevention of estrogen-dependent breast cancer. Recently, different natural products and synthetic compounds have been rapidly developed, studied, and evaluated for aromatase inhibitory activity. Aromatase inhibitors are classified into two categories on the basis of their chemical structures, i.e., steroidal and nonsteroidal aromatase inhibitors. This review highlights the synthetic steroidal and nonsteroidal aromatase inhibitors reported in the literature in the last few years and will aid medicinal chemists in the design and synthesis of novel and pharmacologically-potent aromatase inhibitors for the treatment of breast cancer.
Collapse
Affiliation(s)
- Irshad Ahmad
- Department of Mathematics and Natural Sciences, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates.
| | - Shagufta
- Department of Mathematics and Natural Sciences, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates.
| |
Collapse
|
13
|
Zhang Y, Xiao L, Popovic K, Xie X, Chordia MD, Chung LW, Williams MB, Yue W, Pan D. Novel cancer-targeting SPECT/NIRF dual-modality imaging probe (99m)Tc-PC-1007: synthesis and biological evaluation. Bioorg Med Chem Lett 2013; 23:6350-4. [PMID: 24125889 PMCID: PMC4710472 DOI: 10.1016/j.bmcl.2013.09.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/18/2013] [Accepted: 09/23/2013] [Indexed: 01/18/2023]
Abstract
Synthesis, characterization, in vitro and in vivo biological evaluation of a heptamethine cyanine based dual-mode single-photon emission computed tomography (SPECT)/near infrared fluorescence (NIRF) imaging probe (99m)Tc-PC-1007 is described. (99m)Tc-PC-1007 exhibited preferential accumulation in human breast cancer MCF-7 cells. Cancer-specific SPECT/CT and NIRF imaging of (99m)Tc-PC-1007 was performed in a breast cancer xenograft model. The probe uptake ratio of tumor to control (spinal cord) was calculated to be 4.02±0.56 at 6 h post injection (pi) and 8.50±1.41 at 20 h pi (P<0.0001). Pharmacokinetic parameters such as blood clearance and organ distribution were assessed.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| | - Li Xiao
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| | - Kosta Popovic
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| | - Xiuzhen Xie
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| | - Mahendra D. Chordia
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| | - Leland W.K. Chung
- Uro-Oncology Research, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Mark B. Williams
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| | - Wei Yue
- Department of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA 22908, USA
| | - Dongfeng Pan
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
14
|
Zhang X, Wang ZY. Estrogen receptor-α variant, ER-α36, is involved in tamoxifen resistance and estrogen hypersensitivity. Endocrinology 2013; 154:1990-8. [PMID: 23546601 DOI: 10.1210/en.2013-1116] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Antiestrogens such as tamoxifen (TAM) provided a successful treatment for estrogen receptor (ER)-positive breast cancer for the past four decades. However, most breast tumors are eventually resistant to TAM therapy. The molecular mechanisms underlying TAM resistance have not been well established. Recently, we reported that breast cancer patients with tumors expressing high concentrations of ER-α36, a variant of ER-α, benefited less from TAM therapy than those with low concentrations of ER-α36, suggesting that increased ER-α36 concentration is one of the underlying mechanisms of TAM resistance. Here, we investigated the function and underlying mechanism of ER-α36 in TAM resistance. We found that TAM increased ER-α36 concentrations, and TAM-resistant MCF7 cells expressed high concentrations of ER-α36. In addition, MCF7 cells with forced expression of recombinant ER-α36 and H3396 cells expressing high concentrations of endogenous ER-α36 were resistant to TAM. ER-α36 down-regulation in TAM-resistant cells with the short hairpinRNA method restored TAM sensitivity. We also found that TAM acted as a potent agonist by activating phosphorylation of the AKT kinase in ER-α36-expressing cells. Finally, we found that cells with high concentration of ER-α36 protein were hypersensitive to estrogen, activating ERK phosphorylation at picomolar range. Our results thus demonstrated that elevated ER-α36 concentration is one of the mechanisms by which ER-positive breast cancer cells escape TAM therapy and provided a rational to develop novel therapeutic approaches for TAM-resistant patients by targeting ER-α36.
Collapse
Affiliation(s)
- Xiantian Zhang
- Department of Medical Microbiology, Creighton University Medical School, Criss III, Room 352, 2500 California Plaza, Omaha, Nebraska 68178, USA.
| | | |
Collapse
|
15
|
Allioli N, Vincent S, Vlaeminck-Guillem V, Decaussin-Petrucci M, Ragage F, Ruffion A, Samarut J. TM4SF1, a novel primary androgen receptor target gene over-expressed in human prostate cancer and involved in cell migration. Prostate 2011; 71:1239-50. [PMID: 21656834 DOI: 10.1002/pros.21340] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 12/13/2010] [Indexed: 11/09/2022]
Abstract
BACKGROUND The Androgen Receptor (AR) plays a key role in controlling prostate gland homeostasis and contributes to prostate carcinogenesis. The identification of its target genes should provide new candidates that may be implicated in cancer initiation and progression. METHODS Transcriptomic experiments and chromatin immunoprecipitation were combined to identify direct androgen regulated genes. Real-time quantitative PCR (RT-qPCR) analyses were performed to measure TM4SF1 mRNA levels in prostate cancer and benign prostatic hyperplasia (BPH) specimens. Immunohistochemical methods were used to compare TM4SF1 protein expression profiles in the same cohort. A targeted siRNAs knockdown strategy was used, prior to wound healing assays, to analyze the role of TM4SF1 in cell migration in vitro. RESULTS We demonstrate for the first time that TM4SF1 is a direct target gene of the AR, a transcription factor of the steroid nuclear receptor family. A functional androgen response element was identified in the promoter region of the gene. In addition, TM4SF1 mRNA expression was higher in cancer samples compared to BPH tissues. The TM4SF1 protein mediates cell motility of prostate cancer cells where it is predominantly localized in the cytoplasm, in contrast to its apical membrane localization in normal prostate epithelial cells. CONCLUSIONS Our results reveal a novel function for TM4SF1 in AR signaling. The TM4SF1 mRNA expression is higher in prostate cancer tissues as compared to BPH samples. Inhibition of cell migration after targeted knockdown of TM4SF1 protein expression suggests its contribution to prostate cancer cell metastasis.
Collapse
MESH Headings
- Antigens, Surface/biosynthesis
- Antigens, Surface/genetics
- Antigens, Surface/physiology
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/physiology
- Cell Line, Tumor
- Cell Migration Inhibition/genetics
- Gene Expression Regulation, Neoplastic
- HeLa Cells
- Humans
- Male
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Prostatic Hyperplasia/genetics
- Prostatic Hyperplasia/metabolism
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Receptors, Androgen/biosynthesis
- Receptors, Androgen/genetics
- Receptors, Androgen/physiology
Collapse
Affiliation(s)
- Nathalie Allioli
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
16
|
Li Y, Wang JP, Santen RJ, Kim TH, Park H, Fan P, Yue W. Estrogen stimulation of cell migration involves multiple signaling pathway interactions. Endocrinology 2010; 151:5146-56. [PMID: 20861240 PMCID: PMC2954727 DOI: 10.1210/en.2009-1506] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hormone-dependent breast cancers respond to inhibitors of estrogen synthesis or action with tumor regression and with a reduction of new metastases. The mechanisms underlying the effects of estrogen on metastasis likely differ from those on tumor regression. Cell migration is a key first step in the metastatic process. Based on our prior work and other published data, we designed and tested a working model that suggested that estrogen receptor α, epidermal growth factor receptor, focal adhesion kinase (FAK), paxillin, phosphatidylinositol 3 kinase, p60 Src tyrosine kinase (c-Src), c-Jun N-terminal kinase, and MAPK interact to facilitate estradiol (E(2))-induced cell migration. Accordingly, we examined the effect of E(2) on activation of these pathways and demonstrated mechanistic effects by blocking each component and assessing cell migration as a biologic endpoint. Initial studies validated a robust cell migration assay characterized by highly reproducible, dose-dependent responses to E(2). Examining various mechanisms involved in migration, we showed that E(2) induced activation of c-Src, FAK, and paxillin with early peaks within 5-30 min and later peaks at 24 h. ERK and protein kinase B phosphorylation exhibited only early peaks. Blockade of various steps in these signaling pathways with use of small interfering RNA or specific inhibitors demonstrated mechanistic effects of these signaling molecules on cell migration. Our results suggest that the effects of E(2) on cell migration involve multiple, interacting signaling pathways. Important effects are mediated by the MAPK, phosphatidylinositol 3 kinase, and c-Jun N-terminal kinase pathways and use FAK, paxillin, and c-Src for activation. Each pathway represents a potential target for blocking cell migration and metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Yan Li
- Division of Endocrinology, Department of Medicine, University of Virginia Health Sciences System, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Chanplakorn N, Chanplakorn P, Suzuki T, Ono K, Chan MSM, Miki Y, Saji S, Ueno T, Toi M, Sasano H. Increased estrogen sulfatase (STS) and 17β-hydroxysteroid dehydrogenase type 1(17β-HSD1) following neoadjuvant aromatase inhibitor therapy in breast cancer patients. Breast Cancer Res Treat 2010; 120:639-48. [DOI: 10.1007/s10549-010-0785-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 02/03/2010] [Indexed: 11/28/2022]
|
18
|
Pugazhendhi D, Darbre PD. Differential effects of overexpression of ERα and ERβ in MCF10A immortalised, non-transformed human breast epithelial cells. Horm Mol Biol Clin Investig 2010; 1:117-26. [DOI: 10.1515/hmbci.2010.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 10/15/2009] [Indexed: 11/15/2022]
Abstract
Abstract: Cellular effects of oestrogen are mediated by two intracellular receptors ERα and ERβ. However, to compare responses mediated through these two receptors, experimental models are needed where ERα and ERβ are individually stably overexpressed in the same cell type.: We compared the effects of stable overexpression of ERα and ERβ in the MCF10A cell line, which is an immortalised but non-transformed breast epithelial cell line without high endogenous ER expression.: Clones of MCF10A cells were characterised which stably overexpressed ERα (10A-ERα2, 10A-ERα13) or which stably overexpressed ERβ (10A-ERβ12, 10A-ERβ15). Overexpression of either ERα or ERβ allowed induction of an oestrogen-regulated ERE-LUC reporter gene by oestradiol which was not found in the untransfected cells. Oestradiol also increased proliferation of 10A-ERα13 and 10A-ERβ12 cells, but not untransfected cells, by 1.3-fold over 7 days. The phytoestrogen, genistein, which is reported to bind more strongly to ERβ than to ERα, could induce luciferase gene expression from an ERE-LUC reporter gene at concentrations of 10: This provides a model system to compare effects of oestradiol with other oestrogenic ligands in cells stably overexpressing individually ERα or ERβ.
Collapse
|
19
|
Immonen E, Serpi R, Vähäkangas K, Myllynen P. Responses of PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine) in MCF-7 cells are culture condition dependent. Chem Biol Interact 2009; 182:73-83. [PMID: 19647730 DOI: 10.1016/j.cbi.2009.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/09/2009] [Accepted: 07/23/2009] [Indexed: 10/20/2022]
Abstract
To compare the effects of the food toxin 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP) and estradiol in hormone-responsive MCF-7 cells, the cells were exposed to different concentrations of either PhIP or estradiol. The effect of various culture conditions (e.g. phenol red, FBS, vehicle (DMSO/EtOH) and seeding density) on responses was studied. Cells were continuously grown with steroid-containing or -deprived medium, or switched from steroid-containing to -deprived medium for the experiments to minimize the effect of background estrogenicity. Effects of PhIP and estradiol on cell viability and proliferation were determined by ATP analysis and Ki-67 immunocytochemistry. Expression of estrogen receptor alpha, cell stress markers (p53 and ERK) and estrogen responsive proteins (c-myc and ERK) were immunoblotted. All concentrations of estradiol induced cell proliferation, viability and changes in protein expression, typical for estrogenic responses. PhIP, however, increased viability only at low concentrations and depending on culture conditions. No changes in protein expressions by PhIP were noted, not even when switching cells from steroid-containing to -deprived medium which down-regulated the expression of proteins at basal level. Vehicle affected significantly viability, especially after exposure to PhIP, but not protein expression while medium changes affected both. In conclusion, the effects of PhIP and estradiol in MCF-7 cells are dependent on culture conditions. The detected PhIP-induced changes are weaker compared to those induced by estradiol.
Collapse
Affiliation(s)
- E Immonen
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | | | | | | |
Collapse
|
20
|
Spink BC, Bennett JA, Pentecost BT, Lostritto N, Englert NA, Benn GK, Goodenough AK, Turesky RJ, Spink DC. Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells. Toxicol Appl Pharmacol 2009; 240:355-66. [PMID: 19619570 DOI: 10.1016/j.taap.2009.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 07/14/2009] [Accepted: 07/15/2009] [Indexed: 12/21/2022]
Abstract
The cumulative exposure to estrogens is an important determinant in the risk of breast cancer, yet the full range of mechanisms involving estrogens in the genesis and progression of breast cancer remains a subject of debate. Interactions of estrogens and environmental toxicants have received attention as putative factors contributing to carcinogenesis. Mechanistic studies have demonstrated interactions between estrogen receptor alpha (ERalpha) and the aryl hydrocarbon receptor (AhR), with consequences on the genes that they regulate. Many studies of ERalpha and AhR-mediated effects and crosstalk between them have focused on the initial molecular events. In this study, we investigated ERalpha- and AhR-mediated effects in long-term estrogen exposed (LTEE) MCF-7 human breast cancer cells, which were obtained by continuous culturing for at least 12 weeks in medium supplemented with 1 nM of 17beta-estradiol (E(2)). With these LTEE cells and with parallel control cells cultured without E(2) supplementation, we performed an extensive study of cytochrome P450 (CYP) induction, carcinogen bioactivation, global gene expression, and tumorigenicity in immunocompromised mice. We found that LTEE cells, in comparison with control cells, had higher levels of AhR mRNA and protein, greater responsiveness for AhR-regulated CYP1A1 and CYP1B1 induction, a 6-fold higher initial level of benzo(a)pyrene-DNA adducts as determined by liquid chromatography tandem mass spectrometry, marked differences in the expression of numerous genes, and a higher rate of E(2)-dependent tumor growth as xenografts. These studies indicate that LTEE causes adaptive responses in MCF-7 cells, which may reflect processes that contribute to the overall carcinogenic effect of E(2).
Collapse
Affiliation(s)
- Barbara C Spink
- Laboratory of Molecular Toxicology, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gene expression changes during the development of estrogen-independent and antiestrogen-resistant growth in breast cancer cell culture models. Anticancer Drugs 2009; 20:51-8. [PMID: 19343000 DOI: 10.1097/cad.0b013e32831845e1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have established estrogen-independent and antiestrogen-resistant cell lines from hormone-dependent MCF-7 breast cancer cells by long-term culture in the absence of estrogen, or in the presence of antiestrogen toremifene, respectively. By using a cDNA microarray we compared gene expression profiles among estrogen-independent, antiestrogen-resistant and long-term estrogen-treated MCF-7 cells. We also determined how the expression of the differentially expressed genes has developed during the long-term culture of the cell lines. Of the screened 1176 cancer-related genes, FOSL1, TIMP1, L1CAM, GDF15, and MYBL2 were found to be differentially expressed between the cell lines. A change in FOSL1 and TIMP1 expression could be attributed to the development of antiestrogen resistance, whereas induced L1CAM expression was implicated in the development of estrogen-independent growth of the cells. Estrogen regulated genes GDF15 and L1CAM became regulated by toremifene in the later passage number of toremifene-resistant cells, which might be an indication of the developed estrogen-agonistic activity of toremifene in these cells. Our findings suggest a pattern where the hormone-responsive cancer cells, which survive E2 deprivation and/or antiestrogen treatment, first acquire necessary changes in gene expression for transition to maximal growth in the new hormonal environment. Then, after prolonged treatment with antiestrogen, the antiestrogen-resistant cells may eventually generate an E2-agonistic response to antiestrogen, probably acquiring additional growth advantage.
Collapse
|
22
|
Sadler AJ, Pugazhendhi D, Darbre PD. Use of global gene expression patterns in mechanistic studies of oestrogen action in MCF7 human breast cancer cells. J Steroid Biochem Mol Biol 2009; 114:21-32. [PMID: 19167489 DOI: 10.1016/j.jsbmb.2008.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 12/31/2008] [Indexed: 12/11/2022]
Abstract
Over the years, the MCF7 human breast cancer cell line has provided a model system for the study of cellular and molecular mechanisms in oestrogen regulation of cell proliferation and in progression to oestrogen and antioestrogen independent growth. Global gene expression profiling has shown that oestrogen action in MCF7 cells involves the coordinated regulation of hundreds of genes across a wide range of functional groupings and that more genes are downregulated than upregulated. Adaptation to long-term oestrogen deprivation, which results in loss of oestrogen-responsive growth, involves alterations to gene patterns not only at early time points (0-4 weeks) but continuing through to later times (20-55 weeks), and even involves alterations to patterns of oestrogen-regulated gene expression. Only 48% of the genes which were regulated > or =2-fold by oestradiol in oestrogen-responsive cells retained this responsiveness after long-term oestrogen deprivation but other genes developed de novo oestrogen regulation. Long-term exposure to fulvestrant, which resulted in loss of growth inhibition by the antioestrogen, resulted in some very large fold changes in gene expression up to 10,000-fold. Comparison of gene profiles produced by environmental chemicals with oestrogenic properties showed that each ligand gave its own unique expression profile which suggests that environmental oestrogens entering the human breast may give rise to a more complex web of interference in cell function than simply mimicking oestrogen action at inappropriate times.
Collapse
Affiliation(s)
- A J Sadler
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | | | | |
Collapse
|
23
|
Yau C, Benz CC. Genes responsive to both oxidant stress and loss of estrogen receptor function identify a poor prognosis group of estrogen receptor positive primary breast cancers. Breast Cancer Res 2008; 10:R61. [PMID: 18631401 PMCID: PMC2575534 DOI: 10.1186/bcr2120] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 07/02/2008] [Accepted: 07/17/2008] [Indexed: 12/28/2022] Open
Abstract
Introduction Oxidative stress can modify estrogen receptor (ER) structure and function, including induction of progesterone receptor (PR), altering the biology and clinical behavior of endocrine responsive (ER-positive) breast cancer. Methods To investigate the impact of oxidative stress on estrogen/ER-regulated gene expression, RNA was extracted from ER-positive/PR-positive MCF7 breast cancer cells after 72 hours of estrogen deprivation, small-interfering RNA knockdown of ER-α, short-term (8 hours) exposure to various oxidant stresses (diamide, hydrogen peroxide, and menadione), or simultaneous ER-α knockdown and oxidant stress. RNA samples were analyzed by high-throughput expression microarray (Affymetrix), and significance analysis of microarrays was used to define gene signatures responsive to estrogen/ER regulation and oxidative stress. To explore the association of these signatures with breast cancer biology, microarray data were analyzed from 394 ER-positive primary human breast cancers pooled from three independent studies. In particular, an oxidant-sensitive estrogen/ER-responsive gene signature (Ox-E/ER) was correlated with breast cancer clinical parameters and disease-specific patient survival (DSS). Results From 891 estrogen/ER-regulated probes, a core set of 75 probes (62 unique genes) responsive to all three oxidants were selected (Ox-E/ER signature). Ingenuity pathway analysis of this signature highlighted networks involved in development, cancer, and cell motility, with intersecting nodes at growth factors (platelet-derived growth factor-BB, transforming growth factor-β), a proinflammatory cytokine (tumor necrosis factor), and matrix metalloproteinase-2. Evaluation of the 394 ER-positive primary breast cancers demonstrated that Ox-E/ER index values correlated negatively with PR mRNA levels (rp = -0.2; P = 0.00011) and positively with tumor grade (rp = 0.2; P = 9.741 × e-5), and were significantly higher in ER-positive/PR-negative versus ER-positive/PR-positive breast cancers (t-test, P = 0.0008). Regardless of PR status, the Ox-E/ER index associated with reduced DSS (n = 201; univariate Cox, P = 0.078) and, using the optimized cut-point, separated ER-positive cases into two significantly different DSS groups (log rank, P = 0.0009). Conclusion An oxidant-sensitive subset of estrogen/ER-responsive breast cancer genes linked to cell growth and invasion pathways was identified and associated with loss of PR and earlier disease-specific mortality, suggesting that oxidative stress contributes to the development of an aggressive subset of primary ER-positive breast cancers.
Collapse
Affiliation(s)
- Christina Yau
- Buck Institute for Age Research, Redwood Boulevard, Novato, California 94945, USA.
| | | |
Collapse
|
24
|
Prentice RL, Chlebowski RT, Stefanick ML, Manson JE, Langer RD, Pettinger M, Hendrix SL, Hubbell FA, Kooperberg C, Kuller LH, Lane DS, McTiernan A, O'Sullivan MJ, Rossouw JE, Anderson GL. Conjugated equine estrogens and breast cancer risk in the Women's Health Initiative clinical trial and observational study. Am J Epidemiol 2008; 167:1407-15. [PMID: 18448442 DOI: 10.1093/aje/kwn090] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Women's Health Initiative randomized controlled trial found a trend (p = 0.09) toward a lower breast cancer risk among women assigned to daily 0.625-mg conjugated equine estrogens (CEEs) compared with placebo, in contrast to an observational literature that mostly reports a moderate increase in risk with estrogen-alone preparations. In 1993-2004 at 40 US clinical centers, breast cancer hazard ratio estimates for this CEE regimen were compared between the Women's Health Initiative clinical trial and observational study toward understanding this apparent discrepancy and refining hazard ratio estimates. After control for prior use of postmenopausal hormone therapy and for confounding factors, CEE hazard ratio estimates were higher from the observational study compared with the clinical trial by 43% (p = 0.12). However, after additional control for time from menopause to first use of postmenopausal hormone therapy, the hazard ratios agreed closely between the two cohorts (p = 0.82). For women who begin use soon after menopause, combined analyses of clinical trial and observational study data do not provide clear evidence of either an overall reduction or an increase in breast cancer risk with CEEs, although hazard ratios appeared to be relatively higher among women having certain breast cancer risk factors or a low body mass index.
Collapse
Affiliation(s)
- Ross L Prentice
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Prentice RL, Chlebowski RT, Stefanick ML, Manson JE, Pettinger M, Hendrix SL, Hubbell FA, Kooperberg C, Kuller LH, Lane DS, McTiernan A, Jo O'Sullivan M, Rossouw JE, Anderson GL. Estrogen plus progestin therapy and breast cancer in recently postmenopausal women. Am J Epidemiol 2008; 167:1207-16. [PMID: 18372396 DOI: 10.1093/aje/kwn044] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Women's Health Initiative trial found a modestly increased risk of invasive breast cancer with daily 0.625-mg conjugated equine estrogens plus 2.5-mg medroxyprogesterone acetate, with most evidence among women who had previously received postmenopausal hormone therapy. In comparison, observational studies mostly report a larger risk increase. To explain these patterns, the authors examined the effects of this regimen in relation to both prior hormone therapy and time from menopause to first use of postmenopausal hormone therapy ("gap time") in the Women's Health Initiative trial and in a corresponding subset of the Women's Health Initiative observational study. Postmenopausal women with a uterus enrolled at 40 US clinical centers during 1993-1998. The authors found that hazard ratios agreed between the two cohorts at a specified gap time and time from hormone therapy initiation. Combined trial and observational study data support an adverse effect on breast cancer risk. Women who initiate use soon after menopause, and continue for many years, appear to be at particularly high risk. For example, for a woman who starts soon after menopause and adheres to this regimen, estimated hazard ratios are 1.64 (95% confidence interval: 1.00, 2.68) over a 5-year period of use and 2.19 (95% confidence interval: 1.56, 3.08) over a 10-year period of use.
Collapse
Affiliation(s)
- Ross L Prentice
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bhatnagar AS. The discovery and mechanism of action of letrozole. Breast Cancer Res Treat 2007; 105 Suppl 1:7-17. [PMID: 17912633 PMCID: PMC2001216 DOI: 10.1007/s10549-007-9696-3] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 07/17/2007] [Indexed: 12/21/2022]
Abstract
Because estrogen contributes to the promotion and progression of breast cancer, a greater understanding of the role of estrogen in breast cancer has led to therapeutic strategies targeting estrogen synthesis, the estrogen receptor, and intracellular signaling pathways. The enzyme aromatase catalyses the final step in estrogen biosynthesis and was identified as an attractive target for selective inhibition. Modern third-generation aromatase inhibitors (AIs) effectively block the production of estrogen without exerting effects on other steroidogenic pathways. The discovery of letrozole (Femara®) achieved the goal of discovering a highly potent and totally selective AI. Letrozole has greater potency than other AIs, including anastrozole, exemestane, formestane, and aminoglutethimide. Moreover, letrozole produces near complete inhibition of aromatase in peripheral tissues and is associated with greater suppression of estrogen than is achieved with other AIs. The potent anti-tumor effects of letrozole were demonstrated in several animal models. Studies with MCF-7Ca xenografts successfully predicted that letrozole would be clinically superior to the previous gold standard tamoxifen and also indicated that it may be more effective than other AIs. An extensive program of randomized clinical trials has demonstrated the clinical benefits of letrozole across the spectrum of hormone-responsive breast cancer in postmenopausal women.
Collapse
Affiliation(s)
- Ajay S Bhatnagar
- World Wide Services Group Ltd, Geispelgasse 13, CH-4132, Muttenz, Switzerland.
| |
Collapse
|
27
|
Nicholson RI, Hutcheson IR, Jones HE, Hiscox SE, Giles M, Taylor KM, Gee JMW. Growth factor signalling in endocrine and anti-growth factor resistant breast cancer. Rev Endocr Metab Disord 2007; 8:241-53. [PMID: 17486454 DOI: 10.1007/s11154-007-9033-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Growth factors provide powerful mitogenic and survival signals to breast cancer cells and it is therefore not surprising that they are able to subvert inhibitory responses to anti-hormonal drugs. In this review we discuss several mechanisms by which this may be achieved and expand our observations to encompass recently emerging anti-growth factor treatments. The information presented is underpinned by inhibitor studies that show the targeting of such mechanisms in advance of anti-hormone or anti-growth factor resistance development is able to substantially delay this event, thus pointing the way forward to intelligent combination therapies relevant to the future management of breast cancer.
Collapse
Affiliation(s)
- R I Nicholson
- Tenovus Centre for Cancer Research, Welsh School of Pharmacy, Cardiff University, Cardiff, UK.
| | | | | | | | | | | | | |
Collapse
|
28
|
Wesierska-Gadek J, Schreiner T, Maurer M, Waringer A, Ranftler C. Phenol red in the culture medium strongly affects the susceptibility of human MCF-7 cells to roscovitine. Cell Mol Biol Lett 2007; 12:280-93. [PMID: 17235438 PMCID: PMC6276014 DOI: 10.2478/s11658-007-0002-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 10/26/2006] [Indexed: 11/20/2022] Open
Abstract
Estrogens play an important role in the growth and terminal differentiation of the mammary gland. Prolonged exposure to estrogens seems to predispose women to breast cancer. It recently became evident that not only the intrinsic hormonal status but also external factors such as the occurrence of pharmaceuticals and chemicals with hormone activity in the environment may put women at greater risk of developing breast cancer. We focused on the interference of endocrine disruptors in breast cancer therapy. We observed that phenol red added to the culture medium strongly promoted the cell proliferation and cell cycle progression of human cells expressing the estrogen receptor, and affected their susceptibility to chemotherapy.
Collapse
Affiliation(s)
- Józefa Wesierska-Gadek
- Institute of Cancer Research, Department of Medicine I, Vienna Medical University, Vienna, Austria.
| | | | | | | | | |
Collapse
|
29
|
Inadera H, Uchida M, Shimomura A. [Advances in "omics" technologies for toxicological research]. Nihon Eiseigaku Zasshi 2007; 62:18-31. [PMID: 17334089 DOI: 10.1265/jjh.62.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Toxicology research can be applied to evaluate potential human health risks resulting from exposure to chemicals and other factors in the environment. The tremendous advances that have been made in high-throughput "omics" technologies (e.g., genomics, transcriptomics, proteomics and metabolomics) are providing good tools for toxicological research. Toxicogenomics is the study of changes in gene expression, protein and metabolite profiles, and combines the tools of traditional toxicology with those of genomics and bioinformatics. In particular, identification of changes in gene expression using DNA microarrays is an important method for understanding toxicological processes and obtaining an informative biomarker. Although these technologies have emerged as a powerful tool for clarifying hazard mechanisms, there are some concerns for the application of these technologies to toxicological research. This review summarizes the impact of "omics" technologies in toxicological study, followed by a brief discussion of future research.
Collapse
Affiliation(s)
- Hidekuni Inadera
- Department of Public Health, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | |
Collapse
|
30
|
Altiok N, Koyuturk M, Altiok S. JNK pathway regulates estradiol-induced apoptosis in hormone-dependent human breast cancer cells. Breast Cancer Res Treat 2006; 105:247-54. [PMID: 17187235 DOI: 10.1007/s10549-006-9451-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 11/05/2006] [Indexed: 10/23/2022]
Abstract
Estrogen is known to stimulate breast cancer development in humans. Ironically, high doses of estrogen can induce regression of hormone-dependent breast cancer in postmenopausal women. The mechanism by which estrogen induces tumour regression in breast cancer is still unknown. We found that under low growth-stimulated conditions, high concentrations of 17-beta-estradiol (estradiol) induces apoptosis and concomitantly increases phosphorylation of c-jun in estrogen receptor (ER)-positive breast cancer cell line, MCF-7, but not in ER-negative breast cancer cell line MDA-MB 231 suggesting an ER-mediated event. Interestingly, when the c-jun NH2-terminal kinase (JNK) signalling pathway was disrupted by the JNK inhibitor SP600125, the ability of estradiol to inhibit the growth of MCF-7 cells and to induce apoptosis was completely blocked. These data suggest that JNK plays a central role in mediating the anticancer effect of high concentrations of estradiol in MCF-7 cells. Our data showing the apoptotic effect of estradiol in low growth-stimulated conditions suggest potential implications for the pharmacological control of breast cancer with high dose estrogen in postmenopausal women. Furthermore, our results indicate that augmenting JNK activity could be an efficient novel approach for treating breast cancer.
Collapse
Affiliation(s)
- Nedret Altiok
- Department of Pharmacology and Institute of Medical Sciences, Istanbul Science University Faculty of Medicine, Büyükdere Cad. No: 120, 34394, Esentepe-Istanbul, Turkey.
| | | | | |
Collapse
|