1
|
Kiyimba K, Munyendo L, Obakiro SB, Gavamukulya Y, Ahmed A, Choudhary MI, Shafiq M, Ul-Haq Z, Guantai E. Drug likeliness, pharmacokinetics profiling and efficacy of Polyscias fulva bioactive compounds in the management of uterine fibroids; An integrative in silico and in vivo approach. J Mol Graph Model 2025; 137:108984. [PMID: 40015016 DOI: 10.1016/j.jmgm.2025.108984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
Polyscias fulva is traditionally used in Uganda for the management of Uterine fibroids (UF). However, there is paucity of data regarding its efficacy, biological targets and potential mechanisms of action hence prompting scientific validation process through insilico and invivo approaches. In this study, we utilized network pharmacology, molecular docking, molecular dynamic simulations and invivo assays to investigate the drug likeliness, pharmacokinetics and efficacy of Polyscias fulva against Uterine fibroids. Four Polyscias fulva bioactive compounds; pinoresinol, lichexanthone, methyl atarate, β-sitosterol exhibited drug likeness properties with moderate safety profiles. Forty-eight (48) uterine fibroid targets were identified as potential targets for the eleven Polyscias fulva compounds. Protein-protein interaction (PPI) analysis revealed four key targets (HIF1A, ESR1, EGFR, and CASP3). The KEGG pathway and GO enrichment analyses revealed that these key targets play significant roles in regulating the positive regulation of cyclin-dependent protein serine/threonine kinase activity, positive regulation of nitric-oxide synthase activity and positive regulation of transcription, DNA-templated. β-sitosterol demonstrated the strongest binding affinity with the four targets, showing particularly strong affinities for EGFR (-9.75 kcal/mol) and HIF1A (-9.21 kcal/mol). Molecular dynamics (MD) simulations revealed high stability in these protein-ligand complexes, with CASP3 displaying the lowest deviation and most consistent RMSD (0.14 nm) of the protein, followed by EGFR (0.25), HIF1A (0.29), and ESR1 (0.79). In-vivo evaluation on female Wistar rats with Polyscias fulva ethanolic extract showed an ameliorative effect of the extracts against monosodium glutamate-induced (MSG) UF. Treated animals exhibited a decrease in serum proteins, cholesterol, estrogen, and progesterone levels (P < 0.05) and the extract preserved uterine tissue histoachitecture as compared to controls. In conclusion, Polyscias fulva demonstrates potential ameliorative activity against UF with promising pharmacokinetic properties and safety profiles.
Collapse
Affiliation(s)
- Kenedy Kiyimba
- Department of Pharmacology and Pharmacognosy, School of Pharmacy, University of Nairobi, P.O. Box 30197, Nairobi, Kenya; Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda; Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Lincoln Munyendo
- School of Pharmacy & Health Sciences, United States International University-Africa, P. O. Box 14634, 00800, Nairobi, Kenya
| | - Samuel Baker Obakiro
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda; Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Yahaya Gavamukulya
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda; Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Ayaz Ahmed
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Shafiq
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Zaheer Ul-Haq
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Eric Guantai
- Department of Pharmacology and Pharmacognosy, School of Pharmacy, University of Nairobi, P.O. Box 30197, Nairobi, Kenya
| |
Collapse
|
2
|
Hanf D, Fasching P, Gass P, Matthias W Beckmann, Hack CC, Heindl F, Lothar Häberle, John N, Erber R, Press MF, Rübner M, Pöschke P. Impact of CCND1 amplification on the prognosis of hormone receptor-positive, HER2-negative breast cancer patients-correlation of clinical and pathological markers. Breast Cancer Res Treat 2025; 210:125-134. [PMID: 39586971 PMCID: PMC11787164 DOI: 10.1007/s10549-024-07545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/30/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE The cyclin D1 gene (CCND1) encodes a key cell-cycle regulatory protein. Resistance to endocrine therapy is reportedly observed more often in patients with CCND1-amplified tumors. CCND1 amplification is known to be a driving event in breast cancer, but contradictory findings are reported for its association with prognosis. This study therefore investigated the prognostic value of CCND1 amplification in hormone receptor (HR)-positive breast cancer patients. METHODS A cohort of 894 unselected breast cancer patients from the Bavarian Breast Cancer Cases and Controls (BBCC) study was included. The CCND1 amplification rate was evaluated in tissue microarrays using fluorescence in situ hybridization. A CCND1/CEP11 ratio ≥ 2.0 was considered amplified. Statistical analysis was conducted on cases with ratios based on a range of 20-100 nuclei analyzed per case. A univariable Cox regression model was fitted with disease-free survival (DFS) and overall survival (OS). RESULTS CCND1 gene status was assessable in 511 patients. The CCND1 amplification rate was 12.9% (66 patients). Most patients with CCND1 amplification had luminal B-Like-(51.5%, n = 34) or luminal A-Like tumors (25.8%, n = 17), 13 patients with HER2-positive disease (19.7%) and only two patients had triple-negative tumors (3.0%). Survival analysis, focused on HR-positive, HER2-negative patients, showed no statistically significant differences in the DFS and OS with and without CCND1 amplification (P = 0.20 and 0.14, respectively, in the unadjusted analysis). CONCLUSIONS CCND1 amplification is a recurring event in breast cancer, occurring most frequently in luminal B-like and HER2-amplified subtypes. A trend toward less favorable outcomes was observed among CCND1-amplified HR-positive, HER2-negative tumors.
Collapse
Affiliation(s)
- Dorothea Hanf
- Department of Translational Medical Oncology, National Center for Tumor Diseases Dresden (NCT/UCC) and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) / Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
- Translational Medical Oncology, Faculty of Medicine, Carl Gustav Carus University Hospital, TUD Dresden University of Technology, Dresden, Germany
- Partner Site Dresden, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Peter Fasching
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) / Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
- Comprehensive Cancer Center Alliance WERA (CCC), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Paul Gass
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) / Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
- Comprehensive Cancer Center Alliance WERA (CCC), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) / Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
- Comprehensive Cancer Center Alliance WERA (CCC), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Carolin C Hack
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) / Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
- Comprehensive Cancer Center Alliance WERA (CCC), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Felix Heindl
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) / Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
- Comprehensive Cancer Center Alliance WERA (CCC), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Lothar Häberle
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) / Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
- Biostatistics Unit, Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nelson John
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) / Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
- Biostatistics Unit, Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ramona Erber
- Institute of Pathology, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) / Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Michael F Press
- Department of Pathology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Matthias Rübner
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) / Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
- Comprehensive Cancer Center Alliance WERA (CCC), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Patrik Pöschke
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) / Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany.
- Comprehensive Cancer Center Alliance WERA (CCC), Erlangen, Germany.
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany.
| |
Collapse
|
3
|
Alfarsi LH, Ansari RE, Erkan B, Fakroun A, Craze ML, Aleskandarany MA, Cheng KW, Ellis IO, Rakha EA, Green AR. SLC1A5 is a key regulator of glutamine metabolism and a prognostic marker for aggressive luminal breast cancer. Sci Rep 2025; 15:2805. [PMID: 39843491 PMCID: PMC11754656 DOI: 10.1038/s41598-025-87292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025] Open
Abstract
Cancer cells exhibit altered metabolism, often relying on glutamine (Gln) for growth. Breast cancer (BC) is a heterogeneous disease with varying clinical outcomes. We investigated the role of the amino acid transporter SLC1A5 (ASCT2) and its association with BC subtypes and patient outcomes. In large BC cohorts, SLC1A5 mRNA (n = 9488) and SLC1A5 protein (n = 1274) levels were assessed and correlated their expression with clinicopathological features, molecular subtypes, and patient outcomes. In vitro SLC1A5 knockdown and inhibition studies in luminal BC cell lines (ZR-75-1 and HCC1500) were used to further explore the role of SLC1A5 in Gln metabolism. Statistical analysis was performed using chi-squared tests, ANOVA, Spearman's correlation, Kaplan-Meier analysis, and Cox regression. SLC1A5 mRNA and SLC1A5 protein expression were strongly correlated in luminal B, HER2 + and triple-negative BC (TNBC). Both high SLC1A5 mRNA and SLC1A5 protein expression were associated with larger tumour size, higher grade, and positive axillary lymph node metastases (P < 0.01). Importantly, high SLC1A5 expression correlated with poor BC-specific survival specifically in the highly proliferative luminal subtype (P < 0.001). Furthermore, SLC1A5 knockdown by siRNA or GPNA inhibition significantly reduced cell proliferation and glutamine uptake in ZR-75-1 cells. Our findings suggest SLC1A5 plays a key role in the aggressive luminal BC subtype and represents a potential therapeutic target. Further research is needed to explore SLC1A5 function in luminal BC and its association with Gln metabolism pathways.
Collapse
Affiliation(s)
- Lutfi H Alfarsi
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, England
| | - Rokaya El Ansari
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, England
| | - Busra Erkan
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, England
| | - Ali Fakroun
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, England
| | - Madeleine L Craze
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, England
| | - Mohammed A Aleskandarany
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, England
| | - Kiu Wai Cheng
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, England
| | - Ian O Ellis
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, England
- Cellular Pathology, Nottingham University Hospitals NHS Trust, Hucknall Road, Nottingham, NG5 1PB, England
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, England
- Cellular Pathology, Nottingham University Hospitals NHS Trust, Hucknall Road, Nottingham, NG5 1PB, England
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, England.
| |
Collapse
|
4
|
Xu K, Yu D, Zhang S, Chen L, Liu Z, Xie L. Deciphering the Immune Microenvironment at the Forefront of Tumor Aggressiveness by Constructing a Regulatory Network with Single-Cell and Spatial Transcriptomic Data. Genes (Basel) 2024; 15:100. [PMID: 38254989 PMCID: PMC10815467 DOI: 10.3390/genes15010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The heterogeneity and intricate cellular architecture of complex cellular ecosystems play a crucial role in the progression and therapeutic response of cancer. Understanding the regulatory relationships of malignant cells at the invasive front of the tumor microenvironment (TME) is important to explore the heterogeneity of the TME and its role in disease progression. In this study, we inferred malignant cells at the invasion front by analyzing single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) data of ER-positive (ER+) breast cancer patients. In addition, we developed a software pipeline for constructing intercellular gene regulatory networks (IGRNs), which help to reduce errors generated by single-cell communication analysis and increase the confidence of selected cell communication signals. Based on the constructed IGRN between malignant cells at the invasive front of the TME and the immune cells of ER+ breast cancer patients, we found that a high expression of the transcription factors FOXA1 and EZH2 played a key role in driving tumor progression. Meanwhile, elevated levels of their downstream target genes (ESR1 and CDKN1A) were associated with poor prognosis of breast cancer patients. This study demonstrates a bioinformatics workflow of combining scRNA-seq and ST data; in addition, the study provides the software pipelines for constructing IGRNs automatically (cIGRN). This strategy will help decipher cancer progression by revealing bidirectional signaling between invasive frontline malignant tumor cells and immune cells, and the selected signaling molecules in the regulatory network may serve as biomarkers for mechanism studies or therapeutic targets.
Collapse
Affiliation(s)
- Kun Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, The Institute of Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200037, China; (D.Y.); (S.Z.)
| | - Dongshuo Yu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, The Institute of Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200037, China; (D.Y.); (S.Z.)
| | - Siwen Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, The Institute of Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200037, China; (D.Y.); (S.Z.)
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Zhenhao Liu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, The Institute of Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200037, China; (D.Y.); (S.Z.)
| | - Lu Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, The Institute of Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200037, China; (D.Y.); (S.Z.)
| |
Collapse
|
5
|
Moon I, LoPiccolo J, Baca SC, Sholl LM, Kehl KL, Hassett MJ, Liu D, Schrag D, Gusev A. Machine learning for genetics-based classification and treatment response prediction in cancer of unknown primary. Nat Med 2023; 29:2057-2067. [PMID: 37550415 PMCID: PMC11484892 DOI: 10.1038/s41591-023-02482-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/30/2023] [Indexed: 08/09/2023]
Abstract
Cancer of unknown primary (CUP) is a type of cancer that cannot be traced back to its primary site and accounts for 3-5% of all cancers. Established targeted therapies are lacking for CUP, leading to generally poor outcomes. We developed OncoNPC, a machine-learning classifier trained on targeted next-generation sequencing (NGS) data from 36,445 tumors across 22 cancer types from three institutions. Oncology NGS-based primary cancer-type classifier (OncoNPC) achieved a weighted F1 score of 0.942 for high confidence predictions ([Formula: see text]) on held-out tumor samples, which made up 65.2% of all the held-out samples. When applied to 971 CUP tumors collected at the Dana-Farber Cancer Institute, OncoNPC predicted primary cancer types with high confidence in 41.2% of the tumors. OncoNPC also identified CUP subgroups with significantly higher polygenic germline risk for the predicted cancer types and with significantly different survival outcomes. Notably, patients with CUP who received first palliative intent treatments concordant with their OncoNPC-predicted cancers had significantly better outcomes (hazard ratio (HR) = 0.348; 95% confidence interval (CI) = 0.210-0.570; P = [Formula: see text]). Furthermore, OncoNPC enabled a 2.2-fold increase in patients with CUP who could have received genomically guided therapies. OncoNPC thus provides evidence of distinct CUP subgroups and offers the potential for clinical decision support for managing patients with CUP.
Collapse
Affiliation(s)
- Intae Moon
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Population Sciences, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jaclyn LoPiccolo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sylvan C Baca
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kenneth L Kehl
- Division of Population Sciences, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Michael J Hassett
- Division of Population Sciences, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - David Liu
- Division of Population Sciences, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- The Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Deborah Schrag
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Alexander Gusev
- Division of Population Sciences, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
- The Broad Institute of MIT & Harvard, Cambridge, MA, USA.
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Tapia JL, McDonough JC, Cauble EL, Gonzalez CG, Teteh DK, Treviño LS. Parabens Promote Protumorigenic Effects in Luminal Breast Cancer Cell Lines With Diverse Genetic Ancestry. J Endocr Soc 2023; 7:bvad080. [PMID: 37409182 PMCID: PMC10318621 DOI: 10.1210/jendso/bvad080] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Indexed: 07/07/2023] Open
Abstract
Context One in 8 women will develop breast cancer in their lifetime. Yet, the burden of disease is greater in Black women. Black women have a 40% higher mortality rate than White women, and a higher incidence of breast cancer at age 40 and younger. While the underlying cause of this disparity is multifactorial, exposure to endocrine disrupting chemicals (EDCs) in hair and other personal care products has been associated with an increased risk of breast cancer. Parabens are known EDCs that are commonly used as preservatives in hair and other personal care products, and Black women are disproportionately exposed to products containing parabens. Objective Studies have shown that parabens impact breast cancer cell proliferation, death, migration/invasion, and metabolism, as well as gene expression in vitro. However, these studies were conducted using cell lines of European ancestry; to date, no studies have utilized breast cancer cell lines of West African ancestry to examine the effects of parabens on breast cancer progression. Like breast cancer cell lines with European ancestry, we hypothesize that parabens promote protumorigenic effects in breast cancer cell lines of West African ancestry. Methods Luminal breast cancer cell lines with West African ancestry (HCC1500) and European ancestry (MCF-7) were treated with biologically relevant doses of methylparaben, propylparaben, and butylparaben. Results Following treatment, estrogen receptor target gene expression and cell viability were examined. We observed altered estrogen receptor target gene expression and cell viability that was paraben and cell line specific. Conclusion This study provides greater insight into the tumorigenic role of parabens in the progression of breast cancer in Black women.
Collapse
Affiliation(s)
- Jazma L Tapia
- Division of Health Equities, Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Jillian C McDonough
- Division of Health Equities, Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Emily L Cauble
- Division of Health Equities, Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Cesar G Gonzalez
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Dede K Teteh
- Department of Health Sciences, Crean College of Health and Behavioral Sciences, Chapman University, Orange, CA 92866, USA
| | - Lindsey S Treviño
- Division of Health Equities, Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
7
|
Tarle M, Raguž M, Muller D, Lukšić I. Nuclear Epidermal Growth Factor Receptor Overexpression as a Survival Predictor in Oral Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:5816. [PMID: 36982894 PMCID: PMC10056291 DOI: 10.3390/ijms24065816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The aim of this study was to determine, by immunohistochemical methods, the expression of nEGFR and markers of cell proliferation (Ki-67), cell cycle (mEGFR, p53, cyclin D1), and tumor stem cells (ABCG2) in 59 pathohistological samples of healthy oral mucosa, 50 oral premalignant changes (leukoplakia and erythroplakia), and 52 oral squamous cell carcinomas (OSCC). An increase in the expression of mEGFR and nEGFR was found with the development of the disease (p < 0.0001). In the group of patients with leukoplakia and erythroplakia, we found a positive correlation between nEGFR and Ki67, p53, cyclin D1, and mEGFR, whereas in the group of patients with OSCC, we found a positive correlation between nEGFR and Ki67, mEGFR (p < 0.05). Tumors without perineural (PNI) invasion had a higher expression of p53 protein than tumors with PNI (p = 0.02). Patients with OSCC and overexpression of nEGFR had shorter overall survival (p = 0.004). The results of this study suggest a potentially important independent role of nEGFR in oral carcinogenesis.
Collapse
Affiliation(s)
- Marko Tarle
- Department of Maxillofacial Surgery, Dubrava University Hospital, 10000 Zagreb, Croatia;
- School of Dental Medicine, University of Zagreb, Gundulićeva 5, 10000 Zagreb, Croatia
| | - Marina Raguž
- Department of Neurosurgery, Dubrava University Hospital, 10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, 10000 Zagreb, Croatia
| | - Danko Muller
- Department of Pathology and Cytology, Dubrava University Hospital, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivica Lukšić
- Department of Maxillofacial Surgery, Dubrava University Hospital, 10000 Zagreb, Croatia;
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Rezaee M, Mohammadi F, Keshavarzmotamed A, Yahyazadeh S, Vakili O, Milasi YE, Veisi V, Dehmordi RM, Asadi S, Ghorbanhosseini SS, Rostami M, Alimohammadi M, Azadi A, Moussavi N, Asemi Z, Aminianfar A, Mirzaei H, Mafi A. The landscape of exosomal non-coding RNAs in breast cancer drug resistance, focusing on underlying molecular mechanisms. Front Pharmacol 2023; 14:1152672. [PMID: 37153758 PMCID: PMC10154547 DOI: 10.3389/fphar.2023.1152672] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/29/2023] [Indexed: 05/10/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy among women worldwide. Like many other cancers, BC therapy is challenging and sometimes frustrating. In spite of the various therapeutic modalities applied to treat the cancer, drug resistance, also known as, chemoresistance, is very common in almost all BCs. Undesirably, a breast tumor might be resistant to different curative approaches (e.g., chemo- and immunotherapy) at the same period of time. Exosomes, as double membrane-bound extracellular vesicles 1) secreted from different cell species, can considerably transfer cell products and components through the bloodstream. In this context, non-coding RNAs (ncRNAs), including miRNAs, long ncRNAs (lncRNAs), and circular RNAs (circRNAs), are a chief group of exosomal constituents with amazing abilities to regulate the underlying pathogenic mechanisms of BC, such as cell proliferation, angiogenesis, invasion, metastasis, migration, and particularly drug resistance. Thereby, exosomal ncRNAs can be considered potential mediators of BC progression and drug resistance. Moreover, as the corresponding exosomal ncRNAs circulate in the bloodstream and are found in different body fluids, they can serve as foremost prognostic/diagnostic biomarkers. The current study aims to comprehensively review the most recent findings on BC-related molecular mechanisms and signaling pathways affected by exosomal miRNAs, lncRNAs, and circRNAs, with a focus on drug resistance. Also, the potential of the same exosomal ncRNAs in the diagnosis and prognosis of BC will be discussed in detail.
Collapse
Affiliation(s)
- Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohammadi
- Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Vakili
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vida Veisi
- School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rohollah Mousavi Dehmordi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sepideh Asadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Seyedeh Sara Ghorbanhosseini
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mina Alimohammadi, ; Abbas Azadi, ; Hamed Mirzaei, ; Alireza Mafi,
| | - Abbas Azadi
- Department of Internal Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- *Correspondence: Mina Alimohammadi, ; Abbas Azadi, ; Hamed Mirzaei, ; Alireza Mafi,
| | - Nushin Moussavi
- Department of Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Azadeh Aminianfar
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Mina Alimohammadi, ; Abbas Azadi, ; Hamed Mirzaei, ; Alireza Mafi,
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- *Correspondence: Mina Alimohammadi, ; Abbas Azadi, ; Hamed Mirzaei, ; Alireza Mafi,
| |
Collapse
|
9
|
Yousefi H, Bahramy A, Zafari N, Delavar MR, Nguyen K, Haghi A, Kandelouei T, Vittori C, Jazireian P, Maleki S, Imani D, Moshksar A, Bitaraf A, Babashah S. Notch signaling pathway: a comprehensive prognostic and gene expression profile analysis in breast cancer. BMC Cancer 2022; 22:1282. [PMID: 36476410 PMCID: PMC9730604 DOI: 10.1186/s12885-022-10383-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is a complex disease exhibiting a great degree of heterogeneity due to different molecular subtypes. Notch signaling regulates the differentiation of breast epithelial cells during normal development and plays a crucial role in breast cancer progression through the abnormal expression of the Notch up-and down-stream effectors. To date, there are only a few patient-centered clinical studies using datasets characterizing the role of Notch signaling pathway regulators in breast cancer; thus, we investigate the role and functionality of these factors in different subtypes using publicly available databases containing records from large studies. High-throughput genomic data and clinical information extracted from TCGA were analyzed. We performed Kaplan-Meier survival and differential gene expression analyses using the HALLMARK_NOTCH_SIGNALING gene set. To determine if epigenetic regulation of the Notch regulators contributes to their expression, we analyzed methylation levels of these factors using the TCGA HumanMethylation450 Array data. Notch receptors and ligands expression is generally associated with the tumor subtype, grade, and stage. Furthermore, we showed gene expression levels of most Notch factors were associated with DNA methylation rate. Modulating the expression levels of Notch receptors and effectors can be a potential therapeutic approach for breast cancer. As we outline herein, elucidating the novel prognostic and regulatory roles of Notch implicate this pathway as an essential mediator controlling breast cancer progression.
Collapse
Affiliation(s)
- Hassan Yousefi
- Biochemistry & Molecular Biology, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, USA
| | - Afshin Bahramy
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Narges Zafari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Rostamian Delavar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Khoa Nguyen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Atousa Haghi
- Hematology Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Kandelouei
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Cecilia Vittori
- Louisiana State University Health Sciences Center (LSUHSC), and Stanley S. Scott Cancer Center, New Orleans, LA, USA
| | - Parham Jazireian
- Department of Biology, University Campus 2, University of Guilan, Rasht, Iran
| | - Sajad Maleki
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Danyal Imani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amin Moshksar
- Interventional Radiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box, Tehran, 14115-154, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box, Tehran, 14115-154, Iran.
| |
Collapse
|
10
|
Silveira C, Sousa AC, Corredeira P, Martins M, Sousa AR, Da Cruz Paula A, Selenica P, Brown DN, Golkaram M, Kaplan S, Zhang S, Liu L, Weigelt B, Reis-Filho JS, Costa L, Carmo-Fonseca M. Comprehensive Genomic Profiling of Cell-Free Circulating Tumor DNA Detects Response to Ribociclib Plus Letrozole in a Patient with Metastatic Breast Cancer. Biomolecules 2022; 12:biom12121818. [PMID: 36551247 PMCID: PMC9775495 DOI: 10.3390/biom12121818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Analysis of cell-free circulating tumor DNA obtained by liquid biopsy is a non-invasive approach that may provide clinically actionable information when conventional tissue biopsy is inaccessible or infeasible. Here, we followed a patient with hormone receptor-positive and human epidermal growth factor receptor (HER) 2-negative breast cancer who developed bone metastases seven years after mastectomy. We analyzed circulating cell-free DNA (cfDNA) extracted from plasma using high-depth massively parallel sequencing targeting 468 cancer-associated genes, and we identified a clonal hotspot missense mutation in the PIK3CA gene (3:178952085, A > G, H1047R) and amplification of the CCND1 gene. Whole-exome sequencing revealed that both alterations were present in the primary tumor. After treatment with ribociclib plus letrozole, the genetic abnormalities were no longer detected in cfDNA. These results underscore the clinical utility of combining liquid biopsy and comprehensive genomic profiling to monitor treatment response in patients with metastasized breast cancer.
Collapse
Affiliation(s)
- Catarina Silveira
- GenoMed—Diagnósticos de Medicina Molecular, S.A., Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ana Carla Sousa
- GenoMed—Diagnósticos de Medicina Molecular, S.A., Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Patrícia Corredeira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Marta Martins
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ana Rita Sousa
- Serviço de Oncologia Médica, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Centro Académico de Medicina de Lisboa, Avenida Professor Egas Moniz, 1649-035 Lisboa, Portugal
| | - Arnaud Da Cruz Paula
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - David N. Brown
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Mahdi Golkaram
- Illumina Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - Shannon Kaplan
- Illumina Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - Shile Zhang
- Illumina Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - Li Liu
- Illumina Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Jorge S. Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Luís Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Serviço de Oncologia Médica, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Centro Académico de Medicina de Lisboa, Avenida Professor Egas Moniz, 1649-035 Lisboa, Portugal
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
11
|
Liu NQ, Cao WH, Wang X, Chen J, Nie J. Cyclin genes as potential novel prognostic biomarkers and therapeutic targets in breast cancer. Oncol Lett 2022; 24:374. [PMID: 36238849 PMCID: PMC9494629 DOI: 10.3892/ol.2022.13494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/15/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Nian-Qiu Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan 650000, P.R. China
| | - Wei-Han Cao
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Xing Wang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan 650000, P.R. China
| | - Junyao Chen
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan 650000, P.R. China
| | - Jianyun Nie
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan 650000, P.R. China
| |
Collapse
|
12
|
Jacobs AT, Martinez Castaneda-Cruz D, Rose MM, Connelly L. Targeted therapy for breast cancer: An overview of drug classes and outcomes. Biochem Pharmacol 2022; 204:115209. [PMID: 35973582 DOI: 10.1016/j.bcp.2022.115209] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/20/2022]
Abstract
The last 25 years have seen significant growth in new therapeutic options for breast cancer, termed targeted therapies based on their ability to block specific pathways known to drive breast tumor growth and survival. Introduction of these drugs has been made possible through advances in the understanding of breast cancer biology. While the promise of targeted therapy for breast cancer has been clear for some time, the experience of the clinical use of multiple drugs and drug classes allows us to now present a summary and perspective as to the success and impact of this endeavor. Here we will review breast cancer targeted therapeutics in clinical use. We will provide the rationale for their indications and summarize clinical data in patients with different breast cancer subtypes, their impact on breast cancer progression and survival and their major adverse effects. The focus of this review will be on the development that has occurred within classes of targeted therapies and subsequent impact on breast cancer patient outcomes. We will conclude with a perspective on the role of targeted therapy in breast cancer treatment and highlight future areas of development.
Collapse
Affiliation(s)
- Aaron T Jacobs
- California University of Science and Medicine, 1501 Violet Street, Colton, CA 92324, United States
| | | | - Mark M Rose
- California University of Science and Medicine, 1501 Violet Street, Colton, CA 92324, United States
| | - Linda Connelly
- California University of Science and Medicine, 1501 Violet Street, Colton, CA 92324, United States.
| |
Collapse
|
13
|
Dissecting Molecular Heterogeneity of Circulating Tumor Cells (CTCs) from Metastatic Breast Cancer Patients through Copy Number Aberration (CNA) and Single Nucleotide Variant (SNV) Single Cell Analysis. Cancers (Basel) 2022; 14:cancers14163925. [PMID: 36010918 PMCID: PMC9405921 DOI: 10.3390/cancers14163925] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 12/27/2022] Open
Abstract
Circulating tumor cells' (CTCs) heterogeneity contributes to counteract their introduction in clinical practice. Through single-cell sequencing we aim at exploring CTC heterogeneity in metastatic breast cancer (MBC) patients. Single CTCs were isolated using DEPArray NxT. After whole genome amplification, libraries were prepared for copy number aberration (CNA) and single nucleotide variant (SNV) analysis and sequenced using Ion GeneStudio S5 and Illumina MiSeq, respectively. CTCs demonstrate distinctive mutational signatures but retain molecular traces of their common origin. CNA profiling identifies frequent aberrations involving critical genes in pathogenesis: gains of 1q (CCND1) and 11q (WNT3A), loss of 22q (CHEK2). The longitudinal single-CTC analysis allows tracking of clonal selection and the emergence of resistance-associated aberrations, such as gain of a region in 12q (CDK4). A group composed of CTCs from different patients sharing common traits emerges. Further analyses identify losses of 15q and enrichment of terms associated with pseudopodium formation as frequent and exclusive events. CTCs from MBC patients are heterogeneous, especially concerning their mutational status. The single-cell analysis allows the identification of aberrations associated with resistance, and is a candidate tool to better address treatment strategy. The translational significance of the group populated by similar CTCs should be elucidated.
Collapse
|
14
|
Zeng F, Zhou Y, Khowtanapanich T, Saengboonmee C. Cyclin-Dependent Kinase 4/6 Inhibitors: A Potential Breakthrough Therapy for Malignancies of Gastrointestinal Tract. In Vivo 2022; 36:1580-1590. [PMID: 35738597 PMCID: PMC9301412 DOI: 10.21873/invivo.12868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 11/10/2022]
Abstract
Cancer is the leading cause of death worldwide for which effective treatments remain limited. This article aimed to critically review and discuss the potential of targeting cell cycle machineries as a vital tool for cancer treatment. Cyclin dependent kinase (CDK) 4/6 inhibitors were originally approved by the United State Food and Drug Administration (US FDA) for advanced-stage breast cancer treatment. The nearly double-prolonged survival time in patients who received CDK4/6 inhibitors are superior to the conventional chemotherapy or endocrine therapy alone and, thus, these medications have been designated a breakthrough therapy by the US FDA. The requirement of CDK4/6 in the progression of cancer cells, but probably dispensable in normal cells, makes CDK4/6 a popular target for cancer treatment. The effects of CDK4/6 inhibitors in cancer may also involve the tumor microenvironment in which the therapeutic effects are synergistically pronounced. These emerging roles, hence, prompt investigations regarding their therapeutic potential in other cancers, including gastrointestinal cancer. Many preclinical and clinical studies of CDK4/6 inhibitors in gastrointestinal cancers are underway and, as a result, several new potentials are gradually reported. Contrariwise, the primary effect of this drug group is arresting the cell cycle rather than inducing cell death. The efficacy of using CDK4/6 inhibitors as a single regimen in clinical practice is then limited. In this article, the effects of CDK4/6 inhibitors on the progression of gastrointestinal cancers, at both preclinical and clinical levels are reviewed. The future directions for research and the possibility of CDK4/6 inhibitors being "breakthrough therapy" for gastrointestinal cancers are also discussed.
Collapse
Affiliation(s)
- Fuchun Zeng
- Department of Thoracic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P.R. China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, P.R. China
| | - Yubin Zhou
- Department of Thoracic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P.R. China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, P.R. China
| | | | - Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand;
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
15
|
Hao C, Wang C, Lu N, Zhao W, Li S, Zhang L, Meng W, Wang S, Tong Z, Zeng Y, Lu L. Gene Mutations Associated With Clinical Characteristics in the Tumors of Patients With Breast Cancer. Front Oncol 2022; 12:778511. [PMID: 35494043 PMCID: PMC9046571 DOI: 10.3389/fonc.2022.778511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background Clinical characteristics including estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 (HER2) are important biomarkers in the treatment of breast cancer, but how genomic mutations affect their status is rarely studied. This study aimed at finding genomic mutations associated with these clinical characteristics. Methods There were 160 patients with breast cancer enrolled in this study. Samples from those patients were used for next-generation sequencing, targeting a panel of 624 pan-cancer genes. Short nucleotide mutations, copy number variations, and gene fusions were identified for each sample. Fisher’s exact test compared each pair of genes. A similarity score was constructed with the resulting P-values. Genes were clustered with the similarity scores. The identified gene clusters were compared to the status of clinical characteristics including ER, PR, HER2, and a family history of cancer (FH) in terms of the mutations in patients. Results Gene-by-gene analysis found that CCND1 mutations were positively correlated with ER status while ERBB2 and CDK12 mutations were positively correlated with HER2 status. Mutation-based clustering identified four gene clusters. Gene cluster 1 (ADGRA2, ZNF703, FGFR1, KAT6A, and POLB) was significantly associated with PR status; gene cluster 2 (COL1A1, AXIN2, ZNF217, GNAS, and BRIP1) and gene cluster 3 (FGF3, FGF4, FGF19, and CCND1) were significantly associated with ER status; gene cluster 2 was also negatively associated with a family history of cancer; and gene cluster 4 was significantly negatively associated with age. Patients were classified into four corresponding groups. Patient groups 1, 2, 3, and 4 had 24.1%, 36.5%, 38.7%, and 41.3% of patients with an FDA-recognized biomarker predictive of response to an FDA-approved drug, respectively. Conclusion This study identified genomic mutations positively associated with ER and PR status. These findings not only revealed candidate genes in ER and PR status maintenance but also provided potential treatment targets for patients with endocrine therapy resistance.
Collapse
Affiliation(s)
- Chunfang Hao
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chen Wang
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ning Lu
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Weipeng Zhao
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shufen Li
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Li Zhang
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenjing Meng
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shuling Wang
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhongsheng Tong
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- *Correspondence: Zhongsheng Tong, ; Yanwu Zeng, ; Leilei Lu,
| | - Yanwu Zeng
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Operations Department, Shanghai OrigiMed Co., Ltd., Shanghai, China
- *Correspondence: Zhongsheng Tong, ; Yanwu Zeng, ; Leilei Lu,
| | - Leilei Lu
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Operations Department, Shanghai OrigiMed Co., Ltd., Shanghai, China
- *Correspondence: Zhongsheng Tong, ; Yanwu Zeng, ; Leilei Lu,
| |
Collapse
|
16
|
Valla M, Klæstad E, Ytterhus B, Bofin AM. CCND1 Amplification in Breast Cancer -associations With Proliferation, Histopathological Grade, Molecular Subtype and Prognosis. J Mammary Gland Biol Neoplasia 2022; 27:67-77. [PMID: 35459982 PMCID: PMC9135839 DOI: 10.1007/s10911-022-09516-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
CCND1 is located on 11q13. Increased CCND1 copy number (CN) in breast cancer (BC) is associated with high histopathological grade, high proliferation, and Luminal B subtype. In this study of CCND1 in primary BCs and corresponding axillary lymph node metastases (LNM),we examine associations between CCND1 CN in primary BCs and proliferation status, molecular subtype, and prognosis. Furthermore, we studied associations between CCND1 CN and CNs of FGFR1 and ZNF703, both of which are located on 8p12. Fluorescence in situ hybridization probes for CCND1 and chromosome 11 centromere were used on tissue microarrays comprising 526 BCs and 123 LNM. We assessed associations between CCND1 CN and tumour characteristics using Pearson's χ2 test, and estimated cumulative risks of death from BC and hazard ratios in analysis of prognosis. We found CCND1 CN ≥ 4 < 6 in 45 (8.6%) tumours, and ≥ 6 in 42 (8.0%). CCND1 CN (≥ 6) was seen in all molecular subtypes, most frequently in Luminal B (HER2-) (20/126; 16%). Increased CCND1 CN was associated with high histopathological grade, high Ki-67, and high mitotic count, but not prognosis. CCND1 CN ≥ 6 was accompanied by CN increase of FGFR1 in 6/40 cases (15.0%) and ZNF703 in 5/38 cases (13.2%). Three cases showed CN increase of all three genes. High CCND1 CN was most frequent in Luminal B (HER2-) tumours. Good correlation between CCND1 CNs in BCs and LNM was observed. Despite associations between high CCND1 CN and aggressive tumour characteristics, the prognostic impact of CCND1 CN remains unresolved.
Collapse
Affiliation(s)
- Marit Valla
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, 7006, Trondheim, Norway
| | - Elise Klæstad
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Borgny Ytterhus
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anna M Bofin
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
17
|
Jeffreys SA, Becker TM, Khan S, Soon P, Neubauer H, de Souza P, Powter B. Prognostic and Predictive Value of CCND1/Cyclin D1 Amplification in Breast Cancer With a Focus on Postmenopausal Patients: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2022; 13:895729. [PMID: 35784572 PMCID: PMC9249016 DOI: 10.3389/fendo.2022.895729] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/10/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Up to 80% of breast cancers (BCa) are estrogen receptor positive and current treatments target the estrogen receptor (endocrine therapies) and/or CDK4/6 (CDK4/6 inhibitors). CCND1 encodes the protein cyclin D1, responsible for regulation of G1 to S phase transition in the cell cycle. CCND1 amplification is common in BCa and contributes to increased cyclin D1 expression. As there are signalling interactions between cyclin D1 and the estrogen receptor, understanding the impact of CCND1 amplification on estrogen receptor positive patients' disease outcomes, is vital. This review aims to evaluate CCND1 amplification as a prognostic and predictive biomarker in BCa. MATERIALS AND METHODS Publications were retrieved from the databases: PubMed, MEDLINE, Embase and Cochrane library. Exclusion criteria were duplication, publication type, non-English language, in vitro and animal studies, not BCa, male BCa, premenopausal BCa, cohort size <35, CCND1 amplification not reported. Publications with cohort duplication, and inadequate recurrence free survival (RFS) and overall survival (OS) data, were also excluded. Included publications were assessed for Risk of Bias (RoB) using the Quality In Prognosis Studies tool. Statistical analyses (Inverse Variance and Mantel-Haenszel) were performed in Review Manager. The PROSPERO registration number is [CRD42020208179]. RESULTS CCND1 amplification was significantly associated with positive estrogen receptor status (OR:1.70, 95% CI:1.19-2.43, p = 0.004) and cyclin D1 overexpression (OR: 5.64, 95% CI: 2.32-13.74, p=0.0001). CCND1 amplification was significantly associated with shorter RFS (OR: 1.64, 95% CI: 1.13-2.38, p = 0.009), and OS (OR: 1.51, 95% CI: 1.19-1.92, p = 0.0008) after removal of studies with a high RoB. In endocrine therapy treated patients specifically, CCND1 amplification predicted shorter RFS (HR: 2.59, 95% CI: 1.96-3.41, p < 0.00001) and OS (HR: 1.59, 95% CI: 1.00-2.49, p = 0.05) also after removal of studies with a high RoB. CONCLUSION While a lack of standardised approach for the detection of CCND1 amplification is to be considered as a limitation, CCND1 amplification was found to be prognostic of shorter RFS and OS in BCa. CCND1 amplification is also predictive of reduced RFS and OS in endocrine therapy treated patients specifically. With standardised methods and cut offs for the detection of CCND1 amplification, CCND1 amplification would have potential as a predictive biomarker in breast cancer patients. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier CRD42020208179.
Collapse
Affiliation(s)
- Sarah A. Jeffreys
- Centre of Circulating Tumour Cell Diagnostics and Research, Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- *Correspondence: Sarah A. Jeffreys,
| | - Therese M. Becker
- Centre of Circulating Tumour Cell Diagnostics and Research, Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool, NSW, Australia
| | - Sarah Khan
- Department of Medical Oncology, Bankstown Cancer Centre, Bankstown, NSW, Australia
| | - Patsy Soon
- Centre of Circulating Tumour Cell Diagnostics and Research, Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool, NSW, Australia
- Department of Surgery, Bankstown Hospital, Bankstown, NSW, Australia
| | - Hans Neubauer
- Department of Obstetrics and Gynaecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Paul de Souza
- Centre of Circulating Tumour Cell Diagnostics and Research, Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool, NSW, Australia
| | - Branka Powter
- Centre of Circulating Tumour Cell Diagnostics and Research, Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| |
Collapse
|
18
|
Hoogstrate Y, Komor MA, Böttcher R, van Riet J, van de Werken HJG, van Lieshout S, Hoffmann R, van den Broek E, Bolijn AS, Dits N, Sie D, van der Meer D, Pepers F, Bangma CH, van Leenders GJLH, Smid M, French PJ, Martens JWM, van Workum W, van der Spek PJ, Janssen B, Caldenhoven E, Rausch C, de Jong M, Stubbs AP, Meijer GA, Fijneman RJA, Jenster GW. Fusion transcripts and their genomic breakpoints in polyadenylated and ribosomal RNA-minus RNA sequencing data. Gigascience 2021; 10:giab080. [PMID: 34891161 PMCID: PMC8673554 DOI: 10.1093/gigascience/giab080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/08/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Fusion genes are typically identified by RNA sequencing (RNA-seq) without elucidating the causal genomic breakpoints. However, non-poly(A)-enriched RNA-seq contains large proportions of intronic reads that also span genomic breakpoints. RESULTS We have developed an algorithm, Dr. Disco, that searches for fusion transcripts by taking an entire reference genome into account as search space. This includes exons but also introns, intergenic regions, and sequences that do not meet splice junction motifs. Using 1,275 RNA-seq samples, we investigated to what extent genomic breakpoints can be extracted from RNA-seq data and their implications regarding poly(A)-enriched and ribosomal RNA-minus RNA-seq data. Comparison with whole-genome sequencing data revealed that most genomic breakpoints are not, or minimally, transcribed while, in contrast, the genomic breakpoints of all 32 TMPRSS2-ERG-positive tumours were present at RNA level. We also revealed tumours in which the ERG breakpoint was located before ERG, which co-existed with additional deletions and messenger RNA that incorporated intergenic cryptic exons. In breast cancer we identified rearrangement hot spots near CCND1 and in glioma near CDK4 and MDM2 and could directly associate this with increased expression. Furthermore, in all datasets we find fusions to intergenic regions, often spanning multiple cryptic exons that potentially encode neo-antigens. Thus, fusion transcripts other than classical gene-to-gene fusions are prominently present and can be identified using RNA-seq. CONCLUSION By using the full potential of non-poly(A)-enriched RNA-seq data, sophisticated analysis can reliably identify expressed genomic breakpoints and their transcriptional effects.
Collapse
Affiliation(s)
- Youri Hoogstrate
- Department of Urology, Erasmus Medical Center Cancer Institute, Wytemaweg 80, Rotterdam 3015GD, The Netherlands
- Department of Neurology, Erasmus Medical Center Cancer Institute, Wytemaweg 80, Rotterdam 3015GD, The Netherlands
| | - Malgorzata A Komor
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 3015GD, The Netherlands
| | - René Böttcher
- Department of Urology, Erasmus Medical Center Cancer Institute, Wytemaweg 80, Rotterdam 3015GD, The Netherlands
- Department of Life Sciences, Barcelona Supercomputing Center, Barcelona 08034, Spain
| | - Job van Riet
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam 3015GD, The Netherlands
| | - Harmen J G van de Werken
- Department of Urology, Erasmus Medical Center Cancer Institute, Wytemaweg 80, Rotterdam 3015GD, The Netherlands
- Cancer Computational Biology Center, Erasmus Medical Center, Rotterdam 3015GD, The Netherlands
| | | | | | - Evert van den Broek
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 3015GD, The Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen 9713GZ, The Netherlands
| | - Anne S Bolijn
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 3015GD, The Netherlands
| | - Natasja Dits
- Department of Urology, Erasmus Medical Center Cancer Institute, Wytemaweg 80, Rotterdam 3015GD, The Netherlands
| | - Daoud Sie
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 3015GD, The Netherlands
| | | | | | - Chris H Bangma
- Department of Urology, Erasmus Medical Center Cancer Institute, Wytemaweg 80, Rotterdam 3015GD, The Netherlands
| | | | - Marcel Smid
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam 3015GD, The Netherlands
| | - Pim J French
- Department of Neurology, Erasmus Medical Center Cancer Institute, Wytemaweg 80, Rotterdam 3015GD, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam 3015GD, The Netherlands
| | | | - Peter J van der Spek
- Department of Pathology, Erasmus Medical Center, Rotterdam 3015GD, The Netherlands
| | | | | | | | | | - Andrew P Stubbs
- Department of Pathology, Erasmus Medical Center, Rotterdam 3015GD, The Netherlands
| | - Gerrit A Meijer
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 3015GD, The Netherlands
| | - Remond J A Fijneman
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 3015GD, The Netherlands
| | - Guido W Jenster
- Department of Urology, Erasmus Medical Center Cancer Institute, Wytemaweg 80, Rotterdam 3015GD, The Netherlands
| |
Collapse
|
19
|
Gao HF, Lin YY, Zhu T, Ji F, Zhang LL, Yang CQ, Yang M, Li JQ, Cheng MY, Wang K. Adjuvant CDK4/6 inhibitors combined with endocrine therapy in HR-positive, HER2-negative early breast cancer: A meta-analysis of randomized clinical trials. Breast 2021; 59:165-175. [PMID: 34271289 PMCID: PMC8287214 DOI: 10.1016/j.breast.2021.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/12/2021] [Accepted: 07/05/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The benefit of adjuvant cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors with endocrine therapy (ET) in hormone receptor-positive, human epidermal growth factor 2 receptor-negative (HR+/HER2-) early breast cancer (EBC) is uncertain. Hence, we performed a meta-analysis to determine the efficacy and safety of adjuvant CDK4/6 inhibitors plus ET and to identify potential preferred subpopulations for this regimen. METHODS A literature search was conducted in PubMed, Embase, Cochrane databases up to Jan 15, 2021. Hazard ratios (HRs) for invasive disease-free survival (IDFS) and risk ratios (RRs) for grade 3/4 adverse events (AEs) and treatment discontinuation were extracted. Analysis with predefined subgroup variables was done. Trial sequential analysis (TSA) was performed to assess the conclusiveness of survival outcomes. RESULTS Three trials were eligible (N = 12647). Compared with ET, adjuvant CDK4/6 inhibitors with ET prolonged IDFS in patients with HR+/HER2- EBC (HR 0.87, 95% CI 0.76-0.98, p = 0.03, I2 = 19%), with positive therapeutic responses observed in patients with N2/N3 nodal status (HR 0.83, 95% CI 0.71-0.97, p = 0.02, I2 = 0%). None of the cumulative z-curves crossed the trial monitoring boundaries in TSA, and no reliable conclusion could be drawn. The combination treatment carried a higher risk of grade 3/4 AEs (RR 4.14, 95% CI 3.33-5.15, p < 0.00001) and an increase in treatment discontinuation due to AEs (RR 19.16, 95% CI 9.27-39.61, p < 0.00001). CONCLUSIONS Adjuvant CDK4/6 inhibitors with ET might provide survival benefit in HR+/HER2- EBC. A statistically significantly improved IDFS was only observed in N2/N3 subgroup. However, overall evidence favoring the use of this combination regimen was inadequate.
Collapse
Affiliation(s)
- Hong-Fei Gao
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.123 Huifu West, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Ying-Yi Lin
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.123 Huifu West, Yuexiu District, Guangzhou, 510080, Guangdong, China; Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Teng Zhu
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.123 Huifu West, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Fei Ji
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.123 Huifu West, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Liu-Lu Zhang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.123 Huifu West, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Ci-Qiu Yang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.123 Huifu West, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Mei Yang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.123 Huifu West, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Jie-Qing Li
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.123 Huifu West, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Min-Yi Cheng
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.123 Huifu West, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Kun Wang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.123 Huifu West, Yuexiu District, Guangzhou, 510080, Guangdong, China; Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
20
|
Rossi T, Gallerani G, Martinelli G, Maltoni R, Fabbri F. Circulating Tumor Cells as a Tool to Untangle the Breast Cancer Heterogeneity Issue. Biomedicines 2021; 9:biomedicines9091242. [PMID: 34572427 PMCID: PMC8466266 DOI: 10.3390/biomedicines9091242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Breast cancer (BC) is a disease characterized by high degrees of heterogeneity at morphologic, genomic, and genetic levels, even within the same tumor mass or among patients. As a consequence, different subpopulations coexist and less represented clones may have a selective advantage, significantly influencing the outcome of BC patients. Circulating tumor cells (CTCs) represent a rare population of cells with a crucial role in metastatic cascade, and in recent years have represented a fascinating alternative to overcome the heterogeneity issue as a “liquid biopsy”. However, besides the raw enumeration of these cells in advanced epithelial tumors, there are no CTC-based assays applied in the clinical practice to improve personalized medicine. In this review, we report the latest findings in the field of CTCs for intra-tumoral heterogeneity unmasking in BC, supporting the need to deepen their analysis to investigate their role in metastatic process and include the molecular characterization in the clinical practice. In the future, CTCs will be helpful in monitoring patients during treatment, as well as to better address therapeutic strategies.
Collapse
Affiliation(s)
- Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.G.); (F.F.)
- Correspondence: ; Tel.: +39-0549-73-9982
| | - Giulia Gallerani
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.G.); (F.F.)
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Roberta Maltoni
- Healthcare Administration, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Francesco Fabbri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.G.); (F.F.)
| |
Collapse
|
21
|
Akazawa K, Kagara N, Sota Y, Motooka D, Nakamura S, Miyake T, Tanei T, Naoi Y, Shimoda M, Kim SJ, Noguchi S, Shimazu K. Comparison of the multigene panel test and OncoScan™ for the determination of HER2 amplification in breast cancer. Oncol Rep 2021; 46:217. [PMID: 34396441 DOI: 10.3892/or.2021.8168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/26/2021] [Indexed: 11/06/2022] Open
Abstract
The diagnostic accuracy of the multigene panel test (MPT) and OncoScan™ in the determination of HER2 amplification in breast tumors remains controversial. In the present study, HER2 copy number was analyzed using both MPT and OncoScan™ in 45 breast tumors and was compared with that in fluorescent in situ hybridization (FISH) analysis. Tumors with low cellularity were examined using tumor cell enrichment and fluorescence‑activated cell sorting. Both MPT and OncoScan™ exhibited significant correlations with FISH with respect to the determination of HER2 amplification in breast tumors. However, the correlation coefficient was significantly higher for the comparison of MPT and FISH (r=0.770) compared with that between OncoScan™ and FISH (r=0.564). The accuracy of MPT (93.3%) was slightly higher compared with that in OncoScan™ (84.4%) in determining the HER2 status, which was mostly explained by the higher sensitivity of MPT in tumors with low cellularity (83.3 vs. 33.3%), but not in those with high cellularity (81.8 vs. 72.7%). The specificity was 100% for both tests. The MPT exhibited higher sensitivity in the determination of the amplification of other genes, including MYC, fibroblast growth factor receptor 1 and GATA binding protein 3 in tumors with low cellularity compared with that in tumors with high cellularity. OncoScan™ exhibited low sensitivity without tumor cell enrichment. The results suggested that MPT could be a promising method to determine HER2 status in breast tumors and that it could exhibit improved accuracy compared with that in OncoScan™ in tumors with low cellularity.
Collapse
Affiliation(s)
- Kaori Akazawa
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita‑shi, Osaka 565‑0871, Japan
| | - Naofumi Kagara
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita‑shi, Osaka 565‑0871, Japan
| | - Yoshiaki Sota
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita‑shi, Osaka 565‑0871, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita‑shi, Osaka 565‑0871, Japan
| | - Shota Nakamura
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita‑shi, Osaka 565‑0871, Japan
| | - Tomohiro Miyake
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita‑shi, Osaka 565‑0871, Japan
| | - Tomonori Tanei
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita‑shi, Osaka 565‑0871, Japan
| | - Yasuto Naoi
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita‑shi, Osaka 565‑0871, Japan
| | - Masafumi Shimoda
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita‑shi, Osaka 565‑0871, Japan
| | - Seung Jin Kim
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita‑shi, Osaka 565‑0871, Japan
| | - Shinzaburo Noguchi
- Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, Hyogo 662‑0918, Japan
| | - Kenzo Shimazu
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita‑shi, Osaka 565‑0871, Japan
| |
Collapse
|
22
|
Tu JJ, Ou-Yang L, Zhu Y, Yan H, Qin H, Zhang XF. Differential network analysis by simultaneously considering changes in gene interactions and gene expression. Bioinformatics 2021; 37:4414-4423. [PMID: 34245246 DOI: 10.1093/bioinformatics/btab502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/13/2021] [Accepted: 07/05/2021] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Differential network analysis is an important tool to investigate the rewiring of gene interactions under different conditions. Several computational methods have been developed to estimate differential networks from gene expression data, but most of them do not consider that gene network rewiring may be driven by the differential expression of individual genes. New differential network analysis methods that simultaneously take account of the changes in gene interactions and changes in expression levels are needed. RESULTS In this paper, we propose a differential network analysis method that considers the differential expression of individual genes when identifying differential edges. First, two hypothesis test statistics are used to quantify changes in partial correlations between gene pairs and changes in expression levels for individual genes. Then, an optimization framework is proposed to combine the two test statistics so that the resulting differential network has a hierarchical property, where a differential edge can be considered only if at least one of the two involved genes is differentially expressed. Simulation results indicate that our method outperforms current state-of-the-art methods. We apply our method to identify the differential networks between the luminal A and basal-like subtypes of breast cancer and those between acute myeloid leukemia and normal samples. Hub nodes in the differential networks estimated by our method, including both differentially and non-differentially expressed genes, have important biological functions. AVAILABILITY The source code is available at https://github.com/Zhangxf-ccnu/chNet. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jia-Juan Tu
- School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan, 430079, China
| | - Le Ou-Yang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuan Zhu
- School of Automation, China University of Geosciences, Wuhan, 430074, China.,Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, China University of Geosciences, Wuhan, 430074, China
| | - Hong Yan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - Hong Qin
- Department of Statistics, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Xiao-Fei Zhang
- School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
23
|
Sun J, Li H, Lv C, Draz E, Liu Y, Lin Z, Hu W, Mo K, Lin J, Xu W, Wang S. Trps1 targets Ccnd1 to regulate mouse Leydig cell proliferation. Andrology 2021; 9:1923-1933. [PMID: 34185441 DOI: 10.1111/andr.13072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/02/2021] [Accepted: 06/21/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND The tricho-rhino-phalangeal syndrome-1 gene (Trps1) is an atypical GATA family member. Although current studies of Trps1 mainly focus on tumors, whether Trps1 plays a role in the male reproductive system remains unknown. OBJECTIVES The purpose of this study was to elucidate the function of Trps1 in Leydig cells, indicating its regulatory mechanism on the cell cycle. METHODS Gene-silencing technology, RNA-seq, RT-qPCR, and western blotting were used to evaluate the function of Trps1 in mouse primary Leydig cells and MLTC-1 cells. In addition, ChIP-base sets and ChIP-qPCR were employed to further assess the regulatory mechanism of Trps1 in MLTC-1 cells. RESULTS Knockdown of Trps1 in Leydig cells significantly suppressed phosphorylation of Src and Akt and expression of Ccnd1, which was accompanied by impairment of cell proliferative ability. Trps1 may affect the cell cycle through the Src/Akt/Ccnd1 signaling pathway. In addition, Trps1 may bind to the promoter of Srcin1 to regulate its transcription, thus influencing Src phosphorylation levels and the proliferation of Leydig cells. DISCUSSION AND CONCLUSION Src increases in Leydig cells during pubertal development, suggesting its functional involvement in differentiated adult Leydig cells. Inhibition of the Src/Akt pathway would reduce Ccnd1 expression. In the present study, we found that Trps1 may regulate the phosphorylation level of Src and Akt through Srcin1, targeting Ccnd1 to influence mouse Leydig cell proliferation. These findings shed light on the regulation of Trps1 on cell proliferation and differentiation of mouse Leydig cells.
Collapse
Affiliation(s)
- Jiandong Sun
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, P. R. China
| | - Hua Li
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, P. R. China.,Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, P. R. China
| | - Chengyu Lv
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, P. R. China
| | - Eman Draz
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, P. R. China.,Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, P. R. China
| | - Yue Liu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, P. R. China.,Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, P. R. China
| | - Zihang Lin
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, P. R. China
| | - Weitao Hu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, P. R. China
| | - Kaien Mo
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, P. R. China
| | - Jianmin Lin
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, P. R. China
| | - Weiwei Xu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, P. R. China
| | - Shie Wang
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, P. R. China.,Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, P. R. China
| |
Collapse
|
24
|
Bakr NM, Mahmoud MS, Nabil R, Boushnak H, Swellam M. Impact of circulating miRNA-373 on breast cancer diagnosis through targeting VEGF and cyclin D1 genes. J Genet Eng Biotechnol 2021; 19:84. [PMID: 34089425 PMCID: PMC8179880 DOI: 10.1186/s43141-021-00174-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/28/2021] [Indexed: 01/07/2023]
Abstract
Background Breast cancer (BC) is the common primary tumor among females. Hence, there is an urgent need to improve the early prediction and diagnosis of BC. For that reason, the object of the current study is to analyze the expression levels of miRNA-373 and its target genes including vascular endothelial growth factor (VEGF) and cyclin D1 in women with BC. Results Upregulation of miRNA-373 and its target genes was observed in BC patients followed by patients with benign breast lesions compared to downregulation in controls. There was a significant association between the expression level of miRNA-373 and all clinical features. The same associations were observed between its target genes and all clinico-pathological features except hormonal status. The correlation between miRNA-373 and both genes was significant. Conclusions Our results prove that miRNA-373, as an oncomir, would be a vital biomarker for BC diagnosis and prognosis by targeting both VEGF and cyclin D1.
Collapse
Affiliation(s)
- Noha M Bakr
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki, Giza, 12622, Egypt. .,High Throughput Molecular and Genetic laboratory, Center for Excellences for Advanced Sciences, National Research Centre, Dokki, Giza, 12622, Egypt.
| | - Magda Sayed Mahmoud
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki, Giza, 12622, Egypt.,High Throughput Molecular and Genetic laboratory, Center for Excellences for Advanced Sciences, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Reem Nabil
- Clinical Pathology Department, National Cancer Institute, Cairo, Egypt
| | - Hussein Boushnak
- Surgery Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Menha Swellam
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki, Giza, 12622, Egypt.,High Throughput Molecular and Genetic laboratory, Center for Excellences for Advanced Sciences, National Research Centre, Dokki, Giza, 12622, Egypt
| |
Collapse
|
25
|
Siraj AK, Parvathareddy SK, Annaiyappanaidu P, Ahmed SO, Siraj N, Tulbah A, Al-Dayel F, Ajarim D, Al-Kuraya KS. High Expression of Cyclin D1 is an Independent Marker for Favorable Prognosis in Middle Eastern Breast Cancer. Onco Targets Ther 2021; 14:3309-3318. [PMID: 34040395 PMCID: PMC8141388 DOI: 10.2147/ott.s309091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose The cyclin D1 protein regulates cell cycle progression which is mediated by its interactions with cyclin-dependent kinases. Over-expression of cyclin D1 has been observed in several human cancers. This study was conducted to evaluate cyclin D1 expression in a large cohort of Middle Eastern breast cancers and determine its prognostic significance. Patients and Methods Cyclin D1 expression was assessed immunohistochemically and its association with clinico-pathological parameters was analyzed in 1003 breast cancer patients. Results Cyclin D1 was over-expressed in 59.4% (596/1003) of cases and significantly associated with a subset of breast cancers having favorable prognostic features, such as low grade (p < 0.0001), low stage (p = 0.0276), estrogen receptor (p < 0.0001) and progesterone receptor positive (p < 0.0001) tumors. An inverse association was found with triple negative breast cancers (p < 0.0001). More importantly, cyclin D1 expression was an independent predictor of favorable overall survival in our cohort (hazard ratio = 0.70; 95% confidence interval = 0.50–0.98; p = 0.0395). Also, tumors that highly expressed cyclin D1 had a longer recurrence-free survival. However, this significant association was seen only in univariate analysis. We also found cyclin D1 to be associated with phospho-Rb in luminal subtype of breast cancer and co-expression of both these markers was an independent predictor of luminal A breast cancer. Conclusion Our results reinforced the role of cyclin D1 in breast cancer pathology and revealed its expression as a valuable independent prognostic indicator for breast cancer from Middle Eastern ethnicity.
Collapse
Affiliation(s)
- Abdul K Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Padmanaban Annaiyappanaidu
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saeeda O Ahmed
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nabil Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Asma Tulbah
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Dahish Ajarim
- Department of Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Ghozlan H, Showalter A, Lee E, Zhu X, Khaled AR. Chaperonin-Containing TCP1 Complex (CCT) Promotes Breast Cancer Growth Through Correlations With Key Cell Cycle Regulators. Front Oncol 2021; 11:663877. [PMID: 33996588 PMCID: PMC8121004 DOI: 10.3389/fonc.2021.663877] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Uncontrolled proliferation as a result of dysregulated cell cycling is one of the hallmarks of cancer. Therapeutically targeting pathways that control the cell cycle would improve patient outcomes. However, the development of drug resistance and a limited number of inhibitors that target multiple cell cycle modulators are challenges that impede stopping the deregulated growth that leads to malignancy. To advance the discovery of new druggable targets for cell cycle inhibition, we investigated the role of Chaperonin-Containing TCP1 (CCT or TRiC) in breast cancer cells. CCT, a type II chaperonin, is a multi-subunit protein-folding complex that interacts with many oncoproteins and mutant tumor suppressors. CCT subunits are highly expressed in a number of cancers, including breast cancer. We found that expression of one of the CCT subunits, CCT2, inversely correlates with breast cancer patient survival and is subject to copy number alterations through genomic amplification. To investigate a role for CCT2 in the regulation of the cell cycle, we expressed an exogenous CCT2-FLAG construct in T47D and MCF7 luminal A breast cancer cells and examined cell proliferation under conditions of two-dimensional (2D) monolayer and three-dimensional (3D) spheroid cultures. Exogenous CCT2 increased the proliferation of cancer cells, resulting in larger and multiple spheroids as compared to control cells. CCT2-expressing cells were also able to undergo spheroid growth reversal, re-attaching, and resuming growth in 2D cultures. Such cells gained anchorage-independent growth. CCT2 expression in cells correlated with increased expression of MYC, especially in spheroid cultures, and other cell cycle regulators like CCND1 and CDK2, indicative of a novel activity that could contribute to the increase in cell growth. Statistically significant correlations between CCT2, MYC, and CCND1 were shown. Since CCT2 is located on chromosome 12q15, an amplicon frequently found in soft tissue cancers as well as breast cancer, CCT2 may have the basic characteristics of an oncogene. Our findings suggest that CCT2 could be an essential driver of cell division that may be a node through which pathways involving MYC, cyclin D1 and other proliferative factors could converge. Hence the therapeutic inhibition of CCT2 may have the potential to achieve multi-target inhibition, overcoming the limitations associated with single agent inhibitors.
Collapse
Affiliation(s)
- Heba Ghozlan
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Adrian Showalter
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Eunkyung Lee
- Department of Health Sciences, College of Health Professions and Sciences, University of Central Florida, Orlando, FL, United States
| | - Xiang Zhu
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Annette R Khaled
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
27
|
Kashyap D, Garg VK, Sandberg EN, Goel N, Bishayee A. Oncogenic and Tumor Suppressive Components of the Cell Cycle in Breast Cancer Progression and Prognosis. Pharmaceutics 2021; 13:pharmaceutics13040569. [PMID: 33920506 PMCID: PMC8072616 DOI: 10.3390/pharmaceutics13040569] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer, a disease of inappropriate cell proliferation, is strongly interconnected with the cell cycle. All cancers consist of an abnormal accumulation of neoplastic cells, which are propagated toward uncontrolled cell division and proliferation in response to mitogenic signals. Mitogenic stimuli include genetic and epigenetic changes in cell cycle regulatory genes and other genes which regulate the cell cycle. This suggests that multiple, distinct pathways of genetic alterations lead to cancer development. Products of both oncogenes (including cyclin-dependent kinase (CDKs) and cyclins) and tumor suppressor genes (including cyclin-dependent kinase inhibitors) regulate cell cycle machinery and promote or suppress cell cycle progression, respectively. The identification of cyclins and CDKs help to explain and understand the molecular mechanisms of cell cycle machinery. During breast cancer tumorigenesis, cyclins A, B, C, D1, and E; cyclin-dependent kinase (CDKs); and CDK-inhibitor proteins p16, p21, p27, and p53 are known to play significant roles in cell cycle control and are tightly regulated in normal breast epithelial cells. Following mitogenic stimuli, these components are deregulated, which promotes neoplastic transformation of breast epithelial cells. Multiple studies implicate the roles of both types of components-oncogenic CDKs and cyclins, along with tumor-suppressing cyclin-dependent inhibitors-in breast cancer initiation and progression. Numerous clinical studies have confirmed that there is a prognostic significance for screening for these described components, regarding patient outcomes and their responses to therapy. The aim of this review article is to summarize the roles of oncogenic and tumor-suppressive components of the cell cycle in breast cancer progression and prognosis.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh 160 012, Punjab, India;
| | | | - Elise N. Sandberg
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Neelam Goel
- University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, Punjab, India
- Correspondence: (N.G.); or (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: (N.G.); or (A.B.)
| |
Collapse
|
28
|
Latifa M, Fatima DD, Farida M, Rachid S. Intra-tumoral distribution of Ki-67 and Cyclin D1 in ER+ mammary carcinoma: quantitative evaluation. Afr Health Sci 2021; 21:41-46. [PMID: 34394279 PMCID: PMC8356601 DOI: 10.4314/ahs.v21i1.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background In spite of the strong evidence demonstrating the role of overexpression of Ki-67 and Cyclin D1 markers in breast carcinomas, clinical and pathological data remain to be discussed. This can be explained partly by intratumor heterogeneity. Objectives To define the prevalence and clinical significance of Ki-67 and Cyclin D1 overexpression in primary breast tumors ER positive, while highlighting the existence of intratumor heterogeneity in this type of cancer Materials and methods 51 ER positive breast cancer tumors were used to evaluate the intratumoral distribution of Ki-67 and Cyclin D1 expression. Image acquisition and visualization of the markers were performed by optical microscopy and stereology sampling method. Results The mean Ki-67 labeling index was distributed heterogeneously in the same tumor, from 20.67±6.87 to 45.10±10.65. The coefficient of variation (COV) revealed dispersion values between 13.4% and 42.9%. Associated with positive ER status, all the tumors presented a Cyclin D1 expression with a COV varying between 19% and 28.5% and a mean labeling index fluctuating between 19.40±4.42 and 41.64±10.08 within the same patient showing important intratumor heterogeneous distribution. Conclusion In this study, we have adopted a strictly quantitative approach to evaluate and demonstrate intratumor heterogeneity. This establishes one of the main factors for poor response to cancer therapy. To achieve this, intratumor heterogeneity should be usually definable and quantifiable but this domain awaits future progress and methods need to move towards a better understanding of molecular and cellular mechanisms that initiate and maintain this tumor heterogeneity.
Collapse
Affiliation(s)
- Mohammedi Latifa
- Nature and Life Sciences Faculty, University of Oran 1 Ahmed Ben Bella, BP 1524 El M'naouer, Oran 31000, Algeria
| | - Djillali Doula Fatima
- Nature and Life Sciences Faculty, University of Oran 1 Ahmed Ben Bella, BP 1524 El M'naouer, Oran 31000, Algeria
| | - Mesli Farida
- Nature and Life Sciences Faculty, University of Oran 1 Ahmed Ben Bella, BP 1524 El M'naouer, Oran 31000, Algeria
| | - Senhadji Rachid
- Nature and Life Sciences Faculty, University of Oran 1 Ahmed Ben Bella, BP 1524 El M'naouer, Oran 31000, Algeria
| |
Collapse
|
29
|
Zhang H, Zhang LQ, Yang CC, Li J, Tian XY, Li DN, Cui J, Cai JP. The high expression of NUDT5 indicates poor prognosis of breast cancer by modulating AKT / Cyclin D signaling. PLoS One 2021; 16:e0245876. [PMID: 33571243 PMCID: PMC7877577 DOI: 10.1371/journal.pone.0245876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/08/2021] [Indexed: 11/24/2022] Open
Abstract
NUDIX hydrolase type 5 (NUDT5) is a kind of ADP-ribose pyrophosphatase and nucleotide metabolizing enzyme in cell metabolism. Previous studies have shown NUDT5 expression affected chromosome remodeling, involved in cell adhesion, cancer stem cell maintenance and epithelial to mesenchyme transition in breast cancer cells. Nevertheless, the role of NUDT5 in breast cancer progression and prognosis has not yet been systematically studied. This study explored the association of NUDT5 with the tumor development and poor prognosis in patients with breast cancer. Our results show that the levels of NUDT5 were upregulated in breast cancer cell lines and breast tumor tissues, and the expression of NUDT5 in breast tumor tissues increased significantly when compared with adjacent non-tumorous tissues by immunohistochemical staining of tissue microarrays. Breast cancer patients with high NUDT5 expression had a worse prognosis than those with low expression of NUDT5. In addition, the knockdown of NUDT5 suppressed breast cancer cell lines proliferation, migration and invasion, and dramatically inhibited the AKT phosphorylation at Thr308 and expression of Cyclin D1. The opposite effects were observed in vitro following NUDT5 rescue. Our findings indicated that the high expression of NUDT5 is probably involved in the poor prognosis of breast cancer via the activation of the AKT / Cyclin D pathways, which could be a prognostic factor and potential target in the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- He Zhang
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Dongdan, Beijing, P.R China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Dong Dan, Beijing, P.R. China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Dong Dan, Beijing, P.R. China
| | - Li-Qun Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Dong Dan, Beijing, P.R. China
| | - Cheng-Cheng Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Dong Dan, Beijing, P.R. China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Dong Dan, Beijing, P.R. China
- Department of Pharmacy, Wenzhou Medical College, Wenzhou, Zhejiang, P.R China
| | - Jin Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Dong Dan, Beijing, P.R. China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Dong Dan, Beijing, P.R. China
| | - Xin-Yuan Tian
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Dong Dan, Beijing, P.R. China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Dong Dan, Beijing, P.R. China
- Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, P.R. China
| | - Dan-Ni Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Dong Dan, Beijing, P.R. China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Dong Dan, Beijing, P.R. China
- Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, P.R. China
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Dong Dan, Beijing, P.R. China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Dong Dan, Beijing, P.R. China
| | - Jian-Ping Cai
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Dongdan, Beijing, P.R China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Dong Dan, Beijing, P.R. China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Dong Dan, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
30
|
Di Cosimo S, Porcu L, Cardoso F. CDK 4/6 inhibitors mired in uncertainty in HR positive and HER2 negative early breast cancer. Breast 2020; 55:75-78. [PMID: 33352521 PMCID: PMC7758367 DOI: 10.1016/j.breast.2020.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022] Open
Abstract
Cell-cycle abnormalities are common in estrogen receptor- and/or progesterone receptor-positive, and HER2-non-overexpressing (HR+/HER2-) breast cancer, and have long been considered potential therapeutic targets. Cyclin-dependent kinase (CDK) 4/6 inhibitors have dramatically changed the therapeutic management of HR+/HER2-advanced breast cancer by prolonging progression-free and overall survival when given in combination with endocrine therapy. In this article, available data from PALLAS and monarchE trials regarding the efficacy and toxicity of adjuvant combined therapy with CDK 4/6 inhibitors and endocine therapy in HR+/HER2-early breast cancer are reviewed, and relevant issues including study hypothesis, patient selection, and duration of follow-up are discussed. HR+/HER2-early BC patients have continuous risk of relapse and need new therapies Current short follow-up precludes any final conclusion re. adjuvant CDK4/6 inhibitors The proportional hazard assumption was hampered by the low number of events Wide point estimate 95%CI translated into imprecise number needed to treat (NNT) Besides efficacy, toxicity, compliance and cost are issues to consider in decision-making Research efforts need to continue to establish CDK4/6 inhibitor predictive biomarkers
Collapse
Affiliation(s)
- Serena Di Cosimo
- Biomarkers Unit, Department of applied research and technological development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Luca Porcu
- Clinical Research Methodology Laboratory, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Fatima Cardoso
- Breast Unit, Champalimaud Clinical Center/Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
31
|
Guerini-Rocco E, Gray KP, Fumagalli C, Reforgiato MR, Leone I, Rafaniello Raviele P, Munzone E, Kammler R, Neven P, Hitre E, Jerusalem G, Simoncini E, Gombos A, Deleu I, Karlsson P, Aebi S, Chirgwin J, Di Lauro V, Thompson A, Graas MP, Barber M, Fontaine C, Loibl S, Gavilá J, Kuroi K, Müller B, O'Reilly S, Di Leo A, Goldhirsch A, Viale G, Barberis M, Regan MM, Colleoni M. Genomic Aberrations and Late Recurrence in Postmenopausal Women with Hormone Receptor-positive Early Breast Cancer: Results from the SOLE Trial. Clin Cancer Res 2020; 27:504-512. [PMID: 33082214 DOI: 10.1158/1078-0432.ccr-20-0126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/10/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Women with hormone receptor-positive early breast cancers have a persistent risk of relapse and biomarkers for late recurrence are needed. We sought to identify tumor genomic aberrations associated with increased late-recurrence risk. EXPERIMENTAL DESIGN In a secondary analysis of Study of Letrozole Extension trial, a case-cohort-like sampling selected 598 primary breast cancers for targeted next-generation sequencing analysis of gene mutations and copy-number gains (CNGs). Correlations of genomic aberrations with clinicopathologic factors and breast and distant recurrence-free intervals (BCFIs and DRFIs) were analyzed using weighted Cox models. RESULTS Analysis of mutations and CNGs was successfully performed for 403 and 350 samples, including 148 and 134 patients with breast cancer recurrences (median follow-up time, 5.2 years), respectively. The most frequent alterations were PIK3CA mutations (42%) and CNGs of CCND1 (15%), ERBB2 (10%), FGFR1 (8%), and MYC (8%). PIK3CA mutations and MYC CNGs were associated with lower (P = 0.03) and higher (P = 0.004) tumor grade, respectively; a higher Ki-67 was seen in tumor with CCND1, ERBB2, and MYC CNGs (P = 0.01, P < 0.001, and P = 0.03, respectively). FGFR1 CNG was associated with an increased risk of late events in univariate analyses [17/29 patients; BCFI: HR, 3.2; 95% confidence interval (CI), 1.48-6.92; P = 0.003 and DRFI: HR, 3.5; 95% CI, 1.61-7.75; P = 0.002) and in multivariable models adjusted for clinicopathologic factors. CONCLUSIONS Postmenopausal women with hormone receptor-positive early breast cancer harboring FGFR1 CNG had an increased risk of late recurrence despite extended therapy. FGFR1 CNG may represent a useful prognostic biomarker for late recurrence and a therapeutic target.
Collapse
Affiliation(s)
- Elena Guerini-Rocco
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, Milan and University of Milan, Department of Oncology and Hemato-Oncology, Milan, Italy.
| | - Kathryn P Gray
- International Breast Cancer Study Group Statistical Center, Frontier Science Foundation, and Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Caterina Fumagalli
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Marta Rita Reforgiato
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Isabella Leone
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Paola Rafaniello Raviele
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Elisabetta Munzone
- Division of Medical Senology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Patrick Neven
- Multidisciplinary Breast Center, University Hospitals, KU Leuven, Leuven, Belgium
| | - Erika Hitre
- National Institute of Oncology, Budapest, Hungary
| | | | | | | | | | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy/Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Stefan Aebi
- Lucerne Cantonal Hospital and University of Bern, Bern, Switzerland
| | - Jacquie Chirgwin
- Box Hill and Maroondah Hospitals, Monash University, Melbourne, Victoria, Australia
| | | | - Alastair Thompson
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | | | | | | | | | - Joaquín Gavilá
- Fundación Instituto Valenciano de Oncologia, Valencia, Spain
| | - Katsumasa Kuroi
- Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo City, Tokyo, Japan
| | - Bettina Müller
- Chilean Cooperative Group for Oncologic Research (GOCCHI), Santiago, Chile
| | | | | | - Aron Goldhirsch
- International Breast Cancer Study Group, Bern, Switzerland and MultiMedica, Milan, Italy
| | - Giuseppe Viale
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, Milan, International Breast Cancer Study Group Central Pathology Office and University of Milan, Department of Oncology and Hemato-Oncology, Milan, Italy
| | - Massimo Barberis
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Meredith M Regan
- International Breast Cancer Study Group Statistical Center, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts
| | - Marco Colleoni
- Division of Medical Senology, European Institute of Oncology, and the International Breast Cancer Study Group, Milan, Italy
| |
Collapse
|
32
|
Long Noncoding RNA HOXD-AS1 Promotes the Proliferation, Migration, and Invasion of Colorectal Cancer via the miR-526b-3p/CCND1 Axis. J Surg Res 2020; 255:525-535. [PMID: 32640404 DOI: 10.1016/j.jss.2020.05.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/23/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignancies in the world. It has been reported that the abnormal expression of long noncoding RNA HOXD-AS1 promotes the development of CRC, while the mechanism is still unclear. The aim of this study is to investigate the effects of HOXD-AS1 on proliferation, migration, and invasion in CRC and explore the underlying mechanism. METHODS Quantitative real-time polymerase chain reaction was used to detect the expression levels of HOXD-AS1, miR-526b-3p, and cyclin D1 (CCND1) in CRC tissues and cells. Dual-luciferase reporter assay was applied to examine the interaction between miR-526b-3p and HOXD-AS1 or CCND1. In addition, cell proliferation ability was assessed by Cell Counting Kit-8 assay. Cell migration and invasion abilities were determined using transwell assay. Furthermore, Western blot assay was conducted to measure the protein expression of CCND1. RESULTS HOXD-AS1 was highly expressed in CRC, and high expression of HOXD-AS1 was related to the poor prognosis of patients with CRC. MiR-526b-3p could be targeted by HOXD-AS1. Function experiment results revealed that miR-526b-3p inhibitor could reverse the suppressive effect of HOXD-AS1 knockdown on the proliferation, migration, and invasion of CRC cells. Moreover, CCND1 was a target of miR-526b-3p, and its overexpression could reverse the inhibitory effect of miR-526b-3p overexpression on the proliferation, migration, and invasion of CRC cells. In addition, CCND1 overexpression reversed the suppressive effect of HOXD-AS1 knockdown on the proliferation, migration, and invasion of CRC. CONCLUSIONS HOXD-AS1 upregulated the expression of CCND1 to promote the proliferation, migration, and invasion of CRC through targeting miR-526b-3p. This provided a new theoretical basis for clinical anticancer research of CRC.
Collapse
|
33
|
Tao Z, Li T, Feng Z, Liu C, Shao Y, Zhu M, Gong C, Wang B, Cao J, Wang L, Du Y, Lizaso A, Li B, Zhang J, Hu X. Characterizations of Cancer Gene Mutations in Chinese Metastatic Breast Cancer Patients. Front Oncol 2020; 10:1023. [PMID: 32695676 PMCID: PMC7338574 DOI: 10.3389/fonc.2020.01023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 05/22/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Breast cancer (BC) is a type of disease with high heterogeneity. Molecular profiling, by revealing the intrinsic nature of its various subtypes, has extensively improved the therapeutic management of BC patients. However, the genomic mutation landscape of Chinese metastatic BC has not been fully explored. Methods: Matched plasma and mononuclear cells from 290 Chinese women with metastatic BC were sequenced using either of the two commercially-available panels consisting of 520 cancer-related and 108 BC-related genes. Both panels cover the same critical regions of 91 genes. The circulating tumor DNA mutation profile from our cohort was then compared with publicly-available metastatic BC datasets from Memorial Sloan Kettering Cancer Center (MSKCC) and Pan-cancer analysis of whole genomes (PCAWG). Results: A total of 1,201 mutations spanning 91 genes were detected from 234 patients, resulting in a mutation detection rate of 80.7%. TP53 (64.1%) was the gene with highest mutation frequency, followed by PIK3CA (31%), PTEN (11%), and RB1 (10%). Copy number amplifications (CNAs) in MYC (14.1%), FGFR1 (13.3%), CCND1 (6.6%), FGF3 (6.6%), FGF4 (6.2%) and FGF19 (6.2%) were also detected from our cohort. TP53 mutations were significantly more frequent among triple negative BC (TNBC), HR-/HER2+, and HR+/HER2+ BC, while less common in HR+/HER2- (P < 0.01). Meanwhile, PIK3CA mutations were significantly more frequent among HR+/HER2+, HR+/HER2-, and HR-/HER2+ BC, while less common in TNBC (P < 0.01). Pathogenic or likely pathogenic BRCA1/2 germline mutations were detected in 5.9% of the cohort and 4.4% in TNBC subgroup. Maximum allelic fraction (maxAF) of TP53, RB1, and PIK3CA mutations were associated with multiple organ metastasis. Patients with PIK3CA, PTEN, and RB1 mutation were more likely to have liver metastasis (P < 0.02). Compared with MSKCC and PCAWG dataset, Chinese patients had observably difference in genetic variation rates in different molecular subtypes (TNBC: TP53 73.0 vs. 91.5%, P < 0.001; PIK3CA 21.2 vs. 13.2%, P = 0.061; HR+/HER2-: FGFR1 3.3 vs. 0.7%, P = 0.035; TP 53 46.2 vs. 27.7%, P < 0.001; RB1 6.6 vs. 2.7%, P = 0.046; CDKN2A 7.7 vs. 1.0%, P < 0.001; PIK3CA 30.8 vs. 44.2%, P = 0.012; CDH1 1.1 vs. 18.2%, P < 0.001; GATA3 7.7 vs. 17.2%, P = 0.02). Conclusions: A distinct gene mutation profile was elucidated in Chinese women with metastatic BC, justifying further research. Liquid biopsy provides a quick, real-time, and minimally invasive tool for future clinical trial and routine practice.
Collapse
Affiliation(s)
- Zhonghua Tao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ting Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhe Feng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chang Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yilin Shao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingyu Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chengcheng Gong
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Biyun Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Cao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Leipin Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiqun Du
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | - Bing Li
- Burning Rock Biotech, Guangzhou, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xichun Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Terkelsen T, Russo F, Gromov P, Haakensen VD, Brunak S, Gromova I, Krogh A, Papaleo E. Secreted breast tumor interstitial fluid microRNAs and their target genes are associated with triple-negative breast cancer, tumor grade, and immune infiltration. Breast Cancer Res 2020; 22:73. [PMID: 32605588 PMCID: PMC7329449 DOI: 10.1186/s13058-020-01295-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Background Studies on tumor-secreted microRNAs point to a functional role of these in cellular communication and reprogramming of the tumor microenvironment. Uptake of tumor-secreted microRNAs by neighboring cells may result in the silencing of mRNA targets and, in turn, modulation of the transcriptome. Studying miRNAs externalized from tumors could improve cancer patient diagnosis and disease monitoring and help to pinpoint which miRNA-gene interactions are central for tumor properties such as invasiveness and metastasis. Methods Using a bioinformatics approach, we analyzed the profiles of secreted tumor and normal interstitial fluid (IF) microRNAs, from women with breast cancer (BC). We carried out differential abundance analysis (DAA), to obtain miRNAs, which were enriched or depleted in IFs, from patients with different clinical traits. Subsequently, miRNA family enrichment analysis was performed to assess whether any families were over-represented in the specific sets. We identified dysregulated genes in tumor tissues from the same cohort of patients and constructed weighted gene co-expression networks, to extract sets of co-expressed genes and co-abundant miRNAs. Lastly, we integrated miRNAs and mRNAs to obtain interaction networks and supported our findings using prediction tools and cancer gene databases. Results Network analysis showed co-expressed genes and miRNA regulators, associated with tumor lymphocyte infiltration. All of the genes were involved in immune system processes, and many had previously been associated with cancer immunity. A subset of these, BTLA, CXCL13, IL7R, LAMP3, and LTB, was linked to the presence of tertiary lymphoid structures and high endothelial venules within tumors. Co-abundant tumor interstitial fluid miRNAs within this network, including miR-146a and miR-494, were annotated as negative regulators of immune-stimulatory responses. One co-expression network encompassed differences between BC subtypes. Genes differentially co-expressed between luminal B and triple-negative breast cancer (TNBC) were connected with sphingolipid metabolism and predicted to be co-regulated by miR-23a. Co-expressed genes and TIF miRNAs associated with tumor grade were BTRC, CHST1, miR-10a/b, miR-107, miR-301a, and miR-454. Conclusion Integration of IF miRNAs and mRNAs unveiled networks associated with patient clinicopathological traits, and underlined molecular mechanisms, specific to BC sub-groups. Our results highlight the benefits of an integrative approach to biomarker discovery, placing secreted miRNAs within a biological context.
Collapse
Affiliation(s)
- Thilde Terkelsen
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Francesco Russo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pavel Gromov
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Vilde Drageset Haakensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Irina Gromova
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Anders Krogh
- Unit of Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark. .,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
35
|
MicroRNA-Mediated Suppression of the TGF-β Pathway Confers Transmissible and Reversible CDK4/6 Inhibitor Resistance. Cell Rep 2020; 26:2667-2680.e7. [PMID: 30840889 PMCID: PMC6449498 DOI: 10.1016/j.celrep.2019.02.023] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 11/07/2018] [Accepted: 02/06/2019] [Indexed: 01/24/2023] Open
Abstract
CDK4/6 inhibition is now part of the standard armamentarium for patients with estrogen receptorpositive (ER+) breast cancer, so that defining mechanisms of resistance is a pressing issue. Here, we identify increased CDK6 expression as a key determinant of acquired resistance after palbociclib treatment in ER+ breast cancer cells. CDK6 expression is critical for cellular survival during palbociclib exposure. The increased CDK6 expression observed in resistant cells is dependent on TGF-b pathway suppression via miR-432-5p expression. Exosomal miR-432-5p expression mediates the transfer of the resistance phenotype between neighboring cell populations. Levels of miR-432-5p are higher in primary breast cancers demonstrating CDK4/6 resistance compared to those that are sensitive. These data are Furthermore confirmed in pre-treatment and post-progression biopsies from a parotid cancer patient who had responded to ribociclib, demonstrating the clinical relevance of this mechanism. Finally, the CDK4/6 inhibitor resistance phenotype is reversible in vitro and in vivo by a prolonged drug holiday. Cornell et al. demonstrate a mechanism of acquired CDK4/6 inhibitor resistance that is independent of inherent genetic mutations, is conferred through extracellular signaling, and is reversible in vitro and in vivo. Resistance was mediated by exosomal miRNA, causing increased expression of CDK6 to overcome G1 arrest and promote cell survival.
Collapse
|
36
|
Moradi Binabaj M, Bahrami A, Khazaei M, Ryzhikov M, Ferns GA, Avan A, Mahdi Hassanian S. The prognostic value of cyclin D1 expression in the survival of cancer patients: A meta-analysis. Gene 2019; 728:144283. [PMID: 31838249 DOI: 10.1016/j.gene.2019.144283] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/30/2019] [Accepted: 12/05/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND The relationship between the expression of cyclin D1 and cancer prognosis and outcomes in different malignancies has not been fully elucidated. AIMS In the presented meta-analysis, we assessed the association between the expression level of cyclin D1 with overall survival (OS) in several cancers. METHODS Eligible studies were identified using PubMed, EMBase, Scopus, Web of Sciences and Cochrane Library databases. For the prognostic meta-analysis, study-specific hazard ratios (HRs) of tissue cyclin D1 for survival were obtained. Finally we pooled data derived from one hundred and eight studies comprising 19,224 patients with 10 different cancer types. RESULTS In the pooled analysis, high expression of cyclin D1 was significantly related to a poor OS with a pooled HR of 1.11 (95% CI: 1.02-1.20, P = 0.015; random-effects). Sub-group analysis revealed that high expression of cyclin D1 was related to worse OS of head and neck cancers (HR = 2.08, 95% CI: 1.75-2.47; P < 0.001), but not in breast (HR = 1.033, 95% CI: 0.873-1.223, P = 0.702), gastrointestinal (HR = 1.025, 95% CI:0.824-1.275; P = 0.825), bladder (HR = 0.937, CI: 0.844-1.041; P = 0.225) and in lung cancer patients (HR = 1.092, CI: 0.819-1.455; P = 0.549). CONCLUSION Further large, prospective, and well-designed trials are warranted to elucidate the precise clinical importance of cyclin D1 overexpression in the prognosis of cancer patients receiving different treatment regimens.
Collapse
Affiliation(s)
- Maryam Moradi Binabaj
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, MO, USA
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
37
|
Utility of Cyclin D1 in the Diagnostic Workup of Hematopoietic Neoplasms: What Can Cyclin D1 Do for Us? Adv Anat Pathol 2019; 26:281-291. [PMID: 31261248 DOI: 10.1097/pap.0000000000000241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cyclin D1, encoded by CCND1, promotes cell cycle progression from G1 to S phase. Its expression is induced by MAPK/ERK pathway as well as translocations/rearrangements involving CCND1 gene. The evaluation of cyclin D1 expression by immunohistochemistry plays an important role in the diagnostic workup of various hematopoietic diseases. In this review, we aimed to discuss the value of cyclin D1 immunostain in the diagnosis and different diagnosis of hematopoietic neoplasms.
Collapse
|
38
|
Ding H, Luo Y, Hu K, Liu P, Xiong M. Linc00467 promotes lung adenocarcinoma proliferation via sponging miR-20b-5p to activate CCND1 expression. Onco Targets Ther 2019; 12:6733-6743. [PMID: 31686834 PMCID: PMC6709798 DOI: 10.2147/ott.s207748] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/16/2019] [Indexed: 01/15/2023] Open
Abstract
Background Recently, numerous studies have demonstrated the emerging role of long non-coding RNAs (lncRNAs) in human cancers. Linc00467 is a newly defined lncRNA and was reported to promote cell survival in neuroblastoma. However, the function of linc00467 in lung cancer is still unclear. Material and methods We analyzed linc00467 expression and survival data derived from The Cancer Genome Altas lung adenocarcinoma (LUAD) dataset as well as in collected LUAD tissues. Then, we silenced linc00467 expression in two lung cancer cell lines using small interfering RNAs and explored the effect of linc00467 knockdown on cell growth in vitro and in vivo. Moreover, we revealed a novel target gene of linc00467 and elucidated the underlying competitive endogenous RNA regulatory mechanism in lung cancer cells. Results Our data suggested that linc00467 expression was elevated in LUAD tissues and correlated with overall survival of LUAD patients. Linc00467 knockdown resulted in reduced proliferation rate in lung cancer cells. Furthermore, we elucidated that linc00467 promoted CCND1 expression in lung cancer cells via functioning as a molecular sponge for miR-20b-5p. Conclusion Linc00467/miR-20b-5p/CCND1 signaling pathway may provide new insights into lung cancer treatment.
Collapse
Affiliation(s)
- Hao Ding
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yuchuan Luo
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Ke Hu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Pei Liu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Mengqing Xiong
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
39
|
Chen WX, Xu LY, Cheng L, Qian Q, He X, Peng WT, Zhu YL. Bioinformatics analysis of dysregulated microRNAs in exosomes from docetaxel-resistant and parental human breast cancer cells. Cancer Manag Res 2019; 11:5425-5435. [PMID: 31354350 PMCID: PMC6579872 DOI: 10.2147/cmar.s201335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Resistance to docetaxel is a major obstacle to effective treatment of breast cancer. Exosomal microRNAs (miRNAs) have recently been introduced in cell-to-cell transmission of chemoresistance between heterogeneous populations of tumor cells with diverse drug sensitivity. However, a systematic evaluation of the exosomal miRNA signature remains largely unclear. Method: miRNA expression profiles in exosomes from docetaxel-resistant (D/exo) and parental sensitive breast cancer cells (S/exo) were assessed using microarray. Bioinformatics analysis was performed to predict target genes of the dysregulated miRNAs and to uncover their potential roles in chemoresistance formation. Signaling pathways, gene ontology terms, transcription factors, protein-protein interactions, and hub genes were also constructed. Results: The selected exosomal miRNAs could modulate target genes responsible for MAPK, TGF-beta, Wnt, mTOR, and PI3K/Akt signaling pathways. Function enrichment analysis revealed the involvement of target genes in transcription regulation, protein phosphorylation, kinase activity, and protein binding. Enriched transcription factors including SP1, SP4, and EGR1 were obtained and a protein-protein interaction network was established. The hub genes for up-expressed and down-expressed exosomal miRNAs such as CCND1 and PTEN were identified. Conclusion: This bioinformatics study provides a comprehensive view of the function of dysregulated exosomal miRNAs, and may help us to understand exosome-mediated resistance transmission and overcome docetaxel resistance in future breast cancer therapy.
Collapse
Affiliation(s)
- Wei-Xian Chen
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China.,Department of Post-doctoral Working Station, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Ling-Yun Xu
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Lin Cheng
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Qi Qian
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Xiao He
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Wen-Ting Peng
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Yu-Lan Zhu
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| |
Collapse
|
40
|
Mohammedi L, Doula FD, Mesli F, Senhadji R. Cyclin D1 overexpression in Algerian breast cancer women: correlation with CCND1 amplification and clinicopathological parameters. Afr Health Sci 2019; 19:2140-2146. [PMID: 31656498 PMCID: PMC6794544 DOI: 10.4314/ahs.v19i2.38] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cyclin D1 which is associated with cell cycle regulation is solidly established as an oncogene with an important pathogenetic role in breast carcinomas. OBJECTIVES The aim of this study was to relate the Cyclin D1 protein overexpression with the amplification of its gene CCND1 in Estrogen Receptors (ER) positive breast carcinomas, in order to investigate the prognostic effect of their aberrations in relation to ER status, also to correlate the Cyclin D1 overexpression with other prognostic parameters. MATERIALS AND METHODS Chromogenic in situ hybridization (CISH) was used to identify CCND1 amplification on formalin-fixed paraffin-embedded invasive ductal carcinoma, in which immunohistochemistry (IHC) had previously been performed in order to evaluate the pathological relevance of Cyclin D1 overexpression in human breast cancer (n = 138). RESULTS CCND1 amplification was identified in 17/138 (12.3%) tumors and 78/138 (56.5%) tumors have overexpressed Cyclin D1. A significant correlation was identified between CCND1 amplification and Cyclin D1 overexpression (P < 0.001) and both Cyclin D1 and CCND1 were related with ER expression. CONCLUSION Our results show a significant correlation between Cyclin D1 overexpression and CCND1 amplification. Overexpression of Cyclin D1was observed in high proportion of breast cancer which should be considered for routine diagnosis.
Collapse
|
41
|
Shi X, Wang X. LINC00473 mediates cyclin D1 expression through a balance between activation and repression signals in breast cancer cells. FEBS Lett 2019; 593:751-759. [PMID: 30848493 DOI: 10.1002/1873-3468.13353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNAs) are critical regulators in tumorigenesis. However, their roles in breast cancer remain unclear. Here, we found that lncRNA LINC00473 is significantly upregulated in breast cancer cells. Loss- or gain-of-function experiments show that LINC00473 promotes cell proliferation. Mechanistically, LINC00473 is required for the activation of cyclin D1 (CCND1) expression through recruitment of phosphorylated CREB and histone acetylation to the CCND1 promoter. Interestingly, we found that LINC00473 is also required for maintaining the expression levels of the noncoding RNACCND1 s and recruiting corepressor FUS to the CCND1 promoter. Altogether, the activation effect of LINC00473 on CCND1 is a net effect of two antagonistic regulatory pathways. Our finding provides a novel lncRNA-mediated precise transcriptional control of CCND1.
Collapse
Affiliation(s)
- Xiangmin Shi
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, China.,Department of Molecular and Cell Biology, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiangting Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, China.,Department of Molecular and Cell Biology, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
42
|
Lundberg A, Lindström LS, Li J, Harrell JC, Darai-Ramqvist E, Sifakis EG, Foukakis T, Perou CM, Czene K, Bergh J, Tobin NP. The long-term prognostic and predictive capacity of cyclin D1 gene amplification in 2305 breast tumours. Breast Cancer Res 2019; 21:34. [PMID: 30819233 PMCID: PMC6394106 DOI: 10.1186/s13058-019-1121-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/14/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Use of cyclin D1 (CCND1) gene amplification as a breast cancer biomarker has been hampered by conflicting assessments of the relationship between cyclin D1 protein levels and patient survival. Here, we aimed to clarify its prognostic and treatment predictive potential through comprehensive long-term survival analyses. METHODS CCND1 amplification was assessed using SNP arrays from two cohorts of 1965 and 340 patients with matching gene expression array and clinical follow-up data of over 15 years. Kaplan-Meier and multivariable Cox regression analyses were used to determine survival differences between CCND1 amplified vs. non-amplified tumours in clinically relevant patient sets, within PAM50 subtypes and within treatment-specific subgroups. Boxplots and differential gene expression analyses were performed to assess differences between amplified vs. non-amplified tumours within PAM50 subtypes. RESULTS When combining both cohorts, worse survival was found for patients with CCND1-amplified tumours in luminal A (HR = 1.68; 95% CI, 1.15-2.46), luminal B (1.37; 1.01-1.86) and ER+/LN-/HER2- (1.66; 1.14-2.41) subgroups. In gene expression analysis, CCND1-amplified luminal A tumours showed increased proliferation (P < 0.001) and decreased progesterone (P = 0.002) levels along with a large overlap in differentially expressed genes when comparing luminal A and B-amplified vs. non-amplified tumours. CONCLUSIONS Our results indicate that CCND1 amplification is associated with worse 15-year survival in ER+/LN-/HER2-, luminal A and luminal B patients. Moreover, luminal A CCND1-amplified tumours display gene expression changes consistent with a more aggressive phenotype. These novel findings highlight the potential of CCND1 to identify patients that could benefit from long-term treatment strategies.
Collapse
Affiliation(s)
- Arian Lundberg
- Department of Oncology and Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Linda S Lindström
- Department of Biosciences and Nutrition, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Jingmei Li
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - J Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - Eva Darai-Ramqvist
- Department of Pathology and Cytology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Emmanouil G Sifakis
- Department of Oncology and Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Theodoros Foukakis
- Department of Oncology and Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Charles M Perou
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology and Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Department of Public Health, Oxford University, Oxford, UK
| | - Nicholas P Tobin
- Department of Oncology and Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden.
| |
Collapse
|
43
|
Alexandrou S, George SM, Ormandy CJ, Lim E, Oakes SR, Caldon CE. The Proliferative and Apoptotic Landscape of Basal-like Breast Cancer. Int J Mol Sci 2019; 20:ijms20030667. [PMID: 30720718 PMCID: PMC6387372 DOI: 10.3390/ijms20030667] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/21/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Basal-like breast cancer (BLBC) is an aggressive molecular subtype that represents up to 15% of breast cancers. It occurs in younger patients, and typically shows rapid development of locoregional and distant metastasis, resulting in a relatively high mortality rate. Its defining features are that it is positive for basal cytokeratins and, epidermal growth factor receptor and/or c-Kit. Problematically, it is typically negative for the estrogen receptor and human epidermal growth factor receptor 2 (HER2), which means that it is unsuitable for either hormone therapy or targeted HER2 therapy. As a result, there are few therapeutic options for BLBC, and a major priority is to define molecular subgroups of BLBC that could be targeted therapeutically. In this review, we focus on the highly proliferative and anti-apoptotic phenotype of BLBC with the goal of defining potential therapeutic avenues, which could take advantage of these aspects of tumor development.
Collapse
Affiliation(s)
- Sarah Alexandrou
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 2010 Sydney, Australia.
| | - Sandra Marie George
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 2010 Sydney, Australia.
| | - Christopher John Ormandy
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 2010 Sydney, Australia.
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, 2052 Sydney, Australia.
| | - Elgene Lim
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 2010 Sydney, Australia.
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, 2052 Sydney, Australia.
| | - Samantha Richelle Oakes
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 2010 Sydney, Australia.
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, 2052 Sydney, Australia.
| | - C Elizabeth Caldon
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 2010 Sydney, Australia.
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, 2052 Sydney, Australia.
| |
Collapse
|
44
|
El Ansari R, Craze ML, Diez-Rodriguez M, Nolan CC, Ellis IO, Rakha EA, Green AR. The multifunctional solute carrier 3A2 (SLC3A2) confers a poor prognosis in the highly proliferative breast cancer subtypes. Br J Cancer 2018; 118:1115-1122. [PMID: 29545595 PMCID: PMC5931111 DOI: 10.1038/s41416-018-0038-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 12/31/2022] Open
Abstract
Breast cancer (BC) is a heterogeneous disease characterised by variant biology, metabolic activity and patient outcome. This study aimed to evaluate the biological and prognostic value of the membrane solute carrier, SLC3A2 in BC with emphasis on the intrinsic molecular subtypes. SLC3A2 was assessed at the genomic level, using METABRIC data (n = 1980), and at the proteomic level, using immunohistochemistry on tissue microarray (TMA) sections constructed from a large well-characterised primary BC cohort (n = 2500). SLC3A2 expression was correlated with clinicopathological parameters, molecular subtypes and patient outcome. SLC3A2 mRNA and protein expression were strongly correlated with higher tumour grade and poor Nottingham prognostic index (NPI). High expression of SLC3A2 was observed in triple-negative (TN), HER2+ and ER+ high-proliferation subtypes. SLC3A2 mRNA and protein expression were significantly associated with the expression of c-MYC in all BC subtypes (p < 0.001). High expression of SLC3A2 protein was associated with poor patient outcome (p < 0.001), but only in the ER+ high-proliferation (p = 0.01) and TN (p = 0.04) subtypes. In multivariate analysis SLC3A2 protein was an independent risk factor for shorter BC-specific survival (p < 0.001). SLC3A2 appears to play a role in the aggressive BC subtypes driven by MYC and could act as a potential prognostic marker. Functional assessment is necessary to reveal its potential therapeutic value in the different BC subtypes.
Collapse
Affiliation(s)
- Rokaya El Ansari
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Madeleine L Craze
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Maria Diez-Rodriguez
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Christopher C Nolan
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Ian O Ellis
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
- Breast Institute, Nottingham University Hospitals NHS Trust, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Emad A Rakha
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
- Breast Institute, Nottingham University Hospitals NHS Trust, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Andrew R Green
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK.
| |
Collapse
|
45
|
Joseph C, Macnamara O, Craze M, Russell R, Provenzano E, Nolan CC, Diez-Rodriguez M, Sonbul SN, Aleskandarany MA, Green AR, Rakha EA, Ellis IO, Mukherjee A. Mediator complex (MED) 7: a biomarker associated with good prognosis in invasive breast cancer, especially ER+ luminal subtypes. Br J Cancer 2018; 118:1142-1151. [PMID: 29588513 PMCID: PMC5931067 DOI: 10.1038/s41416-018-0041-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/19/2018] [Accepted: 01/30/2018] [Indexed: 01/08/2023] Open
Abstract
Background Mediator complex (MED) proteins have a key role in transcriptional regulation, some interacting with the oestrogen receptor (ER). Interrogation of the METABRIC cohort suggested that MED7 may regulate lymphovascular invasion (LVI). Thus MED7 expression was assessed in large breast cancer (BC) cohorts to determine clinicopathological significance. Methods MED7 gene expression was investigated in the METABRIC cohort (n = 1980) and externally validated using bc-GenExMiner v4.0. Immunohistochemical expression was assessed in the Nottingham primary BC series (n = 1280). Associations with clinicopathological variables and patient outcome were evaluated. Results High MED7 mRNA and protein expression was associated with good prognostic factors: low grade, smaller tumour size, good NPI, positive hormone receptor status (p < 0.001), and negative LVI (p = 0.04) status. Higher MED7 protein expression was associated with improved BC-specific survival within the whole cohort and ER+/luminal subgroup. Pooled MED7 gene expression data in the external validation cohort confirmed association with better survival, corroborating with the protein expression. On multivariate analysis, MED7 protein was independently predictive of longer BC-specific survival in the whole cohort and Luminal A subtype (p < 0.001). Conclusions MED7 is an important prognostic marker in BC, particularly in ER+luminal subtypes, associated with improved survival and warrants future functional analysis.
Collapse
Affiliation(s)
- Chitra Joseph
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Olivia Macnamara
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Madeleine Craze
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | | | - Elena Provenzano
- Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Christopher C Nolan
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Maria Diez-Rodriguez
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Sultan N Sonbul
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Mohammed A Aleskandarany
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Andrew R Green
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Emad A Rakha
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Ian O Ellis
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Abhik Mukherjee
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK.
| |
Collapse
|
46
|
El Ansari R, Craze ML, Miligy I, Diez-Rodriguez M, Nolan CC, Ellis IO, Rakha EA, Green AR. The amino acid transporter SLC7A5 confers a poor prognosis in the highly proliferative breast cancer subtypes and is a key therapeutic target in luminal B tumours. Breast Cancer Res 2018; 20:21. [PMID: 29566741 PMCID: PMC5863851 DOI: 10.1186/s13058-018-0946-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/26/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is a heterogeneous disease characterised by variant biology and patient outcome. The amino acid transporter, SLC7A5, plays a role in BC although its impact on patient outcome in different BC subtypes remains to be validated. This study aimed to determine whether the clinicopathological and prognostic value of SLC7A5 is different within the molecular classes of BC. METHODS SLC7A5 was assessed at the genomic level, using Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) data (n = 1980), and proteomic level, using immunohistochemical analysis and tissue microarray (TMA) (n = 2664; 1110 training and 1554 validation sets) in well-characterised primary BC cohorts. SLC7A5 expression correlated with clinicopathological and biological parameters, molecular subtypes and patient outcome. RESULTS SLC7A5 mRNA and protein expression were strongly correlated with larger tumour size and higher grade. High expression was observed in triple negative (TN), human epidermal growth factor receptor 2 (HER2)+, and luminal B subtypes. SLC7A5 mRNA and protein expression was significantly associated with the expression of the key regulator of tumour cell metabolism, c-MYC, specifically in luminal B tumours only (p = 0.001). High expression of SLC7A5 mRNA and protein was associated with poor patient outcome (p < 0.001) but only in the highly proliferative oestrogen receptor (ER)+/ luminal B (p = 0.007) and HER2+ classes of BC (p = 0.03). In multivariate analysis, SLC7A5 protein was an independent risk factor for shorter breast-cancer-specific survival only in ER+ high-proliferation tumours (p = 0.02). CONCLUSIONS SLC7A5 appears to play a role in the aggressive highly proliferative ER+ subtype driven by MYC and could act as a potential therapeutic target. Functional assessment is necessary to reveal the specific role played by this transporter in the ER+ highly proliferative subclass and HER2+ subclass of BC.
Collapse
Affiliation(s)
- Rokaya El Ansari
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB UK
| | - Madeleine L. Craze
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB UK
| | - Islam Miligy
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB UK
| | - Maria Diez-Rodriguez
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB UK
| | - Christopher C. Nolan
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB UK
| | - Ian O. Ellis
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB UK
- Breast Institute, Nottingham University Hospitals NHS Trust, Hucknall Road, Nottingham, NG5 1PB UK
| | - Emad A. Rakha
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB UK
- Breast Institute, Nottingham University Hospitals NHS Trust, Hucknall Road, Nottingham, NG5 1PB UK
| | - Andrew R. Green
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB UK
| |
Collapse
|
47
|
An integrated approach to infer cross-talks between intracellular protein transport and signaling pathways. BMC Bioinformatics 2018. [PMID: 29536825 PMCID: PMC5850946 DOI: 10.1186/s12859-018-2036-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background The endomembrane system, known as secretory pathway, is responsible for the synthesis and transport of protein molecules in cells. Therefore, genes involved in the secretory pathway are essential for the cellular development and function. Recent scientific investigations show that ER and Golgi apparatus may provide a convenient drug target for cancer therapy. On the other hand, it is known that abundantly expressed genes in different cellular organelles share interconnected pathways and co-regulate each other activities. The cross-talks among these genes play an important role in signaling pathways, associated to the regulation of intracellular protein transport. Results In the present study, we device an integrated approach to understand these complex interactions. We analyze gene perturbation expression profiles, reconstruct a directed gene interaction network and decipher the regulatory interactions among genes involved in protein transport signaling. In particular, we focus on expression signatures of genes involved in the secretory pathway of MCF7 breast cancer cell line. Furthermore, network biology analysis delineates these gene-centric cross-talks at the level of specific modules/sub-networks, corresponding to different signaling pathways. Conclusions We elucidate the regulatory connections between genes constituting signaling pathways such as PI3K-Akt, Ras, Rap1, calcium, JAK-STAT, EFGR and FGFR signaling. Interestingly, we determine some key regulatory cross-talks between signaling pathways (PI3K-Akt signaling and Ras signaling pathway) and intracellular protein transport. Electronic supplementary material The online version of this article (10.1186/s12859-018-2036-2) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Volpi CC, Gualeni AV, Pietrantonio F, Vaccher E, Carbone A, Gloghini A. Bright-field in situ hybridization detects gene alterations and viral infections useful for personalized management of cancer patients. Expert Rev Mol Diagn 2018; 18:259-277. [PMID: 29431533 DOI: 10.1080/14737159.2018.1440210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Bright-field in situ hybridization (ISH) methods detect gene alterations that may improve diagnostic precision and personalized management of cancer patients. Areas covered: This review focuses on some bright-field ISH techniques for detection of gene amplification or viral infection that have already been introduced in tumor pathology, research and diagnostic practice. Other emerging ISH methods, for the detection of translocation, mRNA and microRNA have recently been developed and need both an optimization and analytical validation. The review also deals with their clinical applications and implications on the management of cancer patients. Expert commentary: The technology of bright-field ISH applications has advanced significantly in the last decade. For example, an automated dual-color assay was developed as a clinical test for selecting cancer patients that are candidates for personalized therapy. Recently an emerging bright-field gene-protein assay has been developed. This method simultaneously detects the protein, gene and centromeric targets in the context of tissue morphology, and might be useful in assessing the HER2 status particularly in equivocal cases or samples with heterogeneous tumors. The application of bright-field ISH methods has become the gold standard for the detection of tumor-associated viral infection as diagnostic or prognostic factors.
Collapse
Affiliation(s)
- Chiara C Volpi
- a Department of Pathology and Laboratory Medicine , Fondazione IRCCS, Istituto Nazionale dei Tumori , Milano , Italy
| | - Ambra V Gualeni
- a Department of Pathology and Laboratory Medicine , Fondazione IRCCS, Istituto Nazionale dei Tumori , Milano , Italy
| | - Filippo Pietrantonio
- b Department of Medical Oncology , Fondazione IRCCS, Istituto Nazionale dei Tumori , Milano , Italy
| | - Emanuela Vaccher
- c Department of Medical Oncology , Centro di Riferimento Oncologico, IRCCS, National Cancer Institute , Aviano , Italy
| | - Antonino Carbone
- d Department of Pathology , Centro di Riferimento Oncologico, IRCCS, National Cancer Institute , Aviano , Italy
| | - Annunziata Gloghini
- a Department of Pathology and Laboratory Medicine , Fondazione IRCCS, Istituto Nazionale dei Tumori , Milano , Italy
| |
Collapse
|
49
|
Han S, Kim D, Shivakumar M, Lee YJ, Garg T, Miller JE, Kim JH, Kim D, Lee Y. The effects of alternative splicing on miRNA binding sites in bladder cancer. PLoS One 2018; 13:e0190708. [PMID: 29300757 PMCID: PMC5754136 DOI: 10.1371/journal.pone.0190708] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 12/19/2017] [Indexed: 01/09/2023] Open
Abstract
Eukaryotic organisms have developed a variety of mechanisms to regulate translation post-transcriptionally, including but not limited to the use of miRNA silencing in many species. One method of post-transcriptional regulation is through miRNAs that bind to the 3′ UTRs to regulate mRNA abundance and influence protein expression. Therefore, the diversity of mRNA 3′ UTRs mediating miRNA binding sites influence miRNA-mediated regulation. Alternative polyadenylation, by shortening mRNA isoforms, increases the diversity of 3′ UTRs; moreover, short mRNA isoforms elude miRNA-medicated repression. Because no current prediction methods for putative miRNA target sites consider whether or not 1) splicing-informed miRNA binding sites and/or 2) the use of 3′ UTRs provide higher resolution or functionality, we sought to identify not only the genome-wide impact of using exons in mRNA 3′ UTRs but also their functional connection to miRNA regulation and clinical outcomes in cancer. With a genome-wide expression of mRNA and miRNA quantified by 395 bladder cancer cases from The Cancer Genome Atlas (TCGA), we 1) demonstrate the diversity of 3′ UTRs affecting miRNA efficiency and 2) identify a set of genes clinically associated with mRNA expression in bladder cancer. Knowledge of 3′ UTR diversity will not only be a useful addition to current miRNA target prediction algorithms but also enhance the clinical utility of mRNA isoforms in the expression of mRNA in cancer. Thus, variability among cancer patient’s variability in molecular signatures based on these exon usage events in 3′ UTR along with miRNAs in bladder cancer may lead to better prognostic/treatment strategies for improved precision medicine.
Collapse
Affiliation(s)
- Seonggyun Han
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Dongwook Kim
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Manu Shivakumar
- Department of Biomedical & Translational Informatics, Geisinger Health System, Danville, Pennsylvania, United States of America
| | - Young-Ji Lee
- Department of Biomedical Informatics, School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Tullika Garg
- Mowad Urology Department, Geisinger Health System, Danville, Pennsylvania, United States of America
| | - Jason E. Miller
- Department of Biomedical & Translational Informatics, Geisinger Health System, Danville, Pennsylvania, United States of America
| | - Ju Han Kim
- Seoul National University Biomedical Informatics, Seoul, South Korea
- * E-mail: (YL); (DK); (JHK)
| | - Dokyoon Kim
- Department of Biomedical & Translational Informatics, Geisinger Health System, Danville, Pennsylvania, United States of America
- * E-mail: (YL); (DK); (JHK)
| | - Younghee Lee
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail: (YL); (DK); (JHK)
| |
Collapse
|
50
|
Balázs M, Koroknai V, Szász I, Ecsedi S. Detection of CCND1 Locus Amplification by Fluorescence In Situ Hybridization. Methods Mol Biol 2018; 1726:85-100. [PMID: 29468546 DOI: 10.1007/978-1-4939-7565-5_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It is well known that chromosomal aberrations of tumors are associated with the initiation and progression of malignancy. Fluorescence in situ hybridization (FISH) is a powerful, rapid method to detect chromosome copy number and structural alterations in tissue sections, chromosome, or interphase cellular preparations via hybridization of complementary probe sequences. The technique is based on the complementary nature of DNA double strands, which allows fluorescently labeled DNA probes to be used as probes to label the complementary sequences of target cells, chromosomes, and tissues. FISH technique has many applications, including basic gene mapping, used in pathological diagnosis to detect chromosome and gene copy number aberrations, translocations, microdeletions, and duplications. For the recognition of gene amplifications and deletions, locus-specific probes that are collections of one or a few cloned DNA sequences are routinely used. Multiplex-FISH (M-FISH) technique visualizes all chromosomes with different colors using spectrally distinct fluorophores for each chromosome in one experiment to detect numerical and structural alterations of chromosomes obtained from tumor cells. Recently many of the gene-specific probes are commercially available.
Collapse
Affiliation(s)
- Margit Balázs
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary.
| | - Viktória Koroknai
- MTA-DE Public Health Research Group, University of Debrecen, Debrecen, Hungary
| | - István Szász
- MTA-DE Public Health Research Group, University of Debrecen, Debrecen, Hungary
| | - Szilvia Ecsedi
- MTA-DE Public Health Research Group, University of Debrecen, Debrecen, Hungary
| |
Collapse
|