1
|
Mahmoudi A, Jamialahmadi T, Kesharwani P, Sahebkar A. Bioinformatic analysis of the molecular targets of curcumin in colorectal cancer. Pathol Res Pract 2024; 262:155533. [PMID: 39173464 DOI: 10.1016/j.prp.2024.155533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024]
Abstract
Colorectal cancer (CRC) is a major global health concern, with rising incidence and mortality rates. Conventional treatments often come with significant complications, prompting the exploration of natural compounds like curcumin as potential therapeutic agents. Using bioinformatic tools, this study investigated the role of curcumin in CRC treatment. Significant protein interactions between curcumin and target proteins were identified in the STITCH database. Differentially expressed genes (DEGs) associated with CRC were then analyzed from GEO databases. Comparing curcumin targets and CRC-related DEGs, nine significant common targets were identified: DNMT1, PCNA, CCND1, PLAU, MMP3, SOX9, FOXM1, CXCL2, and SERPINB5. Pathway enrichment analyses revealed that curcumin-targeted pathways were primarily related to p53, IL-17, NF-kappa B, TNF, and cell cycle signaling, all crucial in CRC development and progression. Further analyses using DAID and EnrichR algorithms showed that the curcumin targets exhibited greater specificity to bronchial epithelial cells and colorectal adenocarcinoma than other diseases. Analyses via the DSigDB database indicated that curcumin ranks highly among other drugs targeting the identified CRC-related genes. Docking studies revealed favorable binding interactions between curcumin and the key CRC-related proteins, suggesting potential molecular mechanisms by which curcumin may exert its effects. In summary, this study provides bioinformatic and docking evidence that curcumin may exert beneficial effects on CRC by modulating the expression or activity of multiple CRC-susceptibility genes involved in critical signaling pathways. These findings warrant further experimental validation and support the potential of curcumin as a therapeutic agent for CRC.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Greco F, Mallio CA. Radiomics and Radiogenomics Toward Personalized Management of Clear Cell Renal Cell Carcinoma: The Importance of FOXM1. Acad Radiol 2024; 31:3647-3649. [PMID: 39097509 DOI: 10.1016/j.acra.2024.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Affiliation(s)
- Federico Greco
- Department of Radiology, Cittadella della Salute, Azienda Sanitaria Locale di Lecce, Piazza Filippo Bottazzi, 2, 73100 Lecce, Italy; Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy.
| | - Carlo Augusto Mallio
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| |
Collapse
|
3
|
Ibrahim HM, Abdelrahman AE, Elwan A, Gharieb SA, Refaat M, Elmesallamy W, Salem AA. Clinicopathological Impact of FOXM1 and MMP-9 Immunohistochemical Expression in Different Grades of Intracranial Meningioma. Appl Immunohistochem Mol Morphol 2024; 32:292-304. [PMID: 38863278 DOI: 10.1097/pai.0000000000001205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/05/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVES To find predictive biomarkers for recurrence and progression of meningioma. BACKGROUND Despite great advances in meningioma treatment, the prognosis remained unfavorable due to the high recurrence rate. METHODS In this study, we evaluated the immunohistochemical expression of FOXM1, MMP-9, and Ki67 in 50 cases of intracranial meningioma to detect its potential role in meningioma progression, recurrence, and patients' survival. RESULTS Strong FOXM1 expression was detected in 20% of the cases and was significantly associated with meningioma grade ( P = 0.002) and peritumoral brain edema (PTBE; P <0.001). Strong MMP-9 expression was noted in 32% of the cases and was significantly associated with meningioma grade and PTBE ( P <0.001, P <0.001, respectively). High Ki67 was noted in 50% and significantly associated with tumor grade and PTBE ( P <0.001, P = 0.002, respectively). The follow-up period revealed that meningiomas with strong FOXM1, strong MMP-9, and high Ki67 expression were associated with tumor recurrence, shorter OS, and recurrence-free survival. Furthermore, up-regulation of FOXM1 and MMP-9 expression had a significant relation with poor clinical response to the therapy ( P = 0.010, P = 0. 001, respectively). However, high Ki67 cases were more sensitive to clinical therapy ( P = 0.005). CONCLUSION Strong FOXM1, strong MMP-9, and high Ki67 in meningiomas indicate highly aggressive tumors with a shortened survival rate, dismal outcome, and high risk of recurrence after the standard protocol of therapy.
Collapse
Affiliation(s)
| | | | - Amira Elwan
- Department of Clinical Oncology and Nuclear Medicine
| | | | | | - Wael Elmesallamy
- Department of Neurosurgery, Faculty of Medicine, Zagazig University, Egypt
| | | |
Collapse
|
4
|
Siqueira P, Rodrigues M, de Amorim Ĺ, Rodrigues J, Oliveira M, Fonseca A, Pires B, Mencalha A. The inhibitor of the redox activity of APE1/REF-1, APX2009, reduces the malignant phenotype of breast cancer cells. Braz J Med Biol Res 2024; 57:e13250. [PMID: 38808886 PMCID: PMC11136485 DOI: 10.1590/1414-431x2024e13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/07/2024] [Indexed: 05/30/2024] Open
Abstract
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/REF-1) is a multifunctional protein acting on cellular signaling pathways, including DNA repair and redox activities. APE1/REF-1 has emerged as a target for cancer therapy, and its role in breast cancer models would reveal new strategies for cancer therapy. APX2009 is a specific APE1/REF-1 redox inhibitor whose anticancer properties have not been described in breast cancer cells. Here, we investigated the effect of the APX2009 treatment in the breast cancer cell lines MDA-MB-231 and MCF-7. Breast cancer cell lines were cultured, and WST1 and colony formation assays were performed to evaluate cell proliferation. Annexin V-FITC/7-AAD and LDH-Glo™ assays were performed to evaluate cell death. The wound healing assay and Matrigel transwell assay were performed after APX2009 treatment to evaluate the cellular migration and invasion processes, respectively. Our findings demonstrated that APX2009 treatment decreased breast cancer cell proliferative, migratory, and invasive properties. Furthermore, it induced apoptosis in both cell lines. Our study is the first to show the effects of APX2009 treatment on apoptosis in a breast cancer cell. Therefore, this study suggested that APX2009 treatment is a promising anticancer molecule for breast cancer.
Collapse
Affiliation(s)
- P.B. Siqueira
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - M.M.S. Rodrigues
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - ĺ.S.S. de Amorim
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - J.A. Rodrigues
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - M.S. Oliveira
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - A.S. Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - B.R.B. Pires
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - A.L. Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
5
|
Li L, Qin Y, Chen Y. The enzymes of serine synthesis pathway in cancer metastasis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119697. [PMID: 38382845 DOI: 10.1016/j.bbamcr.2024.119697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Metastasis, the major cause of cancer mortality, requires cancer cells to reprogram their metabolism to adapt to and thrive in different environments, thereby leaving metastatic cells metabolic characteristics different from their parental cells. Mounting research has revealed that the de novo serine synthesis pathway (SSP), a glycolytic branching pathway that consumes glucose carbons for serine makeup and α-ketoglutarate generation and thus supports the proliferation, survival, and motility of cancer cells, is one such reprogrammed metabolic pathway. During different metastatic cascades, the SSP enzyme proteins or their enzymatic activity are both dynamically altered; manipulating their expression or catalytic activity could effectively prevent the progression of cancer metastasis; and the SSP enzymatic proteins could even conduce to metastasis via their nonenzymatic functions. In this article we overview the SSP dynamics during cancer metastasis and put the focuses on the regulatory role of the SSP in metastasis and the underlying mechanisms that mainly involve cellular anabolism/catabolism, redox balance, and epigenetics, aiming to provide a theoretical basis for the development of therapeutic strategies for targeting metastatic lesions.
Collapse
Affiliation(s)
- Lei Li
- Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuting Qin
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan 421001, China
| | - Yuping Chen
- Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
6
|
Zhang YL, Ma Y, Zeng YQ, Liu Y, He EP, Liu YT, Qiao FL, Yu R, Wang YS, Wu XY, Leng P. A narrative review of research progress on FoxM1 in breast cancer carcinogenesis and therapeutics. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1704. [PMID: 34988213 PMCID: PMC8667115 DOI: 10.21037/atm-21-5271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The purpose of this review is to clarify the potential roles of forkhead box transcription factor M1 (FoxM1) in the occurrence and progression of breast cancer, as well as the predictive value of FoxM1 as a prognostic biomarker and potential therapeutic target for breast cancer. BACKGROUND Breast cancer, well-known as a molecularly heterogeneous cancer, is still one of the most frequently diagnosed malignant tumors among females worldwide. Tumor recurrence and metastasis are the central causes of high mortality in breast cancer patients. Many factors contribute to the occurrence and progression of breast cancer, including FoxM1. FoxM1, widely regarded as a classic proliferation-related transcription factor, plays pivotal roles in the occurrence, proliferation, invasion, migration, drug resistance, and epithelial-mesenchymal transition (EMT) processes of multiple human tumors including breast cancer. METHODS The PubMed database was searched for articles published in English from February 2008 to May 2021 using related keywords such as "forkhead box transcription factor M1", "human breast cancer", "FoxM1", and "human tumor". About 90 research papers and reports written in English were identified, most of which were published after 2015. These papers mainly concentrated on the functions of FoxM1 in the occurrence, development, drug resistance, and treatment of human breast cancer. CONCLUSIONS Considering that the abnormal expression of FoxM1 plays a significant role in the proliferation, invasion, metastasis, and chemotherapy drug resistance of breast cancer, and its overexpression is closely correlated with the unfavorable clinicopathological characteristics of breast tumor patients, it is considerably important to comprehend the regulatory mechanism of FoxM1 in breast cancer. This will provide strong evidence for FoxM1 as a potential biomarker for the targeted treatment and prognostic evaluation of breast cancer patients.
Collapse
Affiliation(s)
- Yan-Ling Zhang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Ma
- Emergency Department of West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China.,Institute of Disaster Medicine, Sichuan University, Chengdu, China
| | - You-Qin Zeng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Liu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - En-Ping He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chengdu Medical College-Nuclear Industry 416 Hospital, Chengdu, China
| | - Yi-Tong Liu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng-Ling Qiao
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Yu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying-Shuang Wang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin-Yu Wu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Leng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Prognostic value of the 6-gene OncoMasTR test in hormone receptor-positive HER2-negative early-stage breast cancer: Comparative analysis with standard clinicopathological factors. Eur J Cancer 2021; 152:78-89. [PMID: 34090143 DOI: 10.1016/j.ejca.2021.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/26/2021] [Accepted: 04/15/2021] [Indexed: 11/20/2022]
Abstract
AIM The aim of the study was to assess the prognostic performance of a 6-gene molecular score (OncoMasTR Molecular Score [OMm]) and a composite risk score (OncoMasTR Risk Score [OM]) and to conduct a within-patient comparison against four routinely used molecular and clinicopathological risk assessment tools: Oncotype DX Recurrence Score, Ki67, Nottingham Prognostic Index and Clinical Risk Category, based on the modified Adjuvant! Online definition and three risk factors: patient age, tumour size and grade. METHODS Biospecimens and clinicopathological information for 404 Irish women also previously enrolled in the Trial Assigning Individualized Options for Treatment [Rx] were provided by 11 participating hospitals, as the primary objective of an independent translational study. Gene expression measured via RT-qPCR was used to calculate OMm and OM. The prognostic value for distant recurrence-free survival (DRFS) and invasive disease-free survival (IDFS) was assessed using Cox proportional hazards models and Kaplan-Meier analysis. All statistical tests were two-sided ones. RESULTS OMm and OM (both with likelihood ratio statistic [LRS] P < 0.001; C indexes = 0.84 and 0.85, respectively) were more prognostic for DRFS and provided significant additional prognostic information to all other assessment tools/factors assessed (all LRS P ≤ 0.002). In addition, the OM correctly classified more patients with distant recurrences (DRs) into the high-risk category than other risk classification tools. Similar results were observed for IDFS. DISCUSSION Both OncoMasTR scores were significantly prognostic for DRFS and IDFS and provided additional prognostic information to the molecular and clinicopathological risk factors/tools assessed. OM was also the most accurate risk classification tool for identifying DR. A concise 6-gene signature with superior risk stratification was shown to increase prognosis reliability, which may help clinicians optimise treatment decisions.
Collapse
|
8
|
Tuli HS, Aggarwal V, Tuorkey M, Aggarwal D, Parashar NC, Varol M, Savla R, Kaur G, Mittal S, Sak K. Emodin: A metabolite that exhibits anti-neoplastic activities by modulating multiple oncogenic targets. Toxicol In Vitro 2021; 73:105142. [PMID: 33722736 DOI: 10.1016/j.tiv.2021.105142] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/11/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022]
Abstract
Oncogenic transformation has been the major cause of global mortality since decades. Despite established therapeutic regimes, majority of cancer patients either present with tumor relapse, refractory disease or therapeutic resistance. Numerous drug candidates are being explored to tap the key reason being poor tumor remission rates, from novel chemotherapy agents to immunotherapy to exploring natural compound derivatives with effective anti-cancer potential. One of these natural product metabolites, emodin has present with significant potential to target tumor oncogenic processes: induction of apoptosis and cell cycle arrest, tumor angiogenesis, and metastasis to chemoresistance in malignant cells. Based on the present scientific excerpts on safety and effectiveness of emodin in targeting hallmarks of tumor progression, emodin is being promisingly explored using nanotechnology platforms for long-term sustained treatment and management of cancer patients. In this review, we summarize the up-to-date scientific literature supporting the anti-neoplastic potential of emodin. We also provide an insight into toxicity and safety profile of emodin and how emodin has emerged as an effective therapeutic alternative in synergism with established conventional chemotherapeutic regimes for management and treatment of tumor progression.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India.
| | - Vaishali Aggarwal
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, USA
| | - Muobarak Tuorkey
- Division of Physiology, Zoology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | | | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla TR48000, Turkey
| | - Raj Savla
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai 56, Maharashtra, India
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai 56, Maharashtra, India
| | - Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | | |
Collapse
|
9
|
Chao Y, Ou Q, Shang J. Expression and prognostic value of SULT1A2 in bladder cancer. Exp Ther Med 2021; 22:779. [PMID: 34055078 PMCID: PMC8145616 DOI: 10.3892/etm.2021.10211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 03/02/2021] [Indexed: 12/31/2022] Open
Abstract
Sulfotransferase Family 1A Member 2 (SULT1A2) is a protein coding gene. Several studies have reported that SULT1A2 may have a chemical carcinogenic effect if expressed as a functional protein. The present study aimed to investigate the expression and potential role of SULT1A2 in bladder cancer (BC). Data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases were used to analyze SULT1A2 expression in BC. In addition, reverse transcription-quantitative PCR and western blot analyses were performed to detect SULT1A2 expression in BC cells and tissues. Immunohistochemistry analysis was performed on 100 formalin-fixed, paraffin-embedded BC tissues and corresponding adjacent normal bladder tissues (ANBTs) to verify SULT1A2 expression and determine the clinical significance of SULT1A2 in BC. Gene set enrichment analysis (GSEA) was performed to determine the potential biological processes and internal molecular mechanisms. The results demonstrated that SULT1A2 was highly expressed in BC tissues compared with ANBTs. Furthermore, high SULT1A2 expression was significantly associated with the staging of BC. Analyses of TCGA datasets and BC tissue microarray indicated that high SULT1A2 expression was significantly associated with a favorable overall survival in patients with BC. In addition, GSEA revealed pathways, diseases and biological processes associated with SULT1A2. Taken together, the results of the present study suggest that SULT1A2 acts as an oncogene in BC, and thus may serve as a biomarker for tumor staging and prognosis in patients with BC.
Collapse
Affiliation(s)
- Yinghui Chao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qifeng Ou
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jin Shang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
10
|
Liu J, Li J, Wang K, Liu H, Sun J, Zhao X, Yu Y, Qiao Y, Wu Y, Zhang X, Zhang R, Yang A. Aberrantly high activation of a FoxM1-STMN1 axis contributes to progression and tumorigenesis in FoxM1-driven cancers. Signal Transduct Target Ther 2021; 6:42. [PMID: 33526768 PMCID: PMC7851151 DOI: 10.1038/s41392-020-00396-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/19/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Fork-head box protein M1 (FoxM1) is a transcriptional factor which plays critical roles in cancer development and progression. However, the general regulatory mechanism of FoxM1 is still limited. STMN1 is a microtubule-binding protein which can inhibit the assembly of microtubule dimer or promote depolymerization of microtubules. It was reported as a major responsive factor of paclitaxel resistance for clinical chemotherapy of tumor patients. But the function of abnormally high level of STMN1 and its regulation mechanism in cancer cells remain unclear. In this study, we used public database and tissue microarrays to analyze the expression pattern of FoxM1 and STMN1 and found a strong positive correlation between FoxM1 and STMN1 in multiple types of cancer. Lentivirus-mediated FoxM1/STMN1-knockdown cell lines were established to study the function of FoxM1/STMN1 by performing cell viability assay, plate clone formation assay, soft agar assay in vitro and xenograft mouse model in vivo. Our results showed that FoxM1 promotes cell proliferation by upregulating STMN1. Further ChIP assay showed that FoxM1 upregulates STMN1 in a transcriptional level. Prognostic analysis showed that a high level of FoxM1 and STMN1 is related to poor prognosis in solid tumors. Moreover, a high co-expression of FoxM1 and STMN1 has a more significant correlation with poor prognosis. Our findings suggest that a general FoxM1-STMN1 axis contributes to cell proliferation and tumorigenesis in hepatocellular carcinoma, gastric cancer and colorectal cancer. The combination of FoxM1 and STMN1 can be a more precise biomarker for prognostic prediction.
Collapse
Affiliation(s)
- Jun Liu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China.,State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Jipeng Li
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China. .,Department of Experimental Surgery, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China.
| | - Ke Wang
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Haiming Liu
- School of Software Engineering, Beijing Jiaotong University, 100044, Beijing, China
| | - Jianyong Sun
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, Shaanxi, China
| | - Xinhui Zhao
- Department of Thyroid and Breast Surgery, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, 710018, Xi'an, Shaanxi, China
| | - Yanping Yu
- The Second Ward of Gynecological Tumor, Shaanxi Provincial Cancer Hospital, 710061, Xi'an, Shaanxi, China
| | - Yihuan Qiao
- School of Clinical Medicine, Xi'an Medical University, 710021, Xi'an, Shaanxi, China
| | - Ye Wu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Xiaofang Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China. .,State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China.
| | - Angang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
11
|
Xu M, Shao X, Li H, Zhang Z, Zhou C, Cheng Z. Clinical value and potential association of Rab1A and FoxM1 aberrant expression in colorectal cancer. Sci Rep 2020; 10:20160. [PMID: 33214609 PMCID: PMC7678875 DOI: 10.1038/s41598-020-77182-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/05/2020] [Indexed: 11/21/2022] Open
Abstract
Colorectal carcinoma (CRC) is one of the most common malignancies with a dismal 5-year survival rate. Our recent study indicated that Rab1A expression was closely related to GLI1 expression. A previous study shows that aberrant overexpression of GLI1 promotes colorectal cancer metastasis via FoxM1 overexpression. However, the potential correlation between Rab1A and FoxM1 in CRC remains elusive. Immunohistochemistry was performed to investigate the association of the expression of Rab1A and FoxM1 and to determine the prognosis in 135 CRC tissue and adjacent normal tissues. Using Oncomine datasets, we found that Rab1A and FoxM1 mRNA were obviously upregulated in CRC tissues compared to normal tissues. Additionally, the expression of Rab1A and FoxM1 was significantly higher in CRC tissues than that in normal tissues. Rab1A expression was positively correlated with FoxM1 expression in CRC, especially in TNM stage III. In addition, Rab1A and FoxM1 overexpression was found to be significantly correlated with poor prognosis in CRC patients. Besides, both high expression of Rab1A and FoxM1 led to a worse prognosis than anyone low group, and both low expression of Rab1A and FoxM1 had a better prognosis than the anyone low group. Therefore, Rab1A and FoxM1 play crucial roles and could be used as clinical biomarkers in CRC.
Collapse
Affiliation(s)
- Menglin Xu
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Xinyu Shao
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, No.242 Guangji Road, Suzhou, 215006, Jiangsu Province, China
| | - Haoran Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, No. 2 Zheshan West Road, Jinghu District, Wuhu, 241000, Anhui Province, China
| | - Zhengrong Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, No. 2 Zheshan West Road, Jinghu District, Wuhu, 241000, Anhui Province, China
| | - Chunli Zhou
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, No.242 Guangji Road, Suzhou, 215006, Jiangsu Province, China.
| | - Zhengwu Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, No. 2 Zheshan West Road, Jinghu District, Wuhu, 241000, Anhui Province, China.
| |
Collapse
|
12
|
Nie S, Lou L, Wang J, Cui J, Wu W, Zhang Q, Liu Y, Su L, Chang Y, Guo W, Shen H, Xing L, Li Y. Expression, association with clinicopathological features and prognostic potential of CEP55, p-Akt, FoxM1 and MMP-2 in astrocytoma. Oncol Lett 2020; 20:1685-1694. [PMID: 32724411 PMCID: PMC7377175 DOI: 10.3892/ol.2020.11742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 04/27/2020] [Indexed: 11/19/2022] Open
Abstract
Centrosomal protein 55 (CEP55) is a member of the centrosomal-associated protein family and participates in the regulation of cytokinesis during cell mitosis. However, aberrant CEP55 protein expression has been observed in human tumors. In addition, CEP55 regulates the biological functions of tumors by inducing the Akt pathway and upregulating forkhead box protein M1 (FoxM1) and matrix metalloproteinase-2 (MMP-2). In the present study, the levels, clinicopathological features and prognostic potential of CEP55, phosphorylated Akt (p-Akt), FoxM1 and MMP-2 in astrocytoma were evaluated. CEP55, p-Akt, FoxM1 and MMP-2 levels were examined in 27 normal brain tissues and 262 astrocytoma tissues by using immunohistochemistry. Furthermore, Kaplan-Meier analysis and Cox proportional hazards models were applied to predict the prognosis of patients with astrocytoma. The results indicated that expression levels of CEP55 and other proteins were elevated in human astrocytoma compared with those in normal brain tissue. The levels of the selected proteins were increased as the tumor grade increased. Furthermore, CEP55 expression was positively correlated with p-Akt, FoxM1 and MMP-2 levels in astrocytoma. Overall survival analysis revealed that patient prognosis was associated with CEP55, p-Akt, FoxM1 and MMP-2 levels, as well as with the tumor grade and patient age. Furthermore, CEP55, FoxM1, tumor grade and patient age were independent prognostic factors in astrocytoma according to multivariate analysis. Taken together, the present results suggested that CEP55, p-Akt, FoxM1 and MMP-2 have crucial roles in the progression and prognosis of human astrocytoma and that CEP55 and FoxM1 may be potential therapeutic targets.
Collapse
Affiliation(s)
- Saisai Nie
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Lei Lou
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Juan Wang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jinfeng Cui
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Wenxin Wu
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Qing Zhang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Ying Liu
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Lingrui Su
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Ying Chang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Wenli Guo
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Haitao Shen
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Lingxiao Xing
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Yuehong Li
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
13
|
Advances in molecular mechanisms of drugs affecting abnormal glycosylation and metastasis of breast cancer. Pharmacol Res 2020; 155:104738. [PMID: 32151681 DOI: 10.1016/j.phrs.2020.104738] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/27/2022]
Abstract
Breast cancer remains the leading cause of cancer-related death among women worldwide, and its incidence is also increasing. High recurrence rate and metastasis rate are the key causes of poor prognosis and death. It is suggested that abnormal glycosylation plays an important role in the growth, invasion, metastasis and resistance to therapy of breast cancer cells. Meanwhile, it can be used as the biomarkers for the early detection and prognosis of breast cancer and the potential attractive targets for drug treatment. However, only a few attentions have been paid to the molecular mechanism of abnormal glycosylation in the epithelial-mesenchymal transition (EMT) of breast cancer cells and the related intervention of drugs. This manuscript thus investigated the relationship between abnormal glycosylation, the EMT, and breast cancer metastasis. Then, the process of abnormal glycosylation, the classification and their molecular regulatory mechanisms of breast cancer were analyzed in detail. Last, potential drugs are introduced in different categories, which are expected to reverse or intervene the abnormal glycosylation of breast cancer. This review is conducive to an in-depth understanding of the metastasis and drug resistance of breast cancer cells, which will provide new ideas for the clinical regulation of glycosylation and related drug treatments in breast cancer.
Collapse
|
14
|
Cheng L, Wang Q, Tao X, Qin Y, Wu Q, Zheng D, Chai D, Zhang Y, Lu D, Ci H, Wang Z, Ma J, Wang D, Cheng Z, Wu S, Tao Y. FOXM 1 induces Vasculogenic mimicry in esophageal cancer through β-catenin /Tcf4 signaling. Diagn Pathol 2020; 15:14. [PMID: 32035486 PMCID: PMC7007660 DOI: 10.1186/s13000-020-00929-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/04/2020] [Indexed: 12/31/2022] Open
Abstract
Objective To investigate the role of FOXM1, β-catenin and TCF4 in esophageal cancer (EC) and their relationship to VM (Vasculogenic Mimicry). Methods CCK-8 were performed to examine EC cell proliferation in FOXM1 silenced cells. EC cell migration and invasion were investigated through wound healing and Transwell assays, respectively. The formation of pipe like structures were assessed in 3D cultures. The expression of Foxm1, β-catenin, Tcf4 and E-cadherin were investigated through western blot, RT-qPCR and immunohistochemistry (IHC) staining. The relationship between FOXM1 expression, clinic-pathological features, and overall survival (OS) were further analyzed. Results A loss of FOXM1 expression correlated with the OS of ESCC patients. FOXM1 silencing led to a loss of cell growth and suppressed cell migration and invasion in ESCC cells. VM structures were identified in ESCC tissues and human EC cell lines. Mechanistically, FOXM1 was found to promote tumorigenesis through the regulation of β-catenin, Tcf4, and E-cadherin in EC cells, leading to the formation of VM structures. Conclusions These findings highlight FoxM1 as a novel therapeutic target in ESCC.
Collapse
Affiliation(s)
- Lili Cheng
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Qi Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Xiaoying Tao
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Yanzi Qin
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Qiong Wu
- Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Dafang Zheng
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Damin Chai
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Yong Zhang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Dongbing Lu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Hongfei Ci
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Zhiwei Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China
| | - Jia Ma
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China
| | - Danna Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Zenong Cheng
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Shiwu Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Yisheng Tao
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China. .,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China.
| |
Collapse
|
15
|
Yu Y, Lu W, Zhou X, Huang H, Shen S, Guo L. MicroRNA-132 suppresses migration and invasion of renal carcinoma cells. J Clin Lab Anal 2020; 34:e22969. [PMID: 31625200 PMCID: PMC6977305 DOI: 10.1002/jcla.22969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The aim of this study was to explain the effects of microRNA-132 in renal cell carcinoma by regulating FOXM1 expression. METHODS Thirty patients with renal cell carcinoma admitted to our hospital were enrolled, and their adjacent normal tissues and cancer tissues were taken. The expression of microRNA-132 was measured by in situ hybridization (ISH) and RT-PCR, and the expression of FOXM1 was evaluated by RT-PCR and immunohistochemistry (IHC), and the correlation between microRNA-132 and FOXM1 was analyzed. In the cell experiment, the KETR-3 cells were divided into three groups: Negative control (NC) group were treated with nothing; blank (BL) group were transfected with empty vector; and microRNA-132 (miRNA) group were transfected with microRNA-132. The cell invasion and migration abilities among groups were assessed by transwell and wound healing assays. The expression levels of related proteins (FOXM1, MMP-2, MMP-9, VEGF-alpha, and uPAR) were determined by Western blot. RESULTS Depending on clinical data, we found that FOXM1 protein expression of renal cell carcinoma tissues was higher than that in adjacent normal tissues. MiRNA-132 was negative correlation with FOXM1. In vitro, the number of invasive cells and wound healing rate in the microRNA group were significantly suppressed than those in the NC group (P < 0.05, respectively). In the Western blot assay, the results showed that the protein expression levels of FOXM1, MMP-2, MMP-9, VEGF-α, and uPAR were significantly inhibited in the miRNA group compared with the NC group (P < 0.05, respectively). CONCLUSION miRNA-132 had anti-tumor effects in renal cell carcinoma by suppressing FOXM1 expression.
Collapse
Affiliation(s)
- Yi Yu
- Department of UrologyThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxi ProvinceChina
| | - Wenbao Lu
- Department of UrologyThe Affiliated Hospital of Jiujiang University Clinical Medical CollegeJiujiangJiangxi ProvinceChina
| | - Xinmin Zhou
- Department of UrologyDuchang County Hospital of Traditional Chinese MedicineDuchangJiangxi ProvinceChina
| | - Hua Huang
- Department of UrologyThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxi ProvinceChina
| | - Shaochen Shen
- Department of UrologyThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxi ProvinceChina
| | - Lian Guo
- Department of AnesthesiaThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxi ProvinceChina
| |
Collapse
|
16
|
Haque M, Li J, Huang YH, Almowaled M, Barger CJ, Karpf AR, Wang P, Chen W, Turner SD, Lai R. NPM-ALK Is a Key Regulator of the Oncoprotein FOXM1 in ALK-Positive Anaplastic Large Cell Lymphoma. Cancers (Basel) 2019; 11:E1119. [PMID: 31390744 PMCID: PMC6721812 DOI: 10.3390/cancers11081119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Forkhead Box M1 (FOXM1) is an oncogenic transcription factor implicated in the pathogenesis of solid and hematologic cancers. In this study, we examined the significance of FOXM1 in NPM-ALK-positive anaplastic large cell lymphoma (NPM-ALK + ALCL), with a focus on how it interacts with NPM-ALK, which is a key oncogenic driver in these tumors. FOXM1 was expressed in NPM-ALK + ALCL cell lines (5/5), patient samples (21/21), and tumors arising in NPM-ALK transgenic mice (4/4). FOXM1 was localized in the nuclei and confirmed to be transcriptionally active. Inhibition of FOXM1 in two NPM-ALK + ALCL cells using shRNA and pharmalogic agent (thiostrepton) resulted in reductions in cell growth and soft-agar colony formation, which were associated with apoptosis and cell-cycle arrest. FOXM1 is functionally linked to NPM-ALK, as FOXM1 enhanced phosphorylation of the NPM-ALK/STAT3 axis. Conversely, DNA binding and transcriptional activity of FOXM1 was dependent on the expression of NPM-ALK. Further studies showed that this dependency hinges on the binding of FOXM1 to NPM1 that heterodimerizes with NPM-ALK, and the phosphorylation status of NPM-ALK. In conclusion, we identified FOXM1 as an important oncogenic protein in NPM-ALK+ ALCL. Our results exemplified that NPM-ALK exerts oncogenic effects in the nuclei and illustrated a novel role of NPM1 in NPM-ALK pathobiology.
Collapse
Affiliation(s)
- Moinul Haque
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Jing Li
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G2R3, Canada
- Electron Microscopy Center, Basic Medical Science College, Harbin Medical University, Harbin 150080, Heilongjiang, China
| | - Yung-Hsing Huang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Meaad Almowaled
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Carter J Barger
- Eppley Institute and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Adam R Karpf
- Eppley Institute and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Peng Wang
- Department of Hematology, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Will Chen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G2R3, Canada.
- Department of Oncology, University of Alberta, Edmonton, AB T6G2R3, Canada.
| |
Collapse
|
17
|
Tang C, Liu T, Wang K, Wang X, Xu S, He D, Zeng J. Transcriptional regulation of FoxM1 by HIF‑1α mediates hypoxia‑induced EMT in prostate cancer. Oncol Rep 2019; 42:1307-1318. [PMID: 31364741 PMCID: PMC6718104 DOI: 10.3892/or.2019.7248] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/26/2019] [Indexed: 01/06/2023] Open
Abstract
Hypoxia is a tumorigenesis-related microenvironment change which usually occurs in the earliest stage of prostate cancer (PCa) development. Accumulating evidence has demonstrated that hypoxia/hypoxia-inducing factor (HIF) is involved in the induction of epithelial-mesenchymal transition (EMT) and increased metastatic potential in PCa. However, the mechanism by which hypoxia/HIF regulates EMT remains unclear. In the present study, we demonstrated the molecular mechanisms of hypoxia-induced EMT in PCa, focusing on HIF-1α/Forkhead box M1 (FoxM1) signaling pathway. PCa PC3 and DU145 cell lines were used as the model system in vitro. Our data revealed that hypoxia induced EMT in PCa cells. Bioinformatics analysis identified the possible association between HIF-1α and FoxM1. Additionally, FoxM1 was significantly associated with PCa development and Gleason scores of PCa. Exposure to hypoxia resulted in the increased expression of HIF-1α and FoxM1. Genetic knockdown FoxM1 abolished hypoxia-induced EMT in PCa, while exogenous overexpression of FoxM1 facilitated hypoxia-induced EMT. Furthermore, the increase of FoxM1 during hypoxia was due to the transcriptional regulation on the FoxM1 promoter by HIF-1α. We also confirmed the binding site of HIF-1α on the FoxM1 promoter by different lengths promoter sequences. These findings provide new insights into how EMT is regulated in PCa under hypoxic stress. It is worthwhile to investigate in future that inhibition of FoxM1 as a potential target may be an effective therapeutic strategy against PCa.
Collapse
Affiliation(s)
- Cong Tang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Tianjie Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ke Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shan Xu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Zeng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
18
|
Yang K, Jiang B, Lu Y, Shu Q, Zhai P, Zhi Q, Li Q. FOXM1 promotes the growth and metastasis of colorectal cancer via activation of β-catenin signaling pathway. Cancer Manag Res 2019; 11:3779-3790. [PMID: 31118796 PMCID: PMC6501701 DOI: 10.2147/cmar.s185438] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose Our previous study proved that FOXM1 regulates colorectal cancer (CRC) cell metastasis through epithelial–mesenchymal transition program. The aim of this study is to further explore the underlying mechanism of FOXM1 in CRC. Materials and methods In this study, we detected the mRNA and protein expressions of FOXM1 and β-catenin in CRC tissues and their corresponding normal-appearing tissues (NATs) by quantitative reverse transcription-PCR and western blot analysis, respectively. Then the potential link between FOXM1 and β-catenin in CRC tissues was analyzed. Furthermore, we systematically analyzed the biological functions of FOXM1 in CRC cells after reconstitution of FOXM1 expression in vitro. Moreover, the mechanism of FOXM1-promoted CRC progression by improving β-catenin nuclear translocation was also discussed. Results Our data demonstrated that FOXM1 and β-catenin were upregulated in CRC tissues compared with the corresponding NATs (P<0.05). Clinicopathologic analysis revealed that increased FOXM1 (or β-catenin) expression positively correlated with some clinicopathologic features, such as tumor size, TNM stage, lymphatic metastasis, and distant metastasis (P<0.05). Meanwhile, the possible relationships between FOXM1 and β-catenin in CRC samples were evaluated using SPSS software, and a significant positive correlation was found (P<0.05). In vitro data demonstrate that elevated FOXM1 expression exerted oncogenic effects on CRC via activation of β-catenin signaling pathway. The inhibition of β-catenin by siRNAs significantly attenuates FOXM1-induced malignant activities. Conclusion The data suggested that FOXM1/β-catenin is critical for malignancy of CRC, which may constitute a potential therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Kankan Yang
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, China,
| | - Bing Jiang
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, China,
| | - Yecai Lu
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, China,
| | - Qingbing Shu
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, China,
| | - Pan Zhai
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, China,
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China,
| | - Qixin Li
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, China,
| |
Collapse
|
19
|
Luo YD, Ding X, Du HM, Wu YN, Li HQ, Wu HM, Zhang XM. FOXM1 is a novel predictor of recurrence in patients with oral squamous cell carcinoma associated with an increase in epithelial‑mesenchymal transition. Mol Med Rep 2019; 19:4101-4108. [PMID: 30942437 PMCID: PMC6471394 DOI: 10.3892/mmr.2019.10094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 01/22/2019] [Indexed: 12/25/2022] Open
Abstract
Although forkhead box protein M1 (FOXM1) is markedly upregulated in human premalignant and oral squamous cell carcinoma (OSCC) tissues and cultured cells, the association of FOXM1 expression with OSCC prognosis is not well understood. The present study investigated the possible association of FOXM1 expression in patients with OSCC with their clinicopathological characteristics and clinical outcomes. The expression of FOXM1 protein in OSCC tissues from 119 patients was evaluated by immunohistochemistry, and the results demonstrated that FOXM1 overexpression in patients with OSCC was associated with tumour recurrence and poor prognosis. To study the in vitro effects of FOXM1, its expression was decreased by small interfering RNA (siRNA) in OSCC cell lines, and FOXM1 knockdown decreased the proliferative, migratory and invasive capacities of cells. FOXM1 inhibition by siRNA gave rise to reduced expression of vimentin and increased expression of E‑cadherin. The present study reported FOXM1 as a novel predictor of tumour recurrence in patients with OSCC and its potential involvement in epithelial‑mesenchymal transition in OSCC cells.
Collapse
Affiliation(s)
- Ya-Dong Luo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xu Ding
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hong-Ming Du
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yu-Nong Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Huai-Qi Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - He-Ming Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiao-Min Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
20
|
Xiao Z, Jia Y, Jiang W, Wang Z, Zhang Z, Gao Y. FOXM1: A potential indicator to predict lymphatic metastatic recurrence in stage IIA esophageal squamous cell carcinoma. Thorac Cancer 2018; 9:997-1004. [PMID: 29877046 PMCID: PMC6068428 DOI: 10.1111/1759-7714.12776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/03/2018] [Accepted: 05/05/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Previous studies have elucidated that FOXM1 may predict poor prognosis in patients with multiple solid malignant tumors. In this study we explored the differential expression of FOXM1 in stage IIA esophageal squamous cell carcinoma (ESCC) and investigated its prognostic value. METHODS Immunohistochemistry (IHC) and Western blot were used to detect FOXM1 expression in ESCC. Correlations between FOXM1 expression and clinicopathological variables, and five-year lymphatic metastatic recurrence (LMR) and overall survival (OS) of patients were analyzed. RESULTS FOXM1 was aberrantly expressed in ESCC. Statistical analysis revealed a close relationship between FOXM1 expression and tumor size (P = 0.024), depth of invasion (P = 0.048), and degree of differentiation (P = 0.043). The five-year LMR of patients in the FOXM1 overexpression group was significantly increased compared to the low expression group (P = 0.001). The five-year OS of patients in the FOXM1 overexpression group was significantly reduced compared to the low expression group (P = 0.007). Log-rank tests demonstrated that large tumor size (P = 0.044), poor differentiation degree (P = 0.005), deep invasion (P = 0.000), and FOXM1 overexpression (P = 0.007) may indicate poor prognosis in stage IIA ESCC. Cox multivariate regression analysis revealed that all of these variables were independent predictors of unfavorable outcome (P < 0.05). CONCLUSION FOXM1 could be a predictor of lymphatic metastatic recurrence in stage IIA ESCC after Ivor Lewis esophagectomy.
Collapse
Affiliation(s)
- Zhaohua Xiao
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yang Jia
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Wenpeng Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zhou Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zhiping Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Yanyun Gao
- Department of Gynaecology and Obstetrics, Jining Traditional Chinese Medicine Hospital, Jining, China
| |
Collapse
|
21
|
Bell R, Barraclough R, Vasieva O. Gene Expression Meta-Analysis of Potential Metastatic Breast Cancer Markers. Curr Mol Med 2018; 17:200-210. [PMID: 28782484 PMCID: PMC5748874 DOI: 10.2174/1566524017666170807144946] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/20/2017] [Accepted: 07/30/2017] [Indexed: 12/15/2022]
Abstract
Background: Breast cancer metastasis is a highly prevalent cause of death for European females. DNA microarray analysis has established that primary tumors, which remain localized, differ in gene expression from those that metastasize. Cross-analysis of these studies allow to revile the differences that may be used as predictive in the disease prognosis and therapy. Objective: The aim of the project was to validate suggested prognostic and therapeutic markers using meta-analysis of data on gene expression in metastatic and primary breast cancer tumors. Method: Data on relative gene expression values from 12 studies on primary breast cancer and breast cancer metastasis were retrieved from Genevestigator (Nebion) database. The results of the data meta-analysis were compared with results of literature mining for suggested metastatic breast cancer markers and vectors and consistency of their reported differential expression. Results: Our analysis suggested that transcriptional expression of the COX2 gene is significantly downregulated in metastatic tissue compared to normal breast tissue, but is not downregulated in primary tumors compared with normal breast tissue and may be used as a differential marker in metastatic breast cancer diagnostics. RRM2 gene expression decreases in metastases when compared to primary breast cancer and could be suggested as a marker to trace breast cancer evolution. Our study also supports MMP1, VCAM1, FZD3, VEGFC, FOXM1 and MUC1 as breast cancer onset markers, as these genes demonstrate significant differential expression in breast neoplasms compared with normal breast tissue. Conclusion: COX2 and RRM2 are suggested to be prominent markers for breast cancer metastasis. The crosstalk between upstream regulators of genes differentially expressed in primary breast tumors and metastasis also suggests pathways involving p53, ER1, ERB-B2, TNF and WNT, as the most promising regulators that may be considered for new complex drug therapeutic interventions in breast cancer metastatic progression.
Collapse
Affiliation(s)
- R Bell
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB. United Kingdom
| | - R Barraclough
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB. United Kingdom
| | - O Vasieva
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB. United Kingdom
| |
Collapse
|
22
|
Suh J, Kim DH, Surh YJ. Resveratrol suppresses migration, invasion and stemness of human breast cancer cells by interfering with tumor-stromal cross-talk. Arch Biochem Biophys 2018; 643:62-71. [DOI: 10.1016/j.abb.2018.02.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/30/2018] [Accepted: 02/17/2018] [Indexed: 01/04/2023]
|
23
|
Nicolau-Neto P, Da Costa NM, de Souza Santos PT, Gonzaga IM, Ferreira MA, Guaraldi S, Moreira MA, Seuánez HN, Brewer L, Bergmann A, Boroni M, Mencalha AL, Kruel CDP, Lima SCS, Esposito D, Simão TA, Pinto LFR. Esophageal squamous cell carcinoma transcriptome reveals the effect of FOXM1 on patient outcome through novel PIK3R3 mediated activation of PI3K signaling pathway. Oncotarget 2018; 9:16634-16647. [PMID: 29682174 PMCID: PMC5908275 DOI: 10.18632/oncotarget.24621] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/22/2018] [Indexed: 12/31/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) presents poor prognosis, and patients diagnosed with this tumor currently lack target treatments. Therefore, in order to identify potential targets for ESCC treatment, we carried out a transcriptome analysis with ESCC and paired nonmalignant surrounding mucosa samples, followed by a master regulator analysis, and further explored the role of the identified central regulatory genes through in vivo and in vitro assays. Among the transcription factors deregulated/enriched in ESCC, we focused on FOXM1 because of its involvement in the regulation of critical biological processes. A new transcriptome analysis performed with ESCC cell lineage TE-1 showed that the modulation of FOXM1 expression resulted in PIK3R3 expression changes, whereas chromatin immunoprecipitation assay revealed that FOXM1 was capable of binding onto PIK3R3 promoter, thus demonstrating that PIK3R3 is a new FOXM1 target. Furthermore, FOXM1 overexpression resulted in the activation of PIK3/AKT signaling pathway through PIK3R3-mediated AKT phosphorylation. Finally, the analysis of the clinic-pathological data of ESCC patients revealed that overexpression of both FOXM1 and PIK3R3 was associated with poor prognosis, but only the latter was an independent prognosis factor for ESCC patients. In conclusion, our results show that FOXM1 seems to play a central role in ESCC carcinogenesis by upregulating many oncogenes found overexpressed in this tumor. Furthermore, PIK3R3 is a novel FOXM1 target that triggers the activation of the PI3K/AKT pathway in ESCC cells.
Collapse
Affiliation(s)
- Pedro Nicolau-Neto
- Molecular Carcinogenesis Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, 20231-050 RJ, Brasil
| | - Nathalia Meireles Da Costa
- Molecular Carcinogenesis Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, 20231-050 RJ, Brasil
| | | | - Isabela Martins Gonzaga
- Molecular Carcinogenesis Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, 20231-050 RJ, Brasil
| | - Maria Aparecida Ferreira
- Endoscopy Section, Instituto Nacional de Câncer (INCA), Praça Cruz Vermelha, 20230-130 RJ, Brasil
| | - Simone Guaraldi
- Endoscopy Section, Instituto Nacional de Câncer (INCA), Praça Cruz Vermelha, 20230-130 RJ, Brasil
| | - Miguel Angelo Moreira
- Genetic Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, 20231-050 RJ, Brasil
| | - Hector N Seuánez
- Genetic Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, 20231-050 RJ, Brasil
| | - Lilian Brewer
- Biochemistry Department, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 20551-030 RJ, Brasil
| | - Anke Bergmann
- Molecular Carcinogenesis Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, 20231-050 RJ, Brasil
| | - Mariana Boroni
- Genetic Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, 20231-050 RJ, Brasil
| | - Andre Luiz Mencalha
- Biophysics and Biometry Department, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 20551-030 RJ, Brasil
| | - Cleber Dario Pinto Kruel
- Surgery Department, Faculty of Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003 RS, Brasil
| | - Sheila Coelho Soares Lima
- Molecular Carcinogenesis Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, 20231-050 RJ, Brasil
| | - Dominic Esposito
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, 21701 MD, USA
| | - Tatiana Almeida Simão
- Biochemistry Department, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 20551-030 RJ, Brasil
| | - Luis Felipe Ribeiro Pinto
- Molecular Carcinogenesis Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, 20231-050 RJ, Brasil.,Biochemistry Department, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 20551-030 RJ, Brasil
| |
Collapse
|
24
|
Rodgers LH, Ó hAinmhire E, Young AN, Burdette JE. Loss of PAX8 in high-grade serous ovarian cancer reduces cell survival despite unique modes of action in the fallopian tube and ovarian surface epithelium. Oncotarget 2017; 7:32785-95. [PMID: 27129161 PMCID: PMC5078051 DOI: 10.18632/oncotarget.9051] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/02/2016] [Indexed: 12/28/2022] Open
Abstract
High-grade serous carcinoma (HGSC) is the most common and lethal form of ovarian cancer. PAX8 is a transcription factor expressed in fallopian tube epithelial cells and in 80–96% of HGSC tumors. The ovarian surface epithelium (OSE) only acquires PAX8 expression after malignant transformation. In this study, forced PAX8 expression in OSE cells increased proliferation and migration through upregulation of EMT factors such as N-cadherin and Fibronectin. OSE cells expressing PAX8 also had an increase in the FOXM1 pathway, but PAX8 alone was not sufficient to drive tumorigenesis. PAX8 knockdown in the oviductal epithelium cells did not decrease expression of the FOXM1 pathway and induced only a slight decrease in cell proliferation. No changes in migration, cell cycle, or apoptosis were detected after PAX8 knockdown in oviductal cells. Finally, PAX8 knockdown in HGSC cell lines resulted in increased apoptosis and decreased FOXM1 levels. The results presented here suggest that PAX8 has a cell specific role in governing proliferation and migration in nontransformed ovarian surface epithelium cells compared to the oviductal cells, but its reduction in serous cancer cell lines provides a common mechanism for reducing cell survival.
Collapse
Affiliation(s)
- Laura H Rodgers
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Eoghainín Ó hAinmhire
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Alexandria N Young
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Joanna E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
25
|
Inoue H, Kato T, Olugbile S, Tamura K, Chung S, Miyamoto T, Matsuo Y, Salgia R, Nakamura Y, Park JH. Effective growth-suppressive activity of maternal embryonic leucine-zipper kinase (MELK) inhibitor against small cell lung cancer. Oncotarget 2017; 7:13621-33. [PMID: 26871945 PMCID: PMC4924666 DOI: 10.18632/oncotarget.7297] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/29/2016] [Indexed: 12/20/2022] Open
Abstract
Maternal embryonic leucine zipper kinase (MELK), that plays a critical role in maintenance of cancer stem cells (CSCs), is predominantly expressed in various types of human cancer including small cell lung cancer (SCLC). SCLC usually acquires resistance to anti-cancer drugs and portends dismal prognosis. We have delineated roles of MELK in development/progression of SCLC and examined anti-tumor efficacy of OTS167, a highly potent MELK inhibitor, against SCLC. MELK expression was highly upregulated in both SCLC cell lines and primary tumors. siRNA-mediated MELK knockdown induced significant growth inhibition in SCLC cell lines. Concordantly, treatment with OTS167 exhibited strong cytotoxicity against eleven SCLC cell lines with IC50 of < 10 nM. As similar to siRNA knockdown, OTS167 treatment induced cytokinetic defects with intercellular bridges, and in some cell lines we observed formation of neuronal protrusions accompanied with increase of a neuronal differentiation marker (CD56), indicating that the compound induced differentiation of cancer cells to neuron-like cells. Furthermore, the MELK inhibition decreased its downstream FOXM1 activity and Akt expression in SCLC cells, and led to apoptotic cell death. OTS167 appeared to be more effective to CSCs as measured by the sphere formation assay, thus MELK inhibition might become a promising treatment modality for SCLC.
Collapse
Affiliation(s)
- Hiroyuki Inoue
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Taigo Kato
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Sope Olugbile
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Kenji Tamura
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Suyoun Chung
- OncoTherapy Science, Inc., Kawasaki, 213-0012, Japan
| | | | - Yo Matsuo
- OncoTherapy Science, Inc., Kawasaki, 213-0012, Japan
| | - Ravi Salgia
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Yusuke Nakamura
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jae-Hyun Park
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
26
|
Ma J, Qi G, Xu J, Ni H, Xu W, Ru G, Zhao Z, Xu W, He X. Overexpression of forkhead box M1 and urokinase-type plasminogen activator in gastric cancer is associated with cancer progression and poor prognosis. Oncol Lett 2017; 14:7288-7296. [PMID: 29344165 PMCID: PMC5754915 DOI: 10.3892/ol.2017.7136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 07/03/2017] [Indexed: 01/26/2023] Open
Abstract
Forkhead box M1 (FOXM1) and urokinase-type plasminogen activator (uPA) are overexpressed and associated with the pathogenesis of multiple types of human malignancy. The aims of the present study were to investigate FOXM1 and uPA expression levels in human gastric cancer using tissue microarray techniques; determining their association with clinicopathological characteristics as well as their prognostic value. Tissue microarray blocks, comprising 436 gastric cancer cases and 92 non-cancerous adjacent normal gastric tissues, were analyzed for FOXM1 and uPA protein expression levels using immunohistochemistry. The results were analyzed statistically in association with various clinicopathological characteristics and overall survival rates. FOXM1 and uPA were detected in 78.67 (343/436) and 83.26% (363/436) of cancer samples, respectively. FOXM1 and uPA were not expressed in the 92 normal gastric tissue samples. In gastric cancer, FOXM1 and uPA levels were associated with tumor size, depth of invasion, tumor-node-metastasis (TNM) stage, lymph node metastasis, vessel invasion and distant metastases. The overall survival rate was significantly decreased in patients expressing FOXM1 and uPA compared with FOXM1- and uPA-negative patients. Coxs multivariate analysis revealed that age, depth of invasion and expression levels of FOXM1 and uPA are independent predictors of survival in patients with gastric cancer. These results indicated that increased FOXM1 and uPA expression levels are associated with the invasive and metastatic processes in human gastric cancer, and inversely associated with patient prognosis. Therefore, FOXM1 and uPA may serve as novel prognostic markers independent of, but supplementing, the TNM staging system.
Collapse
Affiliation(s)
- Jie Ma
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Guangwei Qi
- Department of Pathology, Hangzhou Children's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Ji Xu
- Department of Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Haibing Ni
- Department of Surgery, Tongde Hospital of Zhejiang, Hangzhou, Zhejiang 310012, P.R. China
| | - Wulin Xu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Guoqing Ru
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Zhongsheng Zhao
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Wenjuan Xu
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xujun He
- Key Laboratory of Gastroenterology of Zhejiang, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
27
|
Hamurcu Z, Ashour A, Kahraman N, Ozpolat B. FOXM1 regulates expression of eukaryotic elongation factor 2 kinase and promotes proliferation, invasion and tumorgenesis of human triple negative breast cancer cells. Oncotarget 2017; 7:16619-35. [PMID: 26918606 PMCID: PMC4941339 DOI: 10.18632/oncotarget.7672] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/06/2016] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K), an emerging molecular target for cancer therapy, contributes to cancer proliferation, cell survival, tumorigenesis, and invasion, disease progression and drug resistance. Although eEF2K is highly up-regulated in various cancers, the mechanism of gene regulation has not been elucidated. In this study, we examined the role of Forkhead Box M1 (FOXM1) proto-oncogenic transcription factor in triple negative breast cancer (TNBC) cells and the regulation of eEF2K. We found that FOXM1 is highly upregulated in TNBC and its knockdown by RNA interference (siRNA) significantly inhibited eEF2K expression and suppressed cell proliferation, colony formation, migration, invasion and induced apoptotic cell death, recapitulating the effects of eEF2K inhibition. Knockdown of FOXM1 inhibited regulators of cell cycle, migration/invasion and survival, including cyclin D1, Src and MAPK-ERK signaling pathways, respectively. We also demonstrated that FOXM1 (1B and 1C isoforms) directly binds to and transcriptionally regulates eEF2K gene expression by chromatin immunoprecipitation (ChIP) and luciferase gene reporter assays. Furthermore, in vivo inhibition of FOXM1 by liposomal siRNA-nanoparticles suppressed growth of MDA-MB-231 TNBC tumor xenografts in orthotopic models. In conclusion, our study provides the first evidence about the transcriptional regulation of eEF2K in TNBC and the role of FOXM1 in mediating breast cancer cell proliferation, survival, migration/invasion, progression and tumorgenesis and highlighting the potential of FOXM1/eEF2K axis as a molecular target in breast and other cancers.
Collapse
Affiliation(s)
- Zuhal Hamurcu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Faculty of Medicine, Department of Medical Biology, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Ahmed Ashour
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nermin Kahraman
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
28
|
Taromi S, Lewens F, Arsenic R, Sedding D, Sänger J, Kunze A, Möbs M, Benecke J, Freitag H, Christen F, Kaemmerer D, Lupp A, Heilmann M, Lammert H, Schneider CP, Richter K, Hummel M, Siegmund B, Burger M, Briest F, Grabowski P. Proteasome inhibitor bortezomib enhances the effect of standard chemotherapy in small cell lung cancer. Oncotarget 2017; 8:97061-97078. [PMID: 29228593 PMCID: PMC5722545 DOI: 10.18632/oncotarget.21221] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 08/04/2017] [Indexed: 12/26/2022] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive cancer showing a very poor prognosis because of metastasis formation at an early stage and acquisition of chemoresistance. One key driver of chemoresistance is the transcription factor Forkhead box protein M1 (FOXM1) that regulates cell cycle proliferation, maintenance of genomic stability, DNA damage response, and cell differentiation in numerous tumor entities. In this study we investigated the role of FOXM1 in SCLC progression and analyzed the effect of FOXM1 inhibition using two proteasome inhibitors, bortezomib and siomycin A. FOXM1 was strongly expressed in patient-derived SCLC samples (n=123) and its nuclear localization was associated with the proliferation marker Ki-67. Both proteasome inhibitors successfully inhibited FOXM1 expression leading to a significantly reduced proliferation and a decreased mitotic rate along with cell cycle arrest and apoptosis induction. These effects were further enhanced by addition of bortezomib to standard chemotherapy. Treatment of mice bearing chemoresistant SCLC xenografts with bortezomib reduced the mean bioluminescence signal of tumors by 54%. Similarly, treatment with cisplatin as a standard chemotherapy reduced the mean bioluminescence signal of tumors by 58%. However, in combination with standard chemotherapy bortezomib further reduced the mean bioluminescence signal by 93% (p=0.0258). In conclusion, we demonstrate the effect of bortezomib in inhibiting FOXM1 expression and thus in sensitizing resistant SCLC cells to standard chemotherapy. Thus, addition of bortezomib to standard chemotherapy might potently improve SCLC therapy, particularly in an extensive cancer stage.
Collapse
Affiliation(s)
- Sanaz Taromi
- Department of Medicine, Division of Hematology and Oncology, University Medical Center, Freiburg, Germany
| | - Florentine Lewens
- Department of Gastroenterology, Infectious Diseases, Rheumatology CC13, Charité-Universitätsmedizin, Berlin, Germany
| | - Ruza Arsenic
- Institute of Pathology, Charité-Universitätsmedizin, Berlin, Germany
| | - Dagmar Sedding
- Department of Gastroenterology, Infectious Diseases, Rheumatology CC13, Charité-Universitätsmedizin, Berlin, Germany
| | | | | | - Markus Möbs
- Institute of Pathology, Charité-Universitätsmedizin, Berlin, Germany
| | - Joana Benecke
- Department of Gastroenterology, Infectious Diseases, Rheumatology CC13, Charité-Universitätsmedizin, Berlin, Germany
| | - Helma Freitag
- Department of Gastroenterology, Infectious Diseases, Rheumatology CC13, Charité-Universitätsmedizin, Berlin, Germany.,Department of Medical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Friederike Christen
- Department of Gastroenterology, Infectious Diseases, Rheumatology CC13, Charité-Universitätsmedizin, Berlin, Germany.,Institute of Biology, Humboldt-Universität, Berlin, Germany
| | - Daniel Kaemmerer
- Department of General and Visceral Surgery, Zentralklinik Bad Berka GmbH, Bad Berka, Germany
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Mareike Heilmann
- Department for Oncology, Zentralklinik Bad Berka GmbH, Bad Berka, Germany
| | - Hedwig Lammert
- Institute of Pathology, Charité-Universitätsmedizin, Berlin, Germany
| | | | - Karen Richter
- Department for Oncology, Zentralklinik Bad Berka GmbH, Bad Berka, Germany
| | - Michael Hummel
- Institute of Pathology, Charité-Universitätsmedizin, Berlin, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases, Rheumatology CC13, Charité-Universitätsmedizin, Berlin, Germany
| | - Meike Burger
- Department of Medicine, Division of Hematology and Oncology, University Medical Center, Freiburg, Germany
| | - Franziska Briest
- Department of Gastroenterology, Infectious Diseases, Rheumatology CC13, Charité-Universitätsmedizin, Berlin, Germany.,Department of Chemistry and Biochemistry, Freie Universität (FU), Berlin, Germany.,Department of Gastroenterology and Endocrinology, Zentralklinik Bad Berka GmbH, Bad Berka, Germany
| | - Patricia Grabowski
- Department of Gastroenterology, Infectious Diseases, Rheumatology CC13, Charité-Universitätsmedizin, Berlin, Germany.,Department of Gastroenterology and Endocrinology, Zentralklinik Bad Berka GmbH, Bad Berka, Germany.,Department of Medical Immunology, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
29
|
Shi H, Zhang L, Qu Y, Hou L, Wang L, Zheng M. Prognostic genes of breast cancer revealed by gene co-expression network analysis. Oncol Lett 2017; 14:4535-4542. [PMID: 29085450 PMCID: PMC5649579 DOI: 10.3892/ol.2017.6779] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/26/2017] [Indexed: 01/24/2023] Open
Abstract
The aim of the present study was to identify genes that may serve as markers for breast cancer prognosis by constructing a gene co-expression network and mining modules associated with survival. Two gene expression datasets of breast cancer were downloaded from ArrayExpress and genes from these datasets with a coefficient of variation >0.5 were selected and underwent functional enrichment analysis with the Database for Annotation, Visualization and Integration Discovery. Gene co-expression networks were constructed with the WGCNA package in R. Modules were identified from the network via cluster analysis. Cox regression was conducted to analyze survival rates. A total of 2,669 genes were selected, and functional enrichment analysis of them revealed that they were mainly associated with the immune response, cell proliferation, cell differentiation and cell adhesion. Seven modules were identified from the gene co-expression network, one of which was found to be significantly associated with patient survival time. Expression status of 144 genes from this module was used to cluster patient samples into two groups, with a significant difference in survival time revealed between these groups. These genes were involved in the cell cycle and tumor protein p53 signaling pathway. The top 10 hub genes were identified in the module. The findings of the present study could advance the understanding of the molecular pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Huijie Shi
- Prenatal Diagnosis Center, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lei Zhang
- Department of Pathology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yanjun Qu
- Prenatal Diagnosis Center, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lifang Hou
- Prenatal Diagnosis Center, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ling Wang
- Prenatal Diagnosis Center, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Min Zheng
- Prenatal Diagnosis Center, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
30
|
Chen Y, Liu Y, Ni H, Ding C, Zhang X, Zhang Z. FoxM1 overexpression promotes cell proliferation and migration and inhibits apoptosis in hypopharyngeal squamous cell carcinoma resulting in poor clinical prognosis. Int J Oncol 2017; 51:1045-1054. [PMID: 28848994 PMCID: PMC5592873 DOI: 10.3892/ijo.2017.4094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/21/2017] [Indexed: 01/08/2023] Open
Abstract
Forkhead box M1 (FoxM1), a member of the Fox family of transcriptional factors, is involved in the development of various human malignancies. However, the expression level of FoxM1 and its functional role in hypopharyngeal squamous cell carcinoma (HSCC) remained unclear to date. The aim of the present study was to investigate the FoxM1 expression in 63 HSCC and 20 adjacent normal tissues, as well as to evaluate its association with the clinicopathological parameters and its diagnostic value in HSCC. To further explore the biological function of FoxM1 in vitro, siRNAs were used to knockdown the expression of FoxM1 in the HSCC cell line Fadu. The results revealed that FoxM1 protein was highly expressed in HSCC tissues and that its high expression was closely associated with HSCC tumor differentiation (P=0.004), tumor size (P=0.002), clinical stage (P=0.001), lymph node metastasis (P=0.002), treatment (P=0.045) and expression of the proliferation marker Ki-67 (P<0.001). Additionally, the elevated expression of FoxM1 in HSCC patients consistently predicted a poor survival time. Knockdown of FoxM1 expression blocked Fadu cell proliferation and promoted apoptosis, and also led to the down-regulation of cyclin A1 expression. Furthermore, decreased expression of FoxM1 markedly impeded cell migration and reversed the epithelial-mesenchymal transition phenotype, as indicated by decreased expression of vimentin and increased expression of E-cadherin in Fadu cells. These results indicate that FoxM1 may act as an oncogene and serve as a therapeutic target against malignant progression in HSCC.
Collapse
Affiliation(s)
- Yan Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Haosheng Ni
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Chuanjin Ding
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaobo Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhenxin Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
31
|
Oxidative Stress Gene Expression Profile Correlates with Cancer Patient Poor Prognosis: Identification of Crucial Pathways Might Select Novel Therapeutic Approaches. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2597581. [PMID: 28770020 PMCID: PMC5523271 DOI: 10.1155/2017/2597581] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/30/2017] [Indexed: 12/17/2022]
Abstract
The role of altered redox status and high reactive oxygen species (ROS) is still controversial in cancer development and progression. Intracellular levels of ROS are elevated in cancer cells suggesting a role in cancer initiation and progression; on the contrary, ROS elevated levels may induce programmed cell death and have been associated with cancer suppression. Thus, it is crucial to consider the double-face of ROS, for novel therapeutic strategies targeting redox regulatory mechanisms. In this review, in order to derive cancer-type specific oxidative stress genes' profile and their potential prognostic role, we integrated a publicly available oxidative stress gene signature with patient survival data from the Cancer Genome Atlas database. Overall, we found several genes statistically significant associated with poor prognosis in the examined six tumor types. Among them, FoxM1 and thioredoxin reductase1 expression showed the same pattern in four out of six cancers, suggesting their specific critical role in cancer-related oxidative stress adaptation. Our analysis also unveiled an enriched cellular network, highlighting specific pathways, in which many genes are strictly correlated. Finally, we discussed novel findings on the correlation between oxidative stress and cancer stem cells in order to define those pathways to be prioritized in drug development.
Collapse
|
32
|
Huang R, Zong X. Aberrant cancer metabolism in epithelial–mesenchymal transition and cancer metastasis: Mechanisms in cancer progression. Crit Rev Oncol Hematol 2017; 115:13-22. [DOI: 10.1016/j.critrevonc.2017.04.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 01/27/2023] Open
|
33
|
Hamurcu Z, Kahraman N, Ashour A, Ozpolat B. FOXM1 transcriptionally regulates expression of integrin β1 in triple-negative breast cancer. Breast Cancer Res Treat 2017; 163:485-493. [PMID: 28361350 DOI: 10.1007/s10549-017-4207-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/15/2017] [Indexed: 01/10/2023]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer and associated with early metastasis, drug resistance, and poor patient survival. Fork head box M1 (FOXM1) is considered as an emerging molecular target due to its oncogenic role and high overexpression profile in 85% in TNBC. However, molecular mechanisms by which FOXM1 transcription factor mediate its oncogenic effects are not fully understood. Integrin β1 is often upregulated in invasive breast cancers and associated with poor clinical outcome and shorter overall patient survival in TNBC. However, the mechanisms regulating integrin β1 (ITGB1) gene expression have not been well elucidated. METHODS Normal breast epithelium (MCF10A) and TNBC cells (i.e., MDA-MB-231, BT-20 MDA-MB436) were used for the study. Small interfering RNA (siRNA)-based knockdown was used to inhibit Integrin β1 gene (mRNA) and protein expressions, which are detected by RT-PCR and Western blot, respectively. Chromatin immunoprecipitation (ChiP) and gene reporter (Luciferase) assays were used to demonstrate that FOXM1 transcription factor binds to the promoter of Integrin β1 gene and drives its expression. RESULTS We demonstrated that FOXM1 directly binds to the promoter of integrin β1 gene and transcriptionally regulates its expression and activity of focal adhesion kinase (FAK) in TNBC cells. CONCLUSION Our study suggests that FOXM1 transcription factor regulates Integrin β1 gene expression and that FOXM1/ Integrin-β1/FAK axis may play an important role in the progression of TNBC.
Collapse
Affiliation(s)
- Zuhal Hamurcu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA.,Faculty of Medicine, Department of Medical Biology, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Nermin Kahraman
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA
| | - Ahmed Ashour
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA. .,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
34
|
Wang J, Xu Y, Li L, Wang L, Yao R, Sun Q, Du G. FOXC1 is associated with estrogen receptor alpha and affects sensitivity of tamoxifen treatment in breast cancer. Cancer Med 2016; 6:275-287. [PMID: 28028927 PMCID: PMC5269562 DOI: 10.1002/cam4.990] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/03/2016] [Accepted: 10/24/2016] [Indexed: 12/20/2022] Open
Abstract
FOXC1 is a member of Forkhead box transcription factors that participates in embryonic development and tumorigenesis. Our previous study demonstrated that FOXC1 was highly expressed in triple‐negative breast cancer. However, it remains unclear what is the relation between FOXC1 and ERα and if FOXC1 regulates expression of ERα. To explore relation between FOXC1 and ERα and discover regulation of ERα expression by FOXC1 in breast cancer, we analyzed data assembled in the Oncomine and TCGA, and found that there was significantly higher FOXC1 expression in estrogen receptor‐negative breast cancer than that in estrogen receptor‐positive breast cancer. Overexpression of FOXC1 reduced expression of ERα and cellular responses to estradiol (E2) and tamoxifen in the MCF‐7 FOXC1 and T47D FOXC1 cells, while knockdown of FOXC1 induced expression of ERα and improved responses to estradiol (E2) and tamoxifen in BT549 FOXC1 shRNA and HCC1806 FOXC1 shRNA cells. In addition, overexpression of FOXC1 reduced expression of progesterone receptor (PR), Insulin receptor substrate 1 (IRS1), and XBP1 (X‐Box Binding Protein 1) and significantly reduced luciferase activity caused by E2 using ERE luciferase reporter assay. These results suggested that FOXC1 regulated expression of ERα and affected sensitivity of tamoxifen treatment in breast cancer, and that FOXC1 may be used as a potential therapeutic target in ERα‐negative breast cancer.
Collapse
Affiliation(s)
- Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.,Department of Molecular Oncology, John Wayne Cancer Institute (JWCI) at Providence Saint John's Health Center, Santa Monica, California, 90404
| | - Yali Xu
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100032, China
| | - Li Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Lin Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Ru Yao
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100032, China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100032, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
35
|
Chromatin associated SETD3 negatively regulates VEGF expression. Sci Rep 2016; 6:37115. [PMID: 27845446 PMCID: PMC5109252 DOI: 10.1038/srep37115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/25/2016] [Indexed: 12/27/2022] Open
Abstract
SETD3 is a member of the protein lysine methyltransferase (PKMT) family, which catalyzes the addition of methyl group to lysine residues. Accumulating data suggest that PKMTs are involved in the regulation of a broad spectrum of biological processes by targeting histone and non-histone proteins. Using a proteomic approach, we have identified 172 new SETD3 interacting proteins. We show that SETD3 binds and methylates the transcription factor FoxM1, which has been previously shown to be associated with the regulation of VEGF expression. We further demonstrate that under hypoxic conditions SETD3 is down-regulated. Mechanistically, we find that under basal conditions, SETD3 and FoxM1 are enriched on the VEGF promoter. Dissociation of both SETD3 and FoxM1 from the VEGF promoter under hypoxia correlates with elevated expression of VEGF. Taken together, our data reveal a new SETD3-dependent methylation-based signaling pathway at chromatin that regulates VEGF expression under normoxic and hypoxic conditions.
Collapse
|
36
|
Tan X, Fu Y, Chen L, Lee W, Lai Y, Rezaei K, Tabbara S, Latham P, Teal CB, Man YG, Siegel RS, Brem RF, Fu SW. miR-671-5p inhibits epithelial-to-mesenchymal transition by downregulating FOXM1 expression in breast cancer. Oncotarget 2016; 7:293-307. [PMID: 26588055 PMCID: PMC4807999 DOI: 10.18632/oncotarget.6344] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/11/2015] [Indexed: 12/24/2022] Open
Abstract
MicroRNA (miRNA) dysfunction is associated with a variety of human diseases, including cancer. Our previous study showed that miR-671-5p was deregulated throughout breast cancer progression. Here, we report for the first time that miR-671-5p is a tumor-suppressor miRNA in breast tumorigenesis. We found that expression of miR-671-5p was decreased significantly in invasive ductal carcinoma (IDC) compared to normal in microdissected formalin-fixed, paraffin-embedded (FFPE) tissues. Forkhead Box M1 (FOXM1), an oncogenic transcription factor, was predicted as one of the direct targets of miR-671-5p, which was subsequently confirmed by luciferase assays. Forced expression of miR-671-5p in breast cancer cell lines downregulated FOXM1 expression, and attenuated the proliferation and invasion in breast cancer cell lines. Notably, overexpression of miR-671-5p resulted in a shift from epithelial-to-mesenchymal transition (EMT) to mesenchymal-to-epithelial transition (MET) phenotypes in MDA-MB-231 breast cancer cells and induced S-phase arrest. Moreover, miR-671-5p sensitized breast cancer cells to cisplatin, 5-fluorouracil (5-FU) and epirubicin exposure. Host cell reactivation (HCR) assays showed that miR-671-5p reduces DNA repair capability in post-drug exposed breast cancer cells. cDNA microarray data revealed that differentially expressed genes when miR-671-5p was transfected are associated with cell proliferation, invasion, cell cycle, and EMT. These data indicate that miR-671-5p functions as a tumor suppressor miRNA in breast cancer by directly targeting FOXM1. Hence, miR-671-5p may serve as a novel therapeutic target for breast cancer management.
Collapse
Affiliation(s)
- Xiaohui Tan
- Department of Medicine (Division of Genomic Medicine), The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Yebo Fu
- Department of Medicine (Division of Genomic Medicine), The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Liang Chen
- Department of Medicine (Division of Genomic Medicine), The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Woojin Lee
- Department of Medicine (Division of Genomic Medicine), The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Yinglei Lai
- Department of Statistics, The George Washington University, Washington, DC, USA
| | - Katayoon Rezaei
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Sana Tabbara
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Patricia Latham
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Christine B Teal
- Department of Surgery, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Yan-Gao Man
- Research Lab and International Collaboration, Bon Secours Cancer Institute, Bon Secours Health System, Richmond, VA, USA
| | - Robert S Siegel
- Department of Medicine (Division of Hematology/Oncology), The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Rachel F Brem
- Department of Radiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Sidney W Fu
- Department of Medicine (Division of Genomic Medicine), The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
37
|
Wang K, Zhu X, Zhang K, Zhu L, Zhou F. FoxM1 inhibition enhances chemosensitivity of docetaxel-resistant A549 cells to docetaxel via activation of JNK/mitochondrial pathway. Acta Biochim Biophys Sin (Shanghai) 2016; 48:804-9. [PMID: 27521795 DOI: 10.1093/abbs/gmw072] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/14/2016] [Indexed: 12/22/2022] Open
Abstract
Docetaxel is recommended as a second-line chemotherapy agent for the non-small-cell lung cancer (NSCLC); however, drug resistance greatly limits its efficiency. Forkhead box M1 (FoxM1), an oncogenic transcription factor, is believed to be involved in the chemoresistance of various human cancers; whereas the association of FoxM1 with acquired docetaxel-resistance in NSCLC remains unclear. In the present study, we investigated the involvement of FoxM1 in the docetaxel-resistant human lung adenocarcinoma A549 cells (A549/DTX). Our results showed that FoxM1 expression was significantly increased in the A549/DTX cells compared with that in the parental A549 cells. FoxM1 siRNA silencing promoted the cytotoxic and pro-apoptotic effect of docetaxel in A549/DTX cells, which was possibly mediated through inducing the activation of c-Jun N-terminal kinases/mitochondrial signaling pathway. Our results suggest a critical role of FoxM1 in docetaxel-resistance of the A549 cells and form the basis for the development of combined therapy of docetaxel and FoxM1 depletion in treating NSCLC.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Kai Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ling Zhu
- Save Sight Institute, University of Sydney, NSW 2000, Australia
| | - Fanfan Zhou
- Faculty of Pharmacy, University of Sydney, NSW 2006, Australia
| |
Collapse
|
38
|
Maekawa A, Kohashi K, Kuda M, Iura K, Ishii T, Endo M, Nakatsura T, Iwamoto Y, Oda Y. Prognostic significance of FOXM1 expression and antitumor effect of FOXM1 inhibition in synovial sarcomas. BMC Cancer 2016; 16:511. [PMID: 27439614 PMCID: PMC4955131 DOI: 10.1186/s12885-016-2542-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 07/08/2016] [Indexed: 12/25/2022] Open
Abstract
Background Synovial sarcoma (SS) is a soft tissue sarcoma of unknown histogenesis. Most metastatic or unresectable cases are incurable. Novel antitumor agents and precise prognostication are needed for SS patients. The protein forkhead box M1 (FOXM1), which belongs to the FOX family of transcription factors, is considered to be an independent predictor of poor survival in many cancers and sarcomas, but the prognostic implications and oncogenic roles of FOXM1 in SS are poorly understood. Here we examined the correlation between FOXM1 expression and clinicopathologic and prognostic factors, and we investigated the efficacy of FOXM1 target therapy in SS cases. Methods Immunohistochemical study of 106 tumor specimens was conducted to evaluate their immunohistochemical expression of FOXM1. An in vitro study examined the antitumor effect of the FOXM1 inhibitor thiostrepton and small interference RNA (siRNA) on two SS cell lines. We also assessed the efficacy of the combined use of doxorubicin (DOX) and thiostrepton. Results Univariate and multivariate analyses revealed that FOXM1 expression was associated with poor prognosis in SS. The cDNA microarray analysis using clinical samples revealed that the expression of cell cycle-associated genes was correlated with FOXM1 expression. FOXM1 inhibition by thiostrepton showed significant antitumor activity on the SS cell lines in vitro. FOXM1 interruption by siRNA increased the chemosensitivity for DOX in both SS cell lines. Conclusion FOXM1 expression is a novel biomarker, and its inhibition is a potential treatment option for SS. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2542-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akira Maekawa
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masaaki Kuda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kunio Iura
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeaki Ishii
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Makoto Endo
- Departments of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yukihide Iwamoto
- Departments of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
39
|
Mapiye DS, Christoffels AG, Gamieldien J. Identification of phenotype-relevant differentially expressed genes in breast cancer demonstrates enhanced quantile discretization protocol's utility in multi-platform microarray data integration. J Bioinform Comput Biol 2016; 14:1650022. [PMID: 27411306 DOI: 10.1142/s0219720016500220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microarray for transcriptomics experiments often suffer from limited statistical power due to small sample size. Quantile discretization (QD) maps expression values for a sample into a series of equivalently sized 'bins' that represent a discrete numerical range, e.g. [Formula: see text]4 to [Formula: see text]4, which enables normalized data from multiple experiments and/or expression platforms to be combined for re-analysis. We found, however, that informal selection of bin numbers often resulted in loss of the underlying correlation structure in the data through assigning of the same numerical value to genes that are in reality expressed at significantly different levels within a sample. Here we report a procedure for determining an optimal bin number for dataset. Applying this to integrated public breast cancer datasets enabled statistical identification of several differentially expressed tumorigenesis-related genes that were not found when analyzing the individual datasets, and also several cancer biomarkers not previously indicated as having utility in the disease. Notably, differential modulation of translational control and protein synthesis via multiple pathways were found to potentially have central roles in breast cancer development and progression. These findings suggest that our protocol has significant utility in making meaningful novel biomedical discoveries by leveraging the large public expression data repositories.
Collapse
Affiliation(s)
- Darlington S Mapiye
- 1 South African National Bioinformatics Institute/MRC, Unit for Bioinformatics Capacity Development, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Alan G Christoffels
- 1 South African National Bioinformatics Institute/MRC, Unit for Bioinformatics Capacity Development, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Junaid Gamieldien
- 1 South African National Bioinformatics Institute/MRC, Unit for Bioinformatics Capacity Development, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
40
|
HIFI-α activation underlies a functional switch in the paradoxical role of Ezh2/PRC2 in breast cancer. Proc Natl Acad Sci U S A 2016; 113:E3735-44. [PMID: 27303043 DOI: 10.1073/pnas.1602079113] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite the established oncogenic function of Polycomb repressive complex 2 (PRC2) in human cancers, its role as a tumor suppressor is also evident; however, the mechanism underlying the regulation of the paradoxical functions of PRC2 in tumorigenesis is poorly understood. Here we show that hypoxia-inducible factor 1, α-subunit (HIFI-α) is a crucial modulator of PRC2 and enhancer of zeste 2 (EZH2) function in breast cancer. Interrogating the genomic expression of breast cancer indicates high HIF1A activity correlated with high EZH2 expression but low PRC2 activity in triple-negative breast cancer compared with other cancer subtypes. In the absence of HIFIA activation, PRC2 represses the expression of matrix metalloproteinase genes (MMPs) and invasion, whereas a discrete Ezh2 complexed with Forkhead box M1 (FoxM1) acts to promote the expression of MMPs. HIF1-α induction upon hypoxia results in PRC2 inactivation by selective suppression of the expression of suppressor of zeste 12 protein homolog (SUZ12) and embryonic ectoderm development (EED), leading to a functional switch toward Ezh2/FoxM1-dependent induction of the expression of MMPs and invasion. Our study suggests a tumor-suppressive function of PRC2, which is restricted by HIF1-α, and an oncogenic function of Ezh2, which cooperates with FoxM1 to promote invasion in triple-negative breast cancer.
Collapse
|
41
|
Sun Q, Dong M, Chen Y, Zhang J, Qiao J, Guo X. Prognostic significance of FoxM1 expression in non-small cell lung cancer. J Thorac Dis 2016; 8:1269-73. [PMID: 27293846 DOI: 10.21037/jtd.2016.04.13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Various studies examined the relationship between FoxM1 overexpression with the clinical outcome in patients with non-small cell lung cancer (NSCLC), but yielded conflicting results. METHODS Electronic databases updated to Jan 01, 2015 were searched to find relevant studies. A meta-analysis was conducted with eligible studies which quantitatively evaluated the relationship between FoxM1 overexpression and survival of patients with NSCLC Survival data were aggregated and quantitatively analyzed. RESULTS We performed a meta-analysis of seven studies (n=860 patients) that evaluated the correlation between FoxM1 overexpression and survival in patients with NSCLC. Combined hazard ratios suggested that FoxM1 overexpression was associated with poor prognosis of overall survival (OS) (HR =1.73, 95% CI: 1.32-2.14) in patients with NSCLC. CONCLUSIONS FoxM1 overexpression indicates a poor prognosis for patients with NSCLC.
Collapse
Affiliation(s)
- Qing Sun
- Department of Oncology, Wuxi No. 2 People's Hospital, Nanjing Medical University, Wuxi 214002, China
| | - Min Dong
- Department of Oncology, Wuxi No. 2 People's Hospital, Nanjing Medical University, Wuxi 214002, China
| | - Yujuan Chen
- Department of Oncology, Wuxi No. 2 People's Hospital, Nanjing Medical University, Wuxi 214002, China
| | - Jiawei Zhang
- Department of Oncology, Wuxi No. 2 People's Hospital, Nanjing Medical University, Wuxi 214002, China
| | - Jinpeng Qiao
- Department of Oncology, Wuxi No. 2 People's Hospital, Nanjing Medical University, Wuxi 214002, China
| | - Xuedan Guo
- Department of Oncology, Wuxi No. 2 People's Hospital, Nanjing Medical University, Wuxi 214002, China
| |
Collapse
|
42
|
FOXM1: A novel drug target in gastroenteropancreatic neuroendocrine tumors. Oncotarget 2016; 6:8185-99. [PMID: 25797272 PMCID: PMC4480744 DOI: 10.18632/oncotarget.3600] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/20/2015] [Indexed: 12/14/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are heterogeneous tumors that need to be molecularly defined to obtain novel therapeutic options. Forkheadbox protein M1 (FOXM1) is a crucial transcription factor in neoplastic cells and has been associated with differentiation and proliferation. We found that FOXM1 is strongly associated with tumor differentiation and occurrence of metastases in gastrointestinal NENs. In vitro inhibition by the FOXM1 inhibitor siomycin A led to down-regulation of mitotic proteins and resulted in a strong inhibitory effect. Siomycin A decreased mitosis rate, induced apoptosis in GEP-NEN cell lines and exerts synergistic effects with chemotherapy. FOXM1 is associated with clinical outcome and FOXM1 inhibition impairs survival in vitro. We therefore propose FOXM1 as novel therapeutic target in GEP-NENs.
Collapse
|
43
|
The Role of Forkhead Box Protein M1 in Breast Cancer Progression and Resistance to Therapy. Int J Breast Cancer 2016; 2016:9768183. [PMID: 26942015 PMCID: PMC4752991 DOI: 10.1155/2016/9768183] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/10/2016] [Indexed: 01/30/2023] Open
Abstract
The Forkhead box M1 (FOXM1) is a transcription factor that has been implicated in normal cell growth and proliferation through control of cell cycle transition and mitotic spindle. It is implicated in carcinogenesis of various malignancies where it is activated by either amplification, increased stability, enhanced transcription, dysfunction of regulatory pathways, or activation of PI3K/AKT, epidermal growth factor receptor, Raf/MEK/MAPK, and Hedgehog pathways. This review describes the role of FOXM1 in breast cancer. This includes how FOXM1 impacts on different subtypes of breast cancer, that is, luminal/estrogen receptor positive (ER+), expressing human epidermal growth factor receptor 2 (HER2), basal-like breast cancer (BBC), and triple negative breast cancer (TNBC). The review also describes different tested preclinical therapeutic strategies targeting FOXM1. Developing clinically applicable therapies that specifically inhibit FOXM1 activity is a logical next step in biomarker-driven approaches against breast cancer but will not be without its challenges due to the unique properties of this transcription factor.
Collapse
|
44
|
Maekawa A, Kohashi K, Setsu N, Kuda M, Iura K, Ishii T, Matsunobu T, Nakatsura T, Iwamoto Y, Oda Y. Expression of Forkhead box M1 in soft tissue leiomyosarcoma: Clinicopathologic and in vitro study using a newly established cell line. Cancer Sci 2016; 107:95-102. [PMID: 26560505 PMCID: PMC4724818 DOI: 10.1111/cas.12846] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/29/2015] [Accepted: 11/04/2015] [Indexed: 02/07/2023] Open
Abstract
Leiomyosarcoma (LMS) of soft tissue is a sarcoma with smooth‐muscle differentiation, and conventional chemotherapy does not improve its outcome. The application of novel antitumor agents and precise prognostication has been demanded. The expression of the protein Forkhead box M1 (FOXM1), a member of the FOX family, is considered an independent predictor of poor survival in many cancers and sarcomas. However, the expression status of FOXM1 in LMS is poorly understood. The purposes of this study were to examine the correlation between the expression of FOXM1 and clinicopathologic or prognostic factors and to clarify the efficacy of FOXM1 target therapy in LMS. We evaluated the immunohistochemical expressions of FOXM1 using 123 LMS tumor specimens. Univariate and multivariate survival analyses revealed that FOXM1 expression was associated with poor prognosis in LMS. An in vitro study was then carried out to examine the antitumor effect of a FOXM1 inhibitor (thiostrepton) and siRNA on a novel LMS cell line, TC616. We also assessed the efficacy of the combined use of doxorubicin and thiostrepton. Thiostrepton showed dose‐dependent antitumor activity and TC616 cells treated with the combination of thiostrepton and doxorubicin showed lower proliferation compared to those treated with either drug individually. FOXM1 interruption by siRNA decreased cell proliferation and increased chemosensitivity. In conclusion, FOXM1 has potential to be a therapeutic target for LMS.
Collapse
Affiliation(s)
- Akira Maekawa
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nokitaka Setsu
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaaki Kuda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kunio Iura
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeaki Ishii
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoya Matsunobu
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yukihide Iwamoto
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
45
|
Kuda M, Kohashi K, Yamada Y, Maekawa A, Kinoshita Y, Nakatsura T, Iwamoto Y, Taguchi T, Oda Y. FOXM1 expression in rhabdomyosarcoma: a novel prognostic factor and therapeutic target. Tumour Biol 2015; 37:5213-23. [PMID: 26553361 DOI: 10.1007/s13277-015-4351-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/30/2015] [Indexed: 01/07/2023] Open
Abstract
The transcription factor Forkhead box M1 (FOXM1) is known to play critical roles in the development and progression of various types of cancer, but the clinical significance of FOXM1 expression in rhabdomyosarcoma (RMS) is unknown. This study aimed to determine the role of FOXM1 in RMS. We investigated the expression levels of FOXM1 and vascular endothelial growth factor (VEGF) and angiogenesis in a large series of RMS clinical cases using immunohistochemistry (n = 92), and we performed clinicopathologic and prognostic analyses. In vitro studies were conducted to examine the effect of FOXM1 knock-down on VEGF expression, cell proliferation, migration, and invasion in embryonal RMS (ERMS) and alveolar RMS (ARMS) cell lines, using small interference RNA (siRNA). High FOXM1 expression was significantly increased in the cases of ARMS, which has an adverse prognosis compared to ERMS (p = 0.0310). The ERMS patients with high FOXM1 expression (n = 25) had a significantly shorter survival than those with low FOXM1 expression (n = 24; p = 0.0310). FOXM1 expression was statistically correlated with VEGF expression in ERMS at the protein level as shown by immunohistochemistry and at the mRNA level by RT-PCR. The in vitro study demonstrated that VEGF mRNA levels were decreased in the FOXM1 siRNA-transfected ERMS and ARMS cells. FOXM1 knock-down resulted in a significant decrease of cell proliferation and migration in all four RMS cell lines and invasion in three of the four cell lines. Our results indicate that FOXM1 overexpression may be a prognostic factor of RMS and that FOXM1 may be a promising therapeutic target for the inhibition of RMS progression.
Collapse
Affiliation(s)
- Masaaki Kuda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuichi Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akira Maekawa
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshiaki Kinoshita
- Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Yukihide Iwamoto
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomoaki Taguchi
- Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
46
|
Nestal de Moraes G, Delbue D, Silva KL, Robaina MC, Khongkow P, Gomes AR, Zona S, Crocamo S, Mencalha AL, Magalhães LM, Lam EWF, Maia RC. FOXM1 targets XIAP and Survivin to modulate breast cancer survival and chemoresistance. Cell Signal 2015; 27:2496-505. [PMID: 26404623 DOI: 10.1016/j.cellsig.2015.09.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/15/2015] [Accepted: 09/18/2015] [Indexed: 12/11/2022]
Abstract
Drug resistance is a major hurdle for successful treatment of breast cancer, the leading cause of deaths in women throughout the world. The FOXM1 transcription factor is a potent oncogene that transcriptionally regulates a wide range of target genes involved in DNA repair, metastasis, cell invasion, and migration. However, little is known about the role of FOXM1 in cell survival and the gene targets involved. Here, we show that FOXM1-overexpressing breast cancer cells display an apoptosis-resistant phenotype, which associates with the upregulation of expression of XIAP and Survivin antiapoptotic genes. Conversely, FOXM1 knockdown results in XIAP and Survivin downregulation as well as decreased binding of FOXM1 to the promoter regions of XIAP and Survivin. Consistently, FOXM1, XIAP, and Survivin expression levels were higher in taxane and anthracycline-resistant cell lines when compared to their sensitive counterparts and could not be downregulated in response to drug treatment. In agreement with our in vitro findings, we found that FOXM1 expression is significantly associated with Survivin and XIAP expression in samples from patients with IIIa stage breast invasive ductal carcinoma. Importantly, patients co-expressing FOXM1, Survivin, and nuclear XIAP had significantly worst overall survival, further confirming the physiological relevance of the regulation of Survivin and XIAP by FOXM1. Together, these findings suggest that the overexpression of FOXM1, XIAP, and Survivin contributes to the development of drug-resistance and is associated with poor clinical outcome in breast cancer patients.
Collapse
Affiliation(s)
- Gabriela Nestal de Moraes
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23/6° andar, Centro, 20230-130 Rio de Janeiro, Brazil; Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Du Cane Road, London W12 0NN, UK
| | - Deborah Delbue
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23/6° andar, Centro, 20230-130 Rio de Janeiro, Brazil
| | - Karina L Silva
- Programa de Biologia Celular, INCA, Rua André Cavalcanti, 37/5° andar, Centro, 20231-050 Rio de Janeiro, Brazil
| | - Marcela Cristina Robaina
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23/6° andar, Centro, 20230-130 Rio de Janeiro, Brazil
| | - Pasarat Khongkow
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Du Cane Road, London W12 0NN, UK
| | - Ana R Gomes
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Du Cane Road, London W12 0NN, UK
| | - Stefania Zona
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Du Cane Road, London W12 0NN, UK
| | - Susanne Crocamo
- Núcleo de Pesquisa Clínica, Hospital de Câncer III, INCA, Rua Visconde de Santa Isabel, 274, Vila Isabel, 20560-120 Rio de Janeiro, Brazil
| | - André Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Av. 28 de Setembro, 87 fundos, 4° andar, Vila Isabel, 20551-030 Rio de Janeiro, Brazil
| | - Lídia M Magalhães
- Divisão de Anatomia Patológica, INCA, Rua Cordeiro da Graça, 156, Santo Cristo, 20220-400 Rio de Janeiro, Brazil
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Du Cane Road, London W12 0NN, UK
| | - Raquel C Maia
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23/6° andar, Centro, 20230-130 Rio de Janeiro, Brazil.
| |
Collapse
|
47
|
Zhang M, Liu Y, Gao Y, Li S. Silibinin-induced glioma cell apoptosis by PI3K-mediated but Akt-independent downregulation of FoxM1 expression. Eur J Pharmacol 2015; 765:346-54. [PMID: 26342429 DOI: 10.1016/j.ejphar.2015.08.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 08/22/2015] [Accepted: 08/31/2015] [Indexed: 11/25/2022]
Abstract
The oncogenic transcription factor Forkhead box M1 (FoxM1) is overexpressed in many human tumors, including glioma. As a critical regulator of the cell cycle and apoptosis-related genes, FoxM1 is a potential therapeutic target against human malignant glioma. Silibinin, a flavonoid isolated from Silybum marianum, dose-dependently reduced glioma cell proliferation, promoted apoptosis, and downregulated FoxM1 expression. Knockdown of FoxM1 by small hairpin RNA (shRNA) transfection also promoted glioma cell apoptosis and augmented the antiproliferative and pro-apoptotic properties of silibinin. Moreover, silibinin increased caspase-3 activation, upregulated pro-apoptotic Bax, and suppressed anti-apoptotic Bcl-2 expression, effects enhanced by FoxM1 knockdown. Silibinin treatment suppressed U87 cell PI3K phospho-activation, and simultaneous silibinin exposure, FoxM1 knockdown, and PI3K inhibition additively increased U87 cell apoptosis. Furthermore, PI3K inhibition reduced FoxM1 expression. Akt activity was also suppressed by FoxM1 downregulation but Akt inhibition did not alter FoxM1 expression. Thus, silibinin likely inhibited glioma cell proliferation and induced apoptosis through inactivation of PI3K and FoxM1, leading to activation of the mitochondrial apoptotic pathway. FoxM1 may be a novel target for chemotherapy against human glioma.
Collapse
Affiliation(s)
- Mingjie Zhang
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning Province 110004, PR China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning Province 110004, PR China.
| | - Yun Gao
- He University, Shenyang, Liaoning Province 110163, PR China
| | - Shaoyi Li
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning Province 110004, PR China
| |
Collapse
|
48
|
Guo X, Liu A, Hua H, Lu H, Zhang D, Lin Y, Sun Q, Zhu X, Yan G, Zhao F. Siomycin A Induces Apoptosis in Human Lung Adenocarcinoma A549 Cells by Suppressing the Expression of FoxM1. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Forkhead box M1 (FoxM1), a transcription factor of the Forkhead family, is demonstrated to be critical for proliferation, apoptosis, migration and invasion of lung cancer. In this study, we extensively investigated the anticancer effect of siomycin A, which was identified as an inhibitor of FoxM1 transcriptional activity, on human lung adenocarcinoma A549 cells. Our study indicated that treatment with siomycin A resulted in the suppression of FoxM1 expression, which consequently contributed to its effect of cell growth inhibition and cell apoptosis induction in A549 cells. Then the molecular mechanism of siomycin A's apoptotic action on A549 cells was further investigated. The results revealed that siomycin A induced apoptosis by influencing the downstream events of FoxM1, including inhibiting the expression of Bcl-2 and Mcl-1, as well as leading to caspase-3 cleavage. Taken together, our findings may be useful for understanding the mechanism of action of siomycin A on lung cancer cells and provide new insights into the possible application of such a compound in lung cancer therapy in the future.
Collapse
Affiliation(s)
- Xuedan Guo
- Department of Oncology, Wuxi No. 2 People's Hospital, Wuxi 210000, Jiangsu Province, China
| | - Aiping Liu
- Wuxi Environment Science and Engineering Research Center, Wuxi City College International Education School, Wuxi 210000, Jiangsu Province, China
| | - Hongxia Hua
- Department of Oncology, Wuxi No. 2 People's Hospital, Wuxi 210000, Jiangsu Province, China
| | - Huifen Lu
- Department of Oncology, Wuxi No. 2 People's Hospital, Wuxi 210000, Jiangsu Province, China
| | - Dandan Zhang
- Laosengtang Middle School, Jining 272400, Shandong Province, China
| | - Yina Lin
- Department of Radiation Oncology, Zhangzhou Municipal Hospital, Zhangzhou 363000, Fujian Province, China
| | - Qing Sun
- Department of Oncology, Wuxi No. 2 People's Hospital, Wuxi 210000, Jiangsu Province, China
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, Jiangsu Province, China
| | - Guoxin Yan
- Department of Oral and Maxillofacial Surgery, Wuxi No. 2 People's Hospital, Wuxi 210000, Jiangsu Province, China
| | - Fan Zhao
- Department of Oncology, Wuxi No. 2 People's Hospital, Wuxi 210000, Jiangsu Province, China
| |
Collapse
|
49
|
Zheng Y, Guo J, Zhou J, Lu J, Chen Q, Zhang C, Qing C, Koeffler HP, Tong Y. FoxM1 transactivates PTTG1 and promotes colorectal cancer cell migration and invasion. BMC Med Genomics 2015; 8:49. [PMID: 26264222 PMCID: PMC4534164 DOI: 10.1186/s12920-015-0126-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 07/31/2015] [Indexed: 12/13/2022] Open
Abstract
Background Metastasis is the major cause of cancer-related death. Forkhead Box M1 (FoxM1) is a master regulator of tumor metastasis. This study aims to identify new FoxM1 targets in regulating tumor metastasis using bioinformatics tools as well as biological experiments. Methods Illumina microarray was used to profile WT and PTTG1 knockout HCT116 cells. R2 Genomics Analysis was used to identify PTTG1 as a potential FoxM1 targeted gene. Luciferase reporter array, EMSA and Chromatin Immunoprecipitation (ChIP) were used to determine the binding of FoxM1 to PTTG1 promoter. Boyden chamber assay was used to evaluate the effects of FoxM1-PTTG1 on cell migration and invasion. Splenic-injection induced liver metastasis model was used to evaluate the effects of FoxM1-PTTG1 on liver metastasis of colorectal cancer. Results Analyses of multiple microarray datasets derived from human colorectal cancer indicated that correlation levels of FoxM1 and pituitary tumor transforming gene (PTTG1) are highly concordant (R = 0.68 ~ 0.89, p = 2.1E-226 ~ 9.6E-86). FoxM1 over-expression increased and knock-down decreased PTTG1 expression. Luciferase reporter assay identified that the −600 to −300 bp region of PTTG1 promoter is important for FoxM1 to enhance PTTG1 promoter activity. EMSA and ChIP assays confirmed that FoxM1 directly binds to PTTG1 promoter at the −391 to −385 bp region in colorectal cancer cells. Boyden chamber assay indicated that both FoxM1 and PTTG1 regulate migration and invasion of HCT116 and SW620 colorectal cancer cells. Further in vivo assays indicated that PTTG1 knock out decreased the liver metastasis of FoxM1 over-expressing HCT116 cells. Microarray analyses identified 662 genes (FDR < 0.05) differentially expressed between WT and PTTG1−/− HCT116 cells. Among them, dickkopf homolog 1 (DKK1), a known WNT pathway inhibitor, was suppressed by PTTG1 and FoxM1. Conclusions PTTG1 is a FoxM1 targeted gene. FoxM1 binds to PTTG1 promoter to enhance PTTG1 transcription, and FoxM1-PTTG1 pathway promotes colorectal cancer migration and invasion. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0126-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yun Zheng
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA. .,Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Jinjun Guo
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA. .,Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jin Zhou
- Division of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA.
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Qi Chen
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| | - Cui Zhang
- Department of Pathology, Xinxiang Medical University, 601 East Jinsui Ave, Xinxiang, Henan, China.
| | - Chen Qing
- School of Pharmaceutical Science, Kunming Medical University, 1168 Western Chunrong Road,Yuhua Street, Chenggong New City, Kunming, China.
| | - H Philip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| | - Yunguang Tong
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA. .,Department of Pathology, Xinxiang Medical University, 601 East Jinsui Ave, Xinxiang, Henan, China.
| |
Collapse
|
50
|
Prognostic Value of FOXM1 in Patients with Malignant Solid Tumor: A Meta-Analysis and System Review. DISEASE MARKERS 2015; 2015:352478. [PMID: 26451068 PMCID: PMC4584221 DOI: 10.1155/2015/352478] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/23/2015] [Indexed: 01/18/2023]
Abstract
Forkhead box M1 (FOXM1), a member of the Fox transcription factors family, was closely related with cell cycle. FOXM1 played an important role in MST and prompted a poor prognosis for MST patients. However, there were also some studies revealing no significant association between the FOXM1 expression and prognosis of patients. Therefore, we conducted meta-analysis to investigate whether the expression of FOXM1 was associated with MST prognosis. We collected 36 relevant studies through PubMed database and obtained research data of 4946 patients. Stata 12.0 was used to express the results as hazard ratio (HR) for time-to-event outcomes with 95% confidence intervals (95% CI). It was shown that overexpression of FOXM1 was relevant to worse survival of MST patients (HR = 1.99, 95% CI = 1.79–2.21, P < 0.001; I2 = 26.4%, Ph = 0.076). Subgroup analysis suggested that overexpression of FOXM1 in breast cancer (BC), gastric cancer (GC), hepatocellular carcinoma (HCC), pancreatic ductal adenocarcinoma (PDA), and non-small-cell lung cancer (NSCLC) all predicted a worse survival (P < 0.05), in addition to ovarian cancer (OC) (P = 0.084). In conclusion, our research indicated that overexpression of FOXM1 was to the disadvantage of the prognosis for majority of MST and therefore can be used as an evaluation index of prognosis.
Collapse
|