1
|
Lyu C, Vaddi PK, Elshafae S, Pradeep A, Ma D, Chen S. Unveiling RACK1: a key regulator of the PI3K/AKT pathway in prostate cancer development. Oncogene 2025; 44:322-335. [PMID: 39537875 DOI: 10.1038/s41388-024-03224-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The dysregulated PI3K/AKT pathway is pivotal in the onset and progression of various cancers, including prostate cancer. However, targeting this pathway directly poses challenges due to compensatory upregulation of alternative oncogenic pathways. This study focuses on the novel regulatory activity of the Receptor for Activated Protein Kinase (RACK1), a scaffolding/adaptor protein, in governing the PI3K/AKT pathway within prostate cancer. Through a genetic mouse model, our research unveils RACK1's pivotal role in orchestrating AKT activation and the genesis of prostate cancer. RACK1 deficiency hampers AKT activation, effectively impeding prostate tumor formation induced by PTEN and p53 deficiency. Mechanistically, RACK1 facilitates AKT membrane translocation and fosters its interaction with mTORC2, thereby promoting AKT activation and subsequent tumor cell proliferation and tumor formation. Notably, inhibiting AKT activation via RACK1 deficiency does not trigger feedback upregulation of HER3 and androgen receptor (AR) expression and activation, distinguishing it from direct PI3K or AKT targeting. These findings position RACK1 as a critical regulator of the PI3K/AKT pathway and a promising target for curtailing prostate cancer development arising from pathway aberrations.
Collapse
Affiliation(s)
- Cancan Lyu
- Departments of Neuroscience and Pharmacology, University of Iowa, Iowa City, USA
| | - Prasanna Kuma Vaddi
- Departments of Neuroscience and Pharmacology, University of Iowa, Iowa City, USA
| | - Said Elshafae
- Departments of Neuroscience and Pharmacology, University of Iowa, Iowa City, USA
| | - Anirudh Pradeep
- Departments of Neuroscience and Pharmacology, University of Iowa, Iowa City, USA
| | - Deqin Ma
- Departments of Phathology, University of Iowa, Iowa City, USA
| | - Songhai Chen
- Departments of Neuroscience and Pharmacology, University of Iowa, Iowa City, USA.
- Departments of Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, USA.
| |
Collapse
|
2
|
Tian R, Tian J, Zuo X, Ren S, Zhang H, Liu H, Wang Z, Cui Y, Niu R, Zhang F. RACK1 facilitates breast cancer progression by competitively inhibiting the binding of β-catenin to PSMD2 and enhancing the stability of β-catenin. Cell Death Dis 2023; 14:685. [PMID: 37848434 PMCID: PMC10582012 DOI: 10.1038/s41419-023-06191-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
The receptor for activated C kinase 1 (RACK1) is a key scaffolding protein with multifunctional and multifaceted properties. By mediating protein-protein interactions, RACK1 integrates multiple intracellular signals involved in the regulation of various physiological and pathological processes. Dysregulation of RACK1 has been implicated in the initiation and progression of many tumors. However, the exact function of RACK1 in cancer cellular processes, especially in proliferation, remains controversial. Here, we show that RACK1 is required for breast cancer cell proliferation in vitro and tumor growth in vivo. This effect of RACK1 is associated with its ability to enhance β-catenin stability and activate the canonical WNT signaling pathway in breast cancer cells. We identified PSMD2, a key component of the proteasome, as a novel binding partner for RACK1 and β-catenin. Interestingly, although there is no interaction between RACK1 and β-catenin, RACK1 binds PSMD2 competitively with β-catenin. Moreover, RACK1 prevents ubiquitinated β-catenin from binding to PSMD2, thereby protecting β-catenin from proteasomal degradation. Collectively, our findings uncover a novel mechanism by which RACK1 increases β-catenin stability and promotes breast cancer proliferation.
Collapse
Affiliation(s)
- Ruinan Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Jianfei Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Xiaoyan Zuo
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Sixin Ren
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - He Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Hui Liu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Zhiyong Wang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Yanfen Cui
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
3
|
Wang Y, Liu X, Huang W, Liang J, Chen Y. The intricate interplay between HIFs, ROS, and the ubiquitin system in the tumor hypoxic microenvironment. Pharmacol Ther 2022; 240:108303. [PMID: 36328089 DOI: 10.1016/j.pharmthera.2022.108303] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Alterations in protein ubiquitination and hypoxia-inducible factor (HIF) signaling both contribute to tumorigenesis and tumor progression. Ubiquitination is a dynamic process that is coordinately regulated by E3 ligases and deubiquitinases (DUBs), which have emerged as attractive therapeutic targets. HIF expression and transcriptional activity are usually increased in tumors, leading to poor clinical outcomes. Reactive oxygen species (ROS) are upregulated in tumors and have multiple effects on HIF signaling and the ubiquitin system. A growing body of evidence has shown that multiple E3 ligases and UBDs function synergistically to control the expression and activity of HIF, thereby allowing cancer cells to cope with the hypoxic microenvironment. Conversely, several E3 ligases and DUBs are regulated by hypoxia and/or HIF signaling. Hypoxia also induces ROS production, which in turn modulates the stability or activity of HIF, E3 ligases, and DUBs. Understanding the complex networks between E3 ligase, DUBs, ROS, and HIF will provide insights into the fundamental mechanism of the cellular response to hypoxia and help identify novel molecular targets for cancer treatment. We review the current knowledge on the comprehensive relationship between E3 ligase, DUBs, ROS, and HIF signaling, with a particular focus on the use of E3 ligase or DUB inhibitors in cancer.
Collapse
Affiliation(s)
- Yijie Wang
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xiong Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Weixiao Huang
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Junjie Liang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China.
| | - Yan Chen
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China; School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
4
|
Thakur C, Carruthers NJ, Zhang Q, Xu L, Fu Y, Bi Z, Qiu Y, Zhang W, Wadgaonkar P, Almutairy B, Guo C, Stemmer PM, Chen F. Depletion of Mdig Changes Proteomic Profiling in Triple Negative Breast Cancer Cells. Biomedicines 2022; 10:2021. [PMID: 36009568 PMCID: PMC9405604 DOI: 10.3390/biomedicines10082021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Triple-negative breast cancers are highly aggressive with an overall poor prognosis and limited therapeutic options. We had previously investigated the role of mdig, an oncogenic gene induced by some environmental risk factors, on the pathogenesis of breast cancer. However, a comprehensive analysis of the proteomic profile affected by mdig in triple-negative breast cancer has not been determined yet. Using label-free bottom-up quantitative proteomics, we compared wildtype control and mdig knockout MDA-MB-231 cells and identified the proteins and pathways that are significantly altered with mdig deletion. A total of 904 differentially expressed (p < 0.005) proteins were identified in the KO cells. Approximately 30 pathways and networks linked to the pathogenicity of breast cancer were either up- or downregulated, such as EIF2 signaling, the unfolded protein response, and isoleucine degradation I. Ingenuity Pathway Analysis established that the differentially expressed proteins have relevant biological actions in cell growth, motility, and malignancy. These data provide the first insight into protein expression patterns in breast cancer associated with a complete disruption of the mdig gene and yielded substantial information on the key proteins, biological processes, and pathways modulated by mdig that contribute to breast cancer tumorigenicity and invasiveness.
Collapse
Affiliation(s)
- Chitra Thakur
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, The State University of New York, Lauterbur Drive, Stony Brook, NY 11794, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY 11794, USA
| | - Nicholas J. Carruthers
- Institute of Environmental Health Sciences, Wayne State University, 2309 Scott Hall, 540 E Canfield Ave, Detroit, MI 48202, USA
| | - Qian Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Liping Xu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Yao Fu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, The State University of New York, Lauterbur Drive, Stony Brook, NY 11794, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Zhuoyue Bi
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, The State University of New York, Lauterbur Drive, Stony Brook, NY 11794, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Yiran Qiu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, The State University of New York, Lauterbur Drive, Stony Brook, NY 11794, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Wenxuan Zhang
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, The State University of New York, Lauterbur Drive, Stony Brook, NY 11794, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Priya Wadgaonkar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Bandar Almutairy
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Chunna Guo
- Department of Immunology and Microbiology, Wayne State University, Detroit, MI 48201, USA
| | - Paul M. Stemmer
- Institute of Environmental Health Sciences, Wayne State University, 2309 Scott Hall, 540 E Canfield Ave, Detroit, MI 48202, USA
| | - Fei Chen
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, The State University of New York, Lauterbur Drive, Stony Brook, NY 11794, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY 11794, USA
| |
Collapse
|
5
|
Ou H, Wang L, Xi Z, Shen H, Jiang Y, Zhou F, Liu Y, Zhou Y. MYO10 contributes to the malignant phenotypes of colorectal cancer via RACK1 by activating integrin/Src/FAK signaling. Cancer Sci 2022; 113:3838-3851. [PMID: 35912545 DOI: 10.1111/cas.15519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022] Open
Abstract
Liver metastases still remain a major cause of colorectal cancer (CRC) patient death. MYO10 is upregulated in several tumor types, however, its significance and the underlying mechanism in CRC is not entirely clear. Here we found that MYO10 was highly expressed in CRC tumor tissues, especially in liver metastasis tissues. MYO10 knockout reduced CRC cell proliferation, invasion, and migration in vitro, and CRC metastasis in vivo. We identified RACK1 by LC-MS/MS and demonstrated that MYO10 interacts with and stabilizes RACK1. Mechanistically, MYO10 promotes CRC cell progression and metastasis via ubiquitination-mediated RACK1 degradation and integrin/Src/FAK signaling activation. Therefore, the MYO10/RACK1/integrin/Src/FAK axis may play an important role in CRC progression and metastasis.
Collapse
Affiliation(s)
- Haibin Ou
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Lili Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Ziyao Xi
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hui Shen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yaofei Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yu Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yunfeng Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Gong X, Tang H, Yang K. PER1 suppresses glycolysis and cell proliferation in oral squamous cell carcinoma via the PER1/RACK1/PI3K signaling complex. Cell Death Dis 2021; 12:276. [PMID: 33723221 PMCID: PMC7960720 DOI: 10.1038/s41419-021-03563-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022]
Abstract
There is increasing evidence that the core clock gene Period 1 (PER1) plays important roles in the formation of various tumors. However, the biological functions and mechanism of PER1 in promoting tumor progression remain largely unknown. Here, we discovered that PER1 was markedly downregulated in oral squamous cell carcinoma (OSCC). Then, OSCC cell lines with stable overexpression, knockdown, and mutation of PER1 were established. We found that PER1 overexpression significantly inhibited glycolysis, glucose uptake, proliferation, and the PI3K/AKT pathway in OSCC cells. The opposite effects were observed in PER1-knockdown OSCC cells. After treatment of PER1-overexpressing OSCC cells with an AKT activator or treatment of PER1-knockdown OSCC cells with an AKT inhibitor, glycolysis, glucose uptake, and proliferation were markedly rescued. In addition, after treatment of PER1-knockdown OSCC cells with a glycolysis inhibitor, the increase in cell proliferation was significantly reversed. Further, coimmunoprecipitation (Co-IP) and cycloheximide (CHX) chase experiment demonstrated that PER1 can bind with RACK1 and PI3K to form the PER1/RACK1/PI3K complex in OSCC cells. In PER1-overexpressing OSCC cells, the abundance of the PER1/RACK1/PI3K complex was significantly increased, the half-life of PI3K was markedly decreased, and glycolysis, proliferation, and the PI3K/AKT pathway were significantly inhibited. However, these effects were markedly reversed in PER1-mutant OSCC cells. In vivo tumorigenicity assays confirmed that PER1 overexpression inhibited tumor growth while suppressing glycolysis, proliferation, and the PI3K/AKT pathway. Collectively, this study generated the novel findings that PER1 suppresses OSCC progression by inhibiting glycolysis-mediated cell proliferation via the formation of the PER1/RACK1/PI3K complex to regulate the stability of PI3K and the PI3K/AKT pathway-dependent manner and that PER1 could potentially be a valuable therapeutic target in OSCC.
Collapse
Affiliation(s)
- Xiaobao Gong
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuzhong District, 400016, Chongqing, China
| | - Hong Tang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuzhong District, 400016, Chongqing, China
| | - Kai Yang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuzhong District, 400016, Chongqing, China.
| |
Collapse
|
7
|
Wu B, Chang N, Xi H, Xiong J, Zhou Y, Wu Y, Wu S, Wang N, Yi H, Song Y, Chen L, Zhang J. PHB2 promotes tumorigenesis via RACK1 in non-small cell lung cancer. Am J Cancer Res 2021; 11:3150-3166. [PMID: 33537079 PMCID: PMC7847695 DOI: 10.7150/thno.52848] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Lung cancer has the highest mortality rate among cancers worldwide, with non-small cell lung cancer (NSCLC) the most common type. Increasing evidence shows that PHB2 is highly expressed in other cancer types; however, the effects of PHB2 in NSCLC are currently poorly understood. Method: PHB2 expression and its clinical relevance in NSCLC tumor tissues were analyzed using a tissue microarray. The biological role of PHB2 in NSCLC was investigated in vitro and in vivo using immunohistochemistry and immunofluorescence staining, gene expression knockdown and overexpression, cell proliferation assay, flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, wound healing assay, Transwell assay, western blot analysis, qRT-PCR, coimmunoprecipitation, and mass spectrometry analysis. Results: Our major finding is that PHB2 facilitates tumorigenesis in NSCLC by interacting with and stabilizing RACK1, which further induces activation of downstream tumor-promoting effectors. PHB2 was found to be overexpressed in NSCLC tumor tissues, and its expression was correlated with clinicopathological features. Furthermore, PHB2 overexpression promoted proliferation, migration, and invasion, whereas PHB2 knockdown enhanced apoptosis in NSCLC cells. The stimulating effect of PHB2 on tumorigenesis was also verified in vivo. In addition, PHB2 interacted with RACK1 and increased its expression through posttranslational modification, which further induced activation of the Akt and FAK pathways. Conclusions: Our results reveal the effects of PHB2 on tumorigenesis and its regulation of RACK1 and RACK1-associated proteins and downstream signaling in NSCLC. We believe that the crosstalk between PHB2 and RACK1 provides us with a great opportunity to design and develop novel therapeutic strategies for NSCLC.
Collapse
|
8
|
OXER1 and RACK1-associated pathway: a promising drug target for breast cancer progression. Oncogenesis 2020; 9:105. [PMID: 33311444 PMCID: PMC7732991 DOI: 10.1038/s41389-020-00291-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Recent data indicate that receptor for activated C kinase 1 (RACK1) is a putative prognostic marker and drug target in breast cancer (BC). High RACK1 expression is negatively associated with overall survival, as it seems to promote BC progression. In tumors, RACK1 expression is controlled by a complex balance between glucocorticoids and androgens. Given the fact that androgens and androgenic derivatives can inhibit BC cell proliferation and migration, the role of androgen signaling in regulating RACK1 transcription in mammary tumors is of pivotal interest. Here, we provide evidence that nandrolone (19-nortosterone) inhibits BC cell proliferation and migration by antagonizing the PI3K/Akt/NF-κB signaling pathway, which eventually results in RACK1 downregulation. We also show that nandrolone impairs the PI3K/Akt/NF-κB signaling pathway and decreases RACK1 expression via binding to the membrane-bound receptor, oxoeicosanoid receptor 1 (OXER1). High levels of OXER1 are observed in several BC cell lines and correlate with RACK1 expression and poor prognosis. Our data provide evidence on the role played by the OXER1-dependent intracellular pathway in BC progression and shed light on the mechanisms underlying membrane-dependent androgen effects on RACK1 regulation. Besides the mechanistic relevance, the results of the study are of interest from a translational prospective. In fact, they identify a new and actionable pathway to be used for the design of innovative and rational therapeutic strategies in the context of the personalized treatment of BC. In addition, they draw attention on nandrolone-based compounds that lack hormonal activity as potential anti-tumor agents.
Collapse
|
9
|
Buoso E, Masi M, Racchi M, Corsini E. Endocrine-Disrupting Chemicals' (EDCs) Effects on Tumour Microenvironment and Cancer Progression: Emerging Contribution of RACK1. Int J Mol Sci 2020; 21:E9229. [PMID: 33287384 PMCID: PMC7729595 DOI: 10.3390/ijms21239229] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Endocrine disruptors (EDCs) can display estrogenic and androgenic effects, and their exposure has been linked to increased cancer risk. EDCs have been shown to directly affect cancer cell regulation and progression, but their influence on tumour microenvironment is still not completely elucidated. In this context, the signalling hub protein RACK1 (Receptor for Activated C Kinase 1) could represent a nexus between cancer and the immune system due to its roles in cancer progression and innate immune activation. Since RACK1 is a relevant EDCs target that responds to steroid-active compounds, it could be considered a molecular bridge between the endocrine-regulated tumour microenvironment and the innate immune system. We provide an analysis of immunomodulatory and cancer-promoting effects of different EDCs in shaping tumour microenvironment, with a final focus on the scaffold protein RACK1 as a pivotal molecular player due to its dual role in immune and cancer contexts.
Collapse
Affiliation(s)
- Erica Buoso
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
| | - Mirco Masi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
- Classe di Scienze Umane e della Vita (SUV), Scuola Universitaria Superiore IUSS, Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Marco Racchi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
| | - Emanuela Corsini
- Laboratory of Toxicology, Dipartimento di Scienze Politiche ed Ambientali, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy;
| |
Collapse
|
10
|
Aydın EB, Aydın M, Sezgintürk MK. A label-free immunosensor for sensitive detection of RACK 1 cancer biomarker based on conjugated polymer modified ITO electrode. J Pharm Biomed Anal 2020; 190:113517. [PMID: 32784093 DOI: 10.1016/j.jpba.2020.113517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 11/19/2022]
Abstract
A new flexible biosensor based on conjugated polymer functionalized indium tin oxide (ITO) sheet was fabricated for Receptor for Activated C Kinase 1 (RACK 1) determination. Poly(3-thiophene acetic acid) (P(Thi-Ac)) was used as an immobilization matrix for construction of RACK 1 immunosensor. This polymer had a great number of carboxyl groups on its end site and these carboxyl ends provided anchoring points to the anti-RACK 1 antibodies. Anti-RACK 1 antibodies were covalently attached on the ITO electrode and recognized the RACK 1 antigens. Electrochemical characterizations were made by employing electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. Additionally, single frequency impedance method (SFI) was applied to follow the specific biointeraction between antibody and antigen. As a result of specific biointeraction, the designed immunosensor exhibited a wide linear detection range between 0.01 pg/mL and 2 pg/mL RACK 1 with a detection limit of 3.1 fg/mL. Scanning electron microscopy and atomic force microscopy analyses were employed for electrode surface morphology investigation. The designed RACK 1 biosensor had good repeatability (5.73 %, RSD), excellent reproducibility (2.5 %, RSD), long storage-stability and reusable property. In addition, the fabricated RACK 1 biosensor was applied to determine RACK 1 concentration in human serums and the recovery was ranging from 98.79%-100.22%. This work illustrated a new tool to construct a sensitive and low-cost disposable biosensor for applications in clinical monitoring.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Muhammet Aydın
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey.
| |
Collapse
|
11
|
Buoso E, Masi M, Long A, Chiappini C, Travelli C, Govoni S, Racchi M. Ribosomes as a nexus between translation and cancer progression: Focus on ribosomal Receptor for Activated C Kinase 1 (RACK1) in breast cancer. Br J Pharmacol 2020; 179:2813-2828. [PMID: 32726469 DOI: 10.1111/bph.15218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
Ribosomes coordinate spatiotemporal control of gene expression, contributing to the acquisition and maintenance of cancer phenotype. The link between ribosomes and cancer is found in the roles of individual ribosomal proteins in tumorigenesis and cancer progression, including the ribosomal protein, receptor for activated C kinase 1 (RACK1). RACK1 regulates cancer cell invasion and is localized in spreading initiation centres, structural adhesion complexes containing RNA binding proteins and poly-adenylated mRNAs that suggest a local translation process. As RACK1 is a ribosomal protein directly involved in translation and in breast cancer progression, we propose a new molecular mechanism for breast cancer cell migration and invasion, which considers the molecular differences between epithelial and mesenchymal cell profiles in order to characterize and provide novel targets for therapeutic strategies. Hence, we provide an analysis on how ribosomes translate cancer progression with a final focus on the ribosomal protein RACK1 in breast cancer.
Collapse
Affiliation(s)
- Erica Buoso
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Mirco Masi
- Department of Drug Sciences, University of Pavia, Pavia, Italy.,Scuola Universitaria Superiore IUSS Pavia, Pavia, Italy
| | - Aideen Long
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College, Dublin, Ireland
| | | | | | - Stefano Govoni
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
12
|
Fan Y, Si W, Ji W, Wang Z, Gao Z, Tian R, Song W, Zhang H, Niu R, Zhang F. Rack1 mediates tyrosine phosphorylation of Anxa2 by Src and promotes invasion and metastasis in drug-resistant breast cancer cells. Breast Cancer Res 2019; 21:66. [PMID: 31113450 PMCID: PMC6530024 DOI: 10.1186/s13058-019-1147-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
Background Acquirement of resistance is always associated with a highly aggressive phenotype of tumor cells. Recent studies have revealed that Annexin A2 (Anxa2) is a key protein that links drug resistance and cancer metastasis. A high level of Anxa2 in cancer tissues is correlated to a highly aggressive phenotype. Increased Anxa2 expression appears to be specific in many drug-resistant cancer cells. The functional activity of Anxa2 is regulated by tyrosine phosphorylation at the Tyr23 site. Nevertheless, the accurate molecular mechanisms underlying the regulation of Anxa2 tyrosine phosphorylation and whether phosphorylation is necessary for the enhanced invasive phenotype of drug-resistant cells remain unknown. Methods Small interfering RNAs, small molecule inhibitors, overexpression, loss of function or gain of function, rescue experiments, Western blot, wound healing assays, transwell assays, and in vivo metastasis mice models were used to investigate the functional effects of Rack1 and Src on the tyrosine phosphorylation of Anxa2 and the invasion and metastatic potential of drug-resistant breast cancer cells. The interaction among Rack1, Src, and Anxa2 in drug-resistant cells was verified by co-immunoprecipitation assay. Results We demonstrated that Anxa2 Tyr23 phosphorylation is necessary for multidrug-resistant breast cancer invasion and metastasis. Rack1 is required for the invasive and metastatic potential of drug-resistant breast cancer cells through modulating Anxa2 phosphorylation. We provided evidence that Rack1 acts as a signal hub and mediates the interaction between Src and Anxa2, thereby facilitating Anxa2 phosphorylation by Src kinase. Conclusions Our findings suggest a convergence point role of Rack1/Src/Anxa2 complex in the crosstalk between drug resistance and cancer aggressiveness. The interaction between Anxa2 and Rack1/Src is responsible for the association between drug resistance and invasive/metastatic potential in breast cancer cells. Thus, our findings provide novel insights on the mechanism underlying the functional linkage between drug resistance and cancer aggressiveness. Electronic supplementary material The online version of this article (10.1186/s13058-019-1147-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanling Fan
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Weiyao Si
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Wei Ji
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Zhiyong Wang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Zicong Gao
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Ran Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Weijie Song
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - He Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China. .,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China.
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China. .,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
13
|
Li XY, Hu Y, Li NS, Wan JH, Zhu Y, Lu NH. RACK1 Acts as a Potential Tumor Promoter in Colorectal Cancer. Gastroenterol Res Pract 2019; 2019:5625026. [PMID: 30962803 PMCID: PMC6431438 DOI: 10.1155/2019/5625026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/07/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The receptor of activated protein kinase C 1 (RACK1) promotes the progression and invasion of several cancers. However, the role of RACK1 in the pathogenesis of colorectal cancer (CRC) has not been clearly defined. Herein, we aimed to investigate the biological role of RACK1 in CRC. MATERIALS AND METHODS The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) dataset were searched, and the expression of RACK1 in CRC tissues and adjacent normal tissues was evaluated. Immunohistochemical staining was performed to detect the expression of RACK1 in human CRC, adenoma, and normal tissues. Western blotting was used to detect the expression of RACK1 in human CRC cell lines. Functional assays, such as BrdU, colony formation, and wound healing and transwell invasion assays, were used to explore the biological role of RACK1 in CRC. RESULTS RACK1 was upregulated in CRC tissues compared with its expression in adjacent normal tissues in TCGA and the GEO dataset (P < 0.05). Moreover, RACK1 was significantly overexpressed in CRC and adenoma tissues compared with its expression in normal tissues (P < 0.05). Loss-of-function experiments showed that RACK1 promoted cell proliferation, migration, and invasion in vitro. CONCLUSIONS Our data indicated that RACK1, as an oncogene, markedly promoted the progression of CRC, which suggested that RACK1 is a potential therapeutic target for CRC management.
Collapse
Affiliation(s)
- Xue-Yang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province, China
| | - Yi Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province, China
| | - Nian-Shuang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province, China
| | - Jian-Hua Wan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province, China
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province, China
| | - Nong-Hua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province, China
| |
Collapse
|
14
|
Cortisol-induced SRSF3 expression promotes GR splicing, RACK1 expression and breast cancer cells migration. Pharmacol Res 2019; 143:17-26. [PMID: 30862604 DOI: 10.1016/j.phrs.2019.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 12/26/2022]
Abstract
Recent data have demonstrated that triple negative breast cancer (TNBC) with high glucocorticoid receptor (GR) expression are associated to therapy resistance and increased mortality. Given that GR alternative splicing generates mainly GRα, responsible of glucocorticoids action, we investigated its role in the regulation of RACK1 (Receptor for Activated C Kinase 1), a scaffolding protein with a GRE (Glucocorticoid Response Element) site on its promoter and involved in breast cancer cells migration and invasion. We provide the first evidence that GRα transcriptionally regulates RACK1 by a mechanism connected to SRSF3 splicing factor, which promotes GRα, essential for RACK1 transcriptional regulation and consequently for cells migration. We also establish that this mechanism can be positively regulated by cortisol. Hence, our data elucidate RACK1 transcriptional regulation and demonstrate that SRSF3 involvement in cells migration implies its role in controlling different pathways thus highlighting that new players have to be considered in GR-positive TNBC.
Collapse
|
15
|
RACK1 regulates centriole duplication by controlling localization of BRCA1 to the centrosome in mammary tissue-derived cells. Oncogene 2019; 38:3077-3092. [PMID: 30617304 DOI: 10.1038/s41388-018-0647-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 11/08/2022]
Abstract
Breast cancer gene 1 (BRCA1) is a tumor suppressor that is associated with hereditary breast and ovarian cancer. BRCA1 functions in DNA repair and centrosome regulation together with BRCA1-associated RING domain protein (BARD1), a heterodimer partner of BRCA1. Obg-like ATPase 1 (OLA1) was identified as a protein that interacts with BARD1. OLA1 regulates the centrosome by binding to and collaborating with BRCA1 and BARD1. We identified receptor for activated C kinase (RACK1) as a protein that interacts with OLA1. RACK1 directly bound to OLA1, the N-terminal region of BRCA1, and γ-tubulin, associated with BARD1, and localized the centrosomes throughout the cell cycle. Knockdown of RACK1 caused abnormal centrosomal localization of BRCA1 and abrogated centriole duplication. Overexpression of RACK1 increased the centrosomal localization of BRCA1 and caused centrosome amplification due to centriole overduplication. The number of centrioles in cells with two γ-tubulin spots was higher in cell lines derived from mammary tissue compared to those derived from other tissues. The effects of aberrant RACK1 expression level on centriole duplication were observed in cell lines derived from mammary tissue, but not in those derived from other tissues. Two BRCA1 variants, R133H and E143K, and a RACK1 variant, K280E, associated with cancer, which weakened the BRCA1-RACK1 interaction, interfered with the centrosomal localization of BRCA1 and reduced centrosome amplification induced by overexpression of RACK1. These results suggest that RACK1 regulates centriole duplication by controlling the centrosomal localization of BRCA1 in mammary tissue-derived cells and that this is dependent on the BRCA1-RACK1 interaction.
Collapse
|
16
|
Törer H, Aydın EB, Sezgintürk MK. A label-free electrochemical biosensor for direct detection of RACK 1 by using disposable, low-cost and reproducible ITO based electrode. Anal Chim Acta 2018; 1024:65-72. [PMID: 29776548 DOI: 10.1016/j.aca.2018.04.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/29/2018] [Accepted: 04/05/2018] [Indexed: 02/08/2023]
Abstract
In this study we designed an ultrasensitive electrochemical immunosensor for RACK 1 detection using 11-cyanoundecyltrimethoxysilane (11-CUTMS) as a immobilization matrix to immobilize biorecognition element. The used silane agent (11-CUTMS) provides a favorable platform for efficient loading of anti-RACK 1 antibody. The effective loading of the biorecognition element on the 11-CUTMS matrix was monitored by scanning electron microscopy (SEM), atomic force microscopy (AFM) images and fourier transform infrared spectroscopy (FTIR) spectra. The electrochemical characterization of the immunosensor was performed by using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. Moreover, biorecognition interaction between anti-RACK1 antibodies and RACK1 antigens was monitored by using single frequency technique (SFI). The operating conditions, calibration curves obtained during optimization of experiments and reproducibility of the proposed impedimetric RACK1 biosensor are also investigated and discussed. The electrochemical immunosensor illustrated a sensitive response to RACK 1 antigen with detection limit of 10.8 fg/mL and in the linear range of 0.036-2.278 pg/mL (R2 = 0.999). Owing to high specificity, good reproducibility, long stability and reusability, the fabricated immunosensor will provide a sensitive, selective approach to RACK 1 detection. Furthermore, the practical applicability in human serum samples were investigated with a satisfactory result.
Collapse
Affiliation(s)
- Hakan Törer
- Namık Kemal University, Faculty or Arts and Sciences, Chemistry Department, Tekirdağ, Turkey
| | - Elif Burcu Aydın
- Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey.
| |
Collapse
|
17
|
Liu B, Wang C, Chen P, Cheng B, Cheng Y. RACKI induces chemotherapy resistance in esophageal carcinoma by upregulating the PI3K/AKT pathway and Bcl-2 expression. Onco Targets Ther 2018; 11:211-220. [PMID: 29379302 PMCID: PMC5757499 DOI: 10.2147/ott.s152818] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Introduction Accumulating evidence indicates that RACK1 is involved in the progression of tumors. We aimed to evaluate the function of RACK1 in esophageal squamous cell carcinoma (ESCC) and its role in the mechanism of chemotherapy resistance. Materials and methods Transfected ESCC cell lines with plasmids expressed shRACK1 or open reading frame (ORF) targeting RACK1 and established stable cell lines. We then examined the effects of RACK1 on cell proliferation and chemotherapy resistance in ESCC cell lines, and the expression of AKT, pAKT, ERK1/2, Bcl-2, and Bim was introduced to further detect the association between RACK1 and chemotherapy resistance. Results The proliferation ability of ESCC cells was improved in the overexpression RACK1 groups (P<0.001) and decreased in the transfected shRACK1 groups (P<0.001) compared with the control ones. Meanwhile, upregulation of RACK1 significantly suppressed cisplatin-induced apoptosis in Eca109 and EC9706 cells, while downregulation of RACK1 promoted the sensitivity compared to the control group (Eca109: P<0.001 for shRACK1, P<0.01 for shNC, and P<0.001 for overexpression group; EC9706: P<0.001 for shRACK1, P<0.001 for shNC, and P<0.05 for overexpression group). Furthermore, we found that RACK1 could activate the PI3K/AKT pathway and increase the expression level of Bcl-2 in ESCC, which leads to the enhancement of chemoresistance in ESCC. Conclusion RACK1 promotes proliferation and chemotherapy resistance in ESCC by activating the PI3K/AKT pathway and upregulating the Bcl-2 expression.
Collapse
Affiliation(s)
- Bowen Liu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Cong Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Pengxiang Chen
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Bo Cheng
- Department of Radiation Oncology, Shandong Provincial Cancer Hospital, Jinan, Shandong, People's Republic of China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
18
|
Transcriptional regulation of RACK1 and modulation of its expression: Role of steroid hormones and significance in health and aging. Cell Signal 2017; 35:264-271. [DOI: 10.1016/j.cellsig.2017.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/27/2022]
|
19
|
Campagne C, Reyes-Gomez E, Picco ME, Loiodice S, Salaun P, Ezagal J, Bernex F, Commère PH, Pons S, Esquerre D, Bourneuf E, Estellé J, Maskos U, Lopez-Bergami P, Aubin-Houzelstein G, Panthier JJ, Egidy G. RACK1 cooperates with NRAS Q61K to promote melanoma in vivo. Cell Signal 2017; 36:255-266. [PMID: 28343944 DOI: 10.1016/j.cellsig.2017.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/20/2017] [Accepted: 03/22/2017] [Indexed: 12/24/2022]
Abstract
Melanoma is the deadliest skin cancer. RACK1 (Receptor for activated protein kinase C) protein was proposed as a biological marker of melanoma in human and domestic animal species harboring spontaneous melanomas. As a scaffold protein, RACK1 is able to coordinate the interaction of key signaling molecules implicated in both physiological cellular functions and tumorigenesis. A role for RACK1 in rewiring ERK and JNK signaling pathways in melanoma cell lines had been proposed. Here, we used a genetic approach to test this hypothesis in vivo in the mouse. We show that Rack1 knock-down in the mouse melanoma cell line B16 reduces invasiveness and induces cell differentiation. We have developed the first mouse model for RACK1 gain of function, Tyr::Rack1-HA transgenic mice, targeting RACK1 to melanocytes in vivo. RACK1 overexpression was not sufficient to initiate melanomas despite activated ERK and AKT. However, in a context of melanoma predisposition, RACK1 overexpression reduced latency and increased incidence and metastatic rate. In primary melanoma cells from Tyr::Rack1-HA, Tyr::NRasQ61K mice, activated JNK (c-Jun N-terminal kinase) and activated STAT3 (signal transducer and activator of transcription 3) acted as RACK1 oncogenic partners in tumoral progression. A sequential and coordinated activation of ERK, JNK and STAT3 with RACK1 is shown to accelerate aggressive melanoma development in vivo.
Collapse
Affiliation(s)
- C Campagne
- INRA, UMR955 Génétique Fonctionnelle et Médicale, Ecole Nationale Vétérinaire d'Alfort, F-94704 Maisons-Alfort, France; Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UMR955 Génétique Fonctionnelle et Médicale, F-94704 Maisons-Alfort, France.
| | - E Reyes-Gomez
- INRA, UMR955 Génétique Fonctionnelle et Médicale, Ecole Nationale Vétérinaire d'Alfort, F-94704 Maisons-Alfort, France; Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UMR955 Génétique Fonctionnelle et Médicale, F-94704 Maisons-Alfort, France; Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Unité d'Embryologie, d'Histologie et d'Anatomie Pathologique, F-94704 Maisons-Alfort, France
| | - M E Picco
- Instituto de Medicina y Biologia Experimental, CONICET, Buenos Aires, Argentina
| | - S Loiodice
- INRA, UMR955 Génétique Fonctionnelle et Médicale, Ecole Nationale Vétérinaire d'Alfort, F-94704 Maisons-Alfort, France; Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UMR955 Génétique Fonctionnelle et Médicale, F-94704 Maisons-Alfort, France
| | - P Salaun
- INRA, UMR955 Génétique Fonctionnelle et Médicale, Ecole Nationale Vétérinaire d'Alfort, F-94704 Maisons-Alfort, France; Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UMR955 Génétique Fonctionnelle et Médicale, F-94704 Maisons-Alfort, France
| | - J Ezagal
- INRA, UMR955 Génétique Fonctionnelle et Médicale, Ecole Nationale Vétérinaire d'Alfort, F-94704 Maisons-Alfort, France; Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UMR955 Génétique Fonctionnelle et Médicale, F-94704 Maisons-Alfort, France
| | - F Bernex
- INRA, UMR955 Génétique Fonctionnelle et Médicale, Ecole Nationale Vétérinaire d'Alfort, F-94704 Maisons-Alfort, France; Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UMR955 Génétique Fonctionnelle et Médicale, F-94704 Maisons-Alfort, France; Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Unité d'Embryologie, d'Histologie et d'Anatomie Pathologique, F-94704 Maisons-Alfort, France
| | - P H Commère
- Plateforme de Cytométrie, Département d'Immunologie, Institut Pasteur, F-75724 Paris, France
| | - S Pons
- Unité Neurobiologie Intégrative des Systèmes Cholinergiques, UMR 3571, CNRS, Institut Pasteur, F75724 Paris Cedex 15, France
| | - D Esquerre
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - E Bourneuf
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France; LREG, CEA, Université Paris-Saclay, F-78352 Jouy-en-Josas, France
| | - J Estellé
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - U Maskos
- Unité Neurobiologie Intégrative des Systèmes Cholinergiques, UMR 3571, CNRS, Institut Pasteur, F75724 Paris Cedex 15, France
| | - P Lopez-Bergami
- Instituto de Medicina y Biologia Experimental, CONICET, Buenos Aires, Argentina; Centro de Estudios Biomédicos, Biotecnologicos, Ambientales y Diagnostico, Universidad Malmonides, CONICET, Buenos Aires, Argentina
| | - G Aubin-Houzelstein
- INRA, UMR955 Génétique Fonctionnelle et Médicale, Ecole Nationale Vétérinaire d'Alfort, F-94704 Maisons-Alfort, France; Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UMR955 Génétique Fonctionnelle et Médicale, F-94704 Maisons-Alfort, France
| | - J J Panthier
- INRA, UMR955 Génétique Fonctionnelle et Médicale, Ecole Nationale Vétérinaire d'Alfort, F-94704 Maisons-Alfort, France; Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UMR955 Génétique Fonctionnelle et Médicale, F-94704 Maisons-Alfort, France; CNRS URM 3738, USC INRA 2026, F-75724, France; Institut Pasteur, Département de Biologie du Développement et Cellules Souches, Génétique fonctionnelle de la Souris, 25 rue du Docteur Roux, Paris F-75724, France
| | - G Egidy
- INRA, UMR955 Génétique Fonctionnelle et Médicale, Ecole Nationale Vétérinaire d'Alfort, F-94704 Maisons-Alfort, France; Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UMR955 Génétique Fonctionnelle et Médicale, F-94704 Maisons-Alfort, France; GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.
| |
Collapse
|
20
|
Duff D, Long A. Roles for RACK1 in cancer cell migration and invasion. Cell Signal 2017; 35:250-255. [PMID: 28336233 DOI: 10.1016/j.cellsig.2017.03.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 01/16/2023]
Abstract
Migration and invasion of cancer cells into surrounding tissue and vasculature is an important initial step in cancer metastasis. Metastasis is the leading cause of cancer related death and thus it is crucial that we improve our understanding of the mechanisms that promote this life-threatening phenomenon. Cell migration involves a complex, multistep process that leads to the actin-driven movement of cells on or through the tissues of the body. The multifunctional scaffolding protein RACK1 plays important roles in nucleating cell signalling hubs, anchoring proteins at specific subcellular locations and regulating protein activity. It is essential for cell migration and accumulating evidence now demonstrates multiple roles for RACK1 in regulating migration and invasion of tumour cells. The possibility of designing drugs that block the migratory and invasive capabilities of cancer cells represents an attractive therapeutic strategy for treating malignant disease with RACK1 being a potential target. In this review we summarize this evidence and examine the mechanisms that underlie the contribution of RACK1 to the various stages of cell migration and invasion.
Collapse
Affiliation(s)
- Deirdre Duff
- Trinity Translational Medicine Institute, Trinity College Dublin, Trinity Centre for Health Sciences, St James's Hospital, Dublin 8, Ireland
| | - Aideen Long
- Trinity Translational Medicine Institute, Trinity College Dublin, Trinity Centre for Health Sciences, St James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
21
|
Yu J, Wang L, Yang H, Ding D, Zhang L, Wang J, Chen Q, Zou Q, Jin Y, Liu X. Rab14 Suppression Mediated by MiR-320a Inhibits Cell Proliferation, Migration and Invasion in Breast Cancer. J Cancer 2016; 7:2317-2326. [PMID: 27994670 PMCID: PMC5166543 DOI: 10.7150/jca.15737] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/17/2016] [Indexed: 12/11/2022] Open
Abstract
We found that microRNA-320a (miR-320a) was an attractive prognostic biomarker in breast cancer (BC) previously, whereas its regulatory mechanism in BC was not well understood. Our aim was to identify miR-320a target gene, examine the clinical relationship between miR-320a and its target, and further explore the functions of its target in BC. In this study, miR-320a downstream target gene was determined in HEK-293T cells by dual luciferase reporter assay. Then western blotting and immunohistochemistry were used to assess miR-320a target gene expression in fresh frozen (n=19, breast cancer and matched non-malignant adjacent tissue samples) and formalin-fixed paraffin-embedded (FFPE) (n=130, invasive BC tissues, the same panel detected for miR-320a expression previously) breast tissues, respectively. The results suggested that miR-320a could significantly suppressed Rab14 3'-untranslated region luciferase-reporter activity, and thus Rab14 was first identified as miR-320a target in BC. In 19 matched breast tissues, 12 (63%) breast cancer tissues showed high expression of Rab14 compared with the corresponding normal tissues. Rab14 immunoreactivity was mainly detected in the cytoplasm, 77/130 (59.2%) showed high expression. Furthermore, Rab14 expression was found to be inversely correlated with miR-320a expression in fresh-frozen breast tissues as well as in FFPE invasive breast cancer samples. In addition, Rab14 expression levels were positively related to tumor size (P = 0.034), lymph node metastasis (P < 0.001), distant metastasis (P = 0.001), histological grade (P = 0.035) and clinical tumor lymph-node metastasis stage (P = 0.001). Patients with higher Rab14 expression showed shorter overall survival time. Moreover, silencing of Rab14 could suppress proliferation, migration and invasion in breast cancer cell lines. Collectively, our results indicate that miR-320a could target Rab14 and that they could interact biologically in BC.
Collapse
Affiliation(s)
- Juan Yu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Haiping Yang
- Department of Pathology, People's Hospital, Linzi District, Zibo City, Shandong 255400, China
| | - Di Ding
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jigang Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qi Chen
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qiang Zou
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yiting Jin
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiuping Liu
- Department of Pathology, the Fifth People's Hospital, Fudan University, Shanghai 200240, China
| |
Collapse
|
22
|
McKenzie AT, Katsyv I, Song WM, Wang M, Zhang B. DGCA: A comprehensive R package for Differential Gene Correlation Analysis. BMC SYSTEMS BIOLOGY 2016; 10:106. [PMID: 27846853 PMCID: PMC5111277 DOI: 10.1186/s12918-016-0349-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/03/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Dissecting the regulatory relationships between genes is a critical step towards building accurate predictive models of biological systems. A powerful approach towards this end is to systematically study the differences in correlation between gene pairs in more than one distinct condition. RESULTS In this study we develop an R package, DGCA (for Differential Gene Correlation Analysis), which offers a suite of tools for computing and analyzing differential correlations between gene pairs across multiple conditions. To minimize parametric assumptions, DGCA computes empirical p-values via permutation testing. To understand differential correlations at a systems level, DGCA performs higher-order analyses such as measuring the average difference in correlation and multiscale clustering analysis of differential correlation networks. Through a simulation study, we show that the straightforward z-score based method that DGCA employs significantly outperforms the existing alternative methods for calculating differential correlation. Application of DGCA to the TCGA RNA-seq data in breast cancer not only identifies key changes in the regulatory relationships between TP53 and PTEN and their target genes in the presence of inactivating mutations, but also reveals an immune-related differential correlation module that is specific to triple negative breast cancer (TNBC). CONCLUSIONS DGCA is an R package for systematically assessing the difference in gene-gene regulatory relationships under different conditions. This user-friendly, effective, and comprehensive software tool will greatly facilitate the application of differential correlation analysis in many biological studies and thus will help identification of novel signaling pathways, biomarkers, and targets in complex biological systems and diseases.
Collapse
Affiliation(s)
- Andrew T. McKenzie
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Igor Katsyv
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Won-Min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| |
Collapse
|
23
|
Lv QL, Huang YT, Wang GH, Liu YL, Huang J, Qu Q, Sun B, Hu L, Cheng L, Chen SH, Zhou HH. Overexpression of RACK1 Promotes Metastasis by Enhancing Epithelial-Mesenchymal Transition and Predicts Poor Prognosis in Human Glioma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:1021. [PMID: 27763568 PMCID: PMC5086760 DOI: 10.3390/ijerph13101021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 12/11/2022]
Abstract
Emerging studies show that dysregulation of the receptor of activated protein kinase C1 (RACK1) plays a crucial role in tumorigenesis and progression of various cancers. However, the biological function and underlying mechanism of RACK1 in glioma remains poorly defined. Here, we found that RACK1 was significantly up-regulated in glioma tissues compared with normal brain tissues, being closely related to clinical stage of glioma both in mRNA and protein levels. Moreover, Kaplan-Meier analysis demonstrated that patients with high RACK1 expression had a poor prognosis (p = 0.0062, HR = 1.898, 95% CI: 1.225-3.203). In vitro functional assays indicated that silencing of RACK1 could dramatically promote apoptosis and inhibit cell proliferation, migration, and invasion of glioma cells. More importantly, knockdown of RACK1 led to a vast accumulation of cells in G0/G1 phase and their reduced proportions at the S phase by suppressing the expression of G1/S transition key regulators Cyclin D1 and CDK6. Additionally, this forced down-regulation of RACK1 significantly suppressed migration and invasion via inhibiting the epithelial-mesenchymal transition (EMT) markers, such as MMP2, MMP9, ZEB1, N-Cadherin, and Integrin-β1. Collectively, our study revealed that RACK1 might act as a valuable prognostic biomarker and potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Qiao-Li Lv
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China.
| | - Yuan-Tao Huang
- Department of Neurology, The Brain Hospital of Hunan Province, Changsha 410008, China.
| | - Gui-Hua Wang
- Department of Oncology, Changsha Central Hospital, Changsha 410008, China.
| | - Yan-Ling Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China.
| | - Jin Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China.
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Bao Sun
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China.
| | - Lei Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China.
| | - Lin Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510275, China.
| | - Shu-Hui Chen
- Department of Oncology, Changsha Central Hospital, Changsha 410008, China.
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China.
| |
Collapse
|
24
|
Yang Y, Wu N, Wang Z, Zhang F, Tian R, Ji W, Ren X, Niu R. Rack1 Mediates the Interaction of P-Glycoprotein with Anxa2 and Regulates Migration and Invasion of Multidrug-Resistant Breast Cancer Cells. Int J Mol Sci 2016; 17:ijms17101718. [PMID: 27754360 PMCID: PMC5085749 DOI: 10.3390/ijms17101718] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/18/2016] [Accepted: 10/07/2016] [Indexed: 12/11/2022] Open
Abstract
The emergence of multidrug resistance is always associated with more rapid tumor recurrence and metastasis. P-glycoprotein (P-gp), which is a well-known multidrug-efflux transporter, confers enhanced invasion ability in drug-resistant cells. Previous studies have shown that P-gp probably exerts its tumor-promoting function via protein-protein interaction. These interactions were implicated in the activation of intracellular signal transduction. We previously showed that P-gp binds to Anxa2 and promotes the invasiveness of multidrug-resistant (MDR) breast cancer cells through regulation of Anxa2 phosphorylation. However, the accurate mechanism remains unclear. In the present study, a co-immunoprecipitation coupled with liquid chromatography tandem mass spectrometry-based interactomic approach was performed to screen P-gp binding proteins. We identified Rack1 as a novel P-gp binding protein. Knockdown of Rack1 significantly inhibited proliferation and invasion of MDR cancer cells. Mechanistic studies demonstrated that Rack1 functioned as a scaffold protein that mediated the binding of P-gp to Anxa2 and Src. We showed that Rack1 regulated P-gp activity, which was necessary for adriamycin-induced P-gp-mediated phosphorylation of Anxa2 and Erk1/2. Overall, the findings in this study augment novel insights to the understanding of the mechanism employed by P-gp for promoting migration and invasion of MDR cancer cells.
Collapse
Affiliation(s)
- Yi Yang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| | - Na Wu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| | - Zhiyong Wang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| | - Ran Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| | - Wei Ji
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| | - Xiubao Ren
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| |
Collapse
|
25
|
Li X, Xiao Y, Fan S, Xiao M, Wang X, Chen X, Li C, Zong G, Zhou G, Wan C. RACK1 overexpression associates with pancreatic ductal adenocarcinoma growth and poor prognosis. Exp Mol Pathol 2016; 101:176-186. [PMID: 27498047 DOI: 10.1016/j.yexmp.2016.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/24/2016] [Accepted: 08/02/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The receptor for activated protein kinase C (RACK1) is a scaffold protein involved in multiple intracellular signal pathways. Previous studies have shown that RACK1 is associated with the progression of multiple cancer types, including hepatocellular carcinoma and gastric cancer. However, the role of RACK1 in human pancreatic ductal adenocarcinoma (PDAC) remains unclear. METHODS In this study, the expression of RACK1 was evaluated by Western blot analysis in 8 paired fresh PDAC tissues and immunohistochemistry on 179 paraffin-embedded slices. Then, we used Fisher exact test to analyze the correlation between RACK1 expression and clinicopathological characteristics. Starvation and re-feeding assay was used to assess cell cycle. Western blot, CCK8, flow cytometry assays, and colony formation analyses demonstrated that RACK1 played an essential role in PDAC development. Annexin-V/PI apoptotic assay and western blot showed that RACK1 was involved in regulating the apoptosis of PDAC cells. RESULTS RACK1 was highly expressed in PDAC tissues and cell lines and was significantly associated with multiple clinicopathological factors. Univariate and multivariate analyses showed that high RACK1 expression was identified to be an independent prognostic factor for PDAC patients' survival. In vitro, serum starvation-refeeding experiment suggested that RACK1 was upregulated in proliferating PDAC cells, together with the percentage of cells at the S phase, and was correlated with the expression of Cyclin D1. Moreover, Overexpression of RACK1 facilitated the proliferation and cell cycle progression of PDAC cells, while downregulation of RACK1 induced growth impairment, G1/S cell cycle arrest and apoptosis in PDAC cells. Silencing RACK1 decreased bcl-2 expression, increased cleaved caspase3 expression level and induced the apoptosis of PDAC cells. CONCLUSIONS Our results suggest that RACK1 could play an important role in the tumorigenesis of PDAC and serve as a potential therapeutical target in PDAC treatment.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of General Surgey, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Ying Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu, China
| | - Shaoqing Fan
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaotong Wang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xudong Chen
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Chunsun Li
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Guijuan Zong
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Guoxiong Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| | - Chunhua Wan
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu, China; Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
26
|
Kiely M, Adams DR, Hayes SL, O'Connor R, Baillie GS, Kiely PA. RACK1 stabilises the activity of PP2A to regulate the transformed phenotype in mammary epithelial cells. Cell Signal 2016; 35:290-300. [PMID: 27600565 DOI: 10.1016/j.cellsig.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 02/04/2023]
Abstract
Conflicting reports implicate the scaffolding protein RACK1 in the progression of breast cancer. RACK1 has been identified as a key regulator downstream of growth factor and adhesion signalling and as a direct binding partner of PP2A. Our objective was to further characterise the interaction between PP2A and RACK1 and to advance our understanding of this complex in breast cancer cells. We examined how the PP2A holoenzyme is assembled on the RACK1 scaffold in MCF-7 cells. We used immobilized peptide arrays representing the entire PP2A-catalytic subunit to identify candidate amino acids on the C subunit of PP2A that might be involved in binding of RACK1. We identified the RACK1 interaction sites on PP2A. Stable cell lines expressing PP2A with FR69/70AA, R214A and Y218F substitutions were generated and it was confirmed that the RACK1/PP2A interaction is essential to stabilise PP2A activity. We used Real-Time Cell Analysis and a series of assays to demonstrate that disruption of the RACK1/PP2A complex also reduces the adhesion, proliferation, migration and invasion of breast cancer cells and plays a role in maintenance of the cancer phenotype. This work has significantly advanced our understanding of the RACK1/PP2A complex and suggests a pro-carcinogenic role for the RACK1/PP2A interaction. This work suggests that approaches to target the RACK1/PP2A complex are a viable option to regulate PP2A activity and identifies a novel potential therapeutic target in the treatment of breast cancer.
Collapse
Affiliation(s)
- Maeve Kiely
- Graduate Entry Medical School, Materials and Surface Science Institute and Health Research Institute, University of Limerick, Ireland
| | - David R Adams
- Institute of Chemical Sciences, Heriot-Watt University, Riccarton Campus, Edinburgh EH14AS, UK
| | - Sheri L Hayes
- Graduate Entry Medical School, Materials and Surface Science Institute and Health Research Institute, University of Limerick, Ireland
| | - Rosemary O'Connor
- Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, University College Cork, Cork, Ireland
| | - George S Baillie
- Institute of Cardiovascular & Medical Science, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Patrick A Kiely
- Graduate Entry Medical School, Materials and Surface Science Institute and Health Research Institute, University of Limerick, Ireland.
| |
Collapse
|
27
|
Peng H, Gong PG, Li JB, Cai LM, Yang L, Liu YY, Yao KT, Li X. The important role of the receptor for activated C kinase 1 (RACK1) in nasopharyngeal carcinoma progression. J Transl Med 2016; 14:131. [PMID: 27170279 PMCID: PMC4864934 DOI: 10.1186/s12967-016-0885-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/28/2016] [Indexed: 01/26/2023] Open
Abstract
Background The receptor for activated C kinase 1 (RACK1) is involved in various cancers, but its roles in nasopharyngeal carcinoma (NPC) have not yet been fully elucidated. Methods Initially, RACK1 expression was analyzed by immunohistochemistry in NPC and normal nasopharyngeal (NP) tissues. It was also detected by qPCR and Western blot in NPC cells. Confocal microscope and immunofluorescence were performed to detect the subcellular compartmentalization of RACK1. Subsequently, after up- or down-regulating RACK1 in NPC cells, cell proliferation and migration/invasion were tested using in vitro assays including MTT, EdU, colony formation, Transwell and Boyden assays. Furthermore, several key molecules were detected by Western blot to explore underlying mechanism. Finally, clinical samples were analyzed to confirm the relationship between RACK1 expression and clinical features. Results Receptor for activated C kinase 1 expression was much higher in NPC than NP tissues. And RACK1 was mainly located in the cytoplasm. Overexpression of RACK1 promoted NPC cell proliferation and metastasis/invasion, whereas depletion of this protein suppressed NPC cell proliferation and metastasis/invasion. Mechanistically, RACK1 deprivation obviously suppressed the activation of Akt and FAK, suggesting the PI3K/Akt/FAK pathway as one of functional mechanisms of RACK1 in NPC. Furthermore, clinical sample analysis indicated a positive correlation between in vivo expression of RACK1 with lymph node invasion and clinical stage of NPC. Conclusion Our results demonstrate that RACK1 protein plays an important role in NPC development and progression. The upregulation of RACK1 can promote the proliferation and invasion of NPC by regulating the PI3K/Akt/FAK signal pathway. Thus, this study contributes to the discovery of a potential therapeutic target for NPC. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0885-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong Peng
- Department of Otolaryngology-Head and Neck Surgery, The Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou, 510317, China.
| | - Ping-Gui Gong
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jin-Bang Li
- Department of Pathology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, China
| | - Long-Mei Cai
- Cancer Research Institute and the Provincial Key Laboratory of Cancer Immunotherapy, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Le Yang
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yun-Yi Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Kai-Tai Yao
- Cancer Research Institute and the Provincial Key Laboratory of Cancer Immunotherapy, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xin Li
- Cancer Research Institute and the Provincial Key Laboratory of Cancer Immunotherapy, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
28
|
Bahadır EB, Sezgintürk MK. Label-free, ITO-based immunosensor for the detection of a cancer biomarker: Receptor for Activated C Kinase 1. Analyst 2016; 141:5618-26. [DOI: 10.1039/c6an00694a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new, quite sensitive disposable immunosensor, based on the anti-RACK1 antibody, was developed for the determination of Receptor for Activated C Kinase 1 (RACK1) for the first time.
Collapse
Affiliation(s)
- E. B. Bahadır
- Namık Kemal University
- Scientific and Technological Research Center
- Tekirdağ
- Turkey
| | - M. K. Sezgintürk
- Namık Kemal University
- Faculty of Science
- Chemistry Department
- Biochemistry Division
- Tekirdağ
| |
Collapse
|
29
|
de Las Heras-Rubio A, Perucho L, Paciucci R, Vilardell J, LLeonart ME. Ribosomal proteins as novel players in tumorigenesis. Cancer Metastasis Rev 2015; 33:115-41. [PMID: 24375388 DOI: 10.1007/s10555-013-9460-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ribosome biogenesis is the most demanding energetic and metabolic expenditure of the cell. The nucleolus, a nuclear compartment, coordinates rRNA transcription, maturation, and assembly into ribosome subunits. The transcription process is highly coordinated with ribosome biogenesis. In this context, ribosomal proteins (RPs) play a crucial role. In the last decade, an increasing number of studies have associated RPs with extraribosomal functions related to proliferation. Importantly, the expression of RPs appears to be deregulated in several human disorders due, at least in part, to genetic mutations. Although the deregulation of RPs in human malignancies is commonly observed, a more complex mechanism is believed to be involved, favoring the tumorigenic process, its progression and metastasis. This review explores the roles of the most frequently mutated oncogenes and tumor suppressor genes in human cancer that modulate ribosome biogenesis, including their interaction with RPs. In this regard, we propose a new focus for novel therapies.
Collapse
Affiliation(s)
- A de Las Heras-Rubio
- Oncology and Pathology Group, Institut de Recerca Hospital Vall d'Hebron, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | | | | | | | | |
Collapse
|
30
|
Wang N, Liu F, Cao F, Jia Y, Wang J, Ma W, Tan B, Wang K, Song Q, Cheng Y. RACK1 predicts poor prognosis and regulates progression of esophageal squamous cell carcinoma through its epithelial-mesenchymal transition. Cancer Biol Ther 2015; 16:528-40. [PMID: 25719728 DOI: 10.1080/15384047.2015.1016687] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND RACK1 is known to be involved in tumor progression, and its prognostic value on many kinds of tumors has been identified. However, there are limited studies about the functional role of RACK1 in esophageal squamous cell carcinoma (ESCC). PATIENTS AND METHODS RACK1 expression was examined in 100 ESCC tissue samples using immunohistochemistry staining. RACK1 was knocked-down in ESCC cell lines by shRNA. The effects on cell proliferation, invasion and migration were examined in ESCC cell lines and nude mouse model. Vimentin and E-cadherin were introduced to further study the association between RACK1 and EMT. RESULTS RACK1 expression was significantly associated with the tumor length (P = 0.012), diameter<3 cm (P = 0.047), T stage (P = 0.032), and lymph node metastasis (P = 0.038), respectively. Kaplan-Meier survival analysis and Cox analyses revealed RACK1 expression was an independent predictor for OS (P = 0.030) and DFS (P = 0.027) in ESCC. Down-regulation of RACK1 inhibited cell proliferation, along with invasion and migration in vitro and in vivo. A significant positive correlation between RACK1 expression and vimentin (P = 0.0190) and an inverse correlation between RACK1 expression and E-cadherin (P = 0.0047) were found. CONCLUSIONS RACK1 predicted poor prognosis in ESCC, promoted tumor progression, and was involved in EMT of ESCC.
Collapse
Key Words
- C, chemotherapy
- CRT, chemoradiotherapy
- DFS, disease-free survival
- EMT, epithelial-mesenchymal transition
- ESCC, esophageal squamous cell carcinoma
- F, female
- IHC, immunohistochemistry
- M, male
- OS, overall survival
- R, radiotherapy
- RACK1
- RACK1, Receptor for Activated C Kinase 1
- epithelial-mesenchymal transition
- esophageal squamous cell carcinoma
- prognosis
- progression
Collapse
Affiliation(s)
- Nana Wang
- a Department of Radiation Oncology; Qilu Hospital of Shandong University ; Jinan , PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gandin V, Senft D, Topisirovic I, Ronai ZA. RACK1 Function in Cell Motility and Protein Synthesis. Genes Cancer 2014; 4:369-77. [PMID: 24349634 DOI: 10.1177/1947601913486348] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The receptor for activated C kinase 1 (RACK1) serves as an adaptor for a number of proteins along the MAPK, protein kinase C, and Src signaling pathways. The abundance and near ubiquitous expression of RACK1 reflect its role in coordinating signaling molecules for many critical biological processes, from mRNA translation to cell motility to cell survival and death. Complete deficiency of Rack1 is embryonic lethal, but the recent development of genetic Rack1 hypomorphic mice has highlighted the central role that RACK1 plays in cell movement and protein synthesis. This review focuses on the importance of RACK1 in these processes and places the recent work in the larger context of understanding RACK1 function.
Collapse
Affiliation(s)
- Valentina Gandin
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC, Canada ; Department of Oncology, McGill University, Montréal, QC, Canada
| | - Daniela Senft
- Signal Transduction Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC, Canada ; Department of Oncology, McGill University, Montréal, QC, Canada
| | - Ze'ev A Ronai
- Signal Transduction Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| |
Collapse
|
32
|
RACK1, a versatile hub in cancer. Oncogene 2014; 34:1890-8. [PMID: 24882575 DOI: 10.1038/onc.2014.127] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/07/2014] [Accepted: 04/10/2014] [Indexed: 01/15/2023]
Abstract
RACK1 is a highly conserved intracellular adaptor protein with significant homology to Gβ and was originally identified as the anchoring protein for activated protein kinase C. In the past 20 years, the number of binding partners and validated cellular functions for RACK1 has increased, which facilitates clarification of its involvement in different biological events. In this review, we will focus on its role in cancer, summarizing its aberrant expression, pro- or anti-oncogenic effects and the underlying mechanisms in various cancers.
Collapse
|
33
|
Schreier VN, Pethő L, Orbán E, Marquardt A, Petre BA, Mező G, Manea M. Protein expression profile of HT-29 human colon cancer cells after treatment with a cytotoxic daunorubicin-GnRH-III derivative bioconjugate. PLoS One 2014; 9:e94041. [PMID: 24718594 PMCID: PMC3981732 DOI: 10.1371/journal.pone.0094041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 03/10/2014] [Indexed: 11/18/2022] Open
Abstract
Targeted delivery of chemotherapeutic agents is a new approach for the treatment of cancer, which provides increased selectivity and decreased systemic toxicity. We have recently developed a promising drug delivery system, in which the anticancer drug daunorubicin (Dau) was attached via oxime bond to a gonadotropin-releasing hormone-III (GnRH-III) derivative used as a targeting moiety (Glp-His-Trp-Lys(Ac)-His-Asp-Trp-Lys(Dau = Aoa)-Pro-Gly-NH2; Glp = pyroglutamic acid, Ac = acetyl; Aoa = aminooxyacetyl). This bioconjugate exerted in vitro cytostatic/cytotoxic effect on human breast, prostate and colon cancer cells, as well as significant in vivo tumor growth inhibitory effect on colon carcinoma bearing mice. In our previous studies, H-Lys(Dau = Aoa)-OH was identified as the smallest metabolite produced in the presence of rat liver lysosomal homogenate, which was able to bind to DNA in vitro. To get a deeper insight into the mechanism of action of the bioconjugate, changes in the protein expression profile of HT-29 human colon cancer cells after treatment with the bioconjugate or free daunorubicin were investigated by mass spectrometry-based proteomics. Our results indicate that several metabolism-related proteins, molecular chaperons and proteins involved in signaling are differently expressed after targeted chemotherapeutic treatment, leading to the conclusion that the bioconjugate exerts its cytotoxic action by interfering with multiple intracellular processes.
Collapse
Affiliation(s)
| | - Lilla Pethő
- Department of Chemistry, University of Konstanz, Konstanz, Germany
- MTA-ELTE Research Group of Peptide Chemistry, Budapest, Hungary
| | - Erika Orbán
- MTA-ELTE Research Group of Peptide Chemistry, Budapest, Hungary
| | | | | | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Budapest, Hungary
| | - Marilena Manea
- Department of Chemistry, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, University of Konstanz, Konstanz, Germany
- * E-mail:
| |
Collapse
|
34
|
LIN YANG, CUI MANHUA, TENG HONG, WANG FENGWEN, YU WEI, XU TIANMIN. Silencing the receptor of activated C-kinase 1 (RACK1) suppresses tumorigenicity in epithelial ovarian cancer in vitro and in vivo. Int J Oncol 2014; 44:1252-8. [DOI: 10.3892/ijo.2014.2274] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/18/2013] [Indexed: 11/05/2022] Open
|
35
|
Dave JM, Kang H, Abbey CA, Maxwell SA, Bayless KJ. Proteomic profiling of endothelial invasion revealed receptor for activated C kinase 1 (RACK1) complexed with vimentin to regulate focal adhesion kinase (FAK). J Biol Chem 2013; 288:30720-30733. [PMID: 24005669 DOI: 10.1074/jbc.m113.512467] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Angiogenesis is critical for many physiological and pathological processes. To identify molecules relevant to angiogenesis, we performed a proteomic screen comparing invading versus non-invading endothelial cells in three-dimensional collagen matrices. We found up-regulated levels of receptor for activated C kinase 1 (RACK1) and the intermediate filament protein vimentin that correlated with increased endothelial cell invasion. Because both RACK1 and vimentin have been linked to focal adhesion kinase (FAK), we investigated whether this pathway regulated invasion. RACK1 depletion reduced invasion responses, and this was associated with attenuated activation of FAK. Knockdown of vimentin significantly decreased levels of phosphorylated and total FAK. Treatment with a pharmacological inhibitor of FAK dose-dependently reduced invasion, indicating a crucial role for FAK activity during invasion. Because RACK1 and vimentin were both up-regulated with sphingosine 1-phosphate treatment, required for invasion, and regulated FAK, we tested whether they complexed together. RACK1 complexed with vimentin, and growth factors enhanced this interaction. In addition, RACK1, vimentin, and FAK formed an intermolecular complex in invading endothelial cultures in three dimensions in response to stimulation by sphingosine 1-phosphate and growth factors. Moreover, depletion of RACK1 decreased the association of vimentin and FAK, suggesting that RACK1 was required for stabilizing vimentin-FAK interactions during sprouting. Silencing of vimentin and RACK1 decreased cell adhesion and focal contact formation. Taken together, these results demonstrate that proangiogenic signals converge to enhance expression and association of RACK1 and vimentin, which regulated FAK, resulting in successful endothelial sprout formation in three-dimensional collagen matrices.
Collapse
Affiliation(s)
- Jui M Dave
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Hojin Kang
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Colette A Abbey
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Steve A Maxwell
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Kayla J Bayless
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843.
| |
Collapse
|
36
|
Shen F, Yan C, Liu M, Feng Y, Chen Y. RACK1 promotes prostate cancer cell proliferation, invasion and metastasis. Mol Med Rep 2013; 8:999-1004. [PMID: 23912224 DOI: 10.3892/mmr.2013.1612] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/19/2013] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the functions of RACK1 and its involvement in mechanisms of prostate cancer (PC) cell proliferation, invasion and metastasis. The proliferation, invasion and metastasis of stably transfected DU145 cells with RACK1 was evaluated in vitro as well as in vivo following the establishment of nude mouse models. The expression of Ki67, RACK1, PTEN and androgen receptor (AR) in PC was detected by immunohistochemical analysis. Our results indicated that RACK1 promotes PC cell proliferation, invasion and metastasis in vitro and in vivo. However, knockdown of RACK1 by siRNA in vitro inhibited PC cell proliferation, migration and invasion. PTEN downregulation and Ki67 upregulation were also altered with the upregulation of RACK1; RACK1 staining was strongly correlated with PTEN downregulation and Ki67 upregulation. These data demonstrated that increased RACK1 expression is important in promoting PC cell proliferation, invasion and metastasis in vitro and in vivo.
Collapse
Affiliation(s)
- Fangrong Shen
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | | | | | | | | |
Collapse
|
37
|
Hu F, Tao Z, Wang M, Li G, Zhang Y, Zhong H, Xiao H, Xie X, Ju M. RACK1 promoted the growth and migration of the cancer cells in the progression of esophageal squamous cell carcinoma. Tumour Biol 2013; 34:3893-9. [DOI: 10.1007/s13277-013-0977-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/25/2013] [Indexed: 01/04/2023] Open
|
38
|
Sutton P, Borgia JA, Bonomi P, Plate JMD. Lyn, a Src family kinase, regulates activation of epidermal growth factor receptors in lung adenocarcinoma cells. Mol Cancer 2013; 12:76. [PMID: 23866081 PMCID: PMC3725175 DOI: 10.1186/1476-4598-12-76] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/12/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Activation of receptors for growth factors on lung epithelial cells is essential for transformation into tumor cells, supporting their viability and proliferation. In most lung cancer patients, EGFR is constitutively activated without evidence of mutation. Defining mechanisms for constitutive activation of EGFR could elucidate additional targets for therapy of lung cancers. METHODS The approach was to identify lung cancer cell lines with constitutively activated EGFR and use systematic selection of inhibitors to evaluate their effects on specific EGFR phosphorylations and downstream signaling pathways. Interactions between receptors, kinases, and scaffolding proteins were investigated by co-immunoprecipitation plus Western blotting. RESULTS The results revealed a dependence on Src family of tyrosine kinases for downstream signaling and cell growth. Lyn, a Src family kinase functional in normal and malignant B-lymphocytes, was a defining signal transducer required for EGFR signaling in Calu3 cell line. Src family kinase activation in turn, was dependent on PKCßII. Lyn and PKC exist in membrane complexes of RACK1 and in association with EGFR which pairs with other receptor partners. Silencing of Lyn expression with interfering siRNA decreased EGFR activation and cell viability. CONCLUSIONS The importance of Src family kinases and PKCßII in the initiation of the EGFR signaling pathway in lung tumor cells was demonstrated. We conclude that phosphorylation of EGFR is mediated through PKCßII regulation of Lyn activation, and occurs in association with RACK1 and Cbp/PAG proteins. We suggest that protein complexes in cell membranes, including lipid rafts, may serve as novel targets for combination therapies with EGFR and Src Family Kinase inhibitors in lung cancer.
Collapse
Affiliation(s)
- Parnetta Sutton
- Department of Medical Laboratory Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
39
|
Lee KM, Ju JH, Jang K, Yang W, Yi JY, Noh DY, Shin I. CD24 regulates cell proliferation and transforming growth factor β-induced epithelial to mesenchymal transition through modulation of integrin β1 stability. Cell Signal 2012; 24:2132-42. [PMID: 22800863 DOI: 10.1016/j.cellsig.2012.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/25/2012] [Accepted: 07/09/2012] [Indexed: 12/22/2022]
Abstract
To determine the role of CD24 in breast cancer cells, we knocked down CD24 in MCF-7 human breast cancer cells by retroviral delivery of shRNA. MCF-7 cells with knocked down CD24 (MCF-7 hCD24 shRNA) exhibited decreased cell proliferation and cell adhesion as compared to control MCF-7 mCD24 shRNA cells. Decreased proliferation of MCF-7 hCD24 shRNA cells resulted from the inhibition of cell cycle progression from G1 to S phase. The specific inhibition of MEK/ERK signaling by CD24 ablation might be responsible for the inhibition of cell proliferation. Phosphorylation of Src/FAK and TGF-β1-mediated epithelial to mesenchymal transition was also down-regulated in MCF-7 hCD24 shRNA cells. Reduced Src/FAK activity was caused by a decrease in integrin β1 bound with CD24 and subsequent destabilization of integrin β1. Our results suggest that down-regulation of Raf/MEK/ERK signaling via Src/FAK may be dependent on integrin β1 function and that this mechanism is largely responsible for the CD24 ablation-induced decreases in cell proliferation and epithelial to mesenchymal transition.
Collapse
Affiliation(s)
- Kyung-min Lee
- Department of Life Science, Hanyang University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
40
|
Ruan Y, Sun L, Hao Y, Wang L, Xu J, Zhang W, Xie J, Guo L, Zhou L, Yun X, Zhu H, Shen A, Gu J. Ribosomal RACK1 promotes chemoresistance and growth in human hepatocellular carcinoma. J Clin Invest 2012; 122:2554-66. [PMID: 22653060 DOI: 10.1172/jci58488] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 04/24/2012] [Indexed: 01/14/2023] Open
Abstract
Coordinated translation initiation is coupled with cell cycle progression and cell growth, whereas excessive ribosome biogenesis and translation initiation often lead to tumor transformation and survival. Hepatocellular carcinoma (HCC) is among the most common and aggressive cancers worldwide and generally displays inherently high resistance to chemotherapeutic drugs. We found that RACK1, the receptor for activated C-kinase 1, was highly expressed in normal liver and frequently upregulated in HCC. Aberrant expression of RACK1 contributed to in vitro chemoresistance as well as in vivo tumor growth of HCC. These effects depended on ribosome localization of RACK1. Ribosomal RACK1 coupled with PKCβII to promote the phosphorylation of eukaryotic initiation factor 4E (eIF4E), which led to preferential translation of the potent factors involved in growth and survival. Inhibition of PKCβII or depletion of eIF4E abolished RACK1-mediated chemotherapy resistance of HCC in vitro. Our results imply that RACK1 may function as an internal factor involved in the growth and survival of HCC and suggest that targeting RACK1 may be an efficacious strategy for HCC treatment.
Collapse
Affiliation(s)
- Yuanyuan Ruan
- Key Laboratory of Glycoconjugate Research, Ministry of Public Health, Shanghai Medical College of Fudan University, Shanghai, People’s Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhong X, Li M, Nie B, Wu F, Zhang L, Wang E, Han Y. Overexpressions of RACK1 and CD147 associated with poor prognosis in stage T1 pulmonary adenocarcinoma. Ann Surg Oncol 2012; 20:1044-52. [PMID: 22592183 DOI: 10.1245/s10434-012-2377-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Indexed: 01/29/2023]
Abstract
BACKGROUND RACK1 has been shown to be able to interact with some key cellular proteins involved in tumor development and progression. Our study showed that the expressions of RACK1 and CD147 are correlated with each other. The purpose of this study is to clarify the relationship between expression of RACK1 and CD147 in 180 patients with operable stage T1 human pulmonary adenocarcinoma and their clinicopathological features and prognostic significance. METHODS DNA transfection and RNA interference of RACK1 were conducted to produce pulmonary adenocarcinoma cell lines with differential RACK1 expression. Western blot and RT-PCR were used to quantify RACK1 and CD147 expression in protein and mRNA levels in pulmonary adenocarcinoma cell lines. Immunohistochemistry, double-labeling immunofluorescence, confocal laser scanning microscopy, and Western blot were used to correlate the clinicopathological significance of RACK1 and CD147 expression in cases of stage T1 pulmonary adenocarcinoma. RESULTS We detected high levels of RACK1 and CD147 mRNA as well as protein expression in pulmonary adenocarcinoma in vitro. In pulmonary adenocarcinoma, the expression of RACK1 and CD147 were correlated both in vitro and in vivo. Our clinicopathological analysis demonstrated that RACK1 or CD147 expression correlated with higher incidence of lymph node metastasis and lower differentiation than tumors that were negative for expression of either RACK1 or CD147. The expression of RACK1 and CD147 was not associated with the patient age or gender. Multivariate analysis demonstrated that the co-overexpression of RACK1 and CD147 was an independent prognostic factor for stage T1 pulmonary adenocarcinoma (P = 0.012). CONCLUSIONS Tumor invasiveness is associated with expression of RACK1 and CD147 in pulmonary adenocarcinoma. The co-expression of RACK1 and CD147 could be an important prognostic biomarker for stage T1 pulmonary adenocarcinoma.
Collapse
Affiliation(s)
- Xinwen Zhong
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Erdi B, Nagy P, Zvara A, Varga A, Pircs K, Ménesi D, Puskás LG, Juhász G. Loss of the starvation-induced gene Rack1 leads to glycogen deficiency and impaired autophagic responses in Drosophila. Autophagy 2012; 8:1124-35. [PMID: 22562043 PMCID: PMC3429548 DOI: 10.4161/auto.20069] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autophagy delivers cytoplasmic material for lysosomal degradation in eukaryotic cells. Starvation induces high levels of autophagy to promote survival in the lack of nutrients. We compared genome-wide transcriptional profiles of fed and starved control, autophagy-deficient Atg7 and Atg1 null mutant Drosophila larvae to search for novel regulators of autophagy. Genes involved in catabolic processes including autophagy were transcriptionally upregulated in all cases. We also detected repression of genes involved in DNA replication in autophagy mutants compared with control animals. The expression of Rack1 (receptor of activated protein kinase C 1) increased 4.1- to 5.5-fold during nutrient deprivation in all three genotypes. The scaffold protein Rack1 plays a role in a wide range of processes including translation, cell adhesion and migration, cell survival and cancer. Loss of Rack1 led to attenuated autophagic response to starvation, and glycogen stores were decreased 11.8-fold in Rack1 mutant cells. Endogenous Rack1 partially colocalized with GFP-Atg8a and early autophagic structures on the ultrastructural level, suggesting its involvement in autophagosome formation. Endogenous Rack1 also showed a high degree of colocalization with glycogen particles in the larval fat body, and with Shaggy, the Drosophila homolog of glycogen synthase kinase 3B (GSK-3B). Our results, for the first time, demonstrated the fundamental role of Rack1 in autophagy and glycogen synthesis.
Collapse
Affiliation(s)
- Balázs Erdi
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Eswaran J, Cyanam D, Mudvari P, Reddy SDN, Pakala SB, Nair SS, Florea L, Fuqua SAW, Godbole S, Kumar R. Transcriptomic landscape of breast cancers through mRNA sequencing. Sci Rep 2012; 2:264. [PMID: 22355776 PMCID: PMC3278922 DOI: 10.1038/srep00264] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 01/17/2012] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is a heterogeneous disease with a poorly defined genetic landscape, which poses a major challenge in diagnosis and treatment. By massively parallel mRNA sequencing, we obtained 1.2 billion reads from 17 individual human tissues belonging to TNBC, Non-TNBC, and HER2-positive breast cancers and defined their comprehensive digital transcriptome for the first time. Surprisingly, we identified a high number of novel and unannotated transcripts, revealing the global breast cancer transcriptomic adaptations. Comparative transcriptomic analyses elucidated differentially expressed transcripts between the three breast cancer groups, identifying several new modulators of breast cancer. Our study also identified common transcriptional regulatory elements, such as highly abundant primary transcripts, including osteonectin, RACK1, calnexin, calreticulin, FTL, and B2M, and "genomic hotspots" enriched in primary transcripts between the three groups. Thus, our study opens previously unexplored niches that could enable a better understanding of the disease and the development of potential intervention strategies.
Collapse
Affiliation(s)
- Jeyanthy Eswaran
- McCormick Genomic and Proteomics Center, The George Washington University, Washington, DC 20037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Shi S, Deng YZ, Zhao JS, Ji XD, Shi J, Feng YX, Li G, Li JJ, Zhu D, Koeffler HP, Zhao Y, Xie D. RACK1 promotes non-small-cell lung cancer tumorigenicity through activating sonic hedgehog signaling pathway. J Biol Chem 2012; 287:7845-58. [PMID: 22262830 DOI: 10.1074/jbc.m111.315416] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a deadly disease due to lack of effective diagnosis biomarker and therapeutic target. Much effort has been made in defining gene defects in NSCLC, but its full molecular pathogenesis remains unexplored. Here, we found RACK1 (receptor of activated kinase 1) was elevated in most NSCLC, and its expression level correlated with key pathological characteristics including tumor differentiation, stage, and metastasis. In addition, RACK1 activated sonic hedgehog signaling pathway by interacting with and activating Smoothened to mediate Gli1-dependent transcription in NSCLC cells. And silencing RACK1 dramatically inhibited in vivo tumor growth and metastasis by blocking the sonic hedgehog signaling pathway. These results suggest that RACK1 represents a new promising diagnosis biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Shuo Shi
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Myklebust LM, Akslen LA, Varhaug JE, Lillehaug JR. Receptor for activated protein C kinase 1 (RACK1) is overexpressed in papillary thyroid carcinoma. Thyroid 2011; 21:1217-25. [PMID: 22007921 DOI: 10.1089/thy.2010.0186] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND The receptor for activated C kinase 1 (RACK1) has been shown to be overexpressed in several types of cancers such as breast, colon, melanomas, and lung. RACK1 is linked to Ras-Raf-mediated signal transduction and transformed foci formation of 3T3 cells in vitro, and since this pathway is central in papillary thyroid carcinoma (PTC) oncogenesis, we hypothesized that RACK1 could play a role in the development or maintenance of PTC. No report on RACK1 expression in thyroid tissue is available; the present study was therefore aimed at identifying possible correlation of RACK1 expression at the mRNA or protein level in normal thyroid tissue compared to PTC. METHODS We used TaqMan quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry to study the RACK1 gene and protein expression in matched tumor and nontumor samples from 59 PTC patients. The tumor samples were divided into two main categories, low-risk (group 1-3) and high-risk (group 4-6), in accordance with both histological classification and clinical appearance. RESULTS RACK1 mRNA and protein levels were found highly overexpressed in tumor samples, whereas Ki-Ras mRNA was found to be relatively unchanged. B-Raf mRNA expression was low and detected only in tumor samples. Sequencing analysis detected no mutations in RACK1 or Ki-Ras, but 62.7% of the patients harbored the B-Raf single-nucleotide substitution T1799A (codon V600E). Phosphorylated extracellular signal-regulated kinase (pERK) immunohistochemistry analysis demonstrated activation of the mitogen-activated protein kinase (MAPK) pathway in tumor cells. Poorly differentiated and undifferentiated PTCs expressed significantly higher RACK1 mRNA levels than well-differentiated PTCs (p<0.017). CONCLUSIONS Taken together, our findings point to an important role of RACK1 protein in PTC development and progression. Our data also emphasize the importance of assessing protein expression and not only mRNA levels.
Collapse
Affiliation(s)
- Line M Myklebust
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | | | | | | |
Collapse
|
46
|
|
47
|
Islas-Flores T, Guillén G, Alvarado-Affantranger X, Lara-Flores M, Sánchez F, Villanueva MA. PvRACK1 loss-of-function impairs cell expansion and morphogenesis in Phaseolus vulgaris L. root nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:819-26. [PMID: 21425924 DOI: 10.1094/mpmi-11-10-0261] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Receptor for activated C kinase (RACK1) is a highly conserved, eukaryotic protein of the WD-40 repeat family. Its peculiar β-propeller structure allows its interaction with multiple proteins in various plant signal-transduction pathways, including those arising from hormone responses, development, and environmental stress. During Phaseolus vulgaris root development, RACK1 (PvRACK1) mRNA expression was induced by auxins, abscissic acid, cytokinin, and gibberellic acid. In addition, during P. vulgaris nodule development, PvRACK1 mRNA was highly accumulated at 12 to 15 days postinoculation, suggesting an important role after nodule meristem initiation and Rhizobium nodule infection. PvRACK1 transcript accumulation was downregulated by a specific RNA interference construct which was expressed in transgenic roots of composite plants of P. vulgaris inoculated with Rhizobium tropici. PvRACK1 downregulated transcript levels were monitored by quantitative reverse-transcription polymerase chain reaction analysis in individual transgenic roots and nodules. We observed a clear phenotype in PvRACK1-knockdown nodules, in which nodule number and nodule cell expansion were impaired, resulting in altered nodule size. Microscopic analysis indicated that, in PvRACK1-knockdown nodules, infected and uninfected cells were considerably smaller (80 and 60%, respectively) than in control nodules. In addition, noninfected cells and symbiosomes in silenced nodules showed significant defects in membrane structure under electron microscopy analysis. These findings indicate that PvRACK1 has a pivotal role in cell expansion and in symbiosome and bacteroid integrity during nodule development.
Collapse
Affiliation(s)
- Tania Islas-Flores
- Departamento de Biologia Molecular de Plantas, Universidad Nacional Autonoma de Mexico, Morelos, Mexico
| | | | | | | | | | | |
Collapse
|
48
|
Structure of the RACK1 dimer from Saccharomyces cerevisiae. J Mol Biol 2011; 411:486-98. [PMID: 21704636 DOI: 10.1016/j.jmb.2011.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/06/2011] [Accepted: 06/10/2011] [Indexed: 11/20/2022]
Abstract
Receptor for activated C-kinase 1 (RACK1) serves as a scaffolding protein in numerous signaling pathways involving kinases and membrane-bound receptors from different cellular compartments. It exists simultaneously as a cytosolic free form and as a ribosome-bound protein. As part of the 40S ribosomal subunit, it triggers translational regulation by establishing a direct link between protein kinase C and the protein synthesis machinery. It has been suggested that RACK1 could recruit other signaling molecules onto the ribosome, providing a signal-specific modulation of the translational process. RACK1 is able to dimerize both in vitro and in vivo. This homodimer formation has been observed in several processes including the regulation of the N-methyl-d-aspartate receptor by the Fyn kinase in the brain and the oxygen-independent degradation of hypoxia-inducible factor 1. The functional relevance of this dimerization is, however, still unclear and the question of a possible dimerization of the ribosome-bound protein is still pending. Here, we report the first structure of a RACK1 homodimer, as determined from two independent crystal forms of the Saccharomyces cerevisiae RACK1 protein (also known as Asc1p) at 2.9 and 3.9 Å resolution. The structure reveals an atypical mode of dimerization where monomers intertwine on blade 4, thus exposing a novel surface of the protein to potential interacting partners. We discuss the significance of the dimer structure for RACK1 function.
Collapse
|
49
|
Ikebuchi Y, Ito K, Takada T, Anzai N, Kanai Y, Suzuki H. Receptor for activated C-kinase 1 regulates the cell surface expression and function of ATP binding cassette G2. Drug Metab Dispos 2010; 38:2320-8. [PMID: 20858845 DOI: 10.1124/dmd.110.034603] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In a previous report, we identified the receptor for activated C-kinase 1 (RACK1) as a positive regulator of the cellular localization and expression of ATP-binding cassette B4, a phosphatidylcholine translocator expressed on the bile canalicular membrane. In the present study, we focused on the role of RACK1 on ATP-binding cassette G2 (ABCG2), which is responsible for the cellular extrusion of compounds including antitumor drugs. Protein expression of ABCG2 was up-regulated by RACK1 overexpression, although mRNA expression of ABCG2 was not dependent on RACK1. The effect of RACK1 on the expression of ABCG2 on the cell surface was confirmed by the uptake of [(3)H]estrone sulfate, an ABCG2 substrate, into isolated membrane vesicles. The expression of RACK1 affected cellular resistance to mitoxantrone, an anticancer drug excreted by ABCG2, and this effect of RACK1 was abolished in the presence of fumitremorgin C, a selective ABCG2 inhibitor. These results suggest that RACK1 has functional significance as a regulatory cofactor of ABCG2 and is indispensable for the cell surface expression and excretion function of ABCG2. The precise mechanism for RACK1-dependent expression of ABCG2 remains to be clarified, because the results of N-benzoyloxycarbonyl (Z)-Leu-Leu-leucinal (MG132) and chloroquine treatment and those of metabolic labeling experiments did not give us clear evidence whether the reduction of ABCG2 expression in RACK1-knocked down cells may be caused by the suppression of ABCG2 protein synthesis or by acceleration of its degradation.
Collapse
Affiliation(s)
- Yuki Ikebuchi
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Response to ‘Evidence for a pro-apoptotic function of RACK1 in human breast cancer’. Oncogene 2010. [DOI: 10.1038/onc.2010.293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|