1
|
Kuo YC, Chen CL, Lee KL, Wang HF, Drew VJ, Lan PC, Ho YS, Huang YH. Nicotine-driven enhancement of tumor malignancy in triple-negative breast cancer via additive regulation of CHRNA9 and IGF1R. J Pathol 2025. [PMID: 40244072 DOI: 10.1002/path.6423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/31/2024] [Accepted: 02/26/2025] [Indexed: 04/18/2025]
Abstract
Cigarette smoking is a significant risk factor for cancer development with complex mechanisms. This study aims to investigate the impact of nicotine exposure on the regulation of stemness- and metastasis-related properties via cholinergic receptor nicotinic alpha 9 subunit (CHRNA9) and insulin-like growth factor-1 receptor (IGF1R) and to evaluate their therapeutic potential in triple-negative breast cancer (TNBC). We performed Kaplan-Meier survival analysis of public databases and revealed that high expression of CHRNA9, IGF1R signaling molecules, and stemness genes was significantly associated with poor recurrence-free survival (RFS) and distant metastasis-free survival (DMFS) in TNBC samples. Additionally, we examined two patient cohorts to determine the clinical associations between the expression levels of different genes (n = 67) and proteins (n = 42) and showed a strong positive correlation between the expression levels of CHRNA9, IGF1R signaling molecules, and stemness markers POU5F1/NANOG in tumor tissues. We carried out nicotine treatment and knockdown of CHRNA9 and IGF1R in TNBC cells to identify the effects on stemness-related properties in vitro. Furthermore, primary and secondary metastatic in vivo animal models were examined using micro-computed tomography (μCT) screening and in situ hybridization with a human Alu probe to detect tumor cells. Nicotine was found to upregulate the expression of CHRNA9, POU5F1, and IGF1R, influencing stemness- and metastasis-related properties. Knockdown of CHRNA9 expression attenuated nicotine-induced stemness-related properties in a TNBC cell model. Furthermore, knockdown of IGF1R expression significantly alleviated nicotine/CHRNA9-induced stemness features and cancer cell metastasis in cell cultures and lung metastatic mouse models. These results demonstrate that nicotine triggers IGF1R signaling, thereby enhancing stemness-related properties, cell migration, invasion, and tumor metastasis, resulting in a poorer prognosis for patients with TNBC. These findings highlight IGF1R as a promising therapeutic target for reducing stemness and metastasis in TNBC patients exposed to environmental nicotine. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
Grants
- MOHW103-TD-B-111-01 Ministry of Health and Welfare, Taiwan (Health and Welfare Surcharge of Tobacco Products)
- MOHW104-TDU-B-212-124-001 Ministry of Health and Welfare, Taiwan (Health and Welfare Surcharge of Tobacco Products)
- MOHW105-TDU-B-212-134001 Ministry of Health and Welfare, Taiwan (Health and Welfare Surcharge of Tobacco Products)
- MOHW106-TDU-B-212-144001 Ministry of Health and Welfare, Taiwan (Health and Welfare Surcharge of Tobacco Products)
- MOHW107-TDU-B-212-114014 Ministry of Health and Welfare, Taiwan (Health and Welfare Surcharge of Tobacco Products)
- MOHW108-TDU-B-212-124014 Ministry of Health and Welfare, Taiwan (Health and Welfare Surcharge of Tobacco Products)
- TMU109-AE1-B02 Taipei Medical University
- NSTC 111-2314-B-038-089-MY3 National Science and Technology Council, Taiwan
- 113-2314-B-038-136 National Science and Technology Council, Taiwan
- NSTC 112-2320-B-039-057 National Science and Technology Council, Taiwan
- MOST 111-2320-B-039-067-MY3 National Science and Technology Council, Taiwan
- NSTC 113-2634-F-039-001 National Science and Technology Council, Taiwan
- MOST 111-2320-B-038-022 National Science and Technology Council, Taiwan
- NSTC 112-2320-B-038-011-MY3 National Science and Technology Council, Taiwan
- CMU113-S-23 China Medical University
Collapse
Affiliation(s)
- Yung-Che Kuo
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
- Core Laboratory of Good Tissue Practice, Office of Research and Development, Taipei Medical University, Taipei, Taiwan
| | - Chi-Long Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kha-Liang Lee
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Feng Wang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Victor James Drew
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-Chi Lan
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
- Core Laboratory of Good Tissue Practice, Office of Research and Development, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Soon Ho
- Institute of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Taichung, Taiwan
| | - Yen-Hua Huang
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
2
|
Van Cauwenberge J, Van Baelen K, Maetens M, Geukens T, Nguyen HL, Nevelsteen I, Smeets A, Deblander A, Neven P, Koolen S, Wildiers H, Punie K, Desmedt C. Reporting on patient's body mass index (BMI) in recent clinical trials for patients with breast cancer: a systematic review. Breast Cancer Res 2024; 26:81. [PMID: 38778365 PMCID: PMC11112918 DOI: 10.1186/s13058-024-01832-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The proportion of patients with breast cancer and obesity is increasing. While the therapeutic landscape of breast cancer has been expanding, we lack knowledge about the potential differential efficacy of most drugs according to the body mass index (BMI). Here, we conducted a systematic review on recent clinical drug trials to document the dosing regimen of recent drugs, the reporting of BMI and the possible exclusion of patients according to BMI, other adiposity measurements and/or diabetes (leading comorbidity of obesity). We further explored whether treatment efficacy was evaluated according to BMI. METHODS A search of Pubmed and ClinicalTrials.gov was performed to identify phase I-IV trials investigating novel systemic breast cancer treatments. Dosing regimens and exclusion based on BMI, adiposity measurements or diabetes, documentation of BMI and subgroup analyses according to BMI were assessed. RESULTS 495 trials evaluating 26 different drugs were included. Most of the drugs (21/26, 81%) were given in a fixed dose independent of patient weight. BMI was an exclusion criterion in 3 out of 495 trials. Patients with diabetes, the leading comorbidity of obesity, were excluded in 67/495 trials (13.5%). Distribution of patients according to BMI was mentioned in 8% of the manuscripts, subgroup analysis was performed in 2 trials. No other measures of adiposity/body composition were mentioned in any of the trials. Retrospective analyses on the impact of BMI were performed in 6 trials. CONCLUSIONS Patient adiposity is hardly considered as most novel drug treatments are given in a fixed dose. BMI is generally not reported in recent trials and few secondary analyses are performed. Given the prevalence of patients with obesity and the impact obesity can have on pharmacokinetics and cancer biology, more attention should be given by investigators and study sponsors to reporting patient's BMI and evaluating its impact on treatment efficacy and toxicity.
Collapse
Affiliation(s)
- Josephine Van Cauwenberge
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium
- Department of Gynecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Karen Van Baelen
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium
- Department of Gynecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Marion Maetens
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium
| | - Tatjana Geukens
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Ha Linh Nguyen
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium
| | - Ines Nevelsteen
- Department of Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Ann Smeets
- Department of Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Anne Deblander
- Department of Gynecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Neven
- Department of Gynecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Stijn Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, The Netherlands
| | - Hans Wildiers
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Kevin Punie
- Department of Medical Oncology, GZA Hospitals Sint-Augustinus, Wilrijk, Belgium
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium.
| |
Collapse
|
3
|
A kinase inhibitor screen reveals MEK1/2 as a novel therapeutic target to antagonize IGF1R-mediated antiestrogen resistance in ERα-positive luminal breast cancer. Biochem Pharmacol 2022; 204:115233. [PMID: 36041543 DOI: 10.1016/j.bcp.2022.115233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022]
Abstract
Antiestrogen resistance of breast cancer has been related to enhanced growth factor receptor expression and activation. We have previously shown that ectopic expression and subsequent activation of the insulin-like growth factor-1 receptor (IGF1R) or the epidermal growth factor receptor (EGFR) in MCF7 or T47D breast cancer cells results in antiestrogen resistance. In order to identify novel therapeutic targets to prevent this antiestrogen resistance, we performed kinase inhibitor screens with 273 different inhibitors in MCF7 cells overexpressing IGF1R or EGFR. Kinase inhibitors that antagonized antiestrogen resistance but are not directly involved in IGF1R or EGFR signaling were prioritized for further analyses. Various ALK (anaplastic lymphoma receptor tyrosine kinase) inhibitors inhibited cell proliferation in IGF1R expressing cells under normal and antiestrogen resistance conditions by preventing IGF1R activation and subsequent downstream signaling; the ALK inhibitors did not affect EGFR signaling. On the other hand, MEK (mitogen-activated protein kinase kinase)1/2 inhibitors, including PD0325901, selumetinib, trametinib and TAK733, selectively antagonized IGF1R signaling-mediated antiestrogen resistance but did not affect cell proliferation under normal growth conditions. RNAseq analysis revealed that MEK inhibitors PD0325901 and selumetinib drastically altered cell cycle progression and cell migration networks under IGF1R signaling-mediated antiestrogen resistance. In a group of 219 patients with metastasized ER+ breast cancer, strong pMEK staining showed a significant correlation with no clinical benefit of first-line tamoxifen treatment. We propose a critical role for MEK activation in IGF1R signaling-mediated antiestrogen resistance and anticipate that dual-targeted therapy with a MEK inhibitor and antiestrogen could improve treatment outcome.
Collapse
|
4
|
Skolariki A, D’Costa J, Little M, Lord S. Role of PI3K/Akt/mTOR pathway in mediating endocrine resistance: concept to clinic. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:172-199. [PMID: 36046843 PMCID: PMC9400772 DOI: 10.37349/etat.2022.00078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/11/2022] [Indexed: 01/06/2023] Open
Abstract
The majority of breast cancers express the estrogen receptor (ER) and for this group of patients, endocrine therapy is the cornerstone of systemic treatment. However, drug resistance is common and a focus for breast cancer preclinical and clinical research. Over the past 2 decades, the PI3K/Akt/mTOR axis has emerged as an important driver of treatment failure, and inhibitors of mTOR and PI3K are now licensed for the treatment of women with advanced ER-positive breast cancer who have relapsed on first-line hormonal therapy. This review presents the preclinical and clinical data that led to this new treatment paradigm and discusses future directions.
Collapse
Affiliation(s)
- Aglaia Skolariki
- Department of Oncology, University of Oxford, Churchill Hospital, OX3 7LE Oxford, UK
| | - Jamie D’Costa
- Department of Oncology, University of Oxford, Churchill Hospital, OX3 7LE Oxford, UK
| | - Martin Little
- Department of Oncology, Churchill Hospital, OX3 7LE Oxford, UK
| | - Simon Lord
- Department of Oncology, University of Oxford, Churchill Hospital, OX3 7LE Oxford, UK
| |
Collapse
|
5
|
Abstract
The insulin and insulin-like growth factor (IGF) family of proteins are part of a complex network that regulates cell proliferation and survival. While this system is undoubtedly important in prenatal development and postnatal cell growth, members of this family have been implicated in several different cancer types. Increased circulating insulin and IGF ligands have been linked to increased risk of cancer incidence. This observation has led to targeting the IGF system as a therapeutic strategy in a number of cancers. This chapter aims to describe the well-characterized biology of the IGF1R system, outline the rationale for targeting this system in cancer, summarize the clinical data as it stands, and discuss where we can go from here.
Collapse
|
6
|
McHugh DJ, Chudow J, DeNunzio M, Slovin SF, Danila DC, Morris MJ, Scher HI, Rathkopf DE. A Phase I Trial of IGF-1R Inhibitor Cixutumumab and mTOR Inhibitor Temsirolimus in Metastatic Castration-resistant Prostate Cancer. Clin Genitourin Cancer 2020; 18:171-178.e2. [PMID: 32057715 DOI: 10.1016/j.clgc.2019.10.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Despite frequent PTEN (phosphatase and tensin homologue) loss and Akt/mammalian target of rapamycin (mTOR) signaling in prostate cancer, the disease is insensitive to single-agent mTOR inhibition. Insulin-like growth factor-1 receptor inhibition might mitigate the feedback inhibition by Torc1 inhibitors, suppressing downstream Akt activation and, thus, potentiating the antitumor activity of mTOR inhibition. PATIENTS AND METHODS In the present phase I study, patients with metastatic castration-resistant prostate cancer received 6 mg/kg cixutumumab and 25 mg temsirolimus intravenously each week. The primary objective was safety and tolerability. Temsirolimus was decreased if ≥ 2 dose-limiting toxicities (DLTs) were observed in 6 patients. The correlative analyses included measurement of circulating tumor cells, [18F]-fluoro-2-deoxyglucose positron emission tomography, 16β-[18F]-fluoro-α-dihydrotestosterone positron emission tomography, and tumor biopsy. RESULTS A total of 16 patients were enrolled across 3 cohorts (1, -1, -2). Two DLTs (grade 3 oral mucositis) were observed in cohort 1 (temsirolimus, 25 mg), and 1 DLT (grade 3 lipase) in cohort -1 (temsirolimus, 20 mg). The most common adverse events included hyperglycemia (100%; 31% grade 3), oral mucositis (63%; 19% grade 3), and diarrhea (44%; 0 grade 3). Low-grade pneumonitis occurred in 7 of 11 patients (44%; 0 grade 3), prompting the opening of a 3-weekly cohort (temsirolimus, 20 mg/kg), without pneumonitis events. No patient had a >50% decline in prostate-specific antigen from baseline. The best radiographic response was stable disease, with median study duration of 22 weeks (range, 7-63 weeks). CONCLUSIONS Despite a strong scientific rationale for the combination, temsirolimus plus cixutumumab demonstrated limited antitumor activity and a greater than expected incidence of toxicity, including low-grade pneumonitis and hyperglycemia. Hence, the trial was stopped in favor of alternative androgen receptor/phosphatidylinositol 3-kinase-directed combinatorial therapies.
Collapse
Affiliation(s)
- Deaglan J McHugh
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Jay Chudow
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mia DeNunzio
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Susan F Slovin
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Daniel C Danila
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Michael J Morris
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Dana E Rathkopf
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine, Weill Cornell Medical College, New York, NY.
| |
Collapse
|
7
|
The effect of formononetin on the proliferation and migration of human umbilical vein endothelial cells and its mechanism. Biomed Pharmacother 2019; 111:86-90. [DOI: 10.1016/j.biopha.2018.12.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 11/22/2022] Open
|
8
|
Du J, Yu Y, Zhan J, Zhang H. Targeted Therapies Against Growth Factor Signaling in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1026:125-146. [PMID: 29282682 DOI: 10.1007/978-981-10-6020-5_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Breast cancer is the most prevalent female malignancy throughout the world. Conventional treatment strategies for breast cancer consist of chemotherapy, radiation, surgery, chemoradiation, hormone therapy, and targeted therapies. Among them, targeted therapies show advantages to reduce cost and toxicity for being possible for individualized treatments based on the intrinsic subtypes of breast cancer. With deeper understanding of key signaling pathways concerning tumor growth and survival, growth factor-controlled signaling pathways are frequently dysregulated in the development and progression of breast cancer. Thus, targeted therapies against growth factor-mediated signaling pathways have been shown to have promising efficacy in both preclinical animal models and human clinical trials. In this chapter, we will briefly introduce inhibitors and monoclonal antibodies that target the main growth factor-modulated scenarios including epidermal growth factor receptor (EGFR), transforming growth factor beta (TGF-β), insulin-like growth factor 1 receptor (IGF1R), and fibroblast growth factor receptor (FGFR) signaling pathways in breast cancer therapy.
Collapse
Affiliation(s)
- Juan Du
- Department of Anatomy, Histology and Embryology, Laboratory of Molecular Cell Biology and Tumor Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yu Yu
- Department of Anatomy, Histology and Embryology, Laboratory of Molecular Cell Biology and Tumor Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jun Zhan
- Department of Anatomy, Histology and Embryology, Laboratory of Molecular Cell Biology and Tumor Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hongquan Zhang
- Department of Anatomy, Histology and Embryology, Laboratory of Molecular Cell Biology and Tumor Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
9
|
Bronsveld HK, De Bruin ML, Wesseling J, Sanders J, Hofland I, Jensen V, Bazelier MT, ter Braak B, de Boer A, Vestergaard P, Schmidt MK. The association of diabetes mellitus and insulin treatment with expression of insulin-related proteins in breast tumors. BMC Cancer 2018; 18:224. [PMID: 29486734 PMCID: PMC6389252 DOI: 10.1186/s12885-018-4072-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 01/29/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The insulin receptor (INSR) and the insulin growth factor 1 receptor (IGF1R) play important roles in the etiology of both diabetes mellitus and breast cancer. We aimed to evaluate the expression of hormone and insulin-related proteins within or related to the PI3K and MAPK pathway in breast tumors of women with or without diabetes mellitus, treated with or without insulin (analogues). METHODS Immunohistochemistry was performed on tumor tissue of 312 women with invasive breast cancer, with or without pre-existing diabetes mellitus, diagnosed in 2000-2010, who were randomly selected from a Danish breast cancer cohort. Women with diabetes were 2:1 frequency matched by year of birth and age at breast cancer diagnosis to those without diabetes. Tumor Microarrays were successfully stained for p-ER, EGFR, p-ERK1/2, p-mTOR, and IGF1R, and scored by a breast pathologist. Associations of expression of these proteins with diabetes, insulin treatment (human insulin and insulin analogues) and other diabetes medication were evaluated by multivariable logistic regression adjusting for menopause and BMI; effect modification by menopausal status, BMI, and ER status was assessed using interactions terms. RESULTS We found no significant differences in expression of any of the proteins in breast tumors of women with (n = 211) and without diabetes (n = 101). Among women with diabetes, insulin use (n = 53) was significantly associated with higher tumor protein expression of IGF1R (OR = 2.36; 95%CI:1.02-5.52; p = 0.04) and p-mTOR (OR = 2.35; 95%CI:1.13-4.88; p = 0.02), especially among women treated with insulin analogues. Menopause seemed to modified the association between insulin and IGF1R expression (p = 0.07); the difference in IGF1R expression was only observed in tumors of premenopausal women (OR = 5.10; 95%CI:1.36-19.14; p = 0.02). We found no associations between other types of diabetes medication, such as metformin, and protein expression of the five proteins evaluated. CONCLUSIONS In our study, breast tumors of women with pre-existing diabetes did not show an altered expression of selected PI3K/MAPK pathway-related proteins. We observed an association between insulin treatment and increased p-mTOR and IGF1R expression of breast tumors, especially in premenopausal women. This observation, if confirmed, might be clinically relevant since the use of IGF1R and mTOR inhibitors are currently investigated in clinical trials.
Collapse
Affiliation(s)
- Heleen K. Bronsveld
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht University, Utrecht, Netherlands
| | - Marie L. De Bruin
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht University, Utrecht, Netherlands
- Copenhagen Centre for Regulatory Science (CORS), University of Copenhagen, Copenhagen, Denmark
| | - Jelle Wesseling
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Joyce Sanders
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ingrid Hofland
- Core Facility Molecular Pathology & Biobanking, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Vibeke Jensen
- Department of Pathology, Aarhus University Hospital THG, Aarhus, Denmark
| | - Marloes T. Bazelier
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht University, Utrecht, Netherlands
| | - Bas ter Braak
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Anthonius de Boer
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht University, Utrecht, Netherlands
| | - Peter Vestergaard
- Departments of Clinical Medicine and Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Marjanka K. Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
10
|
Vishwamitra D, George SK, Shi P, Kaseb AO, Amin HM. Type I insulin-like growth factor receptor signaling in hematological malignancies. Oncotarget 2018; 8:1814-1844. [PMID: 27661006 PMCID: PMC5352101 DOI: 10.18632/oncotarget.12123] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 09/12/2016] [Indexed: 12/19/2022] Open
Abstract
The insulin-like growth factor (IGF) signaling system plays key roles in the establishment and progression of different types of cancer. In agreement with this idea, substantial evidence has shown that the type I IGF receptor (IGF-IR) and its primary ligand IGF-I are important for maintaining the survival of malignant cells of hematopoietic origin. In this review, we discuss current understanding of the role of IGF-IR signaling in cancer with a focus on the hematological neoplasms. We also address the emergence of IGF-IR as a potential therapeutic target for the treatment of different types of cancer including plasma cell myeloma, leukemia, and lymphoma.
Collapse
Affiliation(s)
- Deeksha Vishwamitra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Suraj Konnath George
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
11
|
Ireland L, Santos A, Campbell F, Figueiredo C, Hammond D, Ellies LG, Weyer-Czernilofsky U, Bogenrieder T, Schmid M, Mielgo A. Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer. Oncogene 2018; 37:2022-2036. [PMID: 29367764 PMCID: PMC5895608 DOI: 10.1038/s41388-017-0115-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 11/15/2017] [Accepted: 12/14/2017] [Indexed: 12/27/2022]
Abstract
Breast cancer remains the leading cause of cancer death in women owing to metastasis and the development of resistance to established therapies. Macrophages are the most abundant immune cells in the breast tumor microenvironment and can both inhibit and support cancer progression. Thus, gaining a better understanding of how macrophages support cancer could lead to the development of more effective therapies. In this study, we find that breast cancer-associated macrophages express high levels of insulin-like growth factors 1 and 2 (IGFs) and are the main source of IGFs within both primary and metastatic tumors. In total, 75% of breast cancer patients show activation of insulin/IGF-1 receptor signaling and this correlates with increased macrophage infiltration and advanced tumor stage. In patients with invasive breast cancer, activation of Insulin/IGF-1 receptors increased to 87%. Blocking IGF in combination with paclitaxel, a chemotherapeutic agent commonly used to treat breast cancer, showed a significant reduction in tumor cell proliferation and lung metastasis in pre-clinical breast cancer models compared to paclitaxel monotherapy. Our findings provide the rationale for further developing the combination of paclitaxel with IGF blockers for the treatment of invasive breast cancer, and Insulin/IGF1R activation and IGF+ stroma cells as potential biomarker candidates for further evaluation.
Collapse
Affiliation(s)
- Lucy Ireland
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Almudena Santos
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Fiona Campbell
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Carlos Figueiredo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Dean Hammond
- Department of Physiology, University of Liverpool, Liverpool, UK
| | - Lesley G Ellies
- Department of Pathology, University of California San Diego, La Jolla, USA
| | | | - Thomas Bogenrieder
- Boehringer Ingelheim RCV GmbH & Co KG Medicine and Translational Research, Vienna, Austria.,Department of Urology, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Michael Schmid
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Ainhoa Mielgo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
| |
Collapse
|
12
|
Christopoulos PF, Corthay A, Koutsilieris M. Aiming for the Insulin-like Growth Factor-1 system in breast cancer therapeutics. Cancer Treat Rev 2017; 63:79-95. [PMID: 29253837 DOI: 10.1016/j.ctrv.2017.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022]
Abstract
Despite the major discoveries occurred in oncology the recent years, breast malignancies remain one of the most common causes of cancer-related deaths for women in developed countries. Development of HER2-targeting drugs has been considered a breakthrough in anti-cancer approaches and alluded to the potential of targeting growth factors in breast cancer (BrCa) therapeutics. More than twenty-five years have passed since the Insulin-like Growth Factor-1 (IGF-1) system was initially recognized as a potential target candidate in BrCa therapy. To date, a growing body of studies have implicated the IGF-1 signaling with the BrCa biology. Despite the promising experimental evidence, the impression from clinical trials is rather disappointing. Several reasons may account for this and the last word regarding the efficacy of this system as a target candidate in BrCa therapeutics is probably not written yet. Herein, we provide the theoretical basis, as well as, a comprehensive overview of the current literature, regarding the different strategies targeting the various components of the IGF-1/IGF-1R axis in several pathophysiological aspects of BrCa, including the tumor micro-environment and cancer stemness. In addition, we review the rationale for targeting the IGF-1 system in the different BrCa molecular subtypes and in treatment resistant breast tumors with a focus on both the molecular mechanisms and on the clinical perspectives of such approaches in specific population subgroups. We also discuss the future challenges, as well as, the development of novel molecules and strategies targeting the system and suggest potential improvements in the field.
Collapse
Affiliation(s)
- Panagiotis F Christopoulos
- Department of Experimental Physiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece; Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway; Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway.
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
13
|
Spiliotaki M, Mavroudis D, Kokotsaki M, Vetsika EK, Stoupis I, Matikas A, Kallergi G, Georgoulias V, Agelaki S. Expression of insulin-like growth factor-1 receptor in circulating tumor cells of patients with breast cancer is associated with patient outcomes. Mol Oncol 2017; 12:21-32. [PMID: 28766847 PMCID: PMC5748482 DOI: 10.1002/1878-0261.12114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/04/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022] Open
Abstract
In patients with breast cancer, markers of aggressiveness such as dysregulation of the insulin-like growth factor receptor (IGF1R) system and E-cadherin loss are commonly observed. Reduced IGF1R expression is correlated with decreased E-cadherin levels and increased cell motility. We assessed IGF1R and E-cadherin expression in circulating tumor cells (CTCs) in patients with breast cancer. Peripheral blood mononuclear cells of early (n = 87)- and metastatic (n = 126)-stage breast cancer patients (obtained prior to adjuvant and first-line chemotherapy) were evaluated using double immunofluorescence (IF) staining for cytokeratin (CK) and IGF1R. Triple IF using CK, IGF1R, and E-cadherin antibodies was performed in selected CTC(+) patients. IGF1R(+) CTCs were more frequently observed in early disease than in metastatic disease (86% vs 68% of CTCs, P = 0.04) stage, whereas IGF1R(-) CTCs were more common in metastatic than in early disease (32% vs 14% of CTCs, P = 0.002). 100% of CTC(+) patients with early disease, compared to 79% of those with metastatic disease, harbored IGF1R(+) CTCs (P = 0.007). Patients with early disease and exclusively IGF1R(+) CTCs had longer disease-free (P = 0.02) and overall survival (P = 0.001) compared to patients with both IGF1R(+) and IGF1R(-) CTC populations. 67% of early-stage CTC(+) patients evaluated had exclusively IGF1R(+)/E-cadherin(+) CTCs, 33% also had IGF1R(-)/E-cadherin(-) CTCs, and none had exclusively IGF1R(-)/E-cadherin(-) CTCs compared to 17%, 75%, and 8% of metastatic patients, respectively (P = 0.027). Similarly, in paired samples of patients with early disease that progressed to metastatic disease, the proportion of IGF1R(+)/E-cadherin(+) CTCs was reduced and IGF1R(-)/E-cadherin(-) CTCs were increased in the metastatic stage compared to early disease stage. IGF1R(+) CTCs are commonly detected in breast cancer, and their frequency decreases in the metastatic disease stage. IGF1R(+)/E-cadherin(+) CTCs also decrease in metastatic patients. IGF1R(+) CTCs are associated with favorable outcomes in early disease stage, suggesting that IGF1R expression is correlated with reduced metastatic potential in breast cancer.
Collapse
Affiliation(s)
- Maria Spiliotaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Greece
| | - Dimitris Mavroudis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Greece.,Department of Medical Oncology, University General Hospital of Heraklion, Greece
| | - Maria Kokotsaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Greece
| | - Eleni-Kyriaki Vetsika
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Greece
| | - Ioannis Stoupis
- Department of Medical Oncology, University General Hospital of Heraklion, Greece
| | - Alexios Matikas
- Department of Medical Oncology, University General Hospital of Heraklion, Greece
| | - Galatea Kallergi
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Greece
| | - Vassilis Georgoulias
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Greece
| | - Sofia Agelaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Greece.,Department of Medical Oncology, University General Hospital of Heraklion, Greece
| |
Collapse
|
14
|
Hamilton N, Austin D, Márquez-Garbán D, Sanchez R, Chau B, Foos K, Wu Y, Vadgama J, Pietras R. Receptors for Insulin-Like Growth Factor-2 and Androgens as Therapeutic Targets in Triple-Negative Breast Cancer. Int J Mol Sci 2017; 18:E2305. [PMID: 29099049 PMCID: PMC5713274 DOI: 10.3390/ijms18112305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022] Open
Abstract
Triple-negative breast cancer (TNBC) occurs in 10-15% of all breast cancer patients, yet it accounts for about half of all breast cancer deaths. There is an urgent need to identify new antitumor targets to provide additional treatment options for patients afflicted with this aggressive disease. Preclinical evidence suggests a critical role for insulin-like growth factor-2 (IGF2) and androgen receptor (AR) in regulating TNBC progression. To advance this work, a panel of TNBC cell lines was investigated with all cell lines showing significant expression of IGF2. Treatment with IGF2 stimulated cell proliferation in vitro (p < 0.05). Importantly, combination treatments with IGF1R inhibitors BMS-754807 and NVP-AEW541 elicited significant inhibition of TNBC cell proliferation (p < 0.001). Based on Annexin-V binding assays, BMS-754807, NVP-AEW541 and enzalutamide induced TNBC cell death (p < 0.005). Additionally, combination of enzalutamide with BMS-754807 or NVP-AEW541 exerted significant reductions in TNBC proliferation even in cells with low AR expression (p < 0.001). Notably, NVP-AEW541 and BMS-754807 reduced AR levels in BT549 TNBC cells. These results provide evidence that IGF2 promotes TNBC cell viability and proliferation, while inhibition of IGF1R/IR and AR pathways contribute to blockade of TNBC proliferation and promotion of apoptosis in vitro.
Collapse
Affiliation(s)
- Nalo Hamilton
- UCLA School of Nursing, University of California at Los Angeles, Los Angeles, CA 90095, USA.
- UCLA Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - David Austin
- Department of Medicine, Division of Cancer Research and Training, Charles Drew University School of Medicine and Science, Los Angeles, CA 90059, USA.
| | - Diana Márquez-Garbán
- UCLA Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA.
- UCLA David Geffen School of Medicine, Department of Medicine, Division of Hematology-Oncology, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Rudy Sanchez
- Department of Biology, California State University Channel Islands, Camarillo, CA 93012, USA.
| | - Brittney Chau
- Department of Integrative Ecology and Evolutionary Biology and Physiology, UCLA College of Life Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Kay Foos
- Department Physiological, UCLA College of Life Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Yanyuan Wu
- Department of Medicine, Division of Cancer Research and Training, Charles Drew University School of Medicine and Science, Los Angeles, CA 90059, USA.
| | - Jaydutt Vadgama
- UCLA Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA.
- Department of Medicine, Division of Cancer Research and Training, Charles Drew University School of Medicine and Science, Los Angeles, CA 90059, USA.
- UCLA David Geffen School of Medicine, Department of Medicine, Division of Hematology-Oncology, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Richard Pietras
- Department of Medicine, Division of Cancer Research and Training, Charles Drew University School of Medicine and Science, Los Angeles, CA 90059, USA.
- UCLA David Geffen School of Medicine, Department of Medicine, Division of Hematology-Oncology, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
15
|
Matikas A, Foukakis T, Bergh J. Tackling endocrine resistance in ER-positive HER2-negative advanced breast cancer: A tale of imprecision medicine. Crit Rev Oncol Hematol 2017; 114:91-101. [DOI: 10.1016/j.critrevonc.2017.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 12/29/2022] Open
|
16
|
Clinical studies in humans targeting the various components of the IGF system show lack of efficacy in the treatment of cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 772:105-122. [PMID: 28528684 DOI: 10.1016/j.mrrev.2016.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 01/28/2023]
Abstract
The insulin-like growth factors (IGFs) system regulates cell growth, differentiation and energy metabolism and plays crucial role in the regulation of key aspects of tumor biology, such as cancer cell growth, survival, transformation and invasion. The current focus for cancer therapeutic approaches have shifted from the conventional treatments towards the targeted therapies and the IGF system has gained a great interest as anti-cancer therapy. The proliferative, anti-apoptotic and transformation effects of IGFs are mainly triggered by the ligation of the type I IGF receptor (IGF-IR). Thus, aiming at developing novel and effective cancer therapies, different strategies have been employed to target IGF system in human malignancies, including but not limited to ligand or receptor neutralizing antibodies and IGF-IR signaling inhibitors. In this review, we have focused on the clinical studies that have been conducted targeting the various components of the IGF system for the treatment of different types of cancer, providing a description and the challenges of each targeting strategy and the degree of success.
Collapse
|
17
|
Iams WT, Lovly CM. Molecular Pathways: Clinical Applications and Future Direction of Insulin-like Growth Factor-1 Receptor Pathway Blockade. Clin Cancer Res 2016; 21:4270-7. [PMID: 26429980 DOI: 10.1158/1078-0432.ccr-14-2518] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The IGF1R signaling pathway is a complex and tightly regulated network that is critical for cell proliferation, growth, and survival. IGF1R is a potential therapeutic target for patients with many different malignancies. This brief review summarizes the results of clinical trials targeting the IGF1R pathway in patients with breast cancer, sarcoma, and non-small cell lung cancer (NSCLC). Therapeutic agents discussed include both monoclonal antibodies to IGF1R (dalotuzumab, figitumumab, cixutumumab, ganitumab, R1507, AVE1642) and newer IGF1R pathway targeting strategies, including monoclonal antibodies to IGF1 and IGF2 (MEDI-573 and BI 836845) and a small-molecule tyrosine kinase inhibitor of IGF1R (linsitinib). The pullback of trials in patients with breast cancer and NSCLC based on several large negative trials is noted and contrasted with the sustained success of IGF1R inhibitor monotherapy in a subset of patients with sarcoma. Several different biomarkers have been examined in these trials with varying levels of success, including tumor expression of IGF1R and its pathway components, serum IGF ligand levels, alternate pathway activation, and specific molecular signatures of IGF1R pathway dependence. However, there remains a critical need to define predictive biomarkers in order to identify patients who may benefit from IGF1R-directed therapies. Ongoing research focuses on uncovering such biomarkers and elucidating mechanisms of resistance, as this therapeutic target is currently being analyzed from the bedside to bench.
Collapse
Affiliation(s)
- Wade T Iams
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christine M Lovly
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee. Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee. Vanderbilt-Ingram Cancer Center, Nashville, Tennessee.
| |
Collapse
|
18
|
Študentová H, Vitásková D, Melichar B. Safety of mTOR inhibitors in breast cancer. Expert Opin Drug Saf 2016; 15:1075-85. [DOI: 10.1080/14740338.2016.1192604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hana Študentová
- Department of Oncology, Palacký University Medical School & Teaching Hospital, Olomouc, Czech Republic
| | - Denisa Vitásková
- Department of Oncology, Palacký University Medical School & Teaching Hospital, Olomouc, Czech Republic
| | - Bohuslav Melichar
- Department of Oncology, Palacký University Medical School & Teaching Hospital, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Palacký University Medical School & Teaching Hospital, Olomouc, Czech Republic
| |
Collapse
|
19
|
Miller SM, Goulet DR, Johnson GL. Targeting the Breast Cancer Kinome. J Cell Physiol 2016; 232:53-60. [PMID: 27186656 DOI: 10.1002/jcp.25427] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 12/14/2022]
Abstract
Protein kinases are highly tractable targets for the treatment of many cancers including breast cancer, due to their essential role in tumor cell proliferation and survival. Sequencing of the breast cancer genome and transcriptome has defined breast cancer as a heterogeneous disease that is classified into five molecular subtypes: luminal A, luminal B, HER2-enriched, basal-like, and claudin-low. Each subtype displays a unique expression profile of protein kinases that can be targeted by small molecule kinase inhibitors or biologics. An understanding of genomic changes, including mutations or copy number variations, for specific protein kinases and dependencies on kinases across breast cancer subtypes is allowing for a more rational design of targeted breast cancer therapies. While specific kinase inhibitors have had success in the clinic, including the CDK4/6 inhibitor palbociclib in combination with aromatase inhibitors in luminal breast cancer, patients often become resistant to treatment. An understanding of the mechanisms allowing cells to bypass targeted kinase inhibition has led to the development of combination therapies that are more durable in pre-clinical studies. However, the heterogeneity of resistance mechanisms and rapid adaptability of the kinome through feedback regulation greatly inhibit the long-term efficacy of combination kinase inhibitor therapies. It is becoming apparent that epigenetic inhibitors, such as HDAC and BET bromodomain inhibitors can block the transcriptional adaptability of tumor cells to kinase inhibitors and prevent the onset of resistance. Such novel combination therapies are currently showing promise in preclinical studies to markedly increase the durability of kinase inhibitors in breast cancer. J. Cell. Physiol. 232: 53-60, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Samantha M Miller
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Daniel R Goulet
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Gary L Johnson
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
| |
Collapse
|
20
|
Frappaz D, Federico SM, Pearson ADJ, Gore L, Macy ME, DuBois SG, Aerts I, Iannone R, Geschwindt R, Van Schanke A, Wang R, Geoerger B. Phase 1 study of dalotuzumab monotherapy and ridaforolimus-dalotuzumab combination therapy in paediatric patients with advanced solid tumours. Eur J Cancer 2016; 62:9-17. [PMID: 27185573 DOI: 10.1016/j.ejca.2016.03.084] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/28/2016] [Indexed: 10/21/2022]
Abstract
AIM Dalotuzumab is a highly specific, humanised immunoglobulin G1 monoclonal antibody against insulin-like growth factor receptor 1. This multicenter phase 1 study (NCT01431547) explored the safety and pharmacokinetics of dalotuzumab monotherapy (part 1) and the combination of dalotuzumab with the mammalian target of rapamycin inhibitor ridaforolimus (part 2) in paediatric patients with advanced solid tumours. METHODS Dalotuzumab was administered intravenously every 3 weeks starting at 900 mg/m(2) and escalating to 1200 and 1500 mg/m(2). Combination therapy included intravenous dalotuzumab at the defined single-agent recommended phase 2 dose (RP2D) and oral ridaforolimus 28 mg/m(2) daily (days 1-5), repeated weekly. Pharmacokinetic studies were performed to evaluate the mean serum trough dalotuzumab concentration, which guided the RP2D. RESULTS Twenty-four patients were enrolled (part 1, n = 20; part 2, n = 4). No dose-limiting toxicities were observed in patients receiving dalotuzumab alone. One patient experienced dose-limiting stomatitis in the combination arm. Pharmacokinetic data showed dose-dependent increases in exposure (area under the curve from zero to infinity [AUC0-∞]) (87,900, 164,000, and 186,000 h*mg/ml for the 900, 1200, and 1500 mg/m(2) dose levels, respectively), maximum serum concentration (Cmax) (392, 643, and 870 mg/ml), and serum trough concentration (Ctrough) (67.1, 71.6, and 101 mg/ml). The mean half-life was 265, 394, and 310 h, respectively. Dalotuzumab pharmacokinetics were not affected by coadministration with ridaforolimus. One of six patients with Ewing sarcoma had confirmed partial response to dalotuzumab monotherapy at 900 mg/m(2). Time to response was 41 d, and progression occurred at 126 d. CONCLUSION Dalotuzumab was well tolerated in paediatric patients with advanced solid malignancies. The RP2D of dalotuzumab is 900 mg/m(2) (ClinicalTrials.gov identifier: NCT01431547, Protocol PN062).
Collapse
Affiliation(s)
- Didier Frappaz
- Institut d'Hématologie et d'Oncologie pédiatrique, Place Professeur Joseph Renaut, 69008 Lyon, France
| | - Sara M Federico
- Department of Oncology, MS 260, Room C6067, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Andrew D J Pearson
- The Institute of Cancer Research, The Royal Marsden Hospital, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Lia Gore
- Department of Pediatrics, University of Colorado School of Medicine, 13001 East 17th Place, Aurora, CO 80045, USA; Childrens Hospital of Colorado, 13123 East 16th Avenue, B115, Aurora, CO 80045-7106, USA
| | - Margaret E Macy
- Department of Pediatrics, University of Colorado School of Medicine, 13001 East 17th Place, Aurora, CO 80045, USA; Childrens Hospital of Colorado, 13123 East 16th Avenue, B115, Aurora, CO 80045-7106, USA
| | - Steven G DuBois
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Isabelle Aerts
- Department of Pediatric Oncology, Institut Curie, 26, rue d'Ulm, 75248 Paris cedex 05, France
| | - Robert Iannone
- Clinical Research, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Ryan Geschwindt
- Clinical Research, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Arne Van Schanke
- Quantitative Solutions B.V., Pivot Park Molenweg 79, 5349 AC Oss, The Netherlands
| | - Rui Wang
- BARDS, MSD R&D (China) Co. Ltd., Universal Business Park, No. 10 Jiu Xianqiao Road, Chao Yang District, Beijing 100015, China
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Univ. Paris-Sud, 114, rue Edouard Vaillant, 94805 Villejuif, France.
| |
Collapse
|
21
|
A phase I study evaluating cixutumumab, a type 1 insulin-like growth factor receptor inhibitor, given every 2 or 3 weeks in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol 2016; 77:1253-62. [DOI: 10.1007/s00280-016-3041-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/19/2016] [Indexed: 10/21/2022]
|
22
|
Simone V, D'Avenia M, Argentiero A, Felici C, Rizzo FM, De Pergola G, Silvestris F. Obesity and Breast Cancer: Molecular Interconnections and Potential Clinical Applications. Oncologist 2016; 21:404-17. [PMID: 26865587 DOI: 10.1634/theoncologist.2015-0351] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/23/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Obesity is an important risk factor for breast cancer (BC) in postmenopausal women; interlinked molecular mechanisms might be involved in the pathogenesis. Increased levels of estrogens due to aromatization of the adipose tissue, inflammatory cytokines such as tumor necrosis factor-α, interleukin-6, and prostaglandin E2, insulin resistance and hyperactivation of insulin-like growth factors pathways, adipokines, and oxidative stress are all abnormally regulated in obese women and contribute to cancerogenesis. These molecular factors interfere with intracellular signaling in the mitogen-activated protein kinase and phosphatydilinositol-3-phosphate/mammalian target of rapamycin (mTOR) pathways, which regulate the progression of the cell cycle, apoptosis, and protein synthesis. In this context, structural defects of typical genes related to both BC and obesity, such as leptin, leptin receptor, serum paraoxonase/arylesterase 1, the fat mass and obesity-associated gene and melanocortin receptor 4, have been associated with a high or low risk of BC development. The early detection of these gene alterations might be useful as risk predictors in obese women, and targeting these pathways involved in the BC pathogenesis in obese women is a potential therapeutic tool. In particular, mTOR pathway deregulation concurs in both obesity and BC, and inhibition of this might disrupt the molecular interlinks in a similar manner to that of metformin, which exerts definite anticancer activity and is currently used as an antidiabetic drug with a weight-reducing property. The identification of both genetic and pharmacological implications on the prevention and management of BC is the ultimate aim of these studies. IMPLICATIONS FOR PRACTICE Obese women are at risk of breast cancer, but clinicians lack concrete tools for the prevention or early diagnosis of this risk. The present study, starting from the biology and the molecular defects characterizing both obesity and breast cancer, analyzed the potential molecules and genetic defects whose early identification could delineate a risk profile. Three steps are proposed that are potentially achievable in the clinical assessment of obese women, namely the evaluation of altered levels of serum molecules, the identification of genetic polymorphisms, and the study of the transcriptomic profile of premalignant lesions. Finally, the therapeutic implications of this molecular assessment were evaluated.
Collapse
Affiliation(s)
- Valeria Simone
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| | - Morena D'Avenia
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| | - Antonella Argentiero
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| | - Claudia Felici
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| | - Francesca Maria Rizzo
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| | - Giovanni De Pergola
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| |
Collapse
|
23
|
de Groot S, Charehbili A, van Laarhoven HWM, Mooyaart AL, Dekker-Ensink NG, van de Ven S, Janssen LGM, Swen JJ, Smit VTHBM, Heijns JB, Kessels LW, van der Straaten T, Böhringer S, Gelderblom H, van der Hoeven JJM, Guchelaar HJ, Pijl H, Kroep JR. Insulin-like growth factor 1 receptor expression and IGF1R 3129G > T polymorphism are associated with response to neoadjuvant chemotherapy in breast cancer patients: results from the NEOZOTAC trial (BOOG 2010-01). Breast Cancer Res 2016; 18:3. [PMID: 26738606 PMCID: PMC4702399 DOI: 10.1186/s13058-015-0663-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/12/2015] [Indexed: 11/10/2022] Open
Abstract
Background The insulin-like growth factor 1 (IGF-1) pathway is involved in cell growth and proliferation and is associated with tumorigenesis and therapy resistance. This study aims to elucidate whether variation in the IGF-1 pathway is predictive for pathologic response in early HER2 negative breast cancer (BC) patients, taking part in the phase III NEOZOTAC trial, randomizing between 6 cycles of neoadjuvant TAC chemotherapy with or without zoledronic acid. Methods Formalin-fixed paraffin-embedded tissue samples of pre-chemotherapy biopsies and operation specimens were collected for analysis of IGF-1 receptor (IGF-1R) expression (n = 216) and for analysis of 8 candidate single nucleotide polymorphisms (SNPs) in genes of the IGF-1 pathway (n = 184) using OpenArray® RealTime PCR. Associations with patient and tumor characteristics and chemotherapy response according to Miller and Payne pathologic response were performed using chi-square and regression analysis. Results During chemotherapy, a significant number of tumors (47.2 %) showed a decrease in IGF-1R expression, while in a small number of tumors an upregulation was seen (15.1 %). IGF-1R expression before treatment was not associated with pathological response, however, absence of IGF-1R expression after treatment was associated with a better response in multivariate analysis (P = 0.006) and patients with a decrease in expression during treatment showed a better response to chemotherapy as well (P = 0.020). Moreover, the variant T allele of 3129G > T in IGF1R (rs2016347) was associated with a better pathological response in multivariate analysis (P = 0.032). Conclusions Absent or diminished expression of IGF-1R after neoadjuvant chemotherapy was associated with a better pathological response. Additionally, we found a SNP (rs2016347) in IGF1R as a potential predictive marker for chemotherapy efficacy in BC patients treated with TAC. Trial registration ClinicalTrials.gov NCT01099436. Registered April 6, 2010.
Collapse
Affiliation(s)
- Stefanie de Groot
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Ayoub Charehbili
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.,Department of Surgery, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Hanneke W M van Laarhoven
- Department of Medical Oncology, Academic Medical Center, Meibergdreef 9, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands
| | - Antien L Mooyaart
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - N Geeske Dekker-Ensink
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Saskia van de Ven
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Laura G M Janssen
- Department of Endocrinology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Vincent T H B M Smit
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Joan B Heijns
- Department of Medical Oncology, Amphia Hospital, Langendijk 75, P.O. Box 90157, 4800 RL, Breda, The Netherlands
| | - Lonneke W Kessels
- Department of Medical Oncology, Deventer Hospital, Nico Bolkesteinlaan 75, P.O. Box 5001, 7400 GC, Deventer, The Netherlands
| | - Tahar van der Straaten
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Stefan Böhringer
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Jacobus J M van der Hoeven
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Hanno Pijl
- Department of Endocrinology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Judith R Kroep
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | | |
Collapse
|
24
|
Lee JJ, Loh K, Yap YS. PI3K/Akt/mTOR inhibitors in breast cancer. Cancer Biol Med 2015; 12:342-54. [PMID: 26779371 PMCID: PMC4706528 DOI: 10.7497/j.issn.2095-3941.2015.0089] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/18/2015] [Indexed: 12/17/2022] Open
Abstract
Activation of the phosphoinositide 3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is common in breast cancer. There is preclinical data to support inhibition of the pathway, and phase I to III trials involving inhibitors of the pathway have been or are being conducted in solid tumors and breast cancer. Everolimus, an mTOR inhibitor, is currently approved for the treatment of hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative breast cancer. In this review, we summarise the efficacy and toxicity findings from the randomised clinical trials, with simplified guidelines on the management of potential adverse effects. Education of healthcare professionals and patients is critical for safety and compliance. While there is some clinical evidence of activity of mTOR inhibition in HR-positive and HER2-positive breast cancers, the benefits may be more pronounced in selected subsets rather than in the overall population. Further development of predictive biomarkers will be useful in the selection of patients who will benefit from inhibition of the PI3K/Akt/mTOR (PAM) pathway.
Collapse
Affiliation(s)
- Joycelyn Jx Lee
- Department of Medical Oncology, National Cancer Center Singapore, Singapore 169610, Singapore
| | - Kiley Loh
- Department of Medical Oncology, National Cancer Center Singapore, Singapore 169610, Singapore
| | - Yoon-Sim Yap
- Department of Medical Oncology, National Cancer Center Singapore, Singapore 169610, Singapore
| |
Collapse
|
25
|
Lee JS, Kang JH, Boo HJ, Hwang SJ, Hong S, Lee SC, Park YJ, Chung TM, Youn H, Mi Lee S, Jae Kim B, Chung JK, Chung Y, William WN, Kee Shin Y, Lee HJ, Oh SH, Lee HY. STAT3-mediated IGF-2 secretion in the tumour microenvironment elicits innate resistance to anti-IGF-1R antibody. Nat Commun 2015; 6:8499. [PMID: 26465273 PMCID: PMC4608384 DOI: 10.1038/ncomms9499] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 08/28/2015] [Indexed: 02/07/2023] Open
Abstract
Drug resistance is a major impediment in medical oncology. Recent studies have emphasized the importance of the tumour microenvironment (TME) to innate resistance, to molecularly targeted therapies. In this study, we investigate the role of TME in resistance to cixutumumab, an anti-IGF-1R monoclonal antibody that has shown limited clinical efficacy. We show that treatment with cixutumumab accelerates tumour infiltration of stromal cells and metastatic tumour growth, and decreases overall survival of mice. Cixutumumab treatment stimulates STAT3-dependent transcriptional upregulation of IGF-2 in cancer cells and recruitment of macrophages and fibroblasts via paracrine IGF-2/IGF-2R activation, resulting in the stroma-derived CXCL8 production, and thus angiogenic and metastatic environment. Silencing IGF-2 or STAT3 expression in cancer cells or IGF-2R or CXCL8 expression in stromal cells significantly inhibits the cancer-stroma communication and vascular endothelial cells' angiogenic activities. These findings suggest that blocking the STAT3/IGF-2/IGF-2R intercellular signalling loop may overcome the adverse consequences of anti-IGF-1R monoclonal antibody-based therapies.
Collapse
Affiliation(s)
- Ji-Sun Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151 742, Korea
| | - Ju-Hee Kang
- National Cancer Center, Goyang-si, Gyeonggi-do 410 769, Korea
| | - Hye-Jin Boo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151 742, Korea
| | - Su-Jung Hwang
- College of Pharmacy, Inje University, Gimhae, Gyeongnam 621 749, Korea
| | - Sungyoul Hong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151 742, Korea
| | - Su-Chan Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151 742, Korea
| | - Young-Jun Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151 742, Korea
| | - Tae-Moon Chung
- Department of Nuclear Medicine, Cancer Imaging Center, Seoul National University Hospital, Seoul 110 744, Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Cancer Imaging Center, Seoul National University Hospital, Seoul 110 744, Korea
| | - Seung Mi Lee
- Department of Obstetrics and Gynecology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 156 707, Korea.,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 110 744, Korea
| | - Byoung Jae Kim
- Department of Obstetrics and Gynecology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 156 707, Korea.,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 110 744, Korea
| | - June-Key Chung
- Department of Nuclear Medicine, Cancer Imaging Center, Seoul National University Hospital, Seoul 110 744, Korea
| | - Yeonseok Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151 742, Korea
| | - William N William
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Young Kee Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151 742, Korea.,The Center for Anti-Cancer CDx, N-Bio, Seoul National University, Seoul 151 742, Korea
| | - Hyo-Jong Lee
- College of Pharmacy, Inje University, Gimhae, Gyeongnam 621 749, Korea
| | - Seung-Hyun Oh
- College of Pharmacy, Gachon University, Inchon 406 840, Korea
| | - Ho-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151 742, Korea
| |
Collapse
|
26
|
Jaillardon L, Abadie J, Godard T, Campone M, Loussouarn D, Siliart B, Nguyen F. The dog as a naturally-occurring model for insulin-like growth factor type 1 receptor-overexpressing breast cancer: an observational cohort study. BMC Cancer 2015; 15:664. [PMID: 26449867 PMCID: PMC4598970 DOI: 10.1186/s12885-015-1670-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 10/01/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Dogs spontaneously develop invasive mammary carcinoma with a high prevalence of the triple-negative (TN) subtype (lack of ER-Estrogen Receptor and PR-Progesterone Receptor expression, lack of HER2-Human Epidermal Growth Factor Receptor 2 overexpression), making this animal model relevant for investigating new therapeutic pathways. Insulin-like growth factor Type-1 receptor (IGF1R) is frequently overexpressed in primary human breast cancers, with a growing role in the TN phenotype. The purpose of this study was to investigate the Dog as a candidate model for IGF1R-overexpressing mammary carcinoma. METHODS 150 bitches with canine mammary carcinoma (CMC) and a known 2-year follow-up were retrospectively included. IGF1R expression was assessed by immunohistochemistry (IHC) using a similar scoring system as for HER2 in breast cancer. The prognostic value of the IGF1R expression was assessed in terms of overall and specific survival as well as disease-free interval (DFI). RESULTS 47 CMC (31 %) were classified as luminal and 103 (69 %) as triple-negative (TN-CMC). 41 % of CMC overexpressed IGF1R (IHC score 3+) of which 76 % were TN-CMC and 62 % grade III. IGF1R overexpression was associated with aggressive features including lymphovascular invasion, histological grade III, low ER expression and the TN phenotype. Univariate and multivariate analyses revealed that IGF1R overexpression was associated with shorter overall and specific survivals and shorter DFI in TN-CMC. CONCLUSIONS IGF1R overexpression is common and related to a poor outcome in canine invasive mammary carcinoma, particularly in the triple negative subtype, as in human breast cancer. Preclinical studies using the Dog as a spontaneous animal model could be considered to investigate new therapies targeting IGF1R in triple-negative breast cancer.
Collapse
Affiliation(s)
- Laetitia Jaillardon
- Oniris, Université Nantes-Angers-Le Mans, Department of Human Health, Biomedical Research and Animal Models, AMaROC Unit and LDHvet laboratory, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Site de la Chantrerie, Route de Gachet, Nantes, F-44307, France.
| | - Jérome Abadie
- Oniris, Université Nantes-Angers-Le Mans, Department of Human Health, Biomedical Research and Animal Models, AMaROC Unit and LDHvet laboratory, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Site de la Chantrerie, Route de Gachet, Nantes, F-44307, France.
| | - Tiffanie Godard
- Oniris, Université Nantes-Angers-Le Mans, Department of Human Health, Biomedical Research and Animal Models, AMaROC Unit and LDHvet laboratory, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Site de la Chantrerie, Route de Gachet, Nantes, F-44307, France.
| | - Mario Campone
- Institut de Cancérologie de l'Ouest, Boulevard Jacques Monod Saint Herblain-Nantes cedex, Centre de Recherche du Cancer Nantes-Angers, UMR-INSERM U892/CNRS 6299, Nantes, F-44805, France.
| | - Delphine Loussouarn
- Hopital G&R Laënnec, Boulevard Jacques Monod, Saint Herblain-Nantes cedex, Nantes, F-44093, France.
| | - Brigitte Siliart
- Oniris, Université Nantes-Angers-Le Mans, Department of Human Health, Biomedical Research and Animal Models, AMaROC Unit and LDHvet laboratory, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Site de la Chantrerie, Route de Gachet, Nantes, F-44307, France.
| | - Frédérique Nguyen
- Oniris, Université Nantes-Angers-Le Mans, Department of Human Health, Biomedical Research and Animal Models, AMaROC Unit and LDHvet laboratory, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Site de la Chantrerie, Route de Gachet, Nantes, F-44307, France.
| |
Collapse
|
27
|
Zheng Q, Xu F, Nie M, Xia W, Qin T, Qin G, An X, Xue C, Peng R, Yuan Z, Shi Y, Wang S. Selective Estrogen Receptor Modulator-Associated Nonalcoholic Fatty Liver Disease Improved Survival in Patients With Breast Cancer: A Retrospective Cohort Analysis. Medicine (Baltimore) 2015; 94:e1718. [PMID: 26448028 PMCID: PMC4616748 DOI: 10.1097/md.0000000000001718] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Selective estrogen receptor modulator (SERM)-associated nonalcoholic fatty liver disease (NAFLD) might be related to treatment efficacy in patients with breast cancer because of circulating estrogen antagonism. The aim of the study was to investigate the relationship between NAFLD and survival outcomes in patients with breast cancer who were treated with tamoxifen or toremifene. This single-center, retrospective, cohort study included 785 eligible patients who received tamoxifen or toremifene, after curative resection for breast cancer, at the Sun Yat-sen University Cancer Center between January 2005 and December 2009. Data were extracted from patient medical records. All patients underwent abdominal ultrasonography, at least once, at baseline and at the annual follow-up. Patients who were diagnosed with NAFLD on ultrasonography were classified into the NAFLD or the non-NAFLD arm at the 3-year follow-up visit. Univariate and multivariate Cox regression analyses were conducted to evaluate any associations between NAFLD and disease-free survival (DFS) or overall survival (OS). One hundred fifty-eight patients were diagnosed with NAFLD. Patients who developed NAFLD had better DFS and OS compared with those who did not. Univariate analyses revealed that the 5-year DFS rates were 91.56% and 85.01% for the NAFLD and non-NAFLD arms, respectively (hazard ratio [HR], 0.59; 95% confidence interval [CI], 0.37-0.96; log-rank P = 0.032). The 5-year OS rates were 96.64% and 93.31% for the NAFLD and non-NAFLD arms, respectively (HR, 0.39; 95% CI, 0.16-0.99; log-rank P = 0.039). Multivariate analysis revealed that NAFLD was an independent prognostic factor for DFS, improving the DFS rate by 41% compared with that in the non-NAFLD arm (HR, 0.59; 95% CI, 0.36-0.96; P = 0.033). SERM-associated NAFLD was independently associated with improved DFS and might be useful for predicting treatment responses in breast cancer patients treated with SERMs.
Collapse
Affiliation(s)
- Qiufan Zheng
- From the Department of Medical Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gradishar WJ, Yardley DA, Layman R, Sparano JA, Chuang E, Northfelt DW, Schwartz GN, Youssoufian H, Tang S, Novosiadly R, Forest A, Nguyen TS, Cosaert J, Grebennik D, Haluska P. Clinical and Translational Results of a Phase II, Randomized Trial of an Anti-IGF-1R (Cixutumumab) in Women with Breast Cancer That Progressed on Endocrine Therapy. Clin Cancer Res 2015; 22:301-9. [PMID: 26324738 DOI: 10.1158/1078-0432.ccr-15-0588] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/04/2015] [Indexed: 12/18/2022]
Abstract
PURPOSE This phase II trial evaluated the efficacy and safety of cixutumumab, a human anti-insulin-like growth factor receptor 1 (IGF-1R) monoclonal IgG1 antibody, and explored potential biomarkers in postmenopausal women with hormone receptor-positive breast cancer. EXPERIMENTAL DESIGN Patients with hormone receptor-positive breast cancer that progressed on antiestrogen therapy received (2:1 randomization) cixutumumab 10 mg/kg and the same antiestrogen (arm A) or cixutumumab alone (arm B) every 2 weeks (q2w). Primary endpoint was progression-free survival (PFS); secondary endpoints included overall survival (OS) and safety. Correlative analyses of IGF-1R, total insulin receptor (IR), and IR isoforms A (IR-A) and B (IR-B) expression in tumor tissue were explored. RESULTS Ninety-three patients were randomized (arm A, n = 62; arm B, n = 31). Median PFS was 2.0 and 3.1 months for arm A and arm B, respectively. Secondary efficacy measures were similar between the arms. Overall, cixutumumab was well tolerated. IGF-1R expression was not associated with clinical outcomes. Regardless of the treatment, lower IR-A, IR-B, and total IR mRNA expression in tumor tissue was significantly associated with longer PFS [IR-A: HR, 2.62 (P = 0.0062); IR-B: HR, 2.21 (P = 0.0202); and total IR: HR, 2.18 (P = 0.0230)] and OS [IR-A: HR, 2.94 (P = 0.0156); IR-B: HR, 2.69 (P = 0.0245); and total IR: HR, 2.72 (P = 0.0231)]. CONCLUSIONS Cixutumumab (10 mg/kg) with or without antiestrogen q2w had an acceptable safety profile, but no significant clinical efficacy. Patients with low total IR, IR-A, and IR-B mRNA expression levels had significantly longer PFS and OS, independent of the treatment. The prognostic or predictive value of IR as a biomarker for IGF-1R-targeted therapies requires further validation.
Collapse
Affiliation(s)
| | - Denise A Yardley
- Sarah Cannon Research Institute, Nashville, Tennessee. Tennessee Oncology, PLLC, Nashville, Tennessee
| | - Rachel Layman
- Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | | | - Ellen Chuang
- Weill Cornell Medical College, New York, New York
| | | | | | | | - Shande Tang
- Eli Lilly and Company, Bridgewater, New Jersey
| | | | | | | | - Jan Cosaert
- Eli Lilly and Company, Bridgewater, New Jersey
| | | | | |
Collapse
|
29
|
Oyasiji T, Zhang J, Kuvshinoff B, Iyer R, Hochwald SN. Molecular Targets in Biliary Carcinogenesis and Implications for Therapy. Oncologist 2015; 20:742-51. [PMID: 26025932 DOI: 10.1634/theoncologist.2014-0442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/27/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Biliary tract cancers (BTCs) encompass a group of invasive carcinomas, including cholangiocarcinoma (intrahepatic, perihilar, or extrahepatic), and gallbladder carcinoma. Approximately 90% of patients present with advanced, unresectable disease and have a poor prognosis. The latest recommendation is to treat advanced or metastatic disease with gemcitabine and cisplatin, although chemotherapy has recorded modest survival benefits. Comprehension of the molecular basis of biliary carcinogenesis has resulted in experimental trials of targeted therapies in BTCs, with promising results. This review addresses the emerging role of targeted therapy in the treatment of BTCs. Findings from preclinical studies were reviewed and correlated with the outcomes of clinical trials that were undertaken to translate the laboratory discoveries. IMPLICATIONS FOR PRACTICE Biliary tract cancers are rare. Approximately 90% of patients present with advanced, unresectable disease and have a poor prognosis. Median overall and progression-free survival are 12 and 8 months, respectively. Because chemotherapy has recorded modest survival benefits, targeted therapies are being explored for personalized treatment of these cancers. A comprehensive review of targeted therapies in biliary tract cancers was undertaken to present emerging evidence from laboratory and/or molecular studies as they translate to clinical trials and outcomes. The latest evidence on this topic is presented to clinicians and practitioners to guide decisions on treatment of this disease.
Collapse
Affiliation(s)
- Tolutope Oyasiji
- Departments of Surgical Oncology and Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Jianliang Zhang
- Departments of Surgical Oncology and Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Boris Kuvshinoff
- Departments of Surgical Oncology and Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Renuka Iyer
- Departments of Surgical Oncology and Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Steven N Hochwald
- Departments of Surgical Oncology and Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| |
Collapse
|
30
|
Beggs AD, Dilworth MP. Surgery in the era of the 'omics revolution. Br J Surg 2015; 102:e29-40. [PMID: 25627134 PMCID: PMC4328456 DOI: 10.1002/bjs.9722] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/20/2014] [Indexed: 02/06/2023]
Abstract
Background Surgery is entering a new phase with the revolution in genomic technology. Cheap, mass access to next‐generation sequencing is now allowing the analysis of entire human genomes at the DNA and RNA level. These data sets are being used increasingly to identify the molecular differences that underlie common surgical diseases, and enable them to be stratified for patient benefit. Methods This article reviews the recent developments in the molecular biology of colorectal, oesophagogastric and breast cancer. Results The review specifically covers developments in genetic predisposition, next‐generation sequencing studies, biomarkers for stratification, prognosis and treatment, and other 'omics technologies such as metabolomics and proteomics. Conclusion There are unique opportunities over the next decade to change the management of surgical disease radically, using these technologies. The directions that this may take are highlighted, including future advances such as the 100 000 Genomes Project. May individualize cancer treatment
Collapse
Affiliation(s)
- A D Beggs
- Translational Surgical Biology Laboratory, School of Cancer Sciences, University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK
| | | |
Collapse
|
31
|
Accounting for the delay in the transition from acute to chronic pain: axonal and nuclear mechanisms. J Neurosci 2015; 35:495-507. [PMID: 25589745 DOI: 10.1523/jneurosci.5147-13.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acute insults produce hyperalgesic priming, a neuroplastic change in nociceptors that markedly prolongs inflammatory mediator-induced hyperalgesia. After an acute initiating insult, there is a 72 h delay to the onset of priming, for which the underlying mechanism is unknown. We hypothesized that the delay is due to the time required for a signal to travel from the peripheral terminal to the cell body followed by a return signal to the peripheral terminal. We report that when an inducer of hyperalgesic priming (monocyte chemotactic protein 1) is administered at the spinal cord of Sprague Dawley rats, priming is detected at the peripheral terminal with a delay significantly shorter than when applied peripherally. Spinally induced priming is detected not only when prostaglandin E2 (PGE2) is presented to the peripheral nociceptor terminals, but also when it is presented intrathecally to the central terminals in the spinal cord. Furthermore, when an inducer of priming is administered in the paw, priming can be detected in spinal cord (as prolonged hyperalgesia induced by intrathecal PGE2), but only when the mechanical stimulus is presented to the paw on the side where the priming inducer was administered. Both spinally and peripherally induced priming is prevented by intrathecal oligodeoxynucleotide antisense to the nuclear transcription factor CREB mRNA. Finally, the inhibitor of protein translation reversed hyperalgesic priming only when injected at the site where PGE2 was administered, suggesting that the signal transmitted from the cell body to the peripheral terminal is not a newly translated protein, but possibly a newly expressed mRNA.
Collapse
|
32
|
Lim HJ, Crowe P, Yang JL. Current clinical regulation of PI3K/PTEN/Akt/mTOR signalling in treatment of human cancer. J Cancer Res Clin Oncol 2015; 141:671-89. [PMID: 25146530 DOI: 10.1007/s00432-014-1803-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/08/2014] [Indexed: 01/14/2023]
Abstract
PURPOSE PTEN is an essential tumour suppressor gene which encodes a phosphatase protein that antagonises the PI3K/Akt/mTOR antiapoptotic pathway. Impairment of this tumour suppressor pathway potentially becomes a causal factor for development of malignancies. This review aims to assess current understanding of mechanisms of dysfunction involving the PI3K/PTEN/Akt/mTOR pathway linked to tumorigenesis and evaluate the evidence for targeted therapy directed at this signalling axis. METHODS Relevant articles in scientific databases were identified using a combination of search terms, including "malignancies", "targeted therapy", "PTEN", and "combination therapy". These databases included Medline, Embase, Cochrane Review, Pubmed, and Scopus. RESULTS PI3K/PTEN expression is frequently deregulated in a majority of malignancies through genetic, epigenetic, and post-transcriptional modifications. This contributes to the upregulation of the PI3K/Akt/mTOR pathway which has been the focus of intense clinical studies. Targeted agents aimed at this pathway offer a novel treatment approach in a variety of haematologic malignancies and solid tumours. Compared to single-agent use, greater response rates were obtained in combination regimens, supporting further investigation of suitable drug combinations in a broad spectrum of malignancies. CONCLUSION Activation of the PI3K/PTEN/Akt/mTOR pathway is implicated both in the pathogenesis of malignancies and development of resistance to anticancer therapies. Therefore, PI3K/Akt/mTOR inhibitors are a promising therapeutic option, in association with systemic cytotoxic and biological therapies, to enable sustained clinical outcomes in cancer treatment. Therapeutic strategies could be tailored according to appropriate biomarkers and patient-specific mutation profiles to maximise benefit of combination therapies.
Collapse
Affiliation(s)
- Hui Jun Lim
- Adult Cancer Program, Sarcoma and Nano-oncology Group, Faculty of Medicine, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Room 209, Randwick, Sydney, NSW, 2052, Australia
| | | | | |
Collapse
|
33
|
Higano CS, Berlin J, Gordon M, LoRusso P, Tang S, Dontabhaktuni A, Schwartz JD, Cosaert J, Mehnert JM. Safety, tolerability, and pharmacokinetics of single and multiple doses of intravenous cixutumumab (IMC-A12), an inhibitor of the insulin-like growth factor-I receptor, administered weekly or every 2 weeks in patients with advanced solid tumors. Invest New Drugs 2015; 33:450-62. [PMID: 25749986 DOI: 10.1007/s10637-015-0217-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/05/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Type 1 insulin-like growth factor receptor (IGF-IR) signaling is often dysregulated in cancer. Cixutumumab, a fully human IgG1 monoclonal antibody, blocks IGF-IR and inhibits downstream signaling. The current study determined the recommended dose, safety, and pharmacokinetic (PK) profile of weekly or every-2-week dosing of cixutumumab. PATIENTS AND METHODS Two open-label, multicenter phase I studies evaluated weekly (3-15 mg/kg) or every-2-weeks (6-15 mg/kg) dosing of cixutumumab in patients with advanced solid tumors. Serial blood samples for PK were collected up to 168-336 h (day 8-15) following the first administration of cixutumumab. Efficacy was evaluated as best overall tumor response. RESULTS A total of 24 and 16 patients were enrolled in the weekly and every-2-week dosing studies, respectively. Treatment-emergent adverse events (≥10%) included hyperglycemia, fatigue, anemia, nausea, and vomiting. Severe adverse events (AE) were infrequent; one serious AE (grade 3 electrocardiogram QT prolongation) was deemed possibly cixutumumab-related (10 mg/kg every-2-weeks). One death occurred due to disease progression (6 mg/kg weekly cohort). Maximum serum concentrations increased with dose. A maximum tolerated dose was not identified; pre-determined target serum minimum concentrations (60 μg/mL) were achieved with ≥6 mg/kg weekly and ≥10 mg/kg every-2-week dosing. Cixutumumab terminal elimination half-life is approximately a week (individual range, t1/2 = 4.58-9.33 days based upon 10 mg/kg every 2 weeks). Overall, stable disease was achieved in 25% of all patients. CONCLUSIONS Cixutumumab was associated with favorable safety and PK profiles. A dosing regimen of 10 mg/kg every 2 weeks was recommended for subsequent disease-focused clinical trials.
Collapse
Affiliation(s)
- C S Higano
- Departments of Medicine and Urology, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wagner LM, Fouladi M, Ahmed A, Krailo MD, Weigel B, DuBois SG, Doyle LA, Chen H, Blaney SM. Phase II study of cixutumumab in combination with temsirolimus in pediatric patients and young adults with recurrent or refractory sarcoma: a report from the Children's Oncology Group. Pediatr Blood Cancer 2015; 62:440-4. [PMID: 25446280 PMCID: PMC4501773 DOI: 10.1002/pbc.25334] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/02/2014] [Indexed: 01/14/2023]
Abstract
BACKGROUND The combined inhibition of insulin-growth factor type 1 receptor (IGF-1R) and the mammalian target of rapamycin (mTOR) has shown activity in preclinical models of pediatric sarcoma and in adult sarcoma patients. We evaluated the activity of the anti-IGF-1R antibody cixutumumab with the mTOR inhibitor temsirolimus in patients with relapsed or refractory Ewing sarcoma, osteosarcoma, rhabdomyosarcoma, and other soft tissue sarcoma, using the recommended dosages from a pediatric phase I trial. METHODS Cixutumumab 6 mg/kg and temsirolimus 8 mg/m(2) were administered intravenously once weekly in 4-week cycles to patients <30 years. Temsirolimus was escalated to 10 mg/m(2) for subsequent cycles in patients who did not experience unacceptable first-cycle toxicity. A two-stage design was used to identify a response rate <10 or >35% for each tumor-specific cohort. Tumor tissue was analyzed by immunohistochemistry for potential biomarkers of response. RESULTS Forty-three evaluable patients received a median of 2 cycles (range 1-7). No objective responses were observed, and 16% of patients were progression-free at 12 weeks. Dose-limiting toxicity was observed in 15 (16%) of 92 cycles. The most common toxicities were mucositis, electrolyte disturbances, and myelosuppression. The majority of patients receiving a second cycle were not eligible for temsirolimus escalation due to first-cycle toxicity. The lack of objective responses precluded correlation with tissue biomarkers. CONCLUSIONS Despite encouraging preclinical data, the combination of cixutumumab and temsirolimus did not result in objective responses in this phase II trial of pediatric and young adults with recurrent or refractory sarcoma.
Collapse
Affiliation(s)
- Lars M. Wagner
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, Division of Oncology
| | - Maryam Fouladi
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, Division of Oncology
| | - Atif Ahmed
- Mercy Children’s Hospital, Kansas City, MO, Department of Pathology
| | - Mark D. Krailo
- University of Southern California, Los Angeles, CA, Keck School of Medicine, Department of Preventive Medicine
| | - Brenda Weigel
- University of Minnesota, Minneapolis, MN, Division of Pediatric Hematology/Oncology
| | - Steven G. DuBois
- University of California, San Francisco School of Medicine, San Francisco, CA, Division of Pediatric Hematology/Oncology
| | - L. Austin Doyle
- Cancer Therapy Evaluation Program, National Cancer Institute
| | - Helen Chen
- Cancer Therapy Evaluation Program, National Cancer Institute
| | - Susan M. Blaney
- Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, Division of Hematology/Oncology
| |
Collapse
|
35
|
Christopoulos PF, Msaouel P, Koutsilieris M. The role of the insulin-like growth factor-1 system in breast cancer. Mol Cancer 2015; 14:43. [PMID: 25743390 PMCID: PMC4335664 DOI: 10.1186/s12943-015-0291-7] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/07/2015] [Indexed: 02/06/2023] Open
Abstract
IGF-1 is a potent mitogen of major importance in the mammary gland. IGF-1 binding to the cognate receptor, IGF-1R, triggers a signaling cascade leading to proliferative and anti-apoptotic events. Although many of the relevant molecular pathways and intracellular cascades remain to be elucidated, a growing body of evidence points to the important role of the IGF-1 system in breast cancer development, progression and metastasis. IGF-1 is a point of convergence for major signaling pathways implicated in breast cancer growth. In this review, we provide an overview and concise update on the function and regulation of IGF-1 as well as the role it plays in breast malignancies.
Collapse
Affiliation(s)
- Panagiotis F Christopoulos
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Goudi, Athens, Greece.
| | - Pavlos Msaouel
- Department of Internal Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Goudi, Athens, Greece.
| |
Collapse
|
36
|
Fouladi M, Perentesis JP, Wagner LM, Vinks AA, Reid JM, Ahern C, Thomas G, Mercer CA, Krueger DA, Houghton PJ, Doyle LA, Chen H, Weigel B, Blaney SM. A Phase I Study of Cixutumumab (IMC-A12) in Combination with Temsirolimus (CCI-779) in Children with Recurrent Solid Tumors: A Children's Oncology Group Phase I Consortium Report. Clin Cancer Res 2014; 21:1558-65. [PMID: 25467181 DOI: 10.1158/1078-0432.ccr-14-0595] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 11/03/2014] [Indexed: 11/16/2022]
Abstract
PURPOSE To determine the MTD, dose-limiting toxicities (DLT), pharmacokinetics, and biologic effects of cixutumumab administered in combination with temsirolimus to children with refractory solid tumors. EXPERIMENTAL DESIGN Cixutumumab and temsirolimus were administered intravenously once every 7 days in 28-day cycles. Pharmacokinetic and biology studies, including assessment of mTOR downstream targets in peripheral blood mononuclear cells, were performed during the first cycle. RESULTS Thirty-nine patients, median age 11.8 years (range, 1-21.5), with recurrent solid or central nervous system tumors were enrolled, of whom 33 were fully assessable for toxicity. There were four dose levels, which included two dose reductions and a subsequent intermediated dose escalation: (i) IMC-A12 6 mg/kg, temsirolimus 15 mg/m(2); (ii) IMC-A12 6 mg/kg, temsirolimus 10 mg/m(2); (iii) IMC-A12 4 mg/kg, temsirolimus 8 mg/m(2); and (iv) IMC-A12 6 mg/kg, temsirolimus 8 mg/m(2). Mucositis was the predominant DLT. Other DLTs included hypercholesterolemia, fatigue, thrombocytopenia, and increased alanine aminotransferase. Target inhibition (decreased S6K1 and PAkt) in peripheral blood mononuclear cells was noted at all dose levels. Marked interpatient variability in temsirolimus pharmacokinetic parameters was noted. At 8 mg/m(2), the median temsirolimus AUC was 2,946 ng • h/mL (range, 937-5,536) with a median sirolimus AUC of 767 ng • h/mL (range, 245-3,675). CONCLUSIONS The recommended pediatric phase II doses for the combination of cixutumumab and temsirolimus are 6 mg/kg and 8 mg/m(2), respectively.
Collapse
Affiliation(s)
- Maryam Fouladi
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| | | | - Lars M Wagner
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Joel M Reid
- Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Charlotte Ahern
- Children's Oncology Group Operations Center, Arcadia, California
| | | | | | - Darcy A Krueger
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - L Austin Doyle
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland
| | - Helen Chen
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland
| | | | - Susan M Blaney
- Texas Children's Cancer Center/Baylor College of Medicine, Houston, Texas
| |
Collapse
|
37
|
Association between insulin-like growth factor-1 receptor (IGF1R) negativity and poor prognosis in a cohort of women with primary breast cancer. BMC Cancer 2014; 14:794. [PMID: 25362932 PMCID: PMC4232733 DOI: 10.1186/1471-2407-14-794] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/24/2014] [Indexed: 11/16/2022] Open
Abstract
Background Resistance towards endocrine therapy is a great concern in breast cancer treatment and may partly be explained by the activation of compensatory signaling pathways. The aim of the present study was to investigate if the insulin-like growth factor-1 receptor (IGF1R) signaling pathway was activated or deregulated in breast cancer patients and to explore if any of the markers were prognostic, with or without adjuvant tamoxifen. This signaling pathway has been suggested to cause estrogen independent cell growth and thus contribute to resistance to endocrine treatment in estrogen receptor (ER) positive breast cancer. Methods The protein expression of IGF1R, phosphorylated Mammalian Target of Rapamycin (p-mTOR) and phosphorylated S6 ribosomal protein (p-S6rp) were investigated by immunohistochemistry using tissue microarrays in two patient cohorts. Cohort I (N = 264) consisted of mainly postmenopausal women with stage II breast cancer treated with tamoxifen for 2 years irrespective of ER status. Cohort II (N = 206) consisted of mainly medically untreated, premenopausal patients with node-negative breast cancer. Distant disease-free survival (DDFS) at 5 years was used as end-point for survival analyses. Results We found that lower IGF1R expression was associated with worse prognosis for tamoxifen treated, postmenopausal women (HR = 0.70, 95% CI = 0.52 – 0.94, p = 0.016). The effect was seen mainly in ER-negative patients where the prognostic effect was retained after adjustment for other prognostic markers (adjusted HR = 0.49, 95% CI = 0.29 – 0.82, p = 0.007). Expression of IGF1R was associated with ER positivity (p < 0.001) in the same patient cohort. Conclusions Our results support previous studies indicating that IGF1R positivity reflects a well differentiated tumor with low metastatic capacity. An association between lack of IGF1R expression and worse prognosis was mainly seen in the ER-negative part of Cohort I. The lack of co-activation of downstream markers (p-mTOR and p-S6rp) in the IGF1R pathway suggested that the prognostic effect was not due to complete activation of this pathway. Thus, no evidence could be found for a compensatory function of IGF1R signaling in the investigated cohorts. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-794) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Hong H, Nayak TR, Shi S, Graves SA, Fliss BC, Barnhart TE, Cai W. Generation and screening of monoclonal antibodies for immunoPET imaging of IGF1R in prostate cancer. Mol Pharm 2014; 11:3624-30. [PMID: 25157758 PMCID: PMC4186682 DOI: 10.1021/mp5003637] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Insulin-like growth factor 1 receptor (IGF1R) plays an important role in proliferation, apoptosis, angiogenesis, and tumor invasion. The expression level of IGF1R is related to resistance to several targeted therapies. The goal of this study was to develop an immunoPET tracer for imaging of IGF1R in prostate cancer. Murine antibodies against human IGF1R were generated in BALB/c mice, which were screened in IGF1R-positive MCF-7 cells using flow cytometry as well as biodistribution studies with multiple (64)Cu-labeled antibody clones. The antibody production method we adopted could readily produce milligram quantities of anti-IGF1R antibodies for in vivo studies. One antibody clone (1A2G11) with the highest affinity for IGF1R was selected and conjugated to NOTA for (64)Cu-labeling. NOTA-1A2G11 maintained IGF1R specificity/avidity based on flow cytometry. (64)Cu-labeling was achieved with good yield (>50%) and high specific activity (>1 Ci/μmol). Serial PET imaging revealed that uptake of (64)Cu-NOTA-1A2G11 was 2.8 ± 0.7, 10.2 ± 2.6, and 9.6 ± 1.7 %ID/g in IGF1R-positive DU-145 tumors at 4, 24, and 48 h postinjection, respectively (n = 3), significantly higher than that in IGF1R-negative LNCaP tumors (<3 %ID/g at each time point) except at 4 h postinjection. Histology studies showed strong correlations between IGF1R expression level in the prostate cancer tumor tissues and tumor uptake of (64)Cu-NOTA-1A2G11. Prominent, persistent, and IGF1R-specific uptake of (64)Cu-NOTA-1A2G11 in IGF1R-positive prostate tumors holds strong potential for future cancer diagnosis, prognosis, and therapy using this antibody.
Collapse
Affiliation(s)
- Hao Hong
- Department of Radiology, ‡Materials Science Program, §Department of Medical Physics, and ∥Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53705-2275, United States
| | | | | | | | | | | | | |
Collapse
|
39
|
Lerario AM, Worden FP, Ramm CA, Hasseltine EA, Stadler WM, Else T, Shah MH, Agamah E, Rao K, Hammer GD. The combination of insulin-like growth factor receptor 1 (IGF1R) antibody cixutumumab and mitotane as a first-line therapy for patients with recurrent/metastatic adrenocortical carcinoma: a multi-institutional NCI-sponsored trial. HORMONES & CANCER 2014; 5:232-9. [PMID: 24849545 PMCID: PMC4298824 DOI: 10.1007/s12672-014-0182-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/02/2014] [Indexed: 12/12/2022]
Abstract
Adrenocortical carcinoma (ACC) is an aggressive malignancy, which lacks an effective systemic treatment. Abnormal activation of insulin-like growth factor receptor 1 (IGF1R) has been frequently observed. Preclinical studies demonstrated that pharmacological inhibition of IGF1R signaling in ACC has antiproliferative effects. A previous phase I trial with an IGF1R inhibitor has demonstrated biological activity against ACC. The objective of this study is to assess the efficacy of the combination of the IGF1R inhibitor cixutumumab (IMC-A12) in association with mitotane as a first-line treatment for advanced/metastatic ACC. We conducted a multicenter, randomized double-arm phase II trial in patients with irresectable recurrent/metastatic ACC. The original protocol included two treatment groups: IMC-A12 + mitotane and mitotane as a single agent, after an initial single-arm phase for safety evaluation with IMC-A12 + mitotane. IMC-A12 was dosed at 10 mg/kg intravenously every 2 weeks. The starting dose for mitotane was 2 g daily, subsequently adjusted according to serum levels/symptoms. The primary endpoint was progression-free survival (PFS) according to RECIST (Response Evaluation Criteria in Solid Tumors). This study was terminated before the randomization phase due to slow accrual and limited efficacy. Twenty patients (13 males, 7 females) with a median age of 50.2 years (range 21.9-79.6) were enrolled for the single-arm phase. Therapeutic effects were observed in 8/20 patients, including one partial response and seven stable diseases. The median PFS was 6 weeks (range 2.66-48). Toxic events included two grade 4 (hyperglycemia and hyponatremia) and one grade 5 (multiorgan failure). Although the regimen demonstrated activity in some patients, the relatively low therapeutic efficacy precluded further studies with this combination of drugs.
Collapse
Affiliation(s)
- Antonio M. Lerario
- Division of Metabolism, Endocrinology & Diabetes, Medical School, University of Michigan, 109 Zina Pitcher Place, 1528 BSRB, Ann Arbor, MI 48109 USA
| | - Francis P. Worden
- Division of Hematology/Oncology, University of Michigan, 1500 E Medical Center Dr, C343 MIB, SPC 5848, Ann Arbor, MI 48109 USA
| | - Carole A. Ramm
- Division of Metabolism, Endocrinology & Diabetes, Medical School, University of Michigan, 109 Zina Pitcher Place, 1528 BSRB, Ann Arbor, MI 48109 USA
| | - Elizabeth A. Hasseltine
- Division of Metabolism, Endocrinology & Diabetes, Medical School, University of Michigan, 109 Zina Pitcher Place, 1528 BSRB, Ann Arbor, MI 48109 USA
| | - Walter M. Stadler
- Division of Hematology/Oncology, University of Chicago, 5841 S Maryland Ave Mc2115, Chicago, IL 60637 USA
| | - Tobias Else
- Division of Metabolism, Endocrinology & Diabetes, Medical School, University of Michigan, 109 Zina Pitcher Place, 1528 BSRB, Ann Arbor, MI 48109 USA
| | - Manisha H. Shah
- Ohio State University Comprehensive Cancer Center, 320 W 10th Avenue, 4th Floor Starling Loving Hall, Columbus, OH 43210 USA
| | - Edem Agamah
- IHDN—International Health and Development Network, 2050 W Iles Ave, Springfield, IL 62704 USA
| | - Krishna Rao
- Division of Hematology/Medical Oncology, Department of Internal Medicine and Simmons Cancer Institute, Southern Illinois University School of Medicine, 315 West Carpenter, 1st Floor, Clinic B, Springfield, IL 62702 USA
| | - Gary D. Hammer
- Division of Metabolism, Endocrinology & Diabetes, Medical School, University of Michigan, 109 Zina Pitcher Place, 1528 BSRB, Ann Arbor, MI 48109 USA
| |
Collapse
|
40
|
Abstract
The discovery of HER2 and development of trastuzumab pioneered the field of targeted therapy in breast cancer. Hoping to emulate the same clinical success, pharmaceutical companies have developed several antibodies against newly identified membrane-bound targets. Unfortunately, none of these agents has yet matched the thousands of lives saved by trastuzumab. In this article we review the most advanced therapeutic antibodies in breast cancer. While acknowledging their unquestionable benefit, we emphasize the need to better understand their biology and mechanisms of action in order to optimize their use in defined patient populations.
Collapse
Affiliation(s)
- José Pérez-Garcia
- Breast Cancer Unit, Vall d׳Hebron Institute of Oncology, Vall d׳Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eva Muñoz-Couselo
- Breast Cancer Unit, Vall d׳Hebron Institute of Oncology, Vall d׳Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Javier Cortés
- Breast Cancer Unit, Vall d׳Hebron Institute of Oncology, Vall d׳Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY.
| |
Collapse
|
41
|
Calycosin suppresses breast cancer cell growth via ERβ-dependent regulation of IGF-1R, p38 MAPK and PI3K/Akt pathways. PLoS One 2014; 9:e91245. [PMID: 24618835 PMCID: PMC3949755 DOI: 10.1371/journal.pone.0091245] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 02/11/2014] [Indexed: 12/27/2022] Open
Abstract
We previously reported that calycosin, a natural phytoestrogen structurally similar to estrogen, successfully triggered apoptosis of estrogen receptor (ER)-positive breast cancer cell line, MCF-7. To better understand the antitumor activities of calycosin against breast cancer, besides MCF-7 cells, another ER-positive cell line T-47D was analyzed here, with ER-negative cell lines (MDA-231, MDA-435) as control. Notably, calycosin led to inhibited cell proliferation and apoptosis only in ER-positive cells, particularly in MCF-7 cells, whereas no such effect was observed in ER-negative cells. Then we investigated whether regulation of ERβ, a subtype of ER, contributed to calycosin-induced apoptosis in breast cancer cells. The results showed that incubation of calycosin resulted in enhanced expression ERβ in MCF-7 and T-47D cells, rather than MDA-231 and MDA-435 cells. Moreover, with the upregulation of ERβ, successive changes in downstream signaling pathways were found, including inactivation of insulin-like growth factor 1 receptor (IGF-1R), then stimulation of p38 MAPK and suppression of the serine/threonine kinase (Akt), and finally poly(ADP-ribose) polymerase 1 (PARP-1) cleavage. However, the other two members of the mitogen-activated protein kinase (MAPK) family, extracellular signal-regulated kinase (ERK) 1/2 and c-Jun N-terminal kinase (JNK), were not consequently regulated by downregulated IGF-1R, indicating ERK 1/2 and JNK pathways were not necessary to allow proliferation inhibition by calycosin. Taken together, our results indicate that calycosin tends to inhibit growth and induce apoptosis in ER-positive breast cancer cells, which is mediated by ERβ-induced inhibition of IGF-1R, along with the selective regulation of MAPK and phosphatidylinositol 3-kinase (PI3K)/Akt pathways.
Collapse
|
42
|
Osteolysis and pain due to experimental bone metastases are improved by treatment with rapamycin. Breast Cancer Res Treat 2013; 143:227-37. [PMID: 24327332 DOI: 10.1007/s10549-013-2799-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
Abstract
In advanced breast cancer, bone metastases occur in 70 % of patients. Managing the devastating pain associated with the disease is difficult. Rapamycin is an immunomodulatory drug that targets the mammalian target of rapamycin pathway. Rapamycin has been shown to decrease osteolysis associated with metastatic breast cancer in pre-clinical models and to reduce pain in inflammatory and neuropathic models. The aim of this study was to evaluate the effectiveness of rapamycin in reducing pain associated with experimental osteolytic metastases. Bone cancer was induced by intra-tibial injections of murine mammary carcinoma cells (4T1) in immunocompetent BALB/c mice and treated intraperitoneally for up to 5 weeks with vehicle, rapamycin or pamidronate (a bisphosphonate currently used to reduce bone loss in bone cancer patients). The control group received intra-tibial injection with saline (sham) and was treated with vehicle intraperitoneally. Cancer-induced osteolysis was observed histologically and radiographically 2-3 weeks following cancer inoculation and gradually increased with time. Measures of evoked nociceptive behaviors including sensitivity to mechanical, thermal, and cold stimuli and spontaneous nociceptive behaviors (limping, guarding) were evaluated. Significant hypersensitivity to sensory stimuli developed in cancer-bearing mice compared to sham 3 weeks following inoculation. Rapamycin decreased or delayed the development of cancer-induced mechanical, heat, and cold hypersensitivity, while pamidronate reduced heat and cold hypersensitivity. Both rapamycin and pamidronate had a partial protective effect on the spontaneous nociceptive behaviors, limping and guarding. Our data suggest that rapamycin may have efficacy in the management of pain associated with metastatic breast cancer.
Collapse
|