1
|
Naren G, Li D, Xing D, Liu Y, Wang L, Fan N, Li H, Bai X, Zeng X, Wang J, Li X, Bao S, Nashun B. Smug1 alleviates the reproductive toxicity of 5-FU through functioning in rRNA quality control. Sci Rep 2025; 15:5728. [PMID: 39962164 PMCID: PMC11833072 DOI: 10.1038/s41598-025-90330-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
5-Fluorouracil (5-FU) is a widely used chemotherapeutic agent whose incorporation into nucleic acid plays an essential role in its therapeutic efficacy. 5-FU induces severe reproductive toxicity, which has been shown to be reversible. However, the underlying mechanisms have not been fully elucidated. Since single-strand-selective monofunctional uracil-DNA glycosylase 1 (Smug1) is a key enzyme in the excision of 5-FU, we investigated its potential role in the reversible reproductive toxicity of 5-FU by integrating knockdown, overexpression and LC‒MS/MS approaches. 5-FU treatment increased Smug1 and Dkc1 expression but blocked rRNA maturation in preimplantation embryos. Smug1 knockdown inhibited Dkc1 expression and impaired rRNA maturation, leading to reduced preimplantation embryo development. In contrast, Smug1 overexpression alleviated the inhibitory effects of 5-FU on rRNA and oocyte maturation and partially rescued 5-FU-induced developmental defects in preimplantation embryos. LC‒MS/MS analysis further revealed that overexpression of Smug1 reduced the levels of RNA incorporated 5-FUrd, the metabolite of 5-FU, indicating that Smug1 potentially alleviates reproductive toxicity by excising 5-FU from RNA. Our findings revealed the active involvement of Smug1 in counteracting 5-FU-induced reproductive toxicity and provide valuable references for the development of new strategies to reduce the adverse effects of 5-FU.
Collapse
Affiliation(s)
- Gerile Naren
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010040, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010040, China
- Center for Reproductive Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Debang Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010040, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010040, China
| | - Danni Xing
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010040, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010040, China
| | - Yu Liu
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010040, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010040, China
| | - Lu Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010040, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010040, China
| | - Na Fan
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010040, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010040, China
| | - Haoran Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010040, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010040, China
| | - Xue Bai
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010040, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010040, China
| | - Xiejun Zeng
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010040, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010040, China
| | - Jin Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010040, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010040, China
| | - Xihe Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010040, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010040, China
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Hohhot, 011517, China
| | - Siqin Bao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010040, China.
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010040, China.
| | - Buhe Nashun
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010040, China.
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010040, China.
| |
Collapse
|
2
|
Gao Y, McPherson L, Adimoolam S, Suresh S, Wilson DL, Das I, Park ER, Ng CSC, Jun YW, Ford JM, Kool ET. Small-molecule activator of SMUG1 enhances repair of pyrimidine lesions in DNA. DNA Repair (Amst) 2025; 146:103809. [PMID: 39879855 PMCID: PMC11846699 DOI: 10.1016/j.dnarep.2025.103809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025]
Abstract
A potentially promising approach to targeted cancer prevention in genetically at-risk populations is the pharmacological upregulation of DNA repair pathways. SMUG1 is a base excision repair enzyme that ameliorates adverse genotoxic and mutagenic effects of hydrolytic and oxidative damage to pyrimidines. Here we describe the discovery and initial cellular activity of a small-molecule activator of SMUG1. Screening of a kinase inhibitor library and iterative rounds of structure-activity relationship studies produced compound 40 (SU0547), which activates SMUG1 by as much as 350 ± 60 % in vitro at 100 nM, with an AC50 of 4.3 ± 1.1 µM. To investigate the effect of compound 40 on endogenous SMUG1, we performed in vitro cell-based experiments with 5-hydroxymethyl-2'-deoxyuridine (5-hmdU), a pyrimidine oxidation product that is selectively removed by SMUG1. In several human cell lines, compound 40 at 3-5 µM significantly reduces the cytotoxicity of 5-hmdU and decreases levels of double-strand breaks induced by the damaged nucleoside. We conclude that the SMUG1 activator compound 40 is a useful tool to study the mechanisms of 5-hmdU toxicity and the potentially beneficial effects of suppressing damage to pyrimidines in cellular DNA.
Collapse
Affiliation(s)
- Yixuan Gao
- Department of Chemistry and Stanford University, Stanford, CA 94305, United States
| | - Lisa McPherson
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Shanthi Adimoolam
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Samyuktha Suresh
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - David L Wilson
- Department of Chemistry and Stanford University, Stanford, CA 94305, United States
| | - Ishani Das
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Elizabeth R Park
- Department of Chemistry and Stanford University, Stanford, CA 94305, United States
| | - Christine S C Ng
- Department of Chemistry and Stanford University, Stanford, CA 94305, United States
| | - Yong Woong Jun
- Department of Chemistry and Stanford University, Stanford, CA 94305, United States
| | - James M Ford
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Eric T Kool
- Department of Chemistry and Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
3
|
Kim J, Kang SJ, Jo N, Kim SJ, Jang S. Cancer prognosis using base excision repair genes. Mol Cells 2025; 48:100186. [PMID: 39828060 PMCID: PMC11835649 DOI: 10.1016/j.mocell.2025.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
The base excision repair (BER) pathway is a critical mechanism in genomic stability. This review investigates the role of the BER pathway in advanced cancer therapies considering the pivotal role of genetic factors in cancer patient responses and prognosis. BER factors significantly influence genetic instability and cancer prognosis, as well as the effectiveness of chemotherapy and radiation therapy. In various cancers such as breast, colon, lung, and bladder, BER factors have shown potential as critical biological markers for predicting cancer outcomes. This study focuses on the polymorphisms and expression levels of key BER genes, including OGG1, XRCC1, APE1, and Polβ. Our findings demonstrate that the expression levels of BER genes and proteins are closely associated with the risk, progression, treatment response, and prognosis of various cancers. These insights could improve cancer treatments and aid in the development of drugs targeting BER proteins. Ongoing research in this field requires extensive statistical analyses and large-scale prospective studies to effectively utilize BER protein levels. Ultimately, these results suggest that the BER pathway represents a potential target for cancer diagnosis, prognostic prediction, and the development of personalized therapeutic strategies. This paves the way for effective cancer treatment in the future.
Collapse
Affiliation(s)
- Jeongeun Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea; Gradutate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Su-Jin Kang
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Nayoon Jo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea; Gradutate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seung-Jin Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Sunbok Jang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea; Gradutate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
4
|
Mhatre I, Abdelhalim H, Degroat W, Ashok S, Liang BT, Ahmed Z. Functional mutation, splice, distribution, and divergence analysis of impactful genes associated with heart failure and other cardiovascular diseases. Sci Rep 2023; 13:16769. [PMID: 37798313 PMCID: PMC10556087 DOI: 10.1038/s41598-023-44127-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023] Open
Abstract
Cardiovascular disease (CVD) is caused by a multitude of complex and largely heritable conditions. Identifying key genes and understanding their susceptibility to CVD in the human genome can assist in early diagnosis and personalized treatment of the relevant patients. Heart failure (HF) is among those CVD phenotypes that has a high rate of mortality. In this study, we investigated genes primarily associated with HF and other CVDs. Achieving the goals of this study, we built a cohort of thirty-five consented patients, and sequenced their serum-based samples. We have generated and processed whole genome sequence (WGS) data, and performed functional mutation, splice, variant distribution, and divergence analysis to understand the relationships between each mutation type and its impact. Our variant and prevalence analysis found FLNA, CST3, LGALS3, and HBA1 linked to many enrichment pathways. Functional mutation analysis uncovered ACE, MME, LGALS3, NR3C2, PIK3C2A, CALD1, TEK, and TRPV1 to be notable and potentially significant genes. We discovered intron, 5' Flank, 3' UTR, and 3' Flank mutations to be the most common among HF and other CVD genes. Missense mutations were less common among HF and other CVD genes but had more of a functional impact. We reported HBA1, FADD, NPPC, ADRB2, ADBR1, MYH6, and PLN to be consequential based on our divergence analysis.
Collapse
Affiliation(s)
- Ishani Mhatre
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Habiba Abdelhalim
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - William Degroat
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Shreya Ashok
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Bruce T Liang
- Pat and Jim Calhoun Cardiology Center, UConn Health, 263 Farmington Ave, Farmington, CT, USA
- UConn School of Medicine, University of Connecticut, 263 Farmington Ave, Farmington, CT, USA
| | - Zeeshan Ahmed
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA.
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Ave, Farmington, CT, USA.
- Department of Medicine/Cardiovascular Disease and Hypertension, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, 125 Paterson St, New Brunswick, NJ, USA.
| |
Collapse
|
5
|
Algethami M, Toss MS, Woodcock CL, Jaipal C, Brownlie J, Shoqafi A, Alblihy A, Mesquita KA, Green AR, Mongan NP, Jeyapalan JN, Rakha EA, Madhusudan S. Unravelling the clinicopathological and functional significance of replication protein A (RPA) heterotrimeric complex in breast cancers. NPJ Breast Cancer 2023; 9:18. [PMID: 36997566 PMCID: PMC10063624 DOI: 10.1038/s41523-023-00524-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Replication Protein A (RPA), a heterotrimeric complex consisting of RPA1, 2, and 3 subunits, is a single-stranded DNA (ssDNA)-binding protein that is critically involved in replication, checkpoint regulation and DNA repair. Here we have evaluated RPA in 776 pure ductal carcinomas in situ (DCIS), 239 DCIS that co-exist with invasive breast cancer (IBC), 50 normal breast tissue and 4221 IBC. Transcriptomic [METABRIC cohort (n = 1980)] and genomic [TCGA cohort (n = 1090)] evaluations were completed. Preclinically, RPA deficient cells were tested for cisplatin sensitivity and Olaparib induced synthetic lethality. Low RPA linked to aggressive DCIS, aggressive IBC, and shorter survival outcomes. At the transcriptomic level, low RPA tumours overexpress pseudogene/lncRNA as well as genes involved in chemical carcinogenesis, and drug metabolism. Low RPA remains linked with poor outcome. RPA deficient cells are sensitive to cisplatin and Olaparib induced synthetic lethality. We conclude that RPA directed precision oncology strategy is feasible in breast cancers.
Collapse
Affiliation(s)
- Mashael Algethami
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Michael S Toss
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Department of Pathology, Nottingham University Hospital, City Campus, Hucknall Road, Nottingham, NG51PB, UK
| | - Corinne L Woodcock
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Faculty of Medicine and Health Sciences, Centre for Cancer Sciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Chandar Jaipal
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Juliette Brownlie
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Ahmed Shoqafi
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Adel Alblihy
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Medical Center, King Fahad Security College (KFSC), Riyadh, 11461, Saudi Arabia
| | - Katia A Mesquita
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Andrew R Green
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Nigel P Mongan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jennie N Jeyapalan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Department of Pathology, Nottingham University Hospital, City Campus, Hucknall Road, Nottingham, NG51PB, UK
| | - Emad A Rakha
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Medical Center, King Fahad Security College (KFSC), Riyadh, 11461, Saudi Arabia
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK.
- Department of Oncology, Nottingham University Hospitals, Nottingham, NG51PB, UK.
| |
Collapse
|
6
|
Obaidat D, Giordo R, Kleinbrink EL, Banisad E, Grossman LI, Arshad R, Stark A, Maroun MC, Lipovich L, Fernandez-Madrid F. Non-coding regions of nuclear-DNA-encoded mitochondrial genes and intergenic sequences are targeted by autoantibodies in breast cancer. Front Genet 2023; 13:970619. [PMID: 37082114 PMCID: PMC10111166 DOI: 10.3389/fgene.2022.970619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/15/2022] [Indexed: 03/31/2023] Open
Abstract
Autoantibodies against mitochondrial-derived antigens play a key role in chronic tissue inflammation in autoimmune disorders and cancers. Here, we identify autoreactive nuclear genomic DNA (nDNA)-encoded mitochondrial gene products (GAPDH, PKM2, GSTP1, SPATA5, MFF, TSPOAP1, PHB2, COA4, and HAGH) recognized by breast cancer (BC) patients’ sera as nonself, supporting a direct relationship of mitochondrial autoimmunity to breast carcinogenesis. Autoreactivity of multiple nDNA-encoded mitochondrial gene products was mapped to protein-coding regions, 3’ untranslated regions (UTRs), as well as introns. In addition, autoantibodies in BC sera targeted intergenic sequences that may be parts of long non-coding RNA (lncRNA) genes, including LINC02381 and other putative lncRNA neighbors of the protein-coding genes ERCC4, CXCL13, SOX3, PCDH1, EDDM3B, and GRB2. Increasing evidence indicates that lncRNAs play a key role in carcinogenesis. Consistent with this, our findings suggest that lncRNAs, as well as mRNAs of nDNA-encoded mitochondrial genes, mechanistically contribute to BC progression. This work supports a new paradigm of breast carcinogenesis based on a globally dysfunctional genome with altered function of multiple mitochondrial and non-mitochondrial oncogenic pathways caused by the effects of autoreactivity-induced dysregulation of multiple genes and their products. This autoimmunity-based model of carcinogenesis will open novel avenues for BC treatment.
Collapse
Affiliation(s)
- Deya Obaidat
- Department of Internal Medicine, Division of Rheumatology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Roberta Giordo
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Erica L. Kleinbrink
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
- Quantitative Life Sciences, McGill University, Montreal, QC, Canada
| | - Emilia Banisad
- Department of Internal Medicine, Division of Rheumatology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Lawrence I. Grossman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Rooshan Arshad
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Azadeh Stark
- Department of Pathology, Henry Ford Health System, Detroit, MI, United States
| | - Marie-Claire Maroun
- Department of Internal Medicine, Division of Rheumatology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Leonard Lipovich
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Shenzhen Huayuan Biotechnology Co. Ltd, Shenzhen Huayuan Biological Science Research Institute, Shenzhen, Guangdong, China
- *Correspondence: Leonard Lipovich, ; Félix Fernandez-Madrid,
| | - Félix Fernandez-Madrid
- Department of Internal Medicine, Division of Rheumatology, Wayne State University School of Medicine, Detroit, MI, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
- *Correspondence: Leonard Lipovich, ; Félix Fernandez-Madrid,
| |
Collapse
|
7
|
Lirussi L, Ayyildiz D, Liu Y, Montaldo NP, Carracedo S, Aure MR, Jobert L, Tekpli X, Touma J, Sauer T, Dalla E, Kristensen VN, Geisler J, Piazza S, Tell G, Nilsen H. A regulatory network comprising let-7 miRNA and SMUG1 is associated with good prognosis in ER+ breast tumours. Nucleic Acids Res 2022; 50:10449-10468. [PMID: 36156150 PMCID: PMC9561369 DOI: 10.1093/nar/gkac807] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Single-strand selective uracil-DNA glycosylase 1 (SMUG1) initiates base excision repair (BER) of uracil and oxidized pyrimidines. SMUG1 status has been associated with cancer risk and therapeutic response in breast carcinomas and other cancer types. However, SMUG1 is a multifunctional protein involved, not only, in BER but also in RNA quality control, and its function in cancer cells is unclear. Here we identify several novel SMUG1 interaction partners that functions in many biological processes relevant for cancer development and treatment response. Based on this, we hypothesized that the dominating function of SMUG1 in cancer might be ascribed to functions other than BER. We define a bad prognosis signature for SMUG1 by mapping out the SMUG1 interaction network and found that high expression of genes in the bad prognosis network correlated with lower survival probability in ER+ breast cancer. Interestingly, we identified hsa-let-7b-5p microRNA as an upstream regulator of the SMUG1 interactome. Expression of SMUG1 and hsa-let-7b-5p were negatively correlated in breast cancer and we found an inhibitory auto-regulatory loop between SMUG1 and hsa-let-7b-5p in the MCF7 breast cancer cells. We conclude that SMUG1 functions in a gene regulatory network that influence the survival and treatment response in several cancers.
Collapse
Affiliation(s)
- Lisa Lirussi
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, N-0318 Oslo, Norway.,Section of Clinical Molecular Biology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
| | - Dilara Ayyildiz
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, p.le M. Kolbe 4, 33100 Udine, Italy
| | - Yan Liu
- Section of Clinical Molecular Biology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
| | - Nicola P Montaldo
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, N-0318 Oslo, Norway
| | - Sergio Carracedo
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, N-0318 Oslo, Norway.,Section of Clinical Molecular Biology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
| | - Miriam R Aure
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, 0450 Oslo, Norway
| | - Laure Jobert
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, N-0318 Oslo, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, 0450 Oslo, Norway
| | - Joel Touma
- Department of Breast and Endocrine Surgery, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Campus AHUS, 1478 Lørenskog, Norway
| | - Torill Sauer
- Institute of Clinical Medicine, University of Oslo, Campus AHUS, 1478 Lørenskog, Norway.,Department of Pathology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, p.le M. Kolbe 4, 33100 Udine, Italy
| | - Vessela N Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, 0450 Oslo, Norway.,Department of Pathology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Jürgen Geisler
- Institute of Clinical Medicine, University of Oslo, Campus AHUS, 1478 Lørenskog, Norway.,Department of Oncology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
| | - Silvano Piazza
- Bioinformatics Core Facility, Centre for Integrative Biology (CIBIO), University of Trento, via Sommarive 18, 38123, Povo (Trento), Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, p.le M. Kolbe 4, 33100 Udine, Italy
| | - Hilde Nilsen
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, N-0318 Oslo, Norway.,Section of Clinical Molecular Biology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway.,Department of Microbiology, Oslo University Hospital, N-0424 Oslo, Norway
| |
Collapse
|
8
|
Ma F, Liu YZ, Liu M, Qiu JG, Zhang CY. Transcriptionally amplified synthesis of fluorogenic RNA aptamers for label-free DNA glycosylase assay. Chem Commun (Camb) 2022; 58:10229-10232. [PMID: 36004508 DOI: 10.1039/d2cc03628b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate for the first time the utilization of fluorogenic RNA aptamers for label-free uracil-DNA glycosylase (UDG) assay. Through rationally engineering the transcription machine with dU substitution, this assay requires only a single probe to simultaneously sense and amplify the UDG signal, achieving a low detection limit of 6.3 × 10-6 U mL-1. Moreover, it can be applied for screening UDG inhibitors and measuring endogenous UDG activity in different cells.
Collapse
Affiliation(s)
- Fei Ma
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China. .,School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Ya-Zhen Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Jian-Ge Qiu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
9
|
Hindi NN, Elsakrmy N, Ramotar D. The base excision repair process: comparison between higher and lower eukaryotes. Cell Mol Life Sci 2021; 78:7943-7965. [PMID: 34734296 PMCID: PMC11071731 DOI: 10.1007/s00018-021-03990-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 01/01/2023]
Abstract
The base excision repair (BER) pathway is essential for maintaining the stability of DNA in all organisms and defects in this process are associated with life-threatening diseases. It is involved in removing specific types of DNA lesions that are induced by both exogenous and endogenous genotoxic substances. BER is a multi-step mechanism that is often initiated by the removal of a damaged base leading to a genotoxic intermediate that is further processed before the reinsertion of the correct nucleotide and the restoration of the genome to a stable structure. Studies in human and yeast cells, as well as fruit fly and nematode worms, have played important roles in identifying the components of this conserved DNA repair pathway that maintains the integrity of the eukaryotic genome. This review will focus on the components of base excision repair, namely, the DNA glycosylases, the apurinic/apyrimidinic endonucleases, the DNA polymerase, and the ligases, as well as other protein cofactors. Functional insights into these conserved proteins will be provided from humans, Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans, and the implications of genetic polymorphisms and knockouts of the corresponding genes.
Collapse
Affiliation(s)
- Nagham Nafiz Hindi
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Noha Elsakrmy
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Dindial Ramotar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar.
| |
Collapse
|
10
|
Alblihy A, Shoqafi A, Toss MS, Algethami M, Harris AE, Jeyapalan JN, Abdel-Fatah T, Servante J, Chan SYT, Green A, Mongan NP, Rakha EA, Madhusudan S. Untangling the clinicopathological significance of MRE11-RAD50-NBS1 complex in sporadic breast cancers. NPJ Breast Cancer 2021; 7:143. [PMID: 34782604 PMCID: PMC8593132 DOI: 10.1038/s41523-021-00350-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
The MRE11-RAD50-NBS1 (MRN) complex is critical for genomic stability. Although germline mutations in MRN may increase breast cancer susceptibility, such mutations are extremely rare. Here, we have conducted a comprehensive clinicopathological study of MRN in sporadic breast cancers. We have protein expression profiled for MRN and a panel of DNA repair factors involved in double-strand break repair (BRCA1, BRCA2, ATM, CHK2, ATR, Chk1, pChk1, RAD51, γH2AX, RPA1, RPA2, DNA-PKcs), RECQ DNA helicases (BLM, WRN, RECQ1, RECQL4, RECQ5), nucleotide excision repair (ERCC1) and base excision repair (SMUG1, APE1, FEN1, PARP1, XRCC1, Pol β) in 1650 clinical breast cancers. The prognostic significance of MRE11, RAD50 and NBS1 transcripts and their microRNA regulators (hsa-miR-494 and hsa-miR-99b) were evaluated in large clinical datasets. Expression of MRN components was analysed in The Cancer Genome Atlas breast cancer cohort. We show that low nuclear MRN is linked to aggressive histopathological phenotypes such as high tumour grade, high mitotic index, oestrogen receptor- and high-risk Nottingham Prognostic Index. In univariate analysis, low nuclear MRE11 and low nuclear RAD50 were associated with poor survival. In multivariate analysis, low nuclear RAD50 remained independently linked with adverse clinical outcomes. Low RAD50 transcripts were also linked with reduced survival. In contrast, overexpression of hsa-miR-494 and hsa-miR-99b microRNAs was associated with poor survival. We observed large-scale genome-wide alterations in MRN-deficient tumours contributing to aggressive behaviour. We conclude that MRN status may be a useful tool to stratify tumours for precision medicine strategies.
Collapse
Affiliation(s)
- Adel Alblihy
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Medical Center, King Fahad Security College (KFSC), Riyadh, 11461, Saudi Arabia
| | - Ahmed Shoqafi
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Michael S Toss
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Department of Pathology, Nottingham University Hospitals, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Mashael Algethami
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Anna E Harris
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Jennie N Jeyapalan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Tarek Abdel-Fatah
- Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham, NG5 1PB, UK
| | | | - Stephen Y T Chan
- Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Andrew Green
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Nigel P Mongan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Emad A Rakha
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Department of Pathology, Nottingham University Hospitals, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK.
- Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham, NG5 1PB, UK.
| |
Collapse
|
11
|
Kamimura S, Suga T, Hoki Y, Sunayama M, Imadome K, Fujita M, Nakamura M, Araki R, Abe M. Insertion/deletion and microsatellite alteration profiles in induced pluripotent stem cells. Stem Cell Reports 2021; 16:2503-2519. [PMID: 34559999 PMCID: PMC8514972 DOI: 10.1016/j.stemcr.2021.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/19/2022] Open
Abstract
We here demonstrate that microsatellite (MS) alterations are elevated in both mouse and human induced pluripotent stem cells (iPSCs), but importantly we have now identified a type of human iPSC in which these alterations are considerably reduced. We aimed in our present analyses to profile the InDels in iPSC/ntESC genomes, especially in MS regions. To detect somatic de novo mutations in particular, we generated 13 independent reprogramed stem cell lines (11 iPSC and 2 ntESC lines) from an identical parent somatic cell fraction of a C57BL/6 mouse. By using this cell set with an identical genetic background, we could comprehensively detect clone-specific alterations and, importantly, experimentally validate them. The effectiveness of employing sister clones for detecting somatic de novo mutations was thereby demonstrated. We then successfully applied this approach to human iPSCs. Our results require further careful genomic analysis but make an important inroad into solving the issue of genome abnormalities in iPSCs.
Collapse
Affiliation(s)
- Satoshi Kamimura
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Tomo Suga
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Yuko Hoki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Misato Sunayama
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Kaori Imadome
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Mayumi Fujita
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Miki Nakamura
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Ryoko Araki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan.
| | - Masumi Abe
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan.
| |
Collapse
|
12
|
Cumova A, Vymetalkova V, Opattova A, Bouskova V, Pardini B, Kopeckova K, Kozevnikovova R, Lickova K, Ambrus M, Vodickova L, Naccarati A, Soucek P, Vodicka P. Genetic variations in 3´UTRs of SMUG1 and NEIL2 genes modulate breast cancer risk, survival and therapy response. Mutagenesis 2021; 36:269-279. [PMID: 34097065 DOI: 10.1093/mutage/geab017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/06/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) is the most frequent malignancy in women accounting for approximately 2 million new cases worldwide annually. Several genetic, epigenetic and environmental factors are known to be involved in BC development and progression, including alterations in post-transcriptional gene regulation mediated by microRNAs (miRNAs). Single nucleotide polymorphisms (SNPs) located in miRNA binding sites (miRSNPs) in 3'-untranslated (UTR) regions of target genes may affect miRNA-binding affinity and consequently modulate gene expression. We have previously reported a significant association of miRSNPs in the SMUG1 and NEIL2 genes with overall survival in colorectal cancer patients. SMUG1 and NEIL2 are DNA glycosylases involved in base excision DNA repair (BER). Assuming that certain genetic traits are common for solid tumours, we have investigated wherever variations in SMUG1 and NEIL2 genes display an association with BC risk, prognosis, and therapy response in a group of 673 BC patients and 675 healthy female controls. Patients with TC genotype of NEIL2 rs6997097 and receiving only hormonal therapy displayed markedly shorter overall survival (OS) (HR=4.15, 95% CI=1.7-10.16, P= 0.002) and disease-free survival (DFS) (HR=2.56, 95% CI=1.5-5.7, P= 0.02). Our results suggest that regulation of base excision repair glycosylases operated by miRNAs may modulate the prognosis of hormonally treated BC.
Collapse
Affiliation(s)
- Andrea Cumova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Vymetalkova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Alena Opattova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Veronika Bouskova
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Barbara Pardini
- IIGM Italian Institute for Genomic Medicine, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Katerina Kopeckova
- Department of Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | | | - Katerina Lickova
- Radiotherapy and Oncology Department, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Miloslav Ambrus
- Radiotherapy and Oncology Department, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Ludmila Vodickova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Alessio Naccarati
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,IIGM Italian Institute for Genomic Medicine, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Pavel Soucek
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Pavel Vodicka
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
13
|
Raja S, Van Houten B. The Multiple Cellular Roles of SMUG1 in Genome Maintenance and Cancer. Int J Mol Sci 2021; 22:ijms22041981. [PMID: 33671338 PMCID: PMC7922111 DOI: 10.3390/ijms22041981] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/20/2022] Open
Abstract
Single-strand selective monofunctional uracil DNA glycosylase 1 (SMUG1) works to remove uracil and certain oxidized bases from DNA during base excision repair (BER). This review provides a historical characterization of SMUG1 and 5-hydroxymethyl-2′-deoxyuridine (5-hmdU) one important substrate of this enzyme. Biochemical and structural analyses provide remarkable insight into the mechanism of this glycosylase: SMUG1 has a unique helical wedge that influences damage recognition during repair. Rodent studies suggest that, while SMUG1 shares substrate specificity with another uracil glycosylase UNG2, loss of SMUG1 can have unique cellular phenotypes. This review highlights the multiple roles SMUG1 may play in preserving genome stability, and how the loss of SMUG1 activity may promote cancer. Finally, we discuss recent studies indicating SMUG1 has moonlighting functions beyond BER, playing a critical role in RNA processing including the RNA component of telomerase.
Collapse
Affiliation(s)
- Sripriya Raja
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bennett Van Houten
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence: ; Tel.: +1412-623-7762; Fax: +1-412-623-7761
| |
Collapse
|
14
|
Malfatti MC, Antoniali G, Codrich M, Burra S, Mangiapane G, Dalla E, Tell G. New perspectives in cancer biology from a study of canonical and non-canonical functions of base excision repair proteins with a focus on early steps. Mutagenesis 2021; 35:129-149. [PMID: 31858150 DOI: 10.1093/mutage/gez051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Alterations of DNA repair enzymes and consequential triggering of aberrant DNA damage response (DDR) pathways are thought to play a pivotal role in genomic instabilities associated with cancer development, and are further thought to be important predictive biomarkers for therapy using the synthetic lethality paradigm. However, novel unpredicted perspectives are emerging from the identification of several non-canonical roles of DNA repair enzymes, particularly in gene expression regulation, by different molecular mechanisms, such as (i) non-coding RNA regulation of tumour suppressors, (ii) epigenetic and transcriptional regulation of genes involved in genotoxic responses and (iii) paracrine effects of secreted DNA repair enzymes triggering the cell senescence phenotype. The base excision repair (BER) pathway, canonically involved in the repair of non-distorting DNA lesions generated by oxidative stress, ionising radiation, alkylation damage and spontaneous or enzymatic deamination of nucleotide bases, represents a paradigm for the multifaceted roles of complex DDR in human cells. This review will focus on what is known about the canonical and non-canonical functions of BER enzymes related to cancer development, highlighting novel opportunities to understand the biology of cancer and representing future perspectives for designing new anticancer strategies. We will specifically focus on APE1 as an example of a pleiotropic and multifunctional BER protein.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Marta Codrich
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Silvia Burra
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
15
|
Caffrey PJ, Delaney S. Chromatin and other obstacles to base excision repair: potential roles in carcinogenesis. Mutagenesis 2021; 35:39-50. [PMID: 31612219 DOI: 10.1093/mutage/gez029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/13/2019] [Indexed: 12/29/2022] Open
Abstract
DNA is comprised of chemically reactive nucleobases that exist under a constant barrage from damaging agents. Failure to repair chemical modifications to these nucleobases can result in mutations that can cause various diseases, including cancer. Fortunately, the base excision repair (BER) pathway can repair modified nucleobases and prevent these deleterious mutations. However, this pathway can be hindered through several mechanisms. For instance, mutations to the enzymes in the BER pathway have been identified in cancers. Biochemical characterisation of these mutants has elucidated various mechanisms that inhibit their activity. Furthermore, the packaging of DNA into chromatin poses another obstacle to the ability of BER enzymes to function properly. Investigations of BER in the base unit of chromatin, the nucleosome core particle (NCP), have revealed that the NCP acts as a complex substrate for BER enzymes. The constituent proteins of the NCP, the histones, also have variants that can further impact the structure of the NCP and may modulate access of enzymes to the packaged DNA. These histone variants have also displayed significant clinical effects both in carcinogenesis and patient prognosis. This review focuses on the underlying molecular mechanisms that present obstacles to BER and the relationship of these obstacles to cancer. In addition, several chemotherapeutics induce DNA damage that can be repaired by the BER pathway and understanding obstacles to BER can inform how resistance and/or sensitivity to these therapies may occur. With the understanding of these molecular mechanisms, current chemotherapeutic treatment regiments may be improved, and future therapies developed.
Collapse
Affiliation(s)
- Paul J Caffrey
- Department of Chemistry, Brown University, Providence, RI
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI
| |
Collapse
|
16
|
Stratigopoulou M, van Dam TP, Guikema JEJ. Base Excision Repair in the Immune System: Small DNA Lesions With Big Consequences. Front Immunol 2020; 11:1084. [PMID: 32547565 PMCID: PMC7272602 DOI: 10.3389/fimmu.2020.01084] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
The integrity of the genome is under constant threat of environmental and endogenous agents that cause DNA damage. Endogenous damage is particularly pervasive, occurring at an estimated rate of 10,000–30,000 per cell/per day, and mostly involves chemical DNA base lesions caused by oxidation, depurination, alkylation, and deamination. The base excision repair (BER) pathway is primary responsible for removing and repairing these small base lesions that would otherwise lead to mutations or DNA breaks during replication. Next to preventing DNA mutations and damage, the BER pathway is also involved in mutagenic processes in B cells during immunoglobulin (Ig) class switch recombination (CSR) and somatic hypermutation (SHM), which are instigated by uracil (U) lesions derived from activation-induced cytidine deaminase (AID) activity. BER is required for the processing of AID-induced lesions into DNA double strand breaks (DSB) that are required for CSR, and is of pivotal importance for determining the mutagenic outcome of uracil lesions during SHM. Although uracils are generally efficiently repaired by error-free BER, this process is surprisingly error-prone at the Ig loci in proliferating B cells. Breakdown of this high-fidelity process outside of the Ig loci has been linked to mutations observed in B-cell tumors and DNA breaks and chromosomal translocations in activated B cells. Next to its role in preventing cancer, BER has also been implicated in immune tolerance. Several defects in BER components have been associated with autoimmune diseases, and animal models have shown that BER defects can cause autoimmunity in a B-cell intrinsic and extrinsic fashion. In this review we discuss the contribution of BER to genomic integrity in the context of immune receptor diversification, cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Maria Stratigopoulou
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tijmen P van Dam
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
17
|
Sun H, Cao D, Ma X, Yang J, Peng P, Yu M, Zhou H, Zhang Y, Li L, Huo X, Shen K. Identification of a Prognostic Signature Associated With DNA Repair Genes in Ovarian Cancer. Front Genet 2019; 10:839. [PMID: 31572446 PMCID: PMC6751318 DOI: 10.3389/fgene.2019.00839] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022] Open
Abstract
Introduction: Ovarian cancer is a highly malignant cancer with a poor prognosis. At present, there is no accurate strategy for predicting the prognosis of ovarian cancer. A prognosis prediction signature associated with DNA repair genes in ovarian cancer was explored in this study. Methods: Gene expression profiles of ovarian cancer were downloaded from the GEO, UCSC, and TCGA databases. Cluster analysis, univariate analysis, and stepwise regression were used to identify DNA repair genes as potential targets and a prognostic signature for ovarian cancer survival prediction. The top genes were evaluated by immunohistochemical staining of ovarian cancer tissues, and external data were used to assess the signature. Results: A total of 28 DNA repair genes were identified as being significantly associated with overall survival (OS) among patients with ovarian cancer. The results showed that high expression of XPC and RECQL and low expression of DMC1 were associated with poor prognosis in ovarian cancer patients. The prognostic signature combining 14 DNA repair genes was able to separate ovarian cancer samples associated with different OS times and showed robust performance for predicting survival (Training set: p < 0.0001, AUC = 0.759; Testing set: p < 0.0001, AUC = 0.76). Conclusion: Our study identified 28 DNA repair genes related to the prognosis of ovarian cancer. Using some of these potential biomarkers, we constructed a prognostic signature to effectively stratify ovarian cancer patients with different OS rates, which may also serve as a potential therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Hengzi Sun
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangwen Ma
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Peng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Yu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huimei Zhou
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Huo
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Freeman JR, Chu S, Hsu T, Huang YT. Epigenome-wide association study of smoking and DNA methylation in non-small cell lung neoplasms. Oncotarget 2018; 7:69579-69591. [PMID: 27602958 PMCID: PMC5342499 DOI: 10.18632/oncotarget.11831] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/15/2016] [Indexed: 11/25/2022] Open
Abstract
Tobacco smoke is a well-established lung cancer carcinogen. We hypothesize that epigenetic processes underlie carcinogenesis. The objective of this study is to examine the effects of smoke exposure on DNA methylation to search for novel susceptibility loci. We obtained epigenome-wide DNA methylation data from lung adenocarcinoma (LUAD) and lung squamous cell (LUSC) tissues in The Cancer Genome Atlas (TCGA). We performed a two-stage discovery (n = 326) and validation (n = 185) analysis to investigate the association of epigenetic DNA methylation level with cigarette smoking pack-years. We also externally validated our findings in an independent dataset. Linear model with least square estimator and spline regression were performed to examine the association between DNA methylation and smoking. We identified five CpG sites highly associated with pack-years of cigarette smoking. Smoking was negatively associated with methylation levels in cg25771041 (WWTR1, p = 3.6 × 10−9), cg16200496 (NFIX, p = 3.4 × 10−12), cg22515201 (PLA2G6, p = 1.0 × 10−9) and cg24823993 (NHP2L1, p = 5.1 × 10−8) and positively associated with the methylation level in cg11875268 (SMUG1, p = 4.3 × 10−8). The CpG-smoking association was stronger in LUSC than LUAD. Of the five loci, smoking explained the most variation in cg16200496 (R2 = 0.098 [both types] and 0.144 [LUSC]). We identified 5 novel CpG candidates that demonstrate differential methylation patterns associated with smoke exposure in lung neoplasms.
Collapse
Affiliation(s)
- Joshua R Freeman
- Department of Epidemiology, Brown University, Providence RI 02912, USA.,Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Su Chu
- Department of Epidemiology, Brown University, Providence RI 02912, USA
| | - Thomas Hsu
- Department of Medicine, Brown University, Providence RI 02912, USA
| | - Yen-Tsung Huang
- Department of Epidemiology, Brown University, Providence RI 02912, USA.,Department of Biostatistics, Brown University, Providence RI 02912, USA.,Institute of Statistical Science, Academia Sinica, Taipei 11529, TAIWAN
| |
Collapse
|
19
|
Wang W, Zhang G, Yang J, Gu H, Ding L, Yu H, Yu M, Cui Q, Ji X, Li M. Digital gene expression profiling analysis of DNA repair pathways in colon cancer stem population of HT29 cells. Acta Biochim Biophys Sin (Shanghai) 2017; 49:90-100. [PMID: 27932392 DOI: 10.1093/abbs/gmw119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/28/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) contribute to the relapse and development of new neoplasm lesions. While most available clinical approaches, such as chemical and radiation therapies, will kill the majority of cancer cells, they do not kill them all. Some resisting cells, like CSCs, are able to survive due to their excellent self-maintaining capabilities, even in challenging environments. In the present study, we investigated the mRNA level of DNA repair genes of colon CSCs from the HT29 cell line in response to single-strand damage and double-strand breaks, as well as the evident upregulation of key genes in base excision repair, mismatch repair, non-homologous end-joining, and homologous recombination pathways in these cells. Digital gene expression analysis identified upregulated genes in CD44+ HT29 cells that may play important roles in DNA repair. Our results reveal that colon CSCs bear efficient DNA repair abilities, which might explain the survival of colon CSCs after repeated chemical and radiation therapy.
Collapse
Affiliation(s)
- Wenxue Wang
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Guoxiu Zhang
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jing Yang
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Huan Gu
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Lei Ding
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Haijing Yu
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Min Yu
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Qinghua Cui
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Xinglai Ji
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Meizhang Li
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
20
|
Abdel-Fatah TMA, Arora A, Moseley PM, Perry C, Rakha EA, Green AR, Chan SYT, Ellis IO, Madhusudan S. DNA repair prognostic index modelling reveals an essential role for base excision repair in influencing clinical outcomes in ER negative and triple negative breast cancers. Oncotarget 2016; 6:21964-78. [PMID: 26267318 PMCID: PMC4673139 DOI: 10.18632/oncotarget.4157] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/20/2015] [Indexed: 01/23/2023] Open
Abstract
Stratification of oestrogen receptor (ER) negative and triple negative breast cancers (TNBCs) is urgently needed. In the current study, a cohort of 880 ER- (including 635 TNBCs) was immuno-profiled for a panel of DNA repair proteins including: Pol β, FEN1, APE1, XRCC1, SMUG1, PARP1, BRCA1, ATR, ATM, DNA-PKcs, Chk1, Chk2, p53, and TOPO2. Multivariate Cox proportional hazards models (with backward stepwise exclusion of these factors, using a criterion of p < 0.05 for retention of factors in the model) were used to identify factors that were independently associated with clinical outcomes. XRCC1 (p = 0.002), pol β (p = 0.032) FEN1 (p = 0.001) and BRCA1 (p = 0.040) levels were independently associated with poor BCSS. Subsequently, DNA repair index prognostic (DRPI) scores for breast cancer specific survival (BCSS) were calculated and two prognostic groups (DRPI-PGs) were identified. Patients in prognostic group 2 (DRPI-PG2) have higher risk of death (p < 0.001). Furthermore, in DRPI-PG2 patients, exposure to anthracycline reduced the risk of death [(HR (95% CI) = 0.79 (0.64–0.98), p = 0.032) by 21–26%. In addition, DRPI-PG2 patients have adverse clinicopathological features including higher grade, lympho-vascular invasion, Her-2 positive phenotype, compared to those in DRPI-PG1 (p < 0.01). Receiver operating characteristic (ROC) curves indicated that the DRPI outperformed the currently used prognostic factors and adding DRPI to lymph node stage significantly improved their performance as a predictor for BCSS [p < 0.00001, area under curve (AUC) = 0.70]. BER strongly influences pathogenesis of ER- and TNBCs. The DRPI accurately predicts BCSS and can also serve as a valuable prognostic and predictive tool for TNBCs.
Collapse
Affiliation(s)
| | - Arvind Arora
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG51 PB, UK
| | - Paul M Moseley
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Christina Perry
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG51 PB, UK
| | - Emad A Rakha
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK
| | - Andrew R Green
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK
| | - Stephen Y T Chan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Ian O Ellis
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK
| | - Srinivasan Madhusudan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK.,Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG51 PB, UK
| |
Collapse
|
21
|
Zhang Z, Shen J, Yang Y, Li J, Cao W, Xie W. Structural Basis of Substrate Specificity in Geobacter metallireducens SMUG1. ACS Chem Biol 2016; 11:1729-36. [PMID: 27071000 DOI: 10.1021/acschembio.6b00164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Base deamination is a common type of DNA damage that occurs in all organisms. DNA repair mechanisms are critical to maintain genome integrity, in which the base excision repair pathway plays an essential role. In the BER pathway, the uracil DNA glycosylase superfamily is responsible for removing the deaminated bases from DNA and generates apurinic/apyrimidinic (AP) sites. Geobacter metallireducens SMUG1 (GmeSMUG1) is an interesting family 3 enzyme in the UDG superfamily, with dual substrate specificities for DNA with uracil or xanthine. In contrast, the mutant G63P of GmeSMUG1 has exclusive activity for uracil, while N58D is inactive for both substrates, as we have reported previously. However, the structural bases for these substrate specificities are not well understood. In this study, we solved a series of crystal structures of WT and mutants of GmeSMUG1 at relatively high resolutions. These structures provide insight on the molecular mechanism of xanthine recognition for GmeSMUG1 and indicate that H210 plays a key role in xanthine recognition, which is in good agreement with the results of our EMSA and activity assays. More importantly, our mutant structures allow us to build models to rationalize our previous experimental observations of altered substrate activities of these mutants.
Collapse
Affiliation(s)
- Zhemin Zhang
- State
Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, 135 W. Xingang Rd., Guangzhou, Guangdong 510275, People’s Republic of China
- Center for Cellular & Structural Biology, The Sun Yat-Sen University, 132 E. Circle Rd., University City, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Jiemin Shen
- State
Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, 135 W. Xingang Rd., Guangzhou, Guangdong 510275, People’s Republic of China
- Center for Cellular & Structural Biology, The Sun Yat-Sen University, 132 E. Circle Rd., University City, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Ye Yang
- Department
of Genetics and Biochemistry, Clemson University, South Carolina Experiment Station,
190 Collings Street, Clemson, South Carolina 29634, United States
| | - Jing Li
- Department
of Genetics and Biochemistry, Clemson University, South Carolina Experiment Station,
190 Collings Street, Clemson, South Carolina 29634, United States
| | - Weiguo Cao
- Department
of Genetics and Biochemistry, Clemson University, South Carolina Experiment Station,
190 Collings Street, Clemson, South Carolina 29634, United States
| | - Wei Xie
- State
Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, 135 W. Xingang Rd., Guangzhou, Guangdong 510275, People’s Republic of China
- Center for Cellular & Structural Biology, The Sun Yat-Sen University, 132 E. Circle Rd., University City, Guangzhou, Guangdong 510006, People’s Republic of China
| |
Collapse
|
22
|
|
23
|
Arora A, Abdel-Fatah TMA, Agarwal D, Doherty R, Moseley PM, Aleskandarany MA, Green AR, Ball G, Alshareeda AT, Rakha EA, Chan SYT, Ellis IO, Madhusudan S. Transcriptomic and Protein Expression Analysis Reveals Clinicopathological Significance of Bloom Syndrome Helicase (BLM) in Breast Cancer. Mol Cancer Ther 2015; 14:1057-65. [PMID: 25673821 DOI: 10.1158/1535-7163.mct-14-0939] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/04/2015] [Indexed: 11/16/2022]
Abstract
Bloom syndrome helicase (BLM) has key roles in homologous recombination repair, telomere maintenance, and DNA replication. Germ-line mutations in the BLM gene causes Bloom syndrome, a rare disorder characterized by premature aging and predisposition to multiple cancers, including breast cancer. The clinicopathologic significance of BLM in sporadic breast cancers is unknown. We investigated BLM mRNA expression in the Molecular Taxonomy of Breast Cancer International Consortium cohort (n = 1,950) and validated in an external dataset of 2,413 tumors. BLM protein level was evaluated in the Nottingham Tenovus series comprising 1,650 breast tumors. BLM mRNA overexpression was significantly associated with high histologic grade, larger tumor size, estrogen receptor-negative (ER(-)), progesterone receptor-negative (PR(-)), and triple-negative phenotypes (ps < 0.0001). BLM mRNA overexpression was also linked to aggressive molecular phenotypes, including PAM50.Her2 (P < 0.0001), PAM50.Basal (P < 0.0001), and PAM50.LumB (P < 0.0001) and Genufu subtype (ER(+)/Her2(-)/high proliferation; P < 0.0001). PAM50.LumA tumors and Genufu subtype (ER(+)/Her2(-)/low proliferation) were more likely to express low levels of BLM mRNA (ps < 0.0001). Integrative molecular clusters (intClust) intClust.1 (P < 0.0001), intClust.5 (P < 0.0001), intClust.9 (P < 0.0001), and intClust.10 (P < 0.0001) were also more likely in tumors with high BLM mRNA expression. BLM mRNA overexpression was associated with poor breast cancer-specific survival (BCSS; ps < 0.000001). At the protein level, altered subcellular localization with high cytoplasmic BLM and low nuclear BLM was linked to aggressive phenotypes. In multivariate analysis, BLM mRNA and BLM protein levels independently influenced BCSS. This is the first and the largest study to provide evidence that BLM is a promising biomarker in breast cancer.
Collapse
Affiliation(s)
- Arvind Arora
- Department of Oncology, Nottingham University Hospitals, Nottingham, United Kingdom. Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | | | - Devika Agarwal
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham, United Kingdom
| | - Rachel Doherty
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Paul M Moseley
- Department of Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Mohammed A Aleskandarany
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Andrew R Green
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham, United Kingdom
| | - Alaa T Alshareeda
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Emad A Rakha
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Stephen Y T Chan
- Department of Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Ian O Ellis
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Srinivasan Madhusudan
- Department of Oncology, Nottingham University Hospitals, Nottingham, United Kingdom. Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
24
|
Albarakati N, Abdel-Fatah TMA, Doherty R, Russell R, Agarwal D, Moseley P, Perry C, Arora A, Alsubhi N, Seedhouse C, Rakha EA, Green A, Ball G, Chan S, Caldas C, Ellis IO, Madhusudan S. Targeting BRCA1-BER deficient breast cancer by ATM or DNA-PKcs blockade either alone or in combination with cisplatin for personalized therapy. Mol Oncol 2015; 9:204-17. [PMID: 25205036 PMCID: PMC5528668 DOI: 10.1016/j.molonc.2014.08.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/23/2014] [Accepted: 08/11/2014] [Indexed: 11/17/2022] Open
Abstract
BRCA1, a key factor in homologous recombination (HR) repair may also regulate base excision repair (BER). Targeting BRCA1-BER deficient cells by blockade of ATM and DNA-PKcs could be a promising strategy in breast cancer. We investigated BRCA1, XRCC1 and pol β protein expression in two cohorts (n = 1602 sporadic and n = 50 germ-line BRCA1 mutated) and mRNA expression in two cohorts (n = 1952 and n = 249). Artificial neural network analysis for BRCA1-DNA repair interacting genes was conducted in 249 tumours. Pre-clinically, BRCA1 proficient and deficient cells were DNA repair expression profiled and evaluated for synthetic lethality using ATM and DNA-PKcs inhibitors either alone or in combination with cisplatin. In human tumours, BRCA1 negativity was strongly associated with low XRCC1, and low pol β at mRNA and protein levels (p < 0.0001). In patients with BRCA1 negative tumours, low XRCC1 or low pol β expression was significantly associated with poor survival in univariate and multivariate analysis compared to high XRCC1 or high pol β expressing BRCA1 negative tumours (ps < 0.05). Pre-clinically, BRCA1 negative cancer cells exhibit low mRNA and low protein expression of XRCC1 and pol β. BRCA1-BER deficient cells were sensitive to ATM and DNA-PKcs inhibitor treatment either alone or in combination with cisplatin and synthetic lethality was evidenced by DNA double strand breaks accumulation, cell cycle arrest and apoptosis. We conclude that XRCC1 and pol β expression status in BRCA1 negative tumours may have prognostic significance. BRCA1-BER deficient cells could be targeted by ATM or DNA-PKcs inhibitors for personalized therapy.
Collapse
Affiliation(s)
- Nada Albarakati
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | | | - Rachel Doherty
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Roslin Russell
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Devika Agarwal
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Paul Moseley
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Christina Perry
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Arvind Arora
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Nouf Alsubhi
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Claire Seedhouse
- Academic Haematology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Emad A Rakha
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Andrew Green
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Stephen Chan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Carlos Caldas
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Ian O Ellis
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Srinivasan Madhusudan
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK; Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK.
| |
Collapse
|
25
|
Abdel-Fatah TMA, Middleton FK, Arora A, Agarwal D, Chen T, Moseley PM, Perry C, Doherty R, Chan S, Green AR, Rakha E, Ball G, Ellis IO, Curtin NJ, Madhusudan S. Untangling the ATR-CHEK1 network for prognostication, prediction and therapeutic target validation in breast cancer. Mol Oncol 2014; 9:569-85. [PMID: 25468710 DOI: 10.1016/j.molonc.2014.10.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 12/31/2022] Open
Abstract
ATR-CHEK1 signalling is critical for genomic stability. ATR-CHEK1 signalling may be deregulated in breast cancer and have prognostic, predictive and therapeutic significance. We investigated ATR, CHEK1 and phosphorylated CHEK1 (Ser345) protein (pCHEK1) levels in 1712 breast cancers. ATR and CHEK1 mRNA expression was evaluated in 1950 breast cancers. Pre-clinically, biological consequences of ATR gene knock down or ATR inhibition by the small molecule inhibitor (VE-821) were investigated in MCF7 and MDA-MB-231 breast cancer cell lines and in non-tumorigenic breast epithelial cells (MCF10A). High ATR and high cytoplasmic pCHEK1 levels were significantly associated with higher tumour stage, higher mitotic index, pleomorphism and lymphovascular invasion. In univariate analyses, high ATR and high cytoplasmic pCHEK1 levels were associated with poor breast cancer specific survival (BCSS). In multivariate analysis, high ATR level remains an independent predictor of adverse outcome. At the mRNA level, high CHEK1 remains associated with aggressive phenotypes including lymph node positivity, high grade, Her-2 overexpression, triple negative, aggressive molecular phenotypes and adverse BCSS. Pre-clinically, CHEK1 phosphorylation at serine(345) following replication stress was impaired in ATR knock down and in VE-821 treated breast cancer cells. Doxycycline inducible knockdown of ATR suppressed growth, which was restored when ATR was re-expressed. Similarly, VE-821 treatment resulted in a dose dependent suppression of cancer cell growth and survival (MCF7 and MDA-MB-231) but was less toxic in non-tumorigenic breast epithelial cells (MCF10A). We provide evidence that ATR and CHEK1 are promising biomarkers and rational drug targets for personalized therapy in breast cancer.
Collapse
Affiliation(s)
| | - Fiona K Middleton
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Arvind Arora
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Devika Agarwal
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Tao Chen
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Paul M Moseley
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Christina Perry
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Rachel Doherty
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Stephen Chan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Andrew R Green
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Emad Rakha
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Ian O Ellis
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Nicola J Curtin
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Srinivasan Madhusudan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK; Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1PB, UK.
| |
Collapse
|
26
|
Abdel-Fatah TM, Arora A, Alsubhi N, Agarwal D, Moseley PM, Perry C, Doherty R, Chan SY, Green AR, Rakha E, Ball G, Ellis IO, Madhusudan S. Clinicopathological significance of ATM-Chk2 expression in sporadic breast cancers: a comprehensive analysis in large cohorts. Neoplasia 2014; 16:982-91. [PMID: 25425972 PMCID: PMC4240925 DOI: 10.1016/j.neo.2014.09.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 12/28/2022]
Abstract
ATM-Chk2 network is critical for genomic stability, and its deregulation may influence breast cancer pathogenesis. We investigated ATM and Chk2 protein levels in two cohorts [cohort 1 (n = 1650) and cohort 2 (n = 252)]. ATM and Chk2 mRNA expression was evaluated in the Molecular Taxonomy of Breast Cancer International Consortium cohort (n = 1950). Low nuclear ATM protein level was significantly associated with aggressive breast cancer including larger tumors, higher tumor grade, higher mitotic index, pleomorphism, tumor type, lymphovascular invasion, estrogen receptor (ER)-, PR -, AR -, triple-negative, and basal-like phenotypes (Ps < .05). Breast cancer 1, early onset negative, low XRCC1, low SMUG1, high FEN1, high MIB1, p53 mutants, low MDM2, low Bcl-2, low p21, low Bax, high CDK1, and low Chk2 were also more frequent in tumors with low nuclear ATM level (Ps < .05). Low ATM protein level was significantly associated with poor survival including in patients with ER-negative tumors who received adjuvant anthracycline or cyclophosphamide, methotrexate, and 5-fluorouracil-based adjuvant chemotherapy (Ps < .05). Low nuclear Chk2 protein was likely in ER -/PR -/AR -; HER-2 positive; breast cancer 1, early onset negative; low XRCC1; low SMUG1; low APE1; low polβ; low DNA-PKcs; low ATM; low Bcl-2; and low TOPO2A tumors (P < .05). In patients with ER + tumors who received endocrine therapy or ER-negative tumors who received chemotherapy, nuclear Chk2 levels did not significantly influence survival. In p53 mutant tumors, low ATM (P < .000001) or high Chk2 (P < .01) was associated with poor survival. When investigated together, low-ATM/high-Chk2 tumors have the worst survival (P = .0033). Our data suggest that ATM-Chk2 levels in sporadic breast cancer may have prognostic and predictive significance.
Collapse
Affiliation(s)
| | - Arvind Arora
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1 PB, UK
| | - Nouf Alsubhi
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1 PB, UK
| | - Devika Agarwal
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Paul M. Moseley
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1 PB, UK
| | - Christina Perry
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1 PB, UK
| | - Rachel Doherty
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1 PB, UK
| | - Stephen Y.T. Chan
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1 PB, UK
| | - Andrew R. Green
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1 PB, UK
| | - Emad Rakha
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1 PB, UK
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Ian O. Ellis
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1 PB, UK
| | - Srinivasan Madhusudan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1 PB, UK
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1 PB, UK
| |
Collapse
|
27
|
Abdel-Fatah TMA, Russell R, Albarakati N, Maloney DJ, Dorjsuren D, Rueda OM, Moseley P, Mohan V, Sun H, Abbotts R, Mukherjee A, Agarwal D, Illuzzi JL, Jadhav A, Simeonov A, Ball G, Chan S, Caldas C, Ellis IO, Wilson DM, Madhusudan S. Genomic and protein expression analysis reveals flap endonuclease 1 (FEN1) as a key biomarker in breast and ovarian cancer. Mol Oncol 2014; 8:1326-38. [PMID: 24880630 PMCID: PMC4690463 DOI: 10.1016/j.molonc.2014.04.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/14/2014] [Accepted: 04/23/2014] [Indexed: 12/27/2022] Open
Abstract
FEN1 has key roles in Okazaki fragment maturation during replication, long patch base excision repair, rescue of stalled replication forks, maintenance of telomere stability and apoptosis. FEN1 may be dysregulated in breast and ovarian cancers and have clinicopathological significance in patients. We comprehensively investigated FEN1 mRNA expression in multiple cohorts of breast cancer [training set (128), test set (249), external validation (1952)]. FEN1 protein expression was evaluated in 568 oestrogen receptor (ER) negative breast cancers, 894 ER positive breast cancers and 156 ovarian epithelial cancers. FEN1 mRNA overexpression was highly significantly associated with high grade (p = 4.89 × 10(-57)), high mitotic index (p = 5.25 × 10(-28)), pleomorphism (p = 6.31 × 10(-19)), ER negative (p = 9.02 × 10(-35)), PR negative (p = 9.24 × 10(-24)), triple negative phenotype (p = 6.67 × 10(-21)), PAM50.Her2 (p = 5.19 × 10(-13)), PAM50. Basal (p = 2.7 × 10(-41)), PAM50.LumB (p = 1.56 × 10(-26)), integrative molecular cluster 1 (intClust.1) (p = 7.47 × 10(-12)), intClust.5 (p = 4.05 × 10(-12)) and intClust. 10 (p = 7.59 × 10(-38)) breast cancers. FEN1 mRNA overexpression is associated with poor breast cancer specific survival in univariate (p = 4.4 × 10(-16)) and multivariate analysis (p = 9.19 × 10(-7)). At the protein level, in ER positive tumours, FEN1 overexpression remains significantly linked to high grade, high mitotic index and pleomorphism (ps < 0.01). In ER negative tumours, high FEN1 is significantly associated with pleomorphism, tumour type, lymphovascular invasion, triple negative phenotype, EGFR and HER2 expression (ps < 0.05). In ER positive as well as in ER negative tumours, FEN1 protein overexpression is associated with poor survival in univariate and multivariate analysis (ps < 0.01). In ovarian epithelial cancers, similarly, FEN1 overexpression is associated with high grade, high stage and poor survival (ps < 0.05). We conclude that FEN1 is a promising biomarker in breast and ovarian epithelial cancer.
Collapse
Affiliation(s)
| | - Roslin Russell
- Department of Oncology, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK; Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Nada Albarakati
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG51PB, UK
| | - David J Maloney
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Dorjbal Dorjsuren
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Oscar M Rueda
- Department of Oncology, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK; Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Paul Moseley
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Vivek Mohan
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG51PB, UK
| | - Hongmao Sun
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Rachel Abbotts
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG51PB, UK
| | - Abhik Mukherjee
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Devika Agarwal
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Jennifer L Illuzzi
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6825, USA
| | - Ajit Jadhav
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Anton Simeonov
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Stephen Chan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Carlos Caldas
- Department of Oncology, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK; Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Ian O Ellis
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - David M Wilson
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6825, USA
| | - Srinivasan Madhusudan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK; Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG51PB, UK.
| |
Collapse
|
28
|
Adverse prognostic and predictive significance of low DNA-dependent protein kinase catalytic subunit (DNA-PKcs) expression in early-stage breast cancers. Breast Cancer Res Treat 2014; 146:309-20. [PMID: 24972688 DOI: 10.1007/s10549-014-3035-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a serine threonine kinase belonging to the PIKK family (phosphoinositide 3-kinase-like-family of protein kinase), is a critical component of the non-homologous end-joining pathway required for the repair of DNA double-strand breaks. DNA-PKcs may be involved in breast cancer pathogenesis. We evaluated clinicopathological significance of DNA-PKcs protein expression in 1,161 tumours and DNA-PKcs mRNA expression in 1,950 tumours. We correlated DNA-PKcs to markers of aggressive phenotypes, DNA repair, apoptosis, cell cycle regulation and survival. Low DNA-PKcs protein expression was associated with higher tumour grade, higher mitotic index, tumour de-differentiation and tumour type (ps < 0.05). The absence of BRCA1, low XRCC1, low SMUG1, low APE1 and low Polβ was also more likely in low DNA-PKcs expressing tumours (ps < 0.05). Low DNA-PKcs protein expression was significantly associated with worse breast cancer-specific survival (BCSS) in univariate and multivariate analysis (ps < 0.01). At the mRNA level, similarly, low DNA-PKcs was associated with poor BCSS. In patients with ER-positive tumours who received endocrine therapy, low DNA-PKcs (protein and mRNA) was associated with poor survival. In ER-negative patients, low DNA-PKcs mRNA remains significantly associated with adverse outcome. Our study suggests that low DNA-PKcs expression may have prognostic and predictive significance in breast cancers.
Collapse
|