1
|
Tang R, Luo S, Liu H, Sun Y, Liu M, Li L, Ren H, Angele MK, Börner N, Yu K, Guo Z, Yin G, Luo H. Circulating Tumor Microenvironment in Metastasis. Cancer Res 2025; 85:1354-1367. [PMID: 39992721 PMCID: PMC11997552 DOI: 10.1158/0008-5472.can-24-1241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/12/2024] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Activation of invasion and metastasis is a central hallmark of cancer, contributing to the primary cause of death for patients with cancer. In the multistep metastatic process, cancer cells must infiltrate the circulation, survive, arrest at capillary beds, extravasate, and form metastatic clones in distant organs. However, only a small proportion of circulating tumor cells (CTC) successfully form metastases, with transit of CTCs in the circulation being the rate-limiting step. The fate of CTCs is influenced by the circulating tumor microenvironment (cTME), which encompasses factors affecting their biological behaviors in the circulation. This liquid and flowing microenvironment differs significantly from the primary TME or the premetastatic niche. This review summarizes the latest advancements in identifying the biophysical cues, key components, and biological roles of the cTME, highlighting the network among biophysical attributes, blood cells, and nonblood factors in cancer metastasis. In addition to the potential of the cTME as a therapeutic target for inhibiting metastasis, the cTME could also represent as a biomarker for predicting patient outcomes and developing strategies for treating cancer.
Collapse
Affiliation(s)
- Rui Tang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shujuan Luo
- Department of Obstetrics, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Liu
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yan Sun
- Department of Cell Biology and Medical Genetics, Basic Medical School, Chongqing Medical University, Chongqing, China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Lu Li
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Haoyu Ren
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Martin K. Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich Munich, Germany
| | - Nikolaus Börner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich Munich, Germany
| | - Keda Yu
- Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Zufeng Guo
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Guobing Yin
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Haojun Luo
- Department of Thyroid and Breast Surgery, Renji Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
2
|
López-Collazo E, Hurtado-Navarro L. Cell fusion as a driver of metastasis: re-evaluating an old hypothesis in the age of cancer heterogeneity. Front Immunol 2025; 16:1524781. [PMID: 39967663 PMCID: PMC11832717 DOI: 10.3389/fimmu.2025.1524781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Numerous studies have investigated the molecular mechanisms and signalling pathways underlying cancer metastasis, as there is still no effective treatment for this terminal stage of the disease. However, the exact processes that enable primary cancer cells to acquire a metastatic phenotype remain unclear. Increasing attention has been focused on the fusion of cancer cells with myeloid cells, a phenomenon that may result in hybrid cells, so-called Tumour Hybrid Cells (THCs), with enhanced migratory, angiogenic, immune evasion, colonisation, and metastatic properties. This process has been shown to potentially drive tumour progression, drug resistance, and cancer recurrence. In this review, we explore the potential mechanisms that govern cancer cell fusion, the molecular mediators involved, the metastatic characteristics acquired by fusion-derived hybrids, and their clinical significance in human cancer. Additionally, we discuss emerging pharmacological strategies aimed at targeting fusogenic molecules as a means to prevent metastatic dissemination.
Collapse
Affiliation(s)
- Eduardo López-Collazo
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Tumour Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
- CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
- UNIE University, Madrid, Spain
| | - Laura Hurtado-Navarro
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Tumour Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
3
|
Ceylan F, Mehdiyev M, Dede DŞ, Efil SC, Tenekeci AK, Bilgin B, Yücel Ş, Tatlı Doğan H, Şendur MAN, Akıncı MB, Uncu D, Yalçın B. Large Unstained Cells (LUC): A Novel Predictor of CDK4/6 Inhibitor Outcomes in HR+ HER2-Negative Metastatic Breast Cancer. J Clin Med 2024; 14:173. [PMID: 39797256 PMCID: PMC11722146 DOI: 10.3390/jcm14010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Although CDK4/6 inhibitors combined with endocrine therapies have improved outcomes in HR+ HER2-negative metastatic breast cancer, predictive biomarkers for treatment response and adverse effects remain limited. This study assessed the prognostic and predictive value of large unstained cells (LUC), a subset of white blood cells that may reflect immune status or treatment response. Methods: A retrospective analysis of 210 patients with HR+ HER2-negative metastatic breast cancer treated with CDK 4/6 inhibitors between 2021 and 2024 was conducted. Clinical data, including demographics, tumor characteristics, and treatment regimens, were analyzed. Based on LUC levels, progression-free survival (PFS), overall survival (OS), and adverse events were evaluated. Results: The cohort had a median age of 57, of which 78% were postmenopausal. Common metastatic sites included bone (67%) and liver (24%). At a median follow-up of 18.5 months, the PFS and OS rates were 65% and 83%. Patients with low LUC levels had significantly shorter PFS (OR: 1.91; p = 0.014) and OS (OR: 2.39; p = 0.012), while high LUC levels correlated with a lower incidence of grade 3 neutropenia (OR: 0.49; p = 0.017). Liver metastasis and prior treatments were also linked to shorter survival. Conclusions: LUC levels emerge as a promising biomarker for predicting survival outcomes and the risk of neutropenia in HR+ HER2-negative metastatic breast cancer patients treated with CDK 4/6 inhibitors and endocrine therapy, showing their potential to guide personalized treatment approaches.
Collapse
Affiliation(s)
- Furkan Ceylan
- Department of Medical Oncology, Ankara Bilkent City Hospital, Ankara 06800, Turkey
| | - Mirmehdi Mehdiyev
- Department of Medical Oncology, Ankara Bilkent City Hospital, Ankara 06800, Turkey
| | - Didem Şener Dede
- Department of Medical Oncology, Ankara Bilkent City Hospital, Ankara 06800, Turkey
- Department of Medical Oncology, Ankara Yıldırım Beyazıt University, Ankara 06800, Turkey
| | - Safa Can Efil
- Department of Medical Oncology, Ankara Bilkent City Hospital, Ankara 06800, Turkey
| | | | - Burak Bilgin
- Department of Medical Oncology, Ankara Bilkent City Hospital, Ankara 06800, Turkey
- Department of Medical Oncology, Ankara Yıldırım Beyazıt University, Ankara 06800, Turkey
| | - Şebnem Yücel
- Department of Medical Oncology, Ankara Bilkent City Hospital, Ankara 06800, Turkey
- Department of Medical Oncology, Ankara Yıldırım Beyazıt University, Ankara 06800, Turkey
| | | | - Mehmet Ali Nahit Şendur
- Department of Medical Oncology, Ankara Bilkent City Hospital, Ankara 06800, Turkey
- Department of Medical Oncology, Ankara Yıldırım Beyazıt University, Ankara 06800, Turkey
| | - Muhammed Bülent Akıncı
- Department of Medical Oncology, Ankara Bilkent City Hospital, Ankara 06800, Turkey
- Department of Medical Oncology, Ankara Yıldırım Beyazıt University, Ankara 06800, Turkey
| | - Doğan Uncu
- Department of Medical Oncology, Ankara Bilkent City Hospital, Ankara 06800, Turkey
| | - Bülent Yalçın
- Department of Medical Oncology, Ankara Bilkent City Hospital, Ankara 06800, Turkey
- Department of Medical Oncology, Ankara Yıldırım Beyazıt University, Ankara 06800, Turkey
| |
Collapse
|
4
|
Pirrello A, Killingsworth M, Spring K, Rasko JE, Yeo D. Cancer-associated macrophage-like cells as a prognostic biomarker in solid tumors. THE JOURNAL OF LIQUID BIOPSY 2024; 6:100275. [PMID: 40027315 PMCID: PMC11863711 DOI: 10.1016/j.jlb.2024.100275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 03/05/2025]
Abstract
Cancer-associated macrophage-like cells (CAMLs) are myeloid-lineage cells associated with cancer-derived material that are detectable in the blood. In addition to circulating tumor cells, CAMLs are a promising liquid biopsy biomarker which may assist with prognostication for patient stratification and monitoring response to chemotherapy and radiotherapy in solid tumors. CAMLs have been detected in blood samples from patients with various tumors including lung, pancreas, breast, oesophageal, and colorectal cancers, and to date have not been detected in healthy individuals. However, the optimal method of detection, their origin, function in the circulation, and ultimate utility have not been fully elucidated. This review provides an overview of CAML-related studies and explores their future potential to guide clinical decision-making.
Collapse
Affiliation(s)
- Anthony Pirrello
- Li Ka Shing Cell and Gene Therapy Program, The University of Sydney, Camperdown, 2050, NSW, Australia
- Precision Oncology Laboratory, Centenary Institute, Camperdown, 2050, NSW, Australia
| | - Murray Killingsworth
- Department of Anatomical Pathology, NSW Health Pathology, Liverpool, 2170, NSW, Australia
| | - Kevin Spring
- Medical Oncology Group, Liverpool Clinical School, Western Sydney University and Ingham Institute for Applied Medical Research, Liverpool, 2170, NSW, Australia
| | - John E.J. Rasko
- Li Ka Shing Cell and Gene Therapy Program, The University of Sydney, Camperdown, 2050, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, NSW, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, 2050, NSW, Australia
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, 2050, NSW, Australia
| | - Dannel Yeo
- Li Ka Shing Cell and Gene Therapy Program, The University of Sydney, Camperdown, 2050, NSW, Australia
- Precision Oncology Laboratory, Centenary Institute, Camperdown, 2050, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, NSW, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, 2050, NSW, Australia
| |
Collapse
|
5
|
Gerashchenko T, Frolova A, Patysheva M, Fedorov A, Stakheyeva M, Denisov E, Cherdyntseva N. Breast Cancer Immune Landscape: Interplay Between Systemic and Local Immunity. Adv Biol (Weinh) 2024; 8:e2400140. [PMID: 38727796 DOI: 10.1002/adbi.202400140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Indexed: 07/13/2024]
Abstract
Breast cancer (BC) is one of the most common malignancies in women worldwide. Numerous studies in immuno-oncology and successful trials of immunotherapy have demonstrated the causal role of the immune system in cancer pathogenesis. The interaction between the tumor and the immune system is known to have a dual nature. Despite cytotoxic lymphocyte activity against transformed cells, a tumor can escape immune surveillance and leverage chronic inflammation to maintain its own development. Research on antitumor immunity primarily focuses on the role of the tumor microenvironment, whereas the systemic immune response beyond the tumor site is described less thoroughly. Here, a comprehensive review of the formation of the immune profile in breast cancer patients is offered. The interplay between systemic and local immune reactions as self-sustaining mechanism of tumor progression is described and the functional activity of the main cell populations related to innate and adaptive immunity is discussed. Additionally, the interaction between different functional levels of the immune system and their contribution to the development of the pro- or anti-tumor immune response in BC is highlighted. The presented data can potentially inform the development of new immunotherapy strategies in the treatment of patients with BC.
Collapse
Affiliation(s)
- Tatiana Gerashchenko
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Anastasia Frolova
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Researc, Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
- Tomsk State University, 36 Lenin Ave., Tomsk, 634050, Russia
| | - Marina Patysheva
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Anton Fedorov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Marina Stakheyeva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Researc, Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Evgeny Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Nadezda Cherdyntseva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Researc, Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
- Tomsk State University, 36 Lenin Ave., Tomsk, 634050, Russia
| |
Collapse
|
6
|
Magri V, De Renzi G, Marino L, De Meo M, Siringo M, Gelibter A, Gareri R, Cataldi C, Giannini G, Santini D, Nicolazzo C, Gazzaniga P. Circulating Cancer-Associated Macrophage-like Cells as a Blood-Based Biomarker of Response to Immune Checkpoint Inhibitors. Int J Mol Sci 2024; 25:3752. [PMID: 38612563 PMCID: PMC11011814 DOI: 10.3390/ijms25073752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Evidence has been provided that circulating cancer-associated macrophage-like cell (CAM-L) numbers increase in response to chemotherapy, with an inverse trend compared to circulating tumor cells (CTCs). In the era of evolving cancer immunotherapy, whether CAM-Ls might have a potential role as predictive biomarkers of response has been unexplored. We evaluated whether a serial blood evaluation of CTC to CAM-L ratio might predict response to immune checkpoint inhibitors in a cohort of non-small-cell lung cancer patients. At baseline, CTCs, CAM-Ls, and the CTC/CAM-L ratio significantly correlate with both progression-free survival (PFS) and overall survival (OS). The baseline CTC/CAM-L ratio was significantly different in early progressors (4.28 ± 3.21) compared to long responders (0.42 ± 0.47) (p = 0.001). In patients treated with immune checkpoint inhibitors, a CTC/CAM-L ratio ≤ 0.25 at baseline is associated with better PFS and OS. A baseline CTC/CAM-L ratio ≤ 0.25 is statistically significant to discriminate early progressions from durable response. The results of the present pilot study suggest that CAM-Ls together with CTCs could play an important role in evaluating patients treated with cancer immunotherapy.
Collapse
Affiliation(s)
- Valentina Magri
- Department of Pathology, Oncology and Radiology, Sapienza University of Rome, 00161 Rome, Italy; (M.S.); (A.G.); (C.C.); (D.S.)
| | - Gianluigi De Renzi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.D.R.); (M.D.M.); (G.G.); (C.N.); (P.G.)
| | - Luca Marino
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy;
| | - Michela De Meo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.D.R.); (M.D.M.); (G.G.); (C.N.); (P.G.)
| | - Marco Siringo
- Department of Pathology, Oncology and Radiology, Sapienza University of Rome, 00161 Rome, Italy; (M.S.); (A.G.); (C.C.); (D.S.)
| | - Alain Gelibter
- Department of Pathology, Oncology and Radiology, Sapienza University of Rome, 00161 Rome, Italy; (M.S.); (A.G.); (C.C.); (D.S.)
| | - Roberta Gareri
- UOC di Oncologia Medica, Ospedale Leopoldo Parodi Delfino, 00034 Colleferro, Italy;
| | - Chiara Cataldi
- Department of Pathology, Oncology and Radiology, Sapienza University of Rome, 00161 Rome, Italy; (M.S.); (A.G.); (C.C.); (D.S.)
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.D.R.); (M.D.M.); (G.G.); (C.N.); (P.G.)
| | - Daniele Santini
- Department of Pathology, Oncology and Radiology, Sapienza University of Rome, 00161 Rome, Italy; (M.S.); (A.G.); (C.C.); (D.S.)
| | - Chiara Nicolazzo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.D.R.); (M.D.M.); (G.G.); (C.N.); (P.G.)
| | - Paola Gazzaniga
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.D.R.); (M.D.M.); (G.G.); (C.N.); (P.G.)
| |
Collapse
|
7
|
Strati A, Economopoulou P, Lianidou E, Psyrri A. Clinical Significance of PD-L1 Status in Circulating Tumor Cells for Cancer Management during Immunotherapy. Biomedicines 2023; 11:1768. [PMID: 37371863 DOI: 10.3390/biomedicines11061768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
The approval of monoclonal antibodies against programmed death-ligand 1 (PD-L1) and programmed cell death protein (PD1) has changed the landscape of cancer treatment. To date, many immune checkpoint inhibitors (ICIs) have been approved by the FDA for the treatment of metastatic cancer as well as locally recurrent advanced cancer. However, immune-related adverse events (irAEs) of ICIs highlight the need for biomarker analysis with strong predictive value. Liquid biopsy is an important tool for clinical oncologists to monitor cancer patients and administer or change appropriate therapy. CTCs frequently express PD-L1, and this constitutes a clinically useful and non-invasive method to assess PD-L1 status in real-time. This review summarizes all the latest findings about the clinical significance of CTC for the management of cancer patients during the administration of immunotherapy and mainly focuses on the assessment of PD-L1 expression in CTCs.
Collapse
Affiliation(s)
- Areti Strati
- Analysis of Circulating Tumor Cells, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Panagiota Economopoulou
- Department of Internal Medicine, Section of Medical Oncology, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Amanda Psyrri
- Department of Internal Medicine, Section of Medical Oncology, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece
| |
Collapse
|
8
|
Pore AA, Dhanasekara CS, Navaid HB, Vanapalli SA, Rahman RL. Comprehensive Profiling of Cancer-Associated Cells in the Blood of Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy to Predict Pathological Complete Response. Bioengineering (Basel) 2023; 10:bioengineering10040485. [PMID: 37106672 PMCID: PMC10136335 DOI: 10.3390/bioengineering10040485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Neoadjuvant chemotherapy (NAC) can affect pathological complete response (pCR) in breast cancers; the resection that follows identifies patients with residual disease who are then offered second-line therapies. Circulating tumor cells (CTCs) and cancer-associated macrophage-like cells (CAMLs) in the blood can be used as potential biomarkers for predicting pCR before resection. CTCs are of epithelial origin that undergo epithelial-to-mesenchymal transition to become more motile and invasive, thereby leading to invasive mesenchymal cells that seed in distant organs, causing metastasis. Additionally, CAMLs in the blood of cancer patients are reported to either engulf or aid the transport of cancer cells to distant organs. To study these rare cancer-associated cells, we conducted a preliminary study where we collected blood from patients treated with NAC after obtaining their written and informed consent. Blood was collected before, during, and after NAC, and Labyrinth microfluidic technology was used to isolate CTCs and CAMLs. Demographic, tumor marker, and treatment response data were collected. Non-parametric tests were used to compare pCR and non-pCR groups. Univariate and multivariate models were used where CTCs and CAMLs were analyzed for predicting pCR. Sixty-three samples from 21 patients were analyzed. The median(IQR) pre-NAC total and mesenchymal CTC count/5 mL was lower in the pCR vs. non-pCR group [1(3.5) vs. 5(5.75); p = 0.096], [0 vs. 2.5(7.5); p = 0.084], respectively. The median(IQR) post-NAC CAML count/5 mL was higher in the pCR vs. non-pCR group [15(6) vs. 6(4.5); p = 0.004]. The pCR group was more likely to have >10 CAMLs post-NAC vs. non-pCR group [7(100%) vs. 3(21.4%); p = 0.001]. In a multivariate logistic regression model predicting pCR, CAML count was positively associated with the log-odds of pCR [OR = 1.49(1.01, 2.18); p = 0.041], while CTCs showed a negative trend [Odds Ratio (OR) = 0.44(0.18, 1.06); p = 0.068]. In conclusion, increased CAMLs in circulation after treatment combined with lowered CTCs was associated with pCR.
Collapse
Affiliation(s)
- Adity A Pore
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | | | - Hunaiz Bin Navaid
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | | |
Collapse
|
9
|
Suvilesh KN, Manjunath Y, Pantel K, Kaifi JT. Preclinical models to study patient-derived circulating tumor cells and metastasis. Trends Cancer 2023; 9:355-371. [PMID: 36759267 DOI: 10.1016/j.trecan.2023.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
Circulating tumor cells (CTCs) that are detached from the tumor can be precursors of metastasis. The majority of studies focus on enumeration of CTCs from patient blood to predict recurrence and therapy outcomes. Very few studies have managed to expand CTCs to investigate their functional dynamics with respect to genetic changes, tumorigenic potential, and response to drug treatment. A growing amount of evidence based on successful CTC expansion has revealed novel therapeutic targets that are associated with the process of metastasis. In this review, we summarize the successes, challenges, and limitations that collectively contribute to the better understanding of metastasis using patient-derived CTCs as blood-borne seeds of metastasis. The roadblocks and future avenues to move CTC-based scientific discoveries forward are also discussed.
Collapse
Affiliation(s)
- Kanve N Suvilesh
- Hugh E. Stephenson Jr., MD, Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA.
| | - Yariswamy Manjunath
- Hugh E. Stephenson Jr., MD, Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Klaus Pantel
- Institute for Tumor Biology, University of Hamburg, Hamburg, Germany
| | - Jussuf T Kaifi
- Hugh E. Stephenson Jr., MD, Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Siteman Cancer Center, St. Louis, MO, USA.
| |
Collapse
|
10
|
Pore AA, Bithi SS, Zeinali M, Navaid HB, Nagrath S, Layeequr Rahman R, Vanapalli SA. Phenotyping of rare circulating cells in the blood of non-metastatic breast cancer patients using microfluidic Labyrinth technology. BIOMICROFLUIDICS 2022; 16:064107. [PMID: 36536791 PMCID: PMC9759355 DOI: 10.1063/5.0129602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/30/2022] [Indexed: 05/13/2023]
Abstract
Label-free technologies for isolating rare circulating cells in breast cancer patients are widely available; however, they are mostly validated on metastatic patient blood samples. Given the need to use blood-based biomarkers to inform on disease progression and treatment decisions, it is important to validate these technologies in non-metastatic patient blood samples. In this study, we specifically focus on a recently established label-free microfluidic technology Labyrinth and assess its capabilities to phenotype a variety of rare circulating tumor cells indicative of epithelial-to-mesenchymal transition as well as cancer-associated macrophage-like (CAML) cells. We specifically chose a patient cohort that is non-metastatic and selected to undergo neoadjuvant chemotherapy to assess the performance of the Labyrinth technology. We enrolled 21 treatment naïve non-metastatic breast cancer patients of various disease stages. Our results indicate that (i) Labyrinth microfluidic technology is successfully able to isolate different phenotypes of CTCs despite the counts being low. (ii) Invasive phenotypes of CTCs such as transitioning CTCs and mesenchymal CTCs were found to be present in high numbers in stage III patients as compared to stage II patients. (iii) As the total load of CTCs increased, the mesenchymal CTCs were found to be increasing. (iv) Labyrinth was able to isolate CAMLs with the counts being higher in stage III patients as compared to stage II patients. Our study demonstrates the ability of the Labyrinth microfluidic technology to isolate rare cancer-associated cells from the blood of treatment naïve non-metastatic breast cancer patients, laying the foundation for tracking oncogenic spread and immune response in patients undergoing neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Adity A. Pore
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Swastika S. Bithi
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Mina Zeinali
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 79430, USA
| | - Hunaiz Bin Navaid
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 79430, USA
| | | | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
11
|
Nitschke C, Markmann B, Konczalla L, Kropidlowski J, Pereira-Veiga T, Scognamiglio P, Schönrock M, Sinn M, Tölle M, Izbicki J, Pantel K, Uzunoglu FG, Wikman H. Circulating Cancer Associated Macrophage-like Cells as a Potential New Prognostic Marker in Pancreatic Ductal Adenocarcinoma. Biomedicines 2022; 10:biomedicines10112955. [PMID: 36428523 PMCID: PMC9687633 DOI: 10.3390/biomedicines10112955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Circulating Cancer Associated Macrophage-like cells (CAMLs) have been described as novel liquid biopsy analytes and unfavorable prognostic markers in some tumor entities, with scarce data for Pancreatic Ductal Adenocarcinomas (PDAC). METHODS Baseline and follow-up blood was drawn from resected curative (n = 36) and palliative (n = 19) PDAC patients. A microfluidic size-based cell enrichment approach (ParsortixTM) was used for CAML detection, followed by immunofluorescence staining using pan-keratin, CD14, and CD45 antibodies to differentiate between CAMLs, circulating tumor cells (CTCs), and leukocytes. RESULTS CAMLs were detectable at baseline in 36.1% of resected patients and 47.4% of palliative PDAC patients. CAML detection was tumor stage independent. Follow-up data indicated that detection of CAMLs (in 45.5% of curative patients) was an independent prognostic factor for shorter recurrence-free survival (RFS) (HR: 4.3, p = 0.023). Furthermore, a combined analysis with CTCs showed the detectability of at least one of these cell populations in 68.2% of resected patients at follow-up. The combined detection of CAMLs and CTCs was also significantly associated with short RFS (HR: 8.7, p = 0.003). CONCLUSIONS This pilot study shows that detection of CAMLs in PDAC patients can provide prognostic information, either alone or even more pronounced in combination with CTCs, which indicates the power of liquid biopsy marker analyses.
Collapse
Affiliation(s)
- Christine Nitschke
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
- Mildred Scheel Cancer Career Center, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Benedikt Markmann
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Leonie Konczalla
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
- Mildred Scheel Cancer Career Center, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jolanthe Kropidlowski
- Department of Tumor Biology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Thais Pereira-Veiga
- Department of Tumor Biology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Pasquale Scognamiglio
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Martin Schönrock
- II Medical Clinic and Polyclinic (Oncology), University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marianne Sinn
- II Medical Clinic and Polyclinic (Oncology), University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marie Tölle
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jakob Izbicki
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Faik G. Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Harriet Wikman
- Department of Tumor Biology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
- Correspondence: ; Tel.: +49-40-7510-51913
| |
Collapse
|
12
|
Rangel-Pozzo A, Wechsler J, Groult J, Da Meda L, Lebbe C, Mai S. Telomere-Associated Changes in Nuclear Architecture of Cancer-Associated Macrophage-like Cells in Liquid Biopsies from Melanoma Patients. Biomedicines 2022; 10:biomedicines10102391. [PMID: 36289653 PMCID: PMC9598704 DOI: 10.3390/biomedicines10102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
During phagocytosis, tumor-associated macrophages (TAMs) can incorporate genetic material from tumor cells. The incorporation of extra genetic material may be responsible for advanced malignant behavior observed in some TAMs, making TAMs potentially important players in cancer progression. More recently, similar cells were described in the blood as cancer-associated macrophage-like cells (CAMLs). CAMLs may be equivalent to TAMs cells in the blood, and they express macrophage markers. However, their origin is still unclear. In a previous study, we showed for the first time the distinct telomere 3D structure of circulating tumor cells (CTCs) in melanoma and other cancers. In the present pilot study, we investigated, comparatively, the 3D telomere structure of CAMLs, CTCs and leucocytes from nine melanoma patients with metastatic cutaneous melanoma stage IV. CTC capture was performed by size-based filtration followed by cytological and immunocytological evaluation. Three-dimensional Quantitative Fluorescent in situ Hybridization was performed to measure differences in five 3D telomere parameters. Telomere parameters, such as number, length, telomere aggregates, nuclear volume, and a/c ratio, were compared among different cellular types (CTCs, CAMLs, and normal leucocytes). Three telomere parameters were significantly different between CAMLs and leucocytes. The combination of two telomere parameters (telomere length against the number of telomeres) resulted in the identification of two CAMLs subpopulations with different levels of genomic instability. Those populations were classified as profile 1 and 2. Profile 2, characterized by a high number of short telomeres, was observed in four of the nine melanoma patients. To our knowledge, this is the first pilot study to investigate 3D telomere parameters as hallmarks of nuclear architecture in CAMLs’ population in comparison to leucocytes from the same patient. Further studies involving a larger patient sample size are necessary to validate these findings and explore their potential prognostic value.
Collapse
Affiliation(s)
- Aline Rangel-Pozzo
- CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3C 2B1, Canada
- Correspondence: (A.R.-P.); (S.M.); Tel.: +1-(204)-787-2135 (S.M.)
| | - Janine Wechsler
- Screencell Company, 62 rue de Wattignies, F-75012 Paris, France
| | - Jessica Groult
- Screencell Company, 62 rue de Wattignies, F-75012 Paris, France
| | - Laetitia Da Meda
- INSERM U976, Team 1, HIPI, Université de Paris, F-75010 Paris, France
- Service de Dermatologie, AP-HP Hôpital Saint Louis, F-75010 Paris, France
| | - Celeste Lebbe
- INSERM U976, Team 1, HIPI, Université de Paris, F-75010 Paris, France
- Service de Dermatologie, AP-HP Hôpital Saint Louis, F-75010 Paris, France
| | - Sabine Mai
- CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3C 2B1, Canada
- Correspondence: (A.R.-P.); (S.M.); Tel.: +1-(204)-787-2135 (S.M.)
| |
Collapse
|
13
|
Pereira-Veiga T, Schneegans S, Pantel K, Wikman H. Circulating tumor cell-blood cell crosstalk: Biology and clinical relevance. Cell Rep 2022; 40:111298. [PMID: 36044866 DOI: 10.1016/j.celrep.2022.111298] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/28/2022] [Accepted: 08/09/2022] [Indexed: 01/17/2023] Open
Abstract
Circulating tumor cells (CTCs) are the seeds of distant metastasis, and the number of CTCs detected in the blood of cancer patients is associated with a worse prognosis. CTCs face critical challenges for their survival in circulation, such as anoikis, shearing forces, and immune surveillance. Thus, understanding the mechanisms and interactions of CTCs within the blood microenvironment is crucial for better understanding of metastatic progression and the development of novel treatment strategies. CTCs interact with different hematopoietic cells, such as platelets, red blood cells, neutrophils, macrophages, natural killer (NK) cells, lymphocytes, endothelial cells, and cancer-associated fibroblasts, which can affect CTC survival in blood. This interaction may take place either via direct cell-cell contact or through secreted molecules. Here, we review interactions of CTCs with blood cells and discuss the potential clinical relevance of these interactions as biomarkers or as targets for anti-metastatic therapies.
Collapse
Affiliation(s)
- Thais Pereira-Veiga
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Svenja Schneegans
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Harriet Wikman
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
14
|
Sutton TL, Patel RK, Anderson AN, Bowden SG, Whalen R, Giske NR, Wong MH. Circulating Cells with Macrophage-like Characteristics in Cancer: The Importance of Circulating Neoplastic-Immune Hybrid Cells in Cancer. Cancers (Basel) 2022; 14:cancers14163871. [PMID: 36010865 PMCID: PMC9405966 DOI: 10.3390/cancers14163871] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary In cancer, disseminated neoplastic cells circulating in blood are a source of tumor DNA, RNA, and protein, which can be harnessed to diagnose, monitor, and better understand the biology of the tumor from which they are derived. Historically, circulating tumor cells (CTCs) have dominated this field of study. While CTCs are shed directly into circulation from a primary tumor, they remain relatively rare, particularly in early stages of disease, and thus are difficult to utilize as a reliable cancer biomarker. Neoplastic-immune hybrid cells represent a novel subpopulation of circulating cells that are more reliably attainable as compared to their CTC counterparts. Here, we review two recently identified circulating cell populations in cancer—cancer-associated macrophage-like cells and circulating hybrid cells—and discuss the future impact for the exciting area of disseminated hybrid cells. Abstract Cancer remains a significant cause of mortality in developed countries, due in part to difficulties in early detection, understanding disease biology, and assessing treatment response. If effectively harnessed, circulating biomarkers promise to fulfill these needs through non-invasive “liquid” biopsy. While tumors disseminate genetic material and cellular debris into circulation, identifying clinically relevant information from these analytes has proven difficult. In contrast, cell-based circulating biomarkers have multiple advantages, including a source for tumor DNA and protein, and as a cellular reflection of the evolving tumor. While circulating tumor cells (CTCs) have dominated the circulating cell biomarker field, their clinical utility beyond that of prognostication has remained elusive, due to their rarity. Recently, two novel populations of circulating tumor-immune hybrid cells in cancer have been characterized: cancer-associated macrophage-like cells (CAMLs) and circulating hybrid cells (CHCs). CAMLs are macrophage-like cells containing phagocytosed tumor material, while CHCs can result from cell fusion between cancer and immune cells and play a role in the metastatic cascade. Both are detected in higher numbers than CTCs in peripheral blood and demonstrate utility in prognostication and assessing treatment response. Additionally, both cell populations are heterogeneous in their genetic, transcriptomic, and proteomic signatures, and thus have the potential to inform on heterogeneity within tumors. Herein, we review the advances in this exciting field.
Collapse
Affiliation(s)
- Thomas L. Sutton
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ranish K. Patel
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ashley N. Anderson
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Stephen G. Bowden
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Riley Whalen
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Nicole R. Giske
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Melissa H. Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Correspondence: ; Tel.: +1-503-494-8749; Fax: +1-503-494-4253
| |
Collapse
|
15
|
Kaigorodova EV, Kozik AV, Zavaruev IS, Grishchenko MY. Hybrid/Atypical Forms of Circulating Tumor Cells: Current State of the Art. BIOCHEMISTRY (MOSCOW) 2022; 87:380-390. [PMID: 35527376 PMCID: PMC8993035 DOI: 10.1134/s0006297922040071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cancer is one of the most common diseases worldwide, and its treatment is associated with many challenges such as drug and radioresistance and formation of metastases. These difficulties are due to tumor heterogeneity, which has many causes. One may be the cell fusion, a process that is relevant to both physiological (e.g., wound healing) and pathophysiological (cancer and viral infection) processes. This literature review aimed to summarize the existing data on the hybrid/atypical forms of circulating cancer cells and their role in tumor progression. For that, the bioinformatics search in universal databases, such as PubMed, NCBI, and Google Scholar was conducted by using the keywords “hybrid cancer cells”, “cancer cell fusion”, etc. In this review the latest information related to the hybrid tumor cells, theories of their genesis, characteristics of different variants with data from our own researches are presented. Many aspects of the hybrid cell research are still in their infancy. However, with the level of knowledge already accumulated, circulating hybrids such as CAML and CHC could be considered as promising biomarkers of cancerous tumors, and even more as a new approach to cancer treatment.
Collapse
Affiliation(s)
- Evgeniya V Kaigorodova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia.
- Siberian State Medical University, Tomsk, 634050, Russia
| | - Alexey V Kozik
- Siberian State Medical University, Tomsk, 634050, Russia
| | | | | |
Collapse
|
16
|
Tang CM, Adams DL. Clinical Applications of Cancer-Associated Cells Present in the Blood of Cancer Patients. Biomedicines 2022; 10:biomedicines10030587. [PMID: 35327389 PMCID: PMC8945841 DOI: 10.3390/biomedicines10030587] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 01/12/2023] Open
Abstract
The ability to obtain tumor material from cells in the blood of cancer patients provides a significant benefit over the use of tumor tissue as a diagnostic to make treatment decisions. However, the traditionally defined circulating tumor cell (CTC) has been shown to be useful only in some cases. A recently identified type of circulating stromal cell, which appears to be more frequent than CTCs, was found engulfing tumor material at the tumor site and then entering the blood stream. These cells were defined as cancer-associated macrophage-like cells (CAMLs). Together, CTCs and CAMLs may be able to provide information for cancer detection and diagnosis, without the use of tissue. CTCs and CAMLs have many clinical applications, three of which are summarized in this review: for prognosis, as companion diagnostics, and for residual disease monitoring.
Collapse
Affiliation(s)
- Cha-Mei Tang
- Creatv MicroTech, Inc., 9900 Belward Campus Drive, Suite 330, Rockville, MD 20850, USA
- Correspondence:
| | - Daniel L. Adams
- Creatv MicroTech, Inc., 9 Deer Park Drive, Suite M5, Middlesex County, NJ 08852, USA;
| |
Collapse
|
17
|
Liu J, Niu N, Li X, Zhang X, Sood AK. The life cycle of polyploid giant cancer cells and dormancy in cancer: Opportunities for novel therapeutic interventions. Semin Cancer Biol 2021; 81:132-144. [PMID: 34670140 DOI: 10.1016/j.semcancer.2021.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023]
Abstract
Recent data suggest that most genotoxic agents in cancer therapy can lead to shock of genome and increase in cell size, which leads whole genome duplication or multiplication, formation of polyploid giant cancer cells, activation of an early embryonic program, and dedifferentiation of somatic cells. This process is achieved via the giant cell life cycle, a recently proposed mechanism for malignant transformation of somatic cells. Increase in both cell size and ploidy allows cells to completely or partially restructures the genome and develop into a blastocyst-like structure, similar to that observed in blastomere-stage embryogenesis. Although blastocyst-like structures with reprogrammed genome can generate resistant or metastatic daughter cells or benign cells of different lineages, they also acquired ability to undergo embryonic diapause, a reversible state of suspended embryonic development in which cells enter dormancy for survival in response to environmental stress. Therapeutic agents can activate this evolutionarily conserved developmental program, and when cells awaken from embryonic diapause, this leads to recurrence or metastasis. Understanding of the key mechanisms that regulate the different stages of the giant cell life cycle offers new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jinsong Liu
- Departments of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Departments of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Na Niu
- Departments of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaoran Li
- Departments of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xudong Zhang
- Departments of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Anil K Sood
- Departments of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
18
|
Augustyn A, Adams DL, He J, Qiao Y, Verma V, Liao Z, Tang CM, Heymach JV, Tsao AS, Lin SH. Giant Circulating Cancer-Associated Macrophage-Like Cells Are Associated With Disease Recurrence and Survival in Non-Small-Cell Lung Cancer Treated With Chemoradiation and Atezolizumab. Clin Lung Cancer 2021; 22:e451-e465. [PMID: 32798130 DOI: 10.1016/j.cllc.2020.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cancer-associated macrophage-like cells (CAMLs) are a potential peripheral blood biomarker for disease progression. This study used data from a phase 2 clinical trial to evaluate prognostic utility of CAMLs for locally advanced non-small-cell lung cancer treated with definitive chemoradiotherapy (CRT) and atezolizumab (DETERRED; ClinicalTrials.gov NCT02525757). PATIENTS AND METHODS Sample collection occurred at baseline (T0), during CRT (T1), at end of CRT (T2), and at first follow-up (T3). CAMLs were captured and quantified by the CellSieve system using multiplex immunostaining. Giant CAMLs were defined as characteristic CAMLs ≥ 50 μm. Kaplan-Meier methodology estimated progression-free survival, distant failure-free survival, relapse-free survival, and overall survival at 30 months. RESULTS Thirty-nine patients were evaluated between December 2015 and March 2018. Median follow-up was 27 months. Most disease was stage III (85%) and comprised squamous-cell carcinoma (38%) or adenocarcinoma (59%). In total, 267 blood samples were analyzed. Giant CAMLs were identified in 57%, 60%, 64%, and 63% of patients at T0, T1, T2, and T3, respectively. Patients with giant CAMLs at T3, occurring at a median of 30 days after completion of CRT, had significantly worse distant failure-free survival (hazard ratio [HR] 4.9, P = .015), progression-free survival (HR 2.5, P = .025), recurrence-free survival (HR 2.4, P = .036), and overall survival (HR 3.5, P = .034) compared to patients with small or no CAMLs. CONCLUSIONS Presence of giant CAMLs after CRT completion was associated with development of metastatic disease and poorer survival despite the use of maintenance immunotherapy. Monitoring CAMLs may help risk-stratify patients for adaptive treatment strategies.
Collapse
Affiliation(s)
- Alexander Augustyn
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Jianzhong He
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yawei Qiao
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Vivek Verma
- Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA
| | - Zhongxing Liao
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anne S Tsao
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Steven H Lin
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
19
|
Cantini G, Canu L, Armignacco R, Salvianti F, De Filpo G, Ercolino T, Nesi G, Maggi M, Mannelli M, Pinzani P, Luconi M. Prognostic and Monitoring Value of Circulating Tumor Cells in Adrenocortical Carcinoma: A Preliminary Monocentric Study. Cancers (Basel) 2020; 12:cancers12113176. [PMID: 33138000 PMCID: PMC7693770 DOI: 10.3390/cancers12113176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Carcinoma of the cortical region of the adrenal (ACC) is a rare and aggressive cancer often with poor prognosis and limited therapies. For these reasons, tumor markers for early diagnosis and monitoring the therapy and tumor evolution are required. This paper demonstrates in a cohort of 19 patients affected by ACC, that in a simple blood draw (liquid biopsy), different cells associated with the tumor can be found in samples taken before and after surgery. Among them, the number of circulating tumor cells in blood samples taken before surgery can be predictive of the patients’ survival and tumor recurrence, thus contributing valuable information on the tumor, which may contribute to improve patient management and follow up. Further studies on larger cohorts of ACC patients are required to validate this novel finding. Abstract Adrenocortical carcinoma (ACC), a rare and aggressive neoplasia, presents poor prognosis when metastatic at diagnosis and limited therapies are available. Specific and sensitive markers for early diagnosis and a monitoring system of therapy and tumor evolution are urgently needed. The liquid biopsy represents a source of tumor material within a minimally invasive blood draw that allows the recovery of circulating tumor cells (CTCs). CTCs have been recently shown to be detectable in ACC. In the present paper, we evaluated the prognostic value of CTCs obtained by size-filtration in a small pilot cohort of 19 ACC patients. We found CTCs in 68% of pre-surgery and in 38% of post-surgery blood samples. In addition, CTC clusters (CTMs) and cancer associated macrophages (CAMLs) were detectable in some ACC patients. The median number of CTCs significantly decreased after the mass removal. Finally, stratifying patients in high and low pre-surgery CTC number groups, assuming the 75th percentile CTC value as cut-off, CTCs significantly predicted patients’ overall survival (log rank = 0.005), also in a multivariate analysis adjusted for age and tumor stage. In conclusion, though preliminary and performed in a small cohort of patients, our study suggests that CTC number may represent a promising marker for prognosis and disease monitoring in ACC.
Collapse
Affiliation(s)
- Giulia Cantini
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.C.); (L.C.); (F.S.); (G.D.F.); (M.M.); (M.M.); (P.P.)
| | - Letizia Canu
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.C.); (L.C.); (F.S.); (G.D.F.); (M.M.); (M.M.); (P.P.)
| | - Roberta Armignacco
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France;
| | - Francesca Salvianti
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.C.); (L.C.); (F.S.); (G.D.F.); (M.M.); (M.M.); (P.P.)
| | - Giuseppina De Filpo
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.C.); (L.C.); (F.S.); (G.D.F.); (M.M.); (M.M.); (P.P.)
| | | | - Gabriella Nesi
- Division of Pathological Anatomy, Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy;
| | - Mario Maggi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.C.); (L.C.); (F.S.); (G.D.F.); (M.M.); (M.M.); (P.P.)
- Careggi University Hospital (AOUC), 50134 Florence, Italy;
| | - Massimo Mannelli
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.C.); (L.C.); (F.S.); (G.D.F.); (M.M.); (M.M.); (P.P.)
| | - Pamela Pinzani
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.C.); (L.C.); (F.S.); (G.D.F.); (M.M.); (M.M.); (P.P.)
| | - Michaela Luconi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.C.); (L.C.); (F.S.); (G.D.F.); (M.M.); (M.M.); (P.P.)
- Correspondence: ; Tel.: +39-055-275-8239
| |
Collapse
|
20
|
Circulating Giant Tumor-Macrophage Fusion Cells Are Independent Prognosticators in Patients With NSCLC. J Thorac Oncol 2020; 15:1460-1471. [DOI: 10.1016/j.jtho.2020.04.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/09/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022]
|
21
|
Inflammation-Based Scores Increase the Prognostic Value of Circulating Tumor Cells in Primary Breast Cancer. Cancers (Basel) 2020; 12:cancers12051134. [PMID: 32369910 PMCID: PMC7281016 DOI: 10.3390/cancers12051134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 12/26/2022] Open
Abstract
A correlation between circulating tumor cells (CTCs) and monocytes in metastatic breast cancer (BC), where CTCs and monocyte-to-lymphocyte ratio (MLR) were predictors of overall survival (OS), was recently shown. Herein, we aimed to assess the association between CTCs and the complete blood count (CBC)-derived inflammation-based scores in 284 primary BC patients. CTCs were determined in CD45-depleted peripheral blood mononuclear cells by real time-PCR. This method allowed us to detect a subset of CTCs with an epithelial-to-mesenchymal transition phenotype (CTC EMT), previously associated with inferior outcomes in primary BC. In the present study, CTC EMT positivity (hazard ratio (HR) = 2.4; 95% CI 1.20–4.66, p = 0.013) and elevated neutrophil-to-lymphocyte ratio (NLR) (HR = 2.20; 95% CI 1.07–4.55; p = 0.033) were associated with shorter progression-free survival (PFS) in primary BC patients. Multivariate analysis showed that CTC EMT-positive patients with NLR ≥ 3 had 8.6 times increased risk of disease recurrence (95% CI 2.35–31.48, p = 0.001) compared with CTC EMT-negative patients with NLR < 3. Similarly, disease recurrence was 13.14 times more likely in CTC EMT-positive patients with MLR ≥ 0.34 (95% CI 4.35–39.67, p < 0.001). Given its low methodological and financial demands, the CBC-derived inflammation-based score determination could, after broader validation, significantly improve the prognostication of BC patients.
Collapse
|
22
|
Manjunath Y, Porciani D, Mitchem JB, Suvilesh KN, Avella DM, Kimchi ET, Staveley-O’Carroll KF, Burke DH, Li G, Kaifi JT. Tumor-Cell-Macrophage Fusion Cells as Liquid Biomarkers and Tumor Enhancers in Cancer. Int J Mol Sci 2020; 21:E1872. [PMID: 32182935 PMCID: PMC7084898 DOI: 10.3390/ijms21051872] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 02/06/2023] Open
Abstract
Although molecular mechanisms driving tumor progression have been extensively studied, the biological nature of the various populations of circulating tumor cells (CTCs) within the blood is still not well understood. Tumor cell fusion with immune cells is a longstanding hypothesis that has caught more attention in recent times. Specifically, fusion of tumor cells with macrophages might lead to the development of metastasis by acquiring features such as genetic and epigenetic heterogeneity, chemotherapeutic resistance, and immune tolerance. In addition to the traditional FDA-approved definition of a CTC (CD45-, EpCAM+, cytokeratins 8+, 18+ or 19+, with a DAPI+ nucleus), an additional circulating cell population has been identified as being potential fusions cells, characterized by distinct, large, polymorphonuclear cancer-associated cells with a dual epithelial and macrophage/myeloid phenotype. Artificial fusion of tumor cells with macrophages leads to migratory, invasive, and metastatic phenotypes. Further studies might investigate whether these have a potential impact on the immune response towards the cancer. In this review, the background, evidence, and potential relevance of tumor cell fusions with macrophages is discussed, along with the potential role of intercellular connections in their formation. Such fusion cells could be a key component in cancer metastasis, and therefore, evolve as a diagnostic and therapeutic target in cancer precision medicine.
Collapse
Affiliation(s)
- Yariswamy Manjunath
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA; (Y.M.); (J.B.M.); (K.N.S.); (D.M.A.); (E.T.K.); (K.F.S.-O.); (G.L.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - David Porciani
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65212, USA; (D.P.); (D.H.B.)
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA
| | - Jonathan B. Mitchem
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA; (Y.M.); (J.B.M.); (K.N.S.); (D.M.A.); (E.T.K.); (K.F.S.-O.); (G.L.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Kanve N. Suvilesh
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA; (Y.M.); (J.B.M.); (K.N.S.); (D.M.A.); (E.T.K.); (K.F.S.-O.); (G.L.)
| | - Diego M. Avella
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA; (Y.M.); (J.B.M.); (K.N.S.); (D.M.A.); (E.T.K.); (K.F.S.-O.); (G.L.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Eric T. Kimchi
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA; (Y.M.); (J.B.M.); (K.N.S.); (D.M.A.); (E.T.K.); (K.F.S.-O.); (G.L.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA; (Y.M.); (J.B.M.); (K.N.S.); (D.M.A.); (E.T.K.); (K.F.S.-O.); (G.L.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Donald H. Burke
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65212, USA; (D.P.); (D.H.B.)
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65212, USA
| | - Guangfu Li
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA; (Y.M.); (J.B.M.); (K.N.S.); (D.M.A.); (E.T.K.); (K.F.S.-O.); (G.L.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65212, USA; (D.P.); (D.H.B.)
| | - Jussuf T. Kaifi
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA; (Y.M.); (J.B.M.); (K.N.S.); (D.M.A.); (E.T.K.); (K.F.S.-O.); (G.L.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| |
Collapse
|
23
|
Reduzzi C, Vismara M, Gerratana L, Silvestri M, De Braud F, Raspagliesi F, Verzoni E, Di Cosimo S, Locati LD, Cristofanilli M, Daidone MG, Cappelletti V. The curious phenomenon of dual-positive circulating cells: Longtime overlooked tumor cells. Semin Cancer Biol 2019; 60:344-350. [PMID: 31626958 DOI: 10.1016/j.semcancer.2019.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/05/2019] [Accepted: 10/09/2019] [Indexed: 01/29/2023]
Abstract
The presence in the blood of patients with solid tumors of circulating cells expressing both epithelial and leukocyte markers (dual-positive cells, DPcells), has often been reported, though it has never been investigated in detail. A recent study suggested that DPcells are hybrid cells derived from the fusion of tumor cells with macrophages. Such fusion hybrids acquire macrophage-associated features endowing them with accelerated growth, increased motility, enhanced invasion activity and thus, a higher efficiency in metastasis formation. However, no direct evidence proving the tumor origin of circulating DPcells was provided in patients. Here we contribute a review of literature data on DPcells and on the hybrid theory with the aim of putting the current evidence both in a biological and clinical perspective and to generate new hypotheses on the mechanisms underlying tumor progression. To add further biological and clinical context to our literature review, we also report some preliminary data from our laboratory on the identification of DPcells in several solid tumors and confirmation of their malignant genotype, thus classifying them as DP-CTCs.
Collapse
Affiliation(s)
- Carolina Reduzzi
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Marta Vismara
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Lorenzo Gerratana
- Department of Medicine (DAME), University of Udine, Italy; Department of Medicine-Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Marco Silvestri
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Filippo De Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy; University of Milan, Milan, Italy
| | - Francesco Raspagliesi
- Department of surgery, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Elena Verzoni
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Serena Di Cosimo
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Laura D Locati
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Massimo Cristofanilli
- Department of Medicine-Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Maria Grazia Daidone
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Vera Cappelletti
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| |
Collapse
|
24
|
CTCs 2020: Great Expectations or Unreasonable Dreams. Cells 2019; 8:cells8090989. [PMID: 31461978 PMCID: PMC6769853 DOI: 10.3390/cells8090989] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
Circulating tumor cells (CTCs) are cellular elements that can be scattered into the bloodstream from primary cancer, metastasis, and even from a disseminated tumor cell (DTC) reservoir. CTCs are “seeds”, able to give rise to new metastatic lesions. Since metastases are the cause of about 90% of cancer-related deaths, the significance of CTCs is unquestionable. However, two major issues have stalled their full clinical exploitation: rarity and heterogeneity. Therefore, their full clinical potential has only been predicted. Finding new ways of studying and using such tremendously rare and important events can open new areas of research in the field of cancer research, and could drastically improve tumor companion diagnostics, personalized treatment strategies, overall patients management, and reduce healthcare costs.
Collapse
|
25
|
Circulating Hybrid Cells Join the Fray of Circulating Cellular Biomarkers. Cell Mol Gastroenterol Hepatol 2019; 8:595-607. [PMID: 31319228 PMCID: PMC6889578 DOI: 10.1016/j.jcmgh.2019.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 12/11/2022]
Abstract
Gastrointestinal cancers account for more cancer-related deaths than any other organ system, owing in part to difficulties in early detection, treatment response assessment, and post-treatment surveillance. Circulating biomarkers hold the promise for noninvasive liquid biopsy platforms to overcome these obstacles. Although tumors shed detectable levels of degraded genetic material and cellular debris into peripheral blood, identifying reproducible and clinically relevant information from these analytes (eg, cell-free nucleotides, exosomes, proteins) has proven difficult. Cell-based circulating biomarkers also present challenges, but have multiple advantages including allowing for a more comprehensive tumor analysis, and communicating the risk of metastatic spread. Circulating tumor cells have dominated the cancer cell biomarker field with robust evidence in extraintestinal cancers; however, establishing their clinical utility beyond that of prognostication in colorectal and pancreatic cancers has remained elusive. Recently identified novel populations of tumor-derived cells bring renewed potential to this area of investigation. Cancer-associated macrophage-like cells, immune cells with phagocytosed tumor material, also show utility in prognostication and assessing treatment responsiveness. In addition, circulating hybrid cells are the result of tumor-macrophage fusion, with mounting evidence for a role in the metastatic cascade. Because of their relative abundance in circulation, circulating hybrid cells have great potential as a liquid biomarker for early detection, prognostication, and surveillance. In all, the power of the cell reaches beyond enumeration by providing a cellular source of tumor DNA, RNA, and protein, which can be harnessed to impact overall survival.
Collapse
|
26
|
Integrative diagnosis of cancer by combining CTCs and associated peripheral blood cells in liquid biopsy. Clin Transl Oncol 2018; 21:828-835. [PMID: 30569214 DOI: 10.1007/s12094-018-02004-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022]
Abstract
Circulating tumor cells (CTCs), as cells shed from solid tumor into the vasculature, play a significant role in tumor metastasis. In the peripheral blood, immune cells and stromal cells can interact with CTCs and influence their biological behaviors of survival, proliferation, dissemination, and immune evasion. These peripheral blood cells can evolve synergistically with CTCs to constitute the liquid microenvironment which is essential for tumor progression. Here, we review the mechanisms of peripheral blood cells interacting with CTCs and uncover their effects on both CTCs and tumor metastasis. Then, we introduce the applications of these CTC-associated peripheral blood cells in the clinical setting. Besides, some peripheral blood cell subsets are of additional clinical values to CTCs in cancer diagnosis and prognosis. To improve the clinical utility of CTCs, an integrative analysis of CTCs and associated peripheral blood cells should be advocated for, which could provide a novel insight into tumor biology and offer comprehensive information in cancer diagnosis, prognosis, and therapy efficacy evaluation.
Collapse
|
27
|
Tang C, Zhu P, Li S, Makarova OV, Amstutz PT, Adams DL. Blood-based biopsies-clinical utility beyond circulating tumor cells. Cytometry A 2018; 93:1246-1250. [PMID: 30369050 PMCID: PMC6370292 DOI: 10.1002/cyto.a.23573] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/28/2022]
Abstract
Circulating tumor cells (CTCs), epithelial-mesenchymal transition (EMT) cells, as well as a number of circulating cancer stromal cells (CStCs) are known to shed into the blood of cancer patients. Individually, and together, these cells provide biological and clinical information about the cancers. Filtration is a method used to isolate all of these cells, while eliminating red and white blood cells from whole peripheral blood. We have previously shown that accurate identification of these cell types is paramount to proper clinical assessment by describing the overlapping phenotypes of CTCs to one such CStC, the cancer-associated macrophage-like cell (CAML). We report that CAMLs possess a number of parallel applications to CTCs but have a broader range of clinical utility, including cancer screening, companion diagnostics, diagnosis, prognosis, monitoring of treatment response, and detection of recurrence. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of ISAC.
Collapse
|
28
|
Abstract
Life starts with a zygote, which is formed by the fusion of a haploid sperm and egg. The formation of a blastomere by cleavage division (nuclear division without an increase in cell size) is the first step in embryogenesis, after the formation of the zygote. Blastomeres are responsible for reprogramming the parental genome as a new embryonic genome for generation of the pluripotent stem cells which then differentiate by Waddington's epigenetic landscape to create a new life. Multiple authors over the past 150 years have proposed that tumors arises from development gone awry at a point within Waddington's landscape. Recent discoveries showing that differentiated somatic cells can be reprogrammed into induced pluripotent stem cells, and that somatic cell nuclear transfer can be used to successfully clone animals, have fundamentally reshaped our understanding of tumor development and origin. Differentiated somatic cells are plastic and can be induced to dedifferentiate into pluripotent stem cells. Here, I review the evidence that suggests somatic cells may have a previously overlooked endogenous embryonic program that can be activated to dedifferentiate somatic cells into stem cells of various potencies for tumor initiation. Polyploid giant cancer cells (PGCCs) have long been observed in cancer and were thought originally to be nondividing. Contrary to this belief, recent findings show that stress-induced PGCCs divide by endoreplication, which may recapitulate the pattern of cleavage-like division in blastomeres and lead to dedifferentiation of somatic cells by a programmed process known as "the giant cell cycle", which comprise four distinct but overlapping phases: initiation, self-renewal, termination and stability. Depending on the intensity and type of stress, different levels of dedifferentiation result in the formation of tumors of different grades of malignancy. Based on these results, I propose a unified dualistic model to demonstrate the origin of human tumors. The tenet of this model includes four points, as follows. 1. Tumors originate from a stem cell at a specific developmental hierarchy, which can be achieved by dualistic origin: dedifferentiation of the zygote formed by two haploid gametes (sexual reproduction) via the blastomere during normal development, or transformation from damaged or aged mature somatic cells via a blastomere-like embryonic program (asexual reproduction). 2. Initiation of the tumor begins with a stem cell that has uncoupled the differentiation from the proliferation program which results in stem cell maturation arrest. 3. The developmental hierarchy at which stem cells arrest determines the degree of malignancy: the more primitive the level at which stem cells arrest, the greater the likelihood of the tumor being malignant. 4. Environmental factors and intrinsic genetic or epigenetic alterations represent the risk factors or stressors that facilitate stem cell arrest and somatic cell dedifferentiation. However, they, per se, are not the driving force of tumorigenesis. Thus, the birth of a tumor can be viewed as a triad that originates from a stem cell via dedifferentiation through a blastomere or blastomere-like program, which then differentiates along Waddington's landscape, and arrests at a developmental hierarchy. Blocking the PGCC-mediated dedifferentiation process and inducing their differentiation may represent a novel alternative approach to eliminate the tumor occurrence and therapeutic resistance.
Collapse
Affiliation(s)
- Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4095, United States.
| |
Collapse
|
29
|
The Interplay between Circulating Tumor Cells and the Immune System: From Immune Escape to Cancer Immunotherapy. Diagnostics (Basel) 2018; 8:diagnostics8030059. [PMID: 30200242 PMCID: PMC6164896 DOI: 10.3390/diagnostics8030059] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/20/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022] Open
Abstract
Circulating tumor cells (CTCs) have aroused increasing interest not only in mechanistic studies of metastasis, but also for translational applications, such as patient monitoring, treatment choice, and treatment change due to tumor resistance. In this review, we will assess the state of the art about the study of the interactions between CTCs and the immune system. We intend to analyze the impact that the cells of the immune system have in limiting or promoting the metastatic capability of CTCs. To this purpose, we will examine studies that correlate CTCs, immune cells, and patient prognosis, and we will also discuss relevant animal models that have contributed to the understanding of the mechanisms of immune-mediated metastasis. We will then consider some studies in which CTCs seem to play a promising role in monitoring cancer patients during immunotherapy regimens. We believe that, from an accurate and profound knowledge of the interactions between CTCs and the immune system, new immunotherapeutic strategies against cancer might emerge in the future.
Collapse
|
30
|
Tan Q, Qin Q. Does the elevation of CAMLs predict metastatic breast cancer patients' survival? Breast Cancer Res Treat 2017; 167:819. [PMID: 29058174 DOI: 10.1007/s10549-017-4546-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 11/25/2022]
Affiliation(s)
- Qixing Tan
- Department of Breast Surgery, The Affiliated Cancer Hospital of Guangxi Medical University, 71 He Di Rd., Nanning, 530021, Guangxi, People's Republic of China
| | - Qinghong Qin
- Department of Breast Surgery, The Affiliated Cancer Hospital of Guangxi Medical University, 71 He Di Rd., Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|