1
|
Liu D, Liu L, Zhang X, Zhao X, Li X, Che X, Wu G. Decoding driver and phenotypic genes in cancer: Unveiling the essence behind the phenomenon. Mol Aspects Med 2025; 103:101358. [PMID: 40037122 DOI: 10.1016/j.mam.2025.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/25/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Gray hair, widely regarded as a hallmark of aging. While gray hair is associated with aging, reversing this trait through gene targeting does not alter the fundamental biological processes of aging. Similarly, certain oncogenes (such as CXCR4, MMP-related genes, etc.) can serve as markers of tumor behavior, such as malignancy or prognosis, but targeting these genes alone may not lead to tumor regression. We pioneered the name of this class of genes as "phenotypic genes". Historically, cancer genetics research has focused on tumor driver genes, while genes influencing cancer phenotypes have been relatively overlooked. This review explores the critical distinction between driver genes and phenotypic genes in cancer, using the MAPK and PI3K/AKT/mTOR pathways as key examples. We also discuss current research techniques for identifying driver and phenotypic genes, such as whole-genome sequencing (WGS), RNA sequencing (RNA-seq), RNA interference (RNAi), CRISPR-Cas9, and other genomic screening methods, alongside the concept of synthetic lethality in driver genes. The development of these technologies will help develop personalized treatment strategies and precision medicine based on the characteristics of relevant genes. By addressing the gap in discussions on phenotypic genes, this review significantly contributes to clarifying the roles of driver and phenotypic genes, aiming at advancing the field of targeted cancer therapy.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Lei Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaoman Zhang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xinming Zhao
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
2
|
Mishra RR, Nielsen BE, Trudrung MA, Lee S, Bolstad LJ, Hellenbrand DJ, Hanna AS. The Effect of Tissue Inhibitor of Metalloproteinases on Scar Formation after Spinal Cord Injury. Cells 2024; 13:1547. [PMID: 39329731 PMCID: PMC11430430 DOI: 10.3390/cells13181547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Spinal cord injury (SCI) often results in permanent loss of motor and sensory function. After SCI, the blood-spinal cord barrier (BSCB) is disrupted, causing the infiltration of neutrophils and macrophages, which secrete several kinds of cytokines, as well as matrix metalloproteinases (MMPs). MMPs are proteases capable of degrading various extracellular matrix (ECM) proteins, as well as many non-matrix substrates. The tissue inhibitor of MMPs (TIMP)-1 is significantly upregulated post-SCI and operates via MMP-dependent and MMP-independent pathways. Through the MMP-dependent pathway, TIMP-1 directly reduces inflammation and destruction of the ECM by binding and blocking the catalytic domains of MMPs. Thus, TIMP-1 helps preserve the BSCB and reduces immune cell infiltration. The MMP-independent pathway involves TIMP-1's cytokine-like functions, in which it binds specific TIMP surface receptors. Through receptor binding, TIMP-1 can stimulate the proliferation of several types of cells, including keratinocytes, aortic smooth muscle cells, skin epithelial cells, corneal epithelial cells, and astrocytes. TIMP-1 induces astrocyte proliferation, modulates microglia activation, and increases myelination and neurite extension in the central nervous system (CNS). In addition, TIMP-1 also regulates apoptosis and promotes cell survival through direct signaling. This review provides a comprehensive assessment of TIMP-1, specifically regarding its contribution to inflammation, ECM remodeling, and scar formation after SCI.
Collapse
Affiliation(s)
- Raveena R. Mishra
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
| | - Brooke E. Nielsen
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
| | - Melissa A. Trudrung
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
| | - Samuel Lee
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
| | - Luke J. Bolstad
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
| | - Daniel J. Hellenbrand
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amgad S. Hanna
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
3
|
Han SH, Mo JS, Yun KJ, Chae SC. MicroRNA 429 regulates MMPs expression by modulating TIMP2 expression in colon cancer cells and inflammatory colitis. Genes Genomics 2024; 46:763-774. [PMID: 38733517 DOI: 10.1007/s13258-024-01520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND In a previous study, we found that the expression of microRNA 429 (MIR429) was decreased in dextran sodium sulfate (DSS)-induced mouse colitis tissues. OBJECTIVE In this study, we aimed to investigate the interaction of MIR429 with TIMP metallopeptidase inhibitor 2 (TIMP2), one of its candidate target genes, in human colorectal cancer (CRC) cells and DSS-induced mouse colitis tissues. METHODS A luciferase reporter system was used to confirm the effect of MIR429 on TIMP2 expression. The expression levels of MIR429 and target genes in cells or tissues were evaluated through quantitative RT-PCR, western blotting, or immunohistochemistry. RESULTS We found that the expression level of MIR429 was downregulated in human CRC tissues, and also showed that TIMP2 is a direct target gene of MIR429 in CRC cell lines. Furthermore, MIR429 regulate TIMP2-mediated matrix metallopeptidases (MMPs) expression in CRC cells. We also generated cell lines stably expressing MIR429 in CRC cell lines and showed that MIR429 regulates the expression of MMPs by mediating TIMP2 expression. In addition to human CRC tissues, we found that TIMP2 was highly expressed in mouse colitis tissues and human ulcerative colitis (UC) tissues. CONCLUSIONS Our findings suggest that the expression of endogenous MIR429 was reduced in human CRC tissues and colitis, leading to upregulation of its target gene TIMP2. The upregulation of TIMP2 by decreased MIR429 expression in CRC tissues and inflamed tissues suggests that it may affect extracellular matrix (ECM) remodeling through downregulation of MMPs. Therefore, MIR429 may have therapeutic value for human CRC and colitis.
Collapse
Affiliation(s)
- Seol-Hee Han
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk, 54538, Republic of Korea
| | - Ji-Su Mo
- Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk, 54538, Republic of Korea
| | - Ki-Jung Yun
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk, 54538, Republic of Korea
| | - Soo-Cheon Chae
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk, 54538, Republic of Korea.
- Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk, 54538, Republic of Korea.
| |
Collapse
|
4
|
Zahedipour F, Khorram Khorshid HR, Esmaeilzadeh E, Kamali K, Ebadifar A. Association of MMP2 and MMP9 gene polymorphisms with nonsyndromic cleft lip/palate in an Iranian population. J Dent Res Dent Clin Dent Prospects 2023; 17:149-153. [PMID: 38023796 PMCID: PMC10676531 DOI: 10.34172/joddd.2023.40640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/09/2023] [Indexed: 12/01/2023] Open
Abstract
Background Cleft lip/palate (CL/P) is a prevalent congenital disorder. Matrix metalloproteinases (MMPs) play a role in palatogenesis and have been proposed to be associated with nonsyndromic CL/P development. This study aimed to examine the association of MMP2 (rs243866) and MMP9 (rs3918242) gene polymorphism with nonsyndromic CL/P in an Iranian population. Methods Blood samples were collected from 120 nonsyndromic CL/P patients and 140 healthy newborns in this case-control study. DNA extraction was performed by the salting-out method, and the samples underwent polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP), using Pag and SphI enzymes, for genotyping MMP2 and MMP9 gene polymorphisms. Statistical analysis was performed with SPSS 11.5. Univariate and multivariate logistic regression models were used to calculate the odds ratios and 95% confidence intervals (CIs). The level of statistical significance was set at P<0.05. Results No significant association was found between MMP2 gene polymorphism and nonsyndromic CL/P. However, the MMP9 gene polymorphism had a significant association with nonsyndromic CL/P, with a higher prevalence of the T allele and TT genotype in the case group than the control group. Conclusion This study indicated a potential link between MMP9 gene polymorphism and nonsyndromic CL/P in an Iranian population. Future investigations with greater sample diversity and larger sample sizes are required to obtain more comprehensive and robust evidence. In-depth analyses and studies involving different ethnic groups can further enhance our understanding of the genetic underpinnings of CL/P.
Collapse
Affiliation(s)
- Fatemeh Zahedipour
- Department of Orthodontics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Koorosh Kamali
- Department of Public Health, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Asghar Ebadifar
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences, Department of Orthodontics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Jadczyk-Sorek K, Garczorz W, Bubała-Stachowicz B, Francuz T, Mrukwa-Kominek E. Matrix Metalloproteinases and the Pathogenesis of Recurrent Corneal Erosions and Epithelial Basement Membrane Dystrophy. BIOLOGY 2023; 12:1263. [PMID: 37759662 PMCID: PMC10525265 DOI: 10.3390/biology12091263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Matrix metalloproteinases (MMPs) are a group of proteolytic enzymes which are members of the zinc endopeptidase family. They have the ability to degrade extracellular matrix elements, allowing for the release of binding molecules and cell migration. Although metalloproteinases regulate numerous physiological processes within the cornea, overexpression of metalloproteinase genes and an imbalance between the levels of metalloproteinases and their inhibitors can contribute to the inhibition of repair processes, the development of inflammation and excessive cellular proliferation. The involvement of MMPs in the pathogenesis of dystrophic corneal diseases needs clarification. Our analyses focus on the involvement of individual metalloproteinases in the pathogenesis of recurrent corneal erosions and highlight their impact on the development of corneal epithelial basement membrane dystrophy (EBMD). We hypothesize that abnormalities observed in patients with EBMD may result from the accumulation and activation of metalloproteinases in the basal layers of the corneal epithelium, leading to basement membrane degradation. A barrier formed from degradation materials inhibits the normal migration of epithelial cells to the superficial layers, which contributes to the development of the aforementioned lesions. This hypothesis seems to be lent support by the elevated concentrations of metalloproteinases in the corneal epithelium of these patients found in our previous studies on the relationships between MMPs and recurrent corneal erosions.
Collapse
Affiliation(s)
- Katarzyna Jadczyk-Sorek
- Department of Ophthalmology, University Clinical Center, Medical University of Silesia, Ceglana 35, 40-514 Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ceglana 35, 40-514 Katowice, Poland
| | - Wojciech Garczorz
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-027 Katowice, Poland
| | - Beata Bubała-Stachowicz
- Department of Ophthalmology, University Clinical Center, Medical University of Silesia, Ceglana 35, 40-514 Katowice, Poland
| | - Tomasz Francuz
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-027 Katowice, Poland
| | - Ewa Mrukwa-Kominek
- Department of Ophthalmology, University Clinical Center, Medical University of Silesia, Ceglana 35, 40-514 Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ceglana 35, 40-514 Katowice, Poland
| |
Collapse
|
6
|
The Biology and Function of Tissue Inhibitor of Metalloproteinase 2 in the Lungs. Pulm Med 2022; 2022:3632764. [PMID: 36624735 PMCID: PMC9825218 DOI: 10.1155/2022/3632764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 01/02/2023] Open
Abstract
Tissue inhibitors of matrix metalloproteinases (TIMP) are a family of four endogenous proteins that primarily function to inhibit the activities of proteases such as the matrix metalloproteinases (MMP). Altered MMP/TIMP ratios are frequently observed in several human diseases. During aging and disease progression, the extracellular matrix (ECM) undergoes structural changes in which elastin and collagens serve an essential role. MMPs and TIMPs significantly influence the ECM. Classically, elevated levels of TIMPs are suggested to result in ECM accumulation leading to fibrosis, whereas loss of TIMP responses leads to enhanced matrix proteolysis. Here, we outline the known roles of the most abundant TIMP, TIMP2, in pulmonary diseases but also discuss future perspectives in TIMP2 research that could impact the lungs. TIMP2 directly inhibits MMPs, in particular MMP2, but TIMP2 is also required for the activation of MMP2 through its interaction with MMP14. The protease and antiprotease imbalance of MMPs and TIMPs are extensively studied in diseases but recent discoveries suggest that TIMPs, specifically, TIMP2 could play other roles in aging and inflammation processes.
Collapse
|
7
|
Escalona RM, Chu S, Kadife E, Kelly JK, Kannourakis G, Findlay JK, Ahmed N. Knock down of TIMP-2 by siRNA and CRISPR/Cas9 mediates diverse cellular reprogramming of metastasis and chemosensitivity in ovarian cancer. Cancer Cell Int 2022; 22:422. [PMID: 36585738 PMCID: PMC9805260 DOI: 10.1186/s12935-022-02838-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The endogenous tissue inhibitor of metalloproteinase-2 (TIMP-2), through its homeostatic action on certain metalloproteinases, plays a vital role in remodelling extracellular matrix (ECM) to facilitate cancer progression. This study investigated the role of TIMP-2 in an ovarian cancer cell line in which the expression of TIMP-2 was reduced by either siRNA or CRISPR/Cas9. METHODS OVCAR5 cells were transiently and stably transfected with either single or pooled TIMP-2 siRNAs (T2-KD cells) or by CRISPR/Cas9 under the influence of two distinct guide RNAs (gRNA1 and gRNA2 cell lines). The expression of different genes was analysed at the mRNA level by quantitative real time PCR (qRT-PCR) and at the protein level by immunofluorescence (IF) and western blot. Proliferation of cells was investigated by 5-Ethynyl-2'-deoxyuridine (EdU) assay or staining with Ki67. Cell migration/invasion was determined by xCELLigence. Cell growth in vitro was determined by 3D spheroid cultures and in vivo by a mouse xenograft model. RESULTS Approximately 70-90% knock down of TIMP-2 expression were confirmed in T2-KD, gRNA1 and gRNA2 OVCAR5 ovarian cancer cells at the protein level. T2-KD, gRNA1 and gRNA2 cells exhibited a significant downregulation of MMP-2 expression, but concurrently a significant upregulation in the expression of membrane bound MMP-14 compared to control and parental cells. Enhanced proliferation and invasion were exhibited in all TIMP-2 knocked down cells but differences in sensitivity to paclitaxel (PTX) treatment were observed, with T2-KD cells and gRNA2 cell line being sensitive, while the gRNA1 cell line was resistant to PTX treatment. In addition, significant differences in the growth of gRNA1 and gRNA2 cell lines were observed in in vitro 3D cultures as well as in an in vivo mouse xenograft model. CONCLUSIONS Our results suggest that the inhibition of TIMP-2 by siRNA and CRISPR/Cas-9 modulate the expression of MMP-2 and MMP-14 and reprogram ovarian cancer cells to facilitate proliferation and invasion. Distinct disparities in in vitro chemosensitivity and growth in 3D culture, and differences in tumour burden and invasion to proximal organs in a mouse model imply that selective suppression of TIMP-2 expression by siRNA or CRISPR/Cas-9 alters important aspects of metastasis and chemosensitivity in ovarian cancer.
Collapse
Affiliation(s)
- Ruth M. Escalona
- grid.1008.90000 0001 2179 088XDepartment of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC 3052 Australia ,grid.1002.30000 0004 1936 7857Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Translational Medicine, Monash University, Clayton, VIC 3168 Australia ,Fiona Elsey Cancer Research Institute, Suites 23, 106-110 Lydiard Street South, Ballarat Technology Park Central, Ballarat, VIC 3350 Australia
| | - Simon Chu
- grid.1002.30000 0004 1936 7857Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research and Department of Translational Medicine, Monash University, Clayton, VIC 3168 Australia
| | - Elif Kadife
- Fiona Elsey Cancer Research Institute, Suites 23, 106-110 Lydiard Street South, Ballarat Technology Park Central, Ballarat, VIC 3350 Australia
| | - Jason K. Kelly
- Fiona Elsey Cancer Research Institute, Suites 23, 106-110 Lydiard Street South, Ballarat Technology Park Central, Ballarat, VIC 3350 Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Suites 23, 106-110 Lydiard Street South, Ballarat Technology Park Central, Ballarat, VIC 3350 Australia ,grid.1040.50000 0001 1091 4859School of Science, Psychology and Sport, Federation University, Mt Helen, VIC 3350 Australia
| | - Jock K. Findlay
- grid.1008.90000 0001 2179 088XDepartment of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC 3052 Australia ,grid.1002.30000 0004 1936 7857Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Translational Medicine, Monash University, Clayton, VIC 3168 Australia
| | - Nuzhat Ahmed
- grid.1008.90000 0001 2179 088XDepartment of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC 3052 Australia ,grid.1002.30000 0004 1936 7857Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Translational Medicine, Monash University, Clayton, VIC 3168 Australia ,Fiona Elsey Cancer Research Institute, Suites 23, 106-110 Lydiard Street South, Ballarat Technology Park Central, Ballarat, VIC 3350 Australia ,grid.1040.50000 0001 1091 4859School of Science, Psychology and Sport, Federation University, Mt Helen, VIC 3350 Australia
| |
Collapse
|
8
|
Liu H, Zhang S, Wu T, Lv Z, Ba J, Gu W, Mu Y. Expression and clinical significance of Cathepsin K and MMPs in invasive non-functioning pituitary adenomas. Front Oncol 2022; 12:901647. [PMID: 36052250 PMCID: PMC9424993 DOI: 10.3389/fonc.2022.901647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/27/2022] [Indexed: 01/03/2023] Open
Abstract
Background Cathepsin K (CTSK) is a protease that degrades type I collagen and extracellular matrix, thereby contributing to bone resorption and tumor invasion. Some pituitary adenomas (PAs) could invade the sphenoid sinus (SS) and cavernous sinus (CS). Purpose This retrospective cohort study aimed to study the expression of tumoral biomarkers (CTSK, MMP9, MMP2, TIMP2, and PTTG1) and evaluate their clinical significance in non-functioning pituitary adenomas (NFPAs) with different invasion patterns. Methods We assessed the expression levels of candidate invasion-specific protein biomarkers CTSK, MMP9, MMP2, TIMP2, and PTTG1 by immunohistochemical staining in paraffin-embedded NFPA tumor tissues. Variations in staining intensity were analyzed in cases with SS and CS invasion and non-invasive NFPAs. Results We found that the levels of CTSK were higher in PA cases with SS invasion than that in PA cases with CS invasion (95.57 ± 31.57 vs. 65.29 ± 29.64, P < 0.001), and the expression of MMP9 and MMP2 was higher in CS-invasive cases than that in SS-invasive cases (145.02 ± 49.25 vs. 111.80 ± 51.37, P = 0.002, and 138.67 ± 52.06 vs. 108.30 ± 41.70, P = 0.002). Multiple Cox regression demonstrated that higher CTSK expression (P=0.011), subtotal resection (P<0.001), invasion (P=0.037), and larger tumor diameter (P=0.001) were independent risk factors for recurrence. A positive correlation was observed between CTSK expression and tumor size (r=0.671, p<0.001). There was no significant difference in TIMP2 and PTTG1 levels between CS-and SS-invasive cases (97.42± 39.80 vs. 102.10± 43.22, P = 0.58 and 13.89 ± 4.59 vs. 12.56 ± 3.96, P = 0.14). Conclusion Our data indicated that CTSK has the potential as a marker for SS invasion of PAs, whereas MMP9 and MMP2 may be markers for CS invasion. And CTSK may play an important role in tumor relapse.
Collapse
Affiliation(s)
- Hongyan Liu
- The Chinese PLA Medical School, Beijing, China
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Saichun Zhang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ting Wu
- The Chinese PLA Medical School, Beijing, China
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhaohui Lv
- The Chinese PLA Medical School, Beijing, China
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianming Ba
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Weijun Gu
- The Chinese PLA Medical School, Beijing, China
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Yiming Mu, ; Weijun Gu,
| | - Yiming Mu
- The Chinese PLA Medical School, Beijing, China
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Yiming Mu, ; Weijun Gu,
| |
Collapse
|
9
|
Borzdziłowska P, Bednarek I. Alpha Mangostin and Cisplatin as Modulators of Exosomal Interaction of Ovarian Cancer Cell with Fibroblasts. Int J Mol Sci 2022; 23:8913. [PMID: 36012171 PMCID: PMC9408324 DOI: 10.3390/ijms23168913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
The diversity of exosomes and their role in the microenvironment make them an important point of interest in the development of cancer. In our study, we evaluated the effect of exosomes derived from ovarian cancer cells on gene expression in fibroblasts, including genes involved in metastasis. We also attempted to evaluate the indirect effect of cisplatin and/or α-mangostin on metastasis. In this aspect, we verified the changes induced by the drugs we tested on vesicular transfer associated with the release of exosomes by cells. We isolated exosomes from ovarian cancer cells treated and untreated with drugs, and then normal human fibroblasts were treated with the isolated exosomes. Changes in the expression of genes involved in the metastasis process were then examined. In our study, we observed altered expression of genes involved in various steps of the metastasis process (including genes related to cell adhesion, genes related to the interaction with the extracellular matrix, the cell cycle, cell growth and proliferation, and apoptosis). We have shown that α-mangostin and/or cisplatin, as chemotherapeutic agents, not only directly affect tumor cells but may also indirectly (via exosomes) contribute to delaying metastasis development.
Collapse
Affiliation(s)
- Paulina Borzdziłowska
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | | |
Collapse
|
10
|
Escalona RM, Kannourakis G, Findlay JK, Ahmed N. Expression of TIMPs and MMPs in Ovarian Tumors, Ascites, Ascites-Derived Cells, and Cancer Cell Lines: Characteristic Modulatory Response Before and After Chemotherapy Treatment. Front Oncol 2022; 11:796588. [PMID: 35047406 PMCID: PMC8762252 DOI: 10.3389/fonc.2021.796588] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
Abstract
Background The tissue inhibitors of metalloproteinase (TIMPs) and their associated metalloproteinase (MMPs) are essential regulators of tissue homeostasis and are essential for cancer progression. This study analyzed the expression of TIMP-1,-2,-3 and the associated MMPs (MMP-2,-9,-11,-14) in different Stages, Grades and World Health Organization (WHO) classifications of serous ovarian tumors, ascites, ascites-derived cells from chemo-naïve (CN) and relapsed (CR) patients, and in ovarian cancer cell lines. The status of TIMPs and associated MMPs in response to chemotherapy treatment was assessed in cancer cell lines; TCGA data was interrogated to gauge TIMPs and associated MMPs as prognostic and platinum-response indicators. Methods The levels of TIMP-1, -2 and -3 were assessed by immunohistochemistry. The mRNA expression of TIMPs and MMPs was quantified by real time PCR (qRT-PCR). The chemosensitivity (IC50 values) to Cisplatin or Paclitaxel in cell lines was evaluated by MTT assay. The levels of TIMPs in ascites and cell lysates were analyzed by an ELISA assay. Results The expression of TIMP-2 was significantly upregulated in Type 2 compared to Type 1 tumors and normal/benign ovarian tissues. TIMP-3 expression was significantly enhanced in Stage III, Grade 3 and Type 2 tumors compared to normal/benign ovarian tissues. The mRNA expression of MMP-9,-11 and -14 was significantly upregulated in Stage IV compared to normal/benign ovarian tissues. The expression of TIMP-1 was highest, followed by TIMP-2 and then TIMP-3 in CN ascites. At the cellular level, TIMP-2 mRNA expression was significantly higher in CN compared to CR epithelial cells in patients. The expression of TIMP-1 and -2, MMPs and cancer stem cells (CSCs) were upregulated in response to chemotherapy treatments in cancer cell lines. Interrogation of the TCGA dataset suggests shifts in platinum responses in patients consistent with genetic alterations in TIMP-2, -3 and MMP-2, -11 genes in tumors; and decreased overall survival (OS) and progression-free survival (PFS) in patients with altered MMP-14 genes. Conclusions TIMPs and related MMPs are differentially expressed in serous ovarian tumors, ascites, ascites-derived cells and ovarian cancer cell lines. Chemotherapy treatment modulates expression of TIMPs and MMPs in association with increased expression of genes related to cancer stem cells.
Collapse
Affiliation(s)
- Ruth M Escalona
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia.,Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, Australia
| | - Jock K Findlay
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia.,Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia.,Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Translational Medicine, Monash University, Melbourne, VIC, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, Australia
| |
Collapse
|
11
|
Understanding the Role of Metalloproteinases and Their Inhibitors in Periodontology. Clin Rev Bone Miner Metab 2022. [DOI: 10.1007/s12018-021-09281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Wang X, Han J, Liu Y, Hu J, Li M, Chen X, Xu L. miR-17-5p and miR-4443 Promote Esophageal Squamous Cell Carcinoma Development by Targeting TIMP2. Front Oncol 2021; 11:605894. [PMID: 34778021 PMCID: PMC8579081 DOI: 10.3389/fonc.2021.605894] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the most frequently diagnosed cancers in the world with a high mortality rate. The mechanism about ESCC development and whether miRNAs play a critical role remains unclear and needs carefully elucidated. Materials and Methods High-throughput miRNA sequencing was used to identify the different expression miRNAs between the ESCC tissues and paired adjacent normal tissues. Next, both CCK-8, Transwell and apotosis assay were used to evaluate the role of miRNA in ESCCcells. In addition, we used bioinformatic tools to predict the potential target of the miRNAs and verified by Western Blot. The function of miRNA-target network was further identified in xenograft mice model. Results In ESCC, we identified two miRNAs, miR-17-5p and miR-4443, were significantly upregulated in ESCC tissues than adjacent normal tissues. TIMP2 was proved to be the direct target of both two miRNAs. The miR-17-5p/4443- TIMP2 axis was shown to promote the tumor progression in vitro and in vivo experiments. Conclusions This study highlights two oncomiRs, miR-17-5p and miR-4443, and its potential role in ESCC progression by regulating TIMP2 expression, suggesting miR-17-5p and miR-4443 may serve as a novel molecular target for ESCC treatment.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Jiayi Han
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Yatian Liu
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jingwen Hu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Ming Li
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Lin Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| |
Collapse
|
13
|
The alternatively spliced RECK transcript variant 3 is a predictor of poor survival for melanoma patients being upregulated in aggressive cell lines and modulating MMP gene expression in vitro. Melanoma Res 2021; 30:223-234. [PMID: 31764436 DOI: 10.1097/cmr.0000000000000650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The reversion-inducing cysteine-rich protein with kazal motifs (RECK) gene was described as a tumor suppressor gene two decades ago. Recently, novel alternatively spliced products of this gene have been identified. Of these, the transcript variant 3 (RECKVar3) was shown to display tumor-facilitating effects in astrocytoma cells in vitro, with a higher RECKVar3/canonical RECK expression ratio being correlated with lower survival rates of patients. However, the regulatory mechanisms through which the cell controls the production and maintenance of these alternative transcripts, as well as their expression in other tumor types, remain elusive. Thus, the aim of this study is to investigate the role of the alternatively spliced transcripts from the RECK gene in melanoma progression as well as their regulation mechanism. To this end, we analyzed data from the Cancer Genome Atlas network and experimental data obtained from a panel of cell lines to show that high levels of RECKVar3 are predictive of poor survival. We also show that the MAPK and PI3K signaling pathways clearly play a role in determining the alternative-to-canonical ratio in vitro. Finally, we show that overexpression of the RECKVar3 protein upregulates matrix metalloproteinases (MMP)-9 and MMP-14 mRNA, while downregulating their inhibitor, tissue inhibitor of metalloproteinase (TIMP)3, and that RECKVar3-specific knockdown in the 1205Lu melanoma cell line hampered upregulation of the MMP9 mRNA promoted by the MEK1/2 inhibitor U0126. Taken together, our data complement the evidence that the RECK gene has a dual role in cancer, contributing to better understanding of the signaling cues, which dictate the melanoma invasive potential.
Collapse
|
14
|
Role of Matrix Metalloproteinases in Angiogenesis and Its Implications in Asthma. J Immunol Res 2021; 2021:6645072. [PMID: 33628848 PMCID: PMC7896871 DOI: 10.1155/2021/6645072] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Asthma is a chronic airway disorder associated with aberrant inflammatory and remodeling responses. Angiogenesis and associated vascular remodeling are one of the pathological hallmarks of asthma. The mechanisms underlying angiogenesis in asthmatic airways and its clinical relevance represent a relatively nascent field in asthma when compared to other airway remodeling features. Matrix metalloproteinases (MMPs) are proteases that play an important role in both physiological and pathological conditions. In addition to facilitating extracellular matrix turnover, these proteolytic enzymes cleave bioactive molecules, thereby regulating cell signaling. MMPs have been implicated in the pathogenesis of asthma by interacting with both the airway inflammatory cells and the resident structural cells. MMPs also cover a broad range of angiogenic functions, from the degradation of the vascular basement membrane and extracellular matrix remodeling to the release of a variety of angiogenic mediators and growth factors. This review focuses on the contribution of MMPs and the regulatory role exerted by them in angiogenesis and vascular remodeling in asthma as well as addresses their potential as therapeutic targets in ameliorating angiogenesis in asthma.
Collapse
|
15
|
Wu T, Jiang X, Xu B, Wang Y. [Ponatinib inhibits growth of patient-derived xenograft of cholangiocarcinoma expressing FGFR2-CCDC6 fusion protein in nude mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1448-1456. [PMID: 33118510 DOI: 10.12122/j.issn.1673-4254.2020.10.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the antitumor effect of ponatinib on the growth of cholangiocarcinoma xenograft derived from a clinical patient in a mouse model expressing FGFR2-CCDC6 fusion protein. METHODS Lung metastatic tumor tissue was collected from a patient with advanced intrahepatic cholangiocarcinoma and implanted subcutaneously a NOD/SCID/ Il2rg-knockout (NSG) mouse. The tumor tissues were harvested and transplanted in nude mice to establish mouse models bearing patient-derived xenograft (PDX) of cholangiocarcinoma expressing FGFR2-CCDC6 fusion protein. The PDX mouse models were divided into 4 groups for treatment with citrate buffer (control group), intragastric administration of 20 mg/kg ponatinib dissolved in citrate buffer (ponatinib group), weekly intraperitoneal injections of 50 mg/kg gemcitabine and 2.5 mg/ kg cisplatin (gemcitabine group), or ponatinib combined with gemcitabine and cisplatin at the same doses (10 mice in each group, and 9 mice were evaluated in ponatinib group). The expressions of p-FGFR, p-FRS2, p-AKT, p-ERK, CD31, and Ki-67 in the xenografts were evaluated with immunohistochemistry, and cell apoptosis was analyzed with cleaved caspase-3 (CC3) staining and TUNEL staining. Western blotting was used to detect the expressions of FGFR2, p-FGFR, AKT, p-AKT, ERK, p-ERK, FRS2 and p-FRS2 in the tumor tissues. RESULTS Compared with those in the control group, the mice in ponatinib group showed a significantly reduced tumor volume (P < 0.0001) and suppressed tumor cell proliferation with significantly increased cell apoptosis. Western blotting and immunohistochemistry revealed obviously lowered phosphorylation level of FGFR and its downstream signal markers FRS2, AKT and ERK in the xenografts from ponatinib-treated mice. Gemcitabine treatment combined with cisplatin more effectively inhibited tumor growth than ponatinib alone (P < 0.0001) but did not further decrease the phosphorylation levels of FGFR or its downstream signaling molecules FRS2, AKT and ERK. CONCLUSIONS Ponatinib can regulate FGFR signaling to inhibit the proliferation and induce apoptosis of tumor cells in mice bearing patient-derived cholangiocarcinoma xenograft with FGFR2 fusion. FGFR inhibitor can serve as a treatment option for patients with cholangiocarcinoma with FGFR2 fusion.
Collapse
Affiliation(s)
- Tianyu Wu
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoqing Jiang
- Surgical Intensive Care Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bin Xu
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yu Wang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
16
|
Peeney D, Jensen SM, Castro NP, Kumar S, Noonan S, Handler C, Kuznetsov A, Shih J, Tran AD, Salomon DS, Stetler-Stevenson WG. TIMP-2 suppresses tumor growth and metastasis in murine model of triple-negative breast cancer. Carcinogenesis 2020; 41:313-325. [PMID: 31621840 PMCID: PMC7221506 DOI: 10.1093/carcin/bgz172] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/12/2019] [Accepted: 10/11/2019] [Indexed: 12/30/2022] Open
Abstract
Metastasis is the primary cause of treatment failures and mortality in most cancers. Triple-negative breast cancer (TNBC) is refractory to treatment and rapidly progresses to disseminated disease. We utilized an orthotopic mouse model that molecularly and phenotypically resembles human TNBC to study the effects of exogenous, daily tissue inhibitor of metalloproteinase-2 (TIMP-2) treatment on tumor growth and metastasis. Our results demonstrated that TIMP-2 treatment maximally suppressed primary tumor growth by ~36-50% and pulmonary metastasis by >92%. Immunostaining assays confirmed disruption of the epithelial to mesenchymal transition (EMT) and promotion of vascular integrity in primary tumor tissues. Immunostaining and RNA sequencing analysis of lung tissue lysates from tumor-bearing mice identified significant changes associated with metastatic colony formation. Specifically, TIMP-2 treatment disrupts periostin localization and critical cell-signaling pathways, including canonical Wnt signaling involved in EMT, as well as PI3K signaling, which modulates proliferative and metastatic behavior through p27 phosphorylation/localization. In conclusion, our study provides evidence in support of a role for TIMP-2 in suppression of triple-negative breast cancer growth and metastasis through modulation of the epithelial to mesenchymal transition, vascular normalization, and signaling pathways associated with metastatic outgrowth. Our findings suggest that TIMP-2, a constituent of the extracellular matrix in normal tissues, may have both direct and systemic antitumor and metastasis suppressor effects, suggesting potential utility in the clinical management of breast cancer progression.
Collapse
Affiliation(s)
- David Peeney
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sandra M Jensen
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nadia P Castro
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | - Sarvesh Kumar
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Silvia Noonan
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Chenchen Handler
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Alex Kuznetsov
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Joanna Shih
- Biostatistics Branch, National Cancer Institute, Rockville, MD, USA
| | - Andy D Tran
- Confocal Core Facility, National Cancer Institute, Bethesda, MD, USA
| | - David S Salomon
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | - William G Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
17
|
Han J, Jiang Q, Ma R, Zhang H, Tong D, Tang K, Wang X, Ni L, Miao J, Duan B, Yang Y, Chen Y, Wu F, Han J, Wang M, Hou N, Huang C. Norepinephrine-CREB1-miR-373 axis promotes progression of colon cancer. Mol Oncol 2020; 14:1059-1073. [PMID: 32118353 PMCID: PMC7191185 DOI: 10.1002/1878-0261.12657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/28/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
The adrenergic system contributes to the stress‐induced onset and progression of cancer. Adrenergic fibers are the primary source of norepinephrine (NE). The underlying mechanisms involved in NE‐induced colon cancer remain to be understood. In this study, we describe the function and regulatory network of NE in the progression of colon cancer. We demonstrate that NE‐induced phosphorylation of cAMP response element‐binding protein 1 (CREB1) promotes proliferation, migration, and invasion of human colon cancer cells. The downstream effector of NE, CREB1, bound to the promoter of miR‐373 and transcriptionally activated its expression. miR‐373 expression was shown to be necessary for NE‐induced cell proliferation, invasion, and tumor growth. We confirmed that proliferation and invasion of colon cancer cells are regulated in vitro and in vivo by miR‐373 through targeting of the tumor suppressors TIMP2 and APC. Our data suggest that NE promotes colon cancer cell proliferation and metastasis by activating the CREB1–miR‐373 axis. The study of this novel signaling axis may provide mechanistic insights into the neural regulation of colon cancer and help in the design of future clinical studies on stress biology in colorectal cancer.
Collapse
Affiliation(s)
- Jia Han
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Qiuyu Jiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Ruili Ma
- School of Basic Medical Science, Xi'an Medical University, China
| | | | - Dongdong Tong
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Kaijie Tang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Xiaofei Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Lei Ni
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Jiyu Miao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Baojun Duan
- Department of Medical Oncology, The Third Affiliated Hospital to Xi'an Jiaotong University, China
| | - Yang Yang
- Department of Health Toxicology and Hygiene Inspection, School of Public Health, Xi'an Jiaotong University Health Science Center, China
| | - Yanke Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Fei Wu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Jiming Han
- Medical College, Yan'an University, China
| | - Mengchang Wang
- Department of Hematology, The First Hospital Affiliated to Xi'an Jiaotong University, China
| | - Ni Hou
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, China.,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, China
| |
Collapse
|
18
|
Peeney D, Fan Y, Nguyen T, Meerzaman D, Stetler-Stevenson WG. Matrisome-Associated Gene Expression Patterns Correlating with TIMP2 in Cancer. Sci Rep 2019; 9:20142. [PMID: 31882975 PMCID: PMC6934702 DOI: 10.1038/s41598-019-56632-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Remodeling of the extracellular matrix (ECM) to facilitate invasion and metastasis is a universal hallmark of cancer progression. However, a definitive therapeutic target remains to be identified in this tissue compartment. As major modulators of ECM structure and function, matrix metalloproteinases (MMPs) are highly expressed in cancer and have been shown to support tumor progression. MMP enzymatic activity is inhibited by the tissue inhibitor of metalloproteinase (TIMP1-4) family of proteins, suggesting that TIMPs may possess anti-tumor activity. TIMP2 is a promiscuous MMP inhibitor that is ubiquitously expressed in normal tissues. In this study, we address inconsistencies in the literature regarding the role of TIMP2 in tumor progression by analyzing co-expressed genes in tumor vs. normal tissue. Utilizing data from The Cancer Genome Atlas and Genotype-Tissue expression studies, focusing on breast and lung carcinomas, we analyzed the correlation between TIMP2 expression and the transcriptome to identify a list of genes whose expression is highly correlated with TIMP2 in tumor tissues. Bioinformatic analysis of the identified gene list highlights a core of matrix and matrix-associated genes that are of interest as potential modulators of TIMP2 function, thus ECM structure, identifying potential tumor microenvironment biomarkers and/or therapeutic targets for further study.
Collapse
Affiliation(s)
- David Peeney
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, USA.
| | - Yu Fan
- Computational Genomics and Bioinformatics Group, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institute of Health, Rockville, Maryland, USA
| | - Trinh Nguyen
- Computational Genomics and Bioinformatics Group, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institute of Health, Rockville, Maryland, USA
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Group, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institute of Health, Rockville, Maryland, USA
| | - William G Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Su QH, Xu XQ, Wang JF, Luan JW, Ren X, Huang HY, Bian SS. Anticancer Effects of Constituents of Herbs Targeting Osteosarcoma. Chin J Integr Med 2019; 25:948-955. [PMID: 31161441 DOI: 10.1007/s11655-019-2941-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2018] [Indexed: 01/04/2023]
Abstract
Osteosarcoma is a rare primary malignancy of bone that is prone to early metastasis. Resection surgery and chemotherapeutic regimens are current standard treatments for osteosarcoma. However, the long-term survival rate of patients with osteosarcoma is low due to a high risk of metastasis. Hence, a new approach is urgently needed to improve the treatment of osteosarcoma. Compared with chemotherapy, natural active constituents isolated from herbs exhibit less adverse effects and better anti-tumor effects. This study aimed to summarize the anticancer effects of constituents of herbs on the progression and metastasis of osteosarcoma cells. It showed that many constituents of herbs inhibited osteosarcoma by targeting proliferation, matrix metalloproteinases, integrin and cadherin, and angiogenesis. The findings might be beneficial for the development of new drugs and treatment strategies.
Collapse
Affiliation(s)
- Qing-Hong Su
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Xiao-Qun Xu
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Jun-Fu Wang
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Jun-Wen Luan
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Xia Ren
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Hai-Yan Huang
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Si-Shan Bian
- Department of Orthopaedics, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
20
|
Carbone F, Bodini G, Brunacci M, Bonaventura A, Vecchiè A, Liberale L, Crespi M, Baldissarro I, Dallegri F, Savarino V, Montecucco F, Giannini EG. Reduction in TIMP-2 serum levels predicts remission of inflammatory bowel diseases. Eur J Clin Invest 2018; 48:e13002. [PMID: 30011062 DOI: 10.1111/eci.13002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 07/15/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Growing evidence indicates tissue inhibitors of matrix metalloproteinases (TIMPs) as potential players in inflammatory bowel disease (IBD), but, no prospective data are available in IBD remission/relapse. MATERIAL & METHODS In this prospective pilot study, a cohort of IBD patients (n = 32) was enrolled and treated with monoclonal anti-TNF-α antibodies. Patients were clinically followed up for a median period of 54 weeks. Serum circulating levels of C-reactive protein (CRP), TIMP-1 and -2, matrix metalloproteinase (MMP)-9 and -8, myeloperoxidase (MPO) and neutrophil elastase (NE) were assessed by ELISA at enrolment and at the end of the treatment. RESULTS The percentage (%) TIMP-2 reduction from baseline to end of treatment was independently associated with IBD remission at the end of treatment and follow-up as well. ROC curve analysis further confirmed the good prognostic accuracy of % TIMP-2 reduction over the treatment period. Conversely, no other change in inflammatory molecule concentrations was able to predict short- or long-term IBD remission. CONCLUSIONS This study indicates TIMP-2 reduction during IBD treatment with monoclonal anti-TNF-α antibodies as a potential prognostic parameter of short and long term remission. To understand if TIMP-2 is an innocent biomarker or an active pathophysiological factor in IBD remains to be clarified.
Collapse
Affiliation(s)
- Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Giorgia Bodini
- Division of Gastroenterology Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Matteo Brunacci
- Division of Gastroenterology Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Alessandra Vecchiè
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Mattia Crespi
- Division of Gastroenterology Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Isabella Baldissarro
- Division of Gastroenterology Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino, Genoa, Italy
| | - Vincenzo Savarino
- Division of Gastroenterology Department of Internal Medicine, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino, Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino, Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Edoardo G Giannini
- Division of Gastroenterology Department of Internal Medicine, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
21
|
Squalene Stimulates a Key Innate Immune Cell to Foster Wound Healing and Tissue Repair. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9473094. [PMID: 30363968 PMCID: PMC6186384 DOI: 10.1155/2018/9473094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/09/2018] [Indexed: 01/05/2023]
Abstract
Anti-inflammatory effects of virgin olive oil (VOO) have been described recently, along with its wound healing effect. One of the main minor compounds found in VOO is squalene (SQ), which also possesses preventive effects against skin damage and anti-inflammatory properties. The inflammatory response is involved in wound healing and manages the whole process by macrophages, among others, as the main innate cells with a critical role in the promotion and resolution of inflammation for tissue repair. Because of that, this work is claimed to describe the role that squalene exerts in the immunomodulation of M1 proinflammatory macrophages, which are the first cells implicate in recent injuries. Pro- and anti-inflammatory cytokines were analysed using TPH1 cell experimental model. SQ induced an increase in the synthesis of anti-inflammatory cytokines, such as IL-10, IL-13, and IL-4, and a decrease in proinflammatory signals, such as TNF-α and NF-κB in M1 proinflammatory macrophages. Furthermore, SQ enhanced remodelling and repairing signals (TIMP-2) and recruitment signals of eosinophils and neutrophils, responsible for phagocytosis processes. These results suggest that SQ is able to promote wound healing by driving macrophage response in inflammation. Therefore, squalene could be useful at the resolution stage of wound healing.
Collapse
|
22
|
Khanafer K, Ghosh A, Vafai K. Correlation between MMP and TIMP levels and elastic moduli of ascending thoracic aortic aneurysms. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2018; 20:324-327. [PMID: 30078630 DOI: 10.1016/j.carrev.2018.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE The objective of this preliminary investigation is to determine if there is a relation between the biological levels of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinase (TIMP) and the elastic moduli of the ascending aortic wall in patients with ascending thoracic aortic aneurysms (ATAA). METHODS Circumferential specimens from twelve patients with ATAA were obtained from the greater curvature and their tensile properties (maximum elastic modulus) were tested uniaxially. The levels of MMP1, 2, 3, 8, and 9 as well as TIMP1 and 2 were determined in these aortic wall specimens using MMP/TIMP antibodies array. RESULTS Direct relations were found between MMP2 and the elastic modulus of the ascending aorta wall (R2 = 0.52) and between MMP9 and TIMP1 (R2 = 0.63). However, weak positive relation was found between MMP2 and TIMP2 (R2 = 0.23). We found inverse relations between MMP3 and MMP8 levels and the elastic module. There were no relations between MMP1 and MMP9 levels and the elastic modulus of aortic wall. CONCLUSIONS This preliminary study looks at the relationship between the elastic modulii and the MMPs/TIMPs levels found in aortic wall specimens. Given that the value of the elastic moduli can be obtained non-invasively, a close relation might permit to infer the value of MMPs and TIMPs levels from the non-invasive determination of the elasticity of the aortic wall. By allowing the non-invasive determination of the mechanical and biological properties of the aorta in in-vivo, the method proposed here might improve the prediction of outcomes of ascending aortic aneurysms. This is a very preliminary study (small sample size) and the outcomes of this study cannot be used as final conclusions and should be verified in further studies with larger sample of patients.
Collapse
Affiliation(s)
- Khalil Khanafer
- Mechanical Engineering Department, Australian College of Kuwait, Safat 13060, Kuwait; Advanced Manufacturing Lab (AML), School of Engineering, University of Guelph, Guelph, Ontario, Canada
| | - Abhijit Ghosh
- Conrad Jobst Vascular Research Laboratories, Department of Surgery, University of Michigan Health System, Ann Arbor, MI 48109, United States of America
| | - Kambiz Vafai
- Mechanical Engineering Department, University of California, Riverside, CA 92521, United States of America.
| |
Collapse
|
23
|
Bruno A, Bassani B, D'Urso DG, Pitaku I, Cassinotti E, Pelosi G, Boni L, Dominioni L, Noonan DM, Mortara L, Albini A. Angiogenin and the MMP9-TIMP2 axis are up-regulated in proangiogenic, decidual NK-like cells from patients with colorectal cancer. FASEB J 2018; 32:5365-5377. [PMID: 29763380 DOI: 10.1096/fj.201701103r] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
NK cells are effector lymphocytes involved in tumor immunosurveillance; however, in patients with solid malignancies, NK cells have compromised functions. We have previously reported that lung tumor-associated NK cells (TANKs; peripheral blood) and tumor-infiltrating NK cells (TINKs) show proangiogenic, decidual NK-like (dNK) phenotype. In this study, we functionally and molecularly investigated TINKs and TANKs from blood and tissue samples of patients with colorectal cancer (CRC), a neoplasm in which inflammation and angiogenesis have clinical relevance, and compared them to NK cells from controls and patients with nononcologic inflammatory bowel disease. CRC TINKs/TANKs showed decreased expression for the activatory marker NKG2D, impaired degranulation activity, a decidual-like NK polarization toward the CD56brightCD16dim/-CD9+CD49+ subset. TINKs and TANKs secreted cytokines with proangiogenic activities, and induce endothelial cell proliferation, migration, adhesion, and the formation of capillary-like structures in vitro. dNK cells release specific proangiogenic factors; among which, angiogenin and invasion-associated enzymes related to the MMP9-TIMP1/2 axis. Here, we describe, for the first time, to our knowledge, the expression of angiogenin, MMP2/9, and TIMP by TANKs in patients with CRC. This phenotype could be relevant to the invasive capabilities and proangiogenic functions of CRC-NK cells and become a novel biomarker. STAT3/STAT5 activation was observed in CRC-TANKs, and treatment with pimozide, a STAT5 inhibitor, reduced endothelial cell capability to form capillary-like networks, inhibiting VEGF and angiogenin production without affecting the levels of TIMP1, TIMP2, and MMP9, indicating that STAT5 is involved in cytokine modulation but not invasion-associated molecules. Combination of Stat5 or MMP inhibitors with immunotherapy could help repolarize CRC TINKs and TANKs to anti-tumor antimetastatic ones.-Bruno, A., Bassani, B., D'Urso, D. G., Pitaku, I., Cassinotti, E., Pelosi, G., Boni, L., Dominioni, L., Noonan, D. M., Mortara, L., Albini, A. Angiogenin and the MMP9-TIMP2 axis are up-regulated in proangiogenic, decidual NK-like cells from patients with colorectal cancer.
Collapse
Affiliation(s)
- Antonino Bruno
- Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Barbara Bassani
- Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Davide Giuseppe D'Urso
- Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Ilvana Pitaku
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Elisa Cassinotti
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Giuseppe Pelosi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Luigi Boni
- Department of Medical-Surgical Physiopathology and Transplantation, University of Milan-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca' Granda, Polyclinic Hospital, Milan, Italy
| | - Lorenzo Dominioni
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Douglas M Noonan
- Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy.,Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; and
| | - Lorenzo Mortara
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; and
| | - Adriana Albini
- Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy.,Department of Medicine and Surgery, University Milano-Bicocca, Monza, Italy
| |
Collapse
|
24
|
Gungor H, Ilhan N, Eroksuz H. The effectiveness of cyclooxygenase-2 inhibitors and evaluation of angiogenesis in the model of experimental colorectal cancer. Biomed Pharmacother 2018; 102:221-229. [PMID: 29562216 DOI: 10.1016/j.biopha.2018.03.066] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is an important cause of cancer-related deaths worldwide. Early diagnosis and treatment of CRCs are of importance for improving the survival. In the present study, we studied the effects of nonsteroidal anti-inflammatory drugs (NSAIDs)-induced chemopreventive effects on tumor development incidence and angiogenesis in experimental CRC rats. 1,2-Dimethylhydrazine dihydrochloride (DMH) was used as cancer-inducing agent and two NSAIDs (celecoxib and diclofenac) were given orally as chemopreventive agents. Histopathological and immuno histochemical evaluations were performed in colorectal tissue samples, whereas angiogenesis parameters were studied in blood samples. Histopathological examination showed that adenocarcinoma (62.5%), dysplastic changes (31.25%) and inflammattory changes (6.25%) were detected in DMH group, whereas no pathological change was observed in control rats. In treatment groups, there was marked decrease in adenocarcinoma rate (30% and 10%, respectively). A significant increase was detected in MMP-2, MMP-9 levels and MMP-2/TIMP-2 ratio in DMH group as compared with controls and treatment groups. In immunohistochemical evaluations, there was an increase in intensity and extent of staining of MMP-2 and MMP-9 in DMH group as compared to controls and treatment groups. The decrease in celecoxib group was more prominent. Overall, it was concluded that NSAIDs, particularly cyclooxygenase-2 (COX-2) inhibitors, might have a protective effect on CRC development and slow down progression of tumor in a DMH-induced experimental cancer model. One of the possible mechanisms in the chemoprevention of colon cancer seems to be inhibition of angiogenesis by diclofenac and celecoxib.
Collapse
Affiliation(s)
- Hilal Gungor
- Department of Medical Biochemistry, Firat University, Medical Faculty, Elazig, Turkey
| | - Nevin Ilhan
- Department of Medical Biochemistry, Firat University, Medical Faculty, Elazig, Turkey.
| | - Hatice Eroksuz
- Department of Pathology, Firat University, Faculty of Veterinary Medicine, Elazig, Turkey
| |
Collapse
|
25
|
Escalona RM, Chan E, Kannourakis G, Findlay JK, Ahmed N. The Many Facets of Metzincins and Their Endogenous Inhibitors: Perspectives on Ovarian Cancer Progression. Int J Mol Sci 2018; 19:E450. [PMID: 29393911 PMCID: PMC5855672 DOI: 10.3390/ijms19020450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 02/07/2023] Open
Abstract
Approximately sixty per cent of ovarian cancer patients die within the first five years of diagnosis due to recurrence associated with chemoresistance. The metzincin family of metalloproteinases is enzymes involved in matrix remodeling in response to normal physiological changes and diseased states. Recently, there has been a mounting awareness of these proteinases and their endogenous inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), as superb modulators of cellular communication and signaling regulating key biological processes in cancer progression. This review investigates the role of metzincins and their inhibitors in ovarian cancer. We propose that understanding the metzincins and TIMP biology in ovarian cancer may provide valuable insights in combating ovarian cancer progression and chemoresistance-mediated recurrence in patients.
Collapse
Affiliation(s)
- Ruth M Escalona
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia.
- The Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia.
| | - Emily Chan
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia.
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia.
- Federation University Australia, Ballarat, VIC 3010, Australia.
| | - Jock K Findlay
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia.
- The Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
| | - Nuzhat Ahmed
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia.
- The Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia.
- Federation University Australia, Ballarat, VIC 3010, Australia.
| |
Collapse
|
26
|
Abu El-Asrar AM, Ahmad A, Bittoun E, Siddiquei MM, Mohammad G, Mousa A, De Hertogh G, Opdenakker G. Differential expression and localization of human tissue inhibitors of metalloproteinases in proliferative diabetic retinopathy. Acta Ophthalmol 2018; 96:e27-e37. [PMID: 28391660 DOI: 10.1111/aos.13451] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/07/2017] [Indexed: 02/06/2023]
Abstract
PURPOSE Tissue inhibitors of metalloproteinases (TIMPs) block the catalysis by matrix metalloproteinases (MMPs) and have additional biologic activities, including regulation of cell growth and differentiation, apoptosis, angiogenesis and oncogenesis. We investigated the expression levels of all the four human TIMPs and correlated these levels with those of MMP-9 and vascular endothelial growth factor (VEGF) in proliferative diabetic retinopathy (PDR). METHODS Vitreous samples from 38 PDR and 21 nondiabetic control patients and epiretinal membranes from 14 patients with PDR and 10 patients with proliferative vitreoretinopathy (PVR) were studied by enzyme-linked immunosorbent assay, Western blot analysis and immunohistochemistry. RESULTS Tissue inhibitor of metalloproteinases-1, TIMP-4, MMP-9 and VEGF levels were significantly higher in vitreous samples from PDR patients than in nondiabetic controls (p < 0.0001 for all comparisons), whereas TIMP-2 and TIMP-3 levels did not differ significantly. TIMP-1, TIMP-4, MMP-9 and VEGF levels in PDR with active neovascularization were significantly higher than those in inactive PDR (p < 0.0001, 0.001, 0.013, 0.004, respectively). Significant positive correlations existed between levels of TIMP-1 and levels of TIMP-4 (r = 0.37; p = 0.004), MMP-9 (r = 0.65; p < 0.0001) and VEGF (r = 0.59; p < 0.0001), between levels of TIMP-4 and levels of MMP-9 (r = 0.61; p < 0.0001) and VEGF (r = 0.62; p < 0.0001) and between levels of MMP-9 and VEGF (r = 0.62; p < 0.0001). TIMP-1 and TIMP-3 were expressed in vascular endothelial cells in PDR epiretinal membranes and in myofibroblasts and leucocytes in PDR and PVR epiretinal membranes. CONCLUSION The differential expression of TIMPs in PDR suggests that among the 4 TIMPs, TIMP-1 and TIMP-4 may be possible biomarkers of disease activity.
Collapse
Affiliation(s)
- Ahmed M Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Dr. Nasser Al-Rashid Research Chair in Ophthalmology, King Saud University, Riyadh, Saudi Arabia
| | - Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Emilie Bittoun
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, KU Leuven, Leuven, Belgium
| | | | - Ghulam Mohammad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Mousa
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Gert De Hertogh
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Zhong Z, Gu H, Peng J, Wang W, Johnstone BH, March KL, Farlow MR, Du Y. GDNF secreted from adipose-derived stem cells stimulates VEGF-independent angiogenesis. Oncotarget 2018; 7:36829-36841. [PMID: 27167204 PMCID: PMC5095042 DOI: 10.18632/oncotarget.9208] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/16/2016] [Indexed: 01/08/2023] Open
Abstract
Adipose tissue stroma contains a population of mesenchymal stem cells (MSC) promote new blood vessel formation and stabilization. These adipose-derived stem cells (ASC) promote de novo formation of vascular structures in vitro. We investigated the angiogenic factors secreted by ASC and discovered that glial-derived neurotrophic factor (GDNF) is a key mediator for endothelial cell network formation. It was found that both GDNF alone or present in ASC-conditioned medium (ASC-CM) stimulated capillary network formation by using human umbilical vein endothelial cells (HUVECs) and such an effect was totally independent of vascular endothelial growth factor (VEGF) activity. Additionally, we showed stimulation of capillary network formation by GDNF, but not VEGF, could be blocked by the Ret (rearranged during transfection) receptor antagonist RPI-1, a GDNF signaling inhibitor. Furthermore, GDNF were found to be overexpressed in cancer cells that were resistant to the anti-angiogenic treatment using the VEGF antibody. Cancer cells in the liver hepatocellular carcinoma (HCC), a non-nervous related cancer, highly overexpressed GDNF as compared to normal liver cells. Our data strongly suggest that, in addition to VEGF, GDNF secreted by ASC and HCC cells, may be another important factor promoting pathological neovascularization. Thus, GDNF may be a potential therapeutic target for HCC and obesity treatments.
Collapse
Affiliation(s)
- Zhaohui Zhong
- Department of General Surgery, Peking University People's Hospital, Beijing 100044, PR China.,Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Huiying Gu
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jirun Peng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China.,Ninth Clinical Medical College of Peking University, Beijing 100038, PR China
| | - Wenzheng Wang
- Department of General Surgery, Peking University People's Hospital, Beijing 100044, PR China
| | - Brian H Johnstone
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Indiana Center for Vascular Biology and Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Keith L March
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Indiana Center for Vascular Biology and Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Krannert Institute of Cardiology, Indianapolis, IN 46202, USA.,VA Center for Regenerative Medicine, Indina University School of Medicine, Indianapolis, IN 46202, USA
| | - Martin R Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yansheng Du
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
28
|
Wang X, Hassan W, Jabeen Q, Khan GJ, Iqbal F. Interdependent and independent multidimensional role of tumor microenvironment on hepatocellular carcinoma. Cytokine 2017; 103:150-159. [PMID: 29029799 DOI: 10.1016/j.cyto.2017.09.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/03/2017] [Accepted: 09/22/2017] [Indexed: 02/07/2023]
Abstract
The novelty of an effective therapeutic targeting for hepatocellular carcinoma (HCC) is based on improved understanding of each component of tumor microenvironment (TME) and its correspondent interactions at biological and molecular levels. In this context, new expansions for the treatment against TME and its communication with HCC are under exploration. Despite of the fact that blockage of growth factor receptors has become a treatment of choice in late phases of HCC in clinical practice, still a precise targeted treatment should address all the components of TME. Targeting one specific element out of cellular (cancer associated fibroblasts, endothelial cells, hepatic stellate cells, Kupffer cells and lymphocytes) or non-cellular (extracellular matrix, growth factors, inflammatory cytokines, proteolytic enzymes) parts of TME may not be a successful remedy for the disease because of well-designed hindrances of each component and their functional alternativeness. Meanwhile there are some elements of TME like epithelial-mesenchymal transition and CAF, which are considerably important and need thorough investigations. Ascertaining the potential role of these elements, and a single or combinational drug therapy targeting these elements of TME simultaneously, may provide the appreciable considerations to eventually improve in clinical practices and may also minimize the chances of reoccurrence of HCC.
Collapse
Affiliation(s)
- Xue Wang
- Jiangnan University, Wuxi Medical School, Wuxi 214122, China; China Pharmaceutical University, Department of Pharmacology, Nanjing 210009, China.
| | - Waseem Hassan
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan; Department of Pharmacy, The University of Lahore, Pakistan.
| | - Qaiser Jabeen
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Ghulam Jilany Khan
- China Pharmaceutical University, Department of Pharmacology, Nanjing 210009, China.
| | - Furqan Iqbal
- Department of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan.
| |
Collapse
|
29
|
Ghighi M, Llorens A, Baroukh B, Chaussain C, Bouchard P, Gosset M. Differences between inflammatory and catabolic mediators of peri-implantitis and periodontitis lesions following initial mechanical therapy: An exploratory study. J Periodontal Res 2017; 53:29-39. [PMID: 28898426 DOI: 10.1111/jre.12483] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND OBJECTIVE The aim of this study was to analyze the differences in inflammatory and catabolic mediators expressed in peri-implantitis compared to periodontitis lesions after non-surgical therapy. Peri-implantitis is associated with a faster rate of bone loss when compared with periodontitis, and peri-implant non-surgical therapy is ineffective to cure peri-implantitis. This may be due to persistent inflammation in peri-implantitis tissues after initial mechanical treatment. MATERIAL AND METHODS Eleven patients with peri-implantitis and 10 with severe chronic periodontitis received non-surgical therapy. They were included at re-evaluation (8 weeks) if they presented pocket depth ≥6 mm with bleeding on probing, and the indication for open flap debridement surgery. Connective tissues were harvested during surgery from diseased sites. Healthy gingiva were harvested during third molar extraction in a third group of healthy patients (n=10). Explants were incubated for 24 hours in media culture and the release of cytokines, chemokines, growth factors, osteoprotegerin, receptor activator of nuclear factor kappa-B ligand (RANKL), matrix metalloproteinase and tissue inhibitors of matrix metalloproteinase (TIMP) in the conditioned media was analyzed by an exploratory multiplex immunoassay. When difference was found in the conditioned media, an immunohistochemistry was performed to compare expression in the tissues. RESULTS Connective tissues from non-stabilized peri-implantitis exhibited a distinct cytokine profile compared to periodontitis lesions that did not respond to initial therapy. Indeed, TIMP-2 was significantly increased in media from peri-implantitis (P≤.05). In addition, the in situ expression of TIMP-2, interleukin-10 and RANKL was also significantly increased in peri-implantitis tissues (P≤.05). However, the ratio of RANKL/osteoprotegerin-positive cells did not vary (P≥.05). CONCLUSION This study suggests that peri-implantitis and periodontitis connective tissues exhibit differences in response to non-surgical treatment, which may contribute to a different pattern of disease evolution.
Collapse
Affiliation(s)
- M Ghighi
- EA 2496, U.F.R. of Odontology, Paris Descartes University, Montrouge, France.,Department of Periodontology, U.F.R. of Odontology, Rothschild Hospital, AP-HP, Paris Diderot University, Paris, France
| | - A Llorens
- EA 2496, U.F.R. of Odontology, Paris Descartes University, Montrouge, France
| | - B Baroukh
- EA 2496, U.F.R. of Odontology, Paris Descartes University, Montrouge, France
| | - C Chaussain
- EA 2496, U.F.R. of Odontology, Paris Descartes University, Montrouge, France.,Department of Odontology, Bretonneau Hospital, AP-HP, Hôpitaux Universitaires Paris Nord Val de Seine (Bretonneau), Paris, France
| | - P Bouchard
- EA 2496, U.F.R. of Odontology, Paris Descartes University, Montrouge, France.,Department of Periodontology, U.F.R. of Odontology, Rothschild Hospital, AP-HP, Paris Diderot University, Paris, France
| | - M Gosset
- EA 2496, U.F.R. of Odontology, Paris Descartes University, Montrouge, France.,Department of Periodontology, Charles Foix Hospital, AP-HP, Hôpitaux Universitaires La Pitié Salpétrière - Charles Foix, Paris, France
| |
Collapse
|
30
|
Singh M, Tyagi SC. Metalloproteinases as mediators of inflammation and the eyes: molecular genetic underpinnings governing ocular pathophysiology. Int J Ophthalmol 2017; 10:1308-1318. [PMID: 28861360 DOI: 10.18240/ijo.2017.08.20] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/01/2017] [Indexed: 12/18/2022] Open
Abstract
There are many vision threatening diseases of the eye affecting millions of people worldwide. In this article, we are summarizing potential role of various matrix metalloproteinases (MMPs); the Zn (2+)-dependent endoproteases in eye health along with pathogenesis of prominent ocular diseases such as macular degeneration, diabetic retinopathy, and glaucoma via understanding MMPs regulation in affected patients, interactions of MMPs with their substrate molecules, and key regulatory functions of tissue inhibitor of metalloproteinases (TIMPs) towards maintaining overall homeostasis.
Collapse
Affiliation(s)
- Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Suresh C Tyagi
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
31
|
Dasari C, Yaghnam DP, Walther R, Ummanni R. Tumor protein D52 (isoform 3) contributes to prostate cancer cell growth via targeting nuclear factor-κB transactivation in LNCaP cells. Tumour Biol 2017; 39:1010428317698382. [PMID: 28466782 DOI: 10.1177/1010428317698382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Our previous study showed that TPD52 overexpression could increase migration and proliferation of LNCaP cells contributing to the development of prostate cancer. However, mechanism of TPD52 in prostate cancer initiation and progression remains elusive. In this study, we investigated the possible underlying mechanism of TPD52 in prostate cancer progression. In LNCaP cells, TPD52 expression was altered by transfecting with either EGFP-TPD52 or specific short hairpin RNA. Overexpression of TPD52 protected LNCaP cells from apoptosis through elevated anti-apoptotic proteins XIAP, Bcl-2, and Cyclin D1, whereas Bax was downregulated. Mechanistically, we found that TPD52 confers transactivation of nuclear factor-κB, thereby enhancing its target gene expression in LNCaP cells. TPD52 promotes LNCaP cell invasion probably via increased matrix metalloproteinase 9 expression and its activity while tissue inhibitor of metalloproteinase expression is significantly downregulated. Notably, TPD52 might be involved in cell adhesion, promoting tumor metastasis by inducing loss of E-cadherin, expression of vimentin and vascular cell adhesion molecule, and additionally activation of focal adhesion kinase. Furthermore, TPD52 directly interacts with nuclear factor-κB p65 (RelA) and promotes accumulation of phosphorylated nuclear factor-κB (p65)S536 that is directly linked with nuclear factor-κB transactivation. Indeed, depletion of TPD52 or inhibition of nuclear factor-κB in TPD52-positive cells inhibited secretion of tumor-related cytokines and contributes to the activation of STAT3, nuclear factor-κB, and Akt. Interestingly, in TPD52 overexpressing LNCaP cells, nuclear factor-κB inhibition prevented the autocrine/paracrine activation of STAT3. TPD52 activates STAT3 through ascertaining a cross talk between the nuclear factor-κB and the STAT3 signaling systems. Collectively, these results reveal mechanism by which TPD52 is associated with prostate cancer progression and highlight the approach for therapeutic targeting of TPD52 in prostate cancer.
Collapse
Affiliation(s)
- Chandrashekhar Dasari
- 1 Center for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India.,2 Centre for Academy of Scientific & Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Dattu Prasad Yaghnam
- 1 Center for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Reinhard Walther
- 3 Department of Medical Biochemistry and Molecular Biology, Ernst Moritz Arndt University of Greifswald, Greifswald, Germany
| | - Ramesh Ummanni
- 1 Center for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| |
Collapse
|
32
|
Li S, Wang B, Tang Q, Liu J, Yang X. Bisphenol A triggers proliferation and migration of laryngeal squamous cell carcinoma via GPER mediated upregulation of IL-6. Cell Biochem Funct 2017; 35:209-216. [PMID: 28466560 DOI: 10.1002/cbf.3265] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022]
Abstract
Bisphenol A (BPA) can be accumulated into the human body via food intake and inhalation. Numerous studies indicated that BPA can trigger the tumorigenesis and progression of cancer cells. Laryngeal cancer cells can be exposed to BPA directly via food digestion, while there were very limited data concerning the effect of BPA on the development of laryngeal squamous cell carcinoma (LSCC). Our present study revealed that nanomolar BPA can trigger the proliferation of LSCC cells. Bisphenol A also increased the in vitro migration and invasion of LSCC cells and upregulated the expression of matrix metallopeptidase 2. Among various chemokines tested, the expression of IL-6 was significantly increased in LSCC cells treated with BPA for 24 hours. Neutralization antibody of IL-6 or si-IL-6 can attenuate BPA-induced proliferation and migration of LSCC cells. Targeted inhibition of G protein-coupled estrogen receptor, while not estrogen receptor (ERα), abolished BPA-induced IL-6 expression, proliferation, and migration of LSCC cells. The increased IL-6 can further activate its downstream signal molecule STAT3, which was evidenced by the results of increased phosphorylation and nuclear translocation of STAT3, while si-IL-6 and si-GPER can both reverse BPA-induced activation of STAT3. Collectively, our present study revealed that BPA can trigger the progression of LSCC via GPER-mediated upregulation of IL-6. Therefore, more attention should be paid for the BPA exposure on the development of laryngeal cancer.
Collapse
Affiliation(s)
- Shisheng Li
- Department of Otolaryngology, Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Bin Wang
- Department of Otolaryngology, Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Qinglai Tang
- Department of Otolaryngology, Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Jiajia Liu
- Department of Otolaryngology, Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Xinming Yang
- Department of Otolaryngology, Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| |
Collapse
|
33
|
Wang Z, Shao M, Liu Y. Promotion of Wilms' tumor cells migration and invasion by mono-2-ethyhexyl phthalate (MEHP) via activation of NF-κB signals. Chem Biol Interact 2017; 270:1-8. [DOI: 10.1016/j.cbi.2017.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 04/05/2017] [Indexed: 12/19/2022]
|
34
|
Groeger SE, Meyle J. Epithelial barrier and oral bacterial infection. Periodontol 2000 2017; 69:46-67. [PMID: 26252401 DOI: 10.1111/prd.12094] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2015] [Indexed: 01/11/2023]
Abstract
The oral epithelial barrier separates the host from the environment and provides the first line of defense against pathogens, exogenous substances and mechanical stress. It consists of underlying connective tissue and a stratified keratinized epithelium with a basement membrane, whose cells undergo terminal differentiation resulting in the formation of a mechanically resistant surface. Gingival keratinocytes are connected by various transmembrane proteins, such as tight junctions, adherens junctions and gap junctions, each of which has a specialized structure and specific functions. Periodontal pathogens are able to induce inflammatory responses that lead to attachment loss and periodontal destruction. A number of studies have demonstrated that the characteristics of pathogenic oral bacteria influence the expression and structural integrity of different cell-cell junctions. Tissue destruction can be mediated by host cells following stimulation with cytokines and bacterial products. Keratinocytes, the main cell type in gingival epithelial tissues, express a variety of proinflammatory cytokines and chemokines, including interleukin-1alpha, interleukin-1beta, interleukin-6, interleukin-8 and tumor necrosis factor-alpha. Furthermore, the inflammatory mediators that may be secreted by oral keratinocytes are vascular endothelial growth factor, prostaglandin E2 , interleukin-1 receptor antagonist and chemokine (C-C motif) ligand 2. The protein family of matrix metalloproteinases is able to degrade all types of extracellular matrix protein, and can process a number of bioactive molecules. Matrix metalloproteinase activities under inflammatory conditions are mostly deregulated and often increased, and those mainly relevant in periodontal disease are matrix metalloproteinases 1, 2, 3, 8, 9, 13 and 24. Viral infection may also influence the epithelial barrier. Studies show that the expression of HIV proteins in the mucosal epithelium is correlated with the disruption of epithelial tight junctions, suggesting a possible enhancement of human papilloma virus infection by HIV-associated disruption of tight junctions. Altered expression of matrix metalloproteinases was demonstrated in keratinocytes transformed with human papilloma virus-16 or papilloma virus-18,. To summarize, the oral epithelium is able to react to a variety of exogenous, possibly noxious influences.
Collapse
|
35
|
Wu Y, Lee MJ, Ido Y, Fried SK. High-fat diet-induced obesity regulates MMP3 to modulate depot- and sex-dependent adipose expansion in C57BL/6J mice. Am J Physiol Endocrinol Metab 2017; 312:E58-E71. [PMID: 27879248 PMCID: PMC5283879 DOI: 10.1152/ajpendo.00128.2016] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 10/26/2016] [Accepted: 11/08/2016] [Indexed: 12/20/2022]
Abstract
Increased adipocyte size is hypothesized to signal the recruitment of adipose progenitor cells (APCs) to expand tissue storage capacity. To investigate depot and sex differences in adipose growth, male and female C57BL/6J mice (10 wk-old) were challenged with high-fat (HF) or low-fat (LF) diets (D) for 14 wk. The HFD increased gonadal (GON) depot weight by adipocyte hypertrophy and hyperplasia in females but hypertrophy alone in males. In both sexes, inguinal (ING) adipocytes were smaller than GON, and depot expansion was due to hypertrophy. Matrix metalloproteinase 3 (Mmp3), an antiadipogenic factor, and its inhibitor Timps modulate the extracellular matrix remodeling needed for depot expansion. Mmp3 mRNA was depot different (ING > GON), higher in females than males and mainly expressed in APCs. In males, HFD-induced obesity increased tissue and APC Mmp3 mRNA levels and MMP3 protein and enzymatic activity. In females however, HFD significantly decreased MMP3 protein without affecting its mRNA levels. MMP3 activity also decreased (significant in ING). Timp4 mRNA was expressed mainly in adipocytes, and HFD-induced obesity tended to increase the ratio of TIMP4 to MMP3 protein in females, whereas it decreased it in males. Overexpression of Mmp3 in 3T3-L1 preadipocytes or rhMMP3 protein added to primary human preadipocytes inhibited differentiation, whereas rhTIMP4 improved adipogenesis and attenuated the inhibitory effect of rhMMP3. These data suggest that HFD-induced obesity downregulates APC MMP3 expression to trigger adipogenesis, and adipocyte TIMP4 may modulate this process to regulate hyperplastic vs. hypertrophic adipose tissue expansion, fat distribution, and metabolic health in a sex- and depot-dependent manner.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Obesity Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Mi-Jeong Lee
- Obesity Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Yasuo Ido
- Obesity Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Susan K Fried
- Obesity Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
36
|
Porcellato I, Menchetti L, Brachelente C, Sforna M, Reginato A, Lepri E, Mechelli L. Feline Injection-Site Sarcoma. Vet Pathol 2016; 54:204-211. [DOI: 10.1177/0300985816677148] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Feline injection-site sarcoma (FISS) is an aggressive tumor believed to arise from the proliferation of fibroblasts and myofibroblasts in areas of chronic inflammation, particularly at sites of injection. Local recurrence is frequent after surgical excision. Gelatinases (MMP-2 and MMP-9) and their inhibitor (TIMP-2) are endopeptidases pivotal in extracellular matrix remodeling and therefore in tumor invasiveness. The aim of this study was to investigate the immunohistochemical expression of MMP-2, MMP-9, and TIMP-2 in FISS to assess their usefulness as prognostic factors. Size, soft tissue sarcoma (STS) grading system, depth of infiltration, surgical margins, and Ki-67 index were evaluated as additional prognostic markers. Twenty-four cases of primary FISS were classified according to clinical follow-up as nonrecurrent (NR, n = 14; 58.3%) and recurrent (R, n = 10; 41.7%). MMP-2, MMP-9, and TIMP-2 were variably expressed in the FISS examined, confirming their role in tumor invasiveness, yet they did not show significant differences between the R and NR groups. These results could be due to different tumor stages or to the multiple activities of these enzymes, not limited to ECM remodeling. The immunohistochemical expression of these enzymes considered alone does not seem to be useful as a prognostic marker. STS grading system, depth of infiltration, surgical margins, and Ki-67 index did not relate to recurrence. Instead, the size of the tumor, measured after formalin fixation, with an optimal cutoff of 3.75 cm (accuracy = 86%; P < .05), and the mitotic count, with an optimal cutoff of 20 mitoses/10 HPF (accuracy = 80%; P < .05), could be evaluated as useful prognostic markers.
Collapse
Affiliation(s)
- I. Porcellato
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - L. Menchetti
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - C. Brachelente
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - M. Sforna
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - A. Reginato
- CDVet Diagnostic Laboratory, Via Ugo Guattari, Rome, Italy
| | - E. Lepri
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - L. Mechelli
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
37
|
Multimodal tumor suppression by miR-302 cluster in melanoma and colon cancer. Int J Biochem Cell Biol 2016; 81:121-132. [PMID: 27840154 DOI: 10.1016/j.biocel.2016.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 11/04/2016] [Accepted: 11/09/2016] [Indexed: 12/14/2022]
Abstract
The miR-302 family is one of the main groups of microRNAs, which are highly expressed in embryonic stem cells (ESCs). Previous reports have indicated that miR-302 can reduce the proliferation rate of some cancer cells while compromising on their oncogenic potential at the same time without having the same effect on normal somatic cells. In this study we aimed to further investigate the role of the miR-302 cluster in multiple cancer signaling pathways using A-375 melanoma and HT-29 colorectal cancer cells. Our results indicate that the miR-302 cluster has the potential to modulate oncogenic properties of cancer cells through inhibition of proliferation, angiogenesis and invasion, and through reversal of the epithelial-to-mesenchymal transition (EMT) in these cells. We showed for the first time that overexpression of miR-302 cluster sensitized A-375 and HT-29 cells to hypoxia and also to the selective BRAF inhibitor vemurafenib. MiR-302 is a pleiotropically acting miRNA family which may have significant implications in controlling cancer progression and invasion. It acts through a reprogramming process, which has a global effect on a multitude of cellular pathways and events. We propose that reprogramming of cancer cells by epigenetic factors, especially miRNAs might provide an efficient tool for controlling cancer and especially for those with more invasive nature.
Collapse
|
38
|
Cepeda MA, Pelling JJH, Evered CL, Williams KC, Freedman Z, Stan I, Willson JA, Leong HS, Damjanovski S. Less is more: low expression of MT1-MMP is optimal to promote migration and tumourigenesis of breast cancer cells. Mol Cancer 2016; 15:65. [PMID: 27756325 PMCID: PMC5070195 DOI: 10.1186/s12943-016-0547-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/29/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Membrane Type-1 Matrix Metalloproteinase (MT1-MMP) is a multifunctional protease implicated in metastatic progression ostensibly due to its ability to degrade extracellular matrix (ECM) components and allow migration of cells through the basement membrane. Despite in vitro studies demonstrating this principle, this knowledge has not translated into the use of MMP inhibitors (MMPi) as effective cancer therapeutics, or been corroborated by evidence of in vivo ECM degradation mediated by MT1-MMP, suggesting that our understanding of the role of MT1-MMP in cancer progression is incomplete. METHODS MCF-7 and MDA-MB 231 breast cancer cell lines were created that stably overexpress different levels of MT1-MMP. Using 2D culture, we analyzed proMMP-2 activation (gelatin zymography), ECM degradation (fluorescent gelatin), ERK signaling (immunoblot), cell migration (transwell/scratch closure/time-lapse imaging), and viability (colorimetric substrate) to assess how different MT1-MMP levels affect these cellular parameters. We also utilized Matrigel 3D cell culture and avian embryos to examine how different levels of MT1-MMP expression affect morphological changes in 3D culture, and tumourigenecity and extravasation efficiency in vivo. RESULTS In 2D culture, breast cancer cells expressing high levels of MT1-MMP were capable of widespread ECM degradation and TIMP-2-mediated proMMP-2 activation, but were not the most migratory. Instead, cells expressing low levels of MT1-MMP were the most migratory, and demonstrated increased viability and ERK activation. In 3D culture, MCF-7 breast cancer cells expressing low levels of MT1-MMP demonstrated an invasive protrusive phenotype, whereas cells expressing high levels of MT1-MMP demonstrated loss of colony structure and cell fragment release. Similarly, in vivo analysis demonstrated increased tumourigenecity and metastatic capability for cells expressing low levels of MT1-MMP, whereas cells expressing high levels were devoid of these qualities despite the production of functional MT1-MMP protein. CONCLUSIONS This study demonstrates that excessive ECM degradation mediated by high levels of MT1-MMP is not associated with cell migration and tumourigenesis, while low levels of MT1-MMP promote invasion and vascularization in vivo.
Collapse
Affiliation(s)
- Mario A Cepeda
- Department of Biology, Faculty of Science, University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Jacob J H Pelling
- Department of Biology, Faculty of Science, University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Caitlin L Evered
- Department of Biology, Faculty of Science, University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Karla C Williams
- Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, ON, Canada
| | - Zoey Freedman
- Department of Biology, Faculty of Science, University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Ioana Stan
- Department of Biology, Faculty of Science, University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Jessica A Willson
- Department of Biology, Faculty of Science, University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Hon S Leong
- Department of Surgery, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, ON, Canada
| | - Sashko Damjanovski
- Department of Biology, Faculty of Science, University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada. .,Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
39
|
Kim HI, Lee HS, Kim TH, Lee JS, Lee ST, Lee SJ. Growth-stimulatory activity of TIMP-2 is mediated through c-Src activation followed by activation of FAK, PI3-kinase/AKT, and ERK1/2 independent of MMP inhibition in lung adenocarcinoma cells. Oncotarget 2016; 6:42905-22. [PMID: 26556867 PMCID: PMC4767480 DOI: 10.18632/oncotarget.5466] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 10/26/2015] [Indexed: 12/24/2022] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) control extracellular matrix (ECM) homeostasis by inhibiting the activity of matrix metalloproteinases (MMPs), which are associated with ECM turnover. Recent studies have revealed that TIMPs are implicated in tumorigenesis in both MMP-dependent and MMP-independent manners. We examined a mechanism by which TIMP-2 stimulated lung adenocarcinoma cell proliferation, independent of MMP inhibition. The stimulation of growth by TIMP-2 in A549 cells required c-Src kinase activation. c-Src kinase activity, induced by TIMP-2, concomitantly increased FAK, phosphoinositide 3-kinase (PI3-kinase)/AKT, and ERK1/2 activation. Selective knockdown of integrin α3β1, known as a TIMP-2 receptor, did not significantly change TIMP-2 growth promoting activity. Furthermore, we showed that high TIMP-2 expression in lung adenocarcinomas is associated with a worse prognosis from multiple cohorts, especially for stage I lung adenocarcinoma. Through integrated analysis of The Cancer Genome Atlas data, TIMP-2 expression was significantly associated with the alteration of driving genes, c-Src activation, and PI3-kinase/AKT pathway activation. Taken together, our results demonstrate that TIMP-2 stimulates lung adenocarcinoma cell proliferation through c-Src, FAK, PI3-kinase/AKT, and ERK1/2 pathway activation in an MMP-independent manner.
Collapse
Affiliation(s)
- Han Ie Kim
- Department of Life Science & Biotechnology, Shingyeong University, Gyeonggi-do, 445-741, Republic of Korea
| | - Hyun-Sung Lee
- Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, 77030, U.S.A
| | - Tae Hyun Kim
- Department of Life Science & Biotechnology, Shingyeong University, Gyeonggi-do, 445-741, Republic of Korea
| | - Ju-Seog Lee
- Department of Systems Biology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, U.S.A
| | - Seung-Taek Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Seo-Jin Lee
- Department of Life Science & Biotechnology, Shingyeong University, Gyeonggi-do, 445-741, Republic of Korea
| |
Collapse
|
40
|
Wang Y, Ding X, Wang S, Moser CD, Shaleh HM, Mohamed EA, Chaiteerakij R, Allotey LK, Chen G, Miyabe K, McNulty MS, Ndzengue A, Barr Fritcher EG, Knudson RA, Greipp PT, Clark KJ, Torbenson MS, Kipp BR, Zhou J, Barrett MT, Gustafson MP, Alberts SR, Borad MJ, Roberts LR. Antitumor effect of FGFR inhibitors on a novel cholangiocarcinoma patient derived xenograft mouse model endogenously expressing an FGFR2-CCDC6 fusion protein. Cancer Lett 2016; 380:163-73. [PMID: 27216979 PMCID: PMC5119950 DOI: 10.1016/j.canlet.2016.05.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/15/2022]
Abstract
Cholangiocarcinoma is a highly lethal cancer with limited therapeutic options. Recent genomic analysis of cholangiocarcinoma has revealed the presence of fibroblast growth factor receptor 2 (FGFR2) fusion proteins in up to 13% of intrahepatic cholangiocarcinoma (iCCA). FGFR fusions have been identified as a novel oncogenic and druggable target in a number of cancers. In this study, we established a novel cholangiocarcinoma patient derived xenograft (PDX) mouse model bearing an FGFR2-CCDC6 fusion protein from a metastatic lung nodule of an iCCA patient. Using this PDX model, we confirmed the ability of the FGFR inhibitors, ponatinib, dovitinib and BGJ398, to modulate FGFR signaling, inhibit cell proliferation and induce cell apoptosis in cholangiocarcinoma tumors harboring FGFR2 fusions. In addition, BGJ398 appeared to be superior in potency to ponatinib and dovitinib in this model. Our findings provide a strong rationale for the investigation of FGFR inhibitors, particularly BGJ398, as a therapeutic option for cholangiocarcinoma patients harboring FGFR2 fusions.
Collapse
Affiliation(s)
- Yu Wang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China; Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Xiwei Ding
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Mayo Clinic Cancer Center, Rochester, MN, USA; Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Shaoqing Wang
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Mayo Clinic Cancer Center, Rochester, MN, USA; Department of Pathology, Qiqihar Medical University, Qiqihar, China
| | - Catherine D Moser
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Hassan M Shaleh
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Essa A Mohamed
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Roongruedee Chaiteerakij
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Loretta K Allotey
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Gang Chen
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Katsuyuki Miyabe
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Melissa S McNulty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Albert Ndzengue
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Emily G Barr Fritcher
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Ryan A Knudson
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Patricia T Greipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Michael S Torbenson
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Benjamin R Kipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jie Zhou
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Michael T Barrett
- Division of Hematology and Medical Oncology, Mayo Clinic College of Medicine, Phoenix, AZ, USA
| | - Michael P Gustafson
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Steven R Alberts
- Department of Medical Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mitesh J Borad
- Division of Hematology and Medical Oncology, Mayo Clinic College of Medicine, Phoenix, AZ, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Mayo Clinic Cancer Center, Rochester, MN, USA.
| |
Collapse
|
41
|
Abstract
Directed cell migration is a crucial orchestrated process in embryonic development, wound healing, and immune response. The underlying substrate can provide physical and/or chemical cues that promote directed cell migration. Here, using electrospinning we developed substrates of aligned poly(lactic-co-glycolic acid) nanofibres to study the influence of glial cells on endothelial cells (ECs) in a 3-dimensional (3D) co-culture model. ECs build blood vessels and regulate their plasticity in coordination with neurons. Likewise, neurons construct nerves and regulate their circuits in coordination with ECs. In our model, the neuro-vascular cross-talk was assessed using a direct co-culture model of human umbilical vein endothelial cells (HUVECs) and rat Schwann cells (rSCs). The effect of rSCs on ECs behavior was demonstrated by earlier and higher velocity values and genetic expression profiles different of those of HUVECs when seeded alone. We observed 2 different gene expression trends in the co-culture models: (i) a later gene expression of angiogenic factors, such as interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF), and (ii) an higher gene expression of genes involved in actin filaments rearrangement, such as focal adhesion kinase (FAK), Mitogen-activated protein kinase-activated protein kinase 13 (MAPKAPK13), Vinculin (VCL), and Profilin (PROF). These results suggested that the higher ECs migration is mainly due to proteins involved in the actin filaments rearrangement and in the directed cell migration rather than the effect of angiogenic factors. This co-culture model provides an approach to enlighten the neurovascular interactions, with particular focus on endothelial cell migration.
Collapse
Affiliation(s)
- Tiago Ramos
- a Faculty of Engineering; University of Oporto ; Porto , Portugal.,b University of Twente ; Department of Tissue Regeneration ; Enschede , The Netherlands
| | - Maqsood Ahmed
- b University of Twente ; Department of Tissue Regeneration ; Enschede , The Netherlands
| | - Paul Wieringa
- b University of Twente ; Department of Tissue Regeneration ; Enschede , The Netherlands.,c Maastricht University ; Department of Complex Tissue Regeneration ; Maastricht , The Netherlands
| | - Lorenzo Moroni
- b University of Twente ; Department of Tissue Regeneration ; Enschede , The Netherlands.,c Maastricht University ; Department of Complex Tissue Regeneration ; Maastricht , The Netherlands
| |
Collapse
|
42
|
Kai AK, Chan LK, Lo RC, Lee JM, Wong CC, Wong JC, Ng IO. Down-regulation of TIMP2 by HIF-1α/miR-210/HIF-3α regulatory feedback circuit enhances cancer metastasis in hepatocellular carcinoma. Hepatology 2016; 64:473-87. [PMID: 27018975 PMCID: PMC5074303 DOI: 10.1002/hep.28577] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/19/2016] [Indexed: 12/15/2022]
Abstract
UNLABELLED Cancer metastasis is a multistep process that involves a series of tumor-stromal interaction, including extracellular matrix (ECM) remodeling, which requires a concerted action of multiple proteolytic enzymes and their endogenous inhibitors. This study investigated the role of tissue inhibitor of metalloproteinases (TIMP) 2 in the context of hepatocellular carcinoma (HCC) metastasis. We found that TIMP2 was the most significantly down-regulated member among the TIMP family in human HCCs. Moreover, TIMP2 underexpression was frequent (41.8%; 23 of 55) in human HCCs and was significantly associated with liver invasion and poorer survival outcomes of HCC patients. Furthermore, stable silencing of TIMP2 in HCC cell lines enhanced cell invasive ability and ECM degradation associated with formation of invadopodia-like feature, suggesting that TIMP2 is a negative regulator of HCC metastasis. Using an orthotopic tumor xenograft model, we demonstrated that ectopic expression of TIMP2 open reading frame in the highly metastatic HCC cell line, MHCC-97L, significantly reduced HCC progression as well as pulmonary metastasis. Mechanistically, TIMP2 suppression, in a hypoxic environment, was induced through a regulatory feedback circuit consisting of hypoxia-inducible factor (HIF) 1 alpha, microRNA-210 (miR-210), and HIF-3α. CONCLUSION TIMP2 is frequently down-regulated in human HCCs and its down-regulation is associated with aggressive tumor behavior and poorer patient outcome. Its suppression is under the regulation of a novel feedback circuit consisting of HIF-1α/miR-210/HIF-3α. TIMP2 is an important regulator of ECM degradation and HCC metastasis. (Hepatology 2016;64:473-487).
Collapse
Affiliation(s)
- Alan Ka‐Lun Kai
- State Key Laboratory for Liver ResearchThe University of Hong KongHong Kong,Department of PathologyThe University of Hong KongHong Kong
| | - Lo Kong Chan
- State Key Laboratory for Liver ResearchThe University of Hong KongHong Kong,Department of PathologyThe University of Hong KongHong Kong
| | - Regina Cheuk‐Lam Lo
- State Key Laboratory for Liver ResearchThe University of Hong KongHong Kong,Department of PathologyThe University of Hong KongHong Kong
| | - Joyce Man‐Fong Lee
- State Key Laboratory for Liver ResearchThe University of Hong KongHong Kong,Department of PathologyThe University of Hong KongHong Kong
| | - Carmen Chak‐Lui Wong
- State Key Laboratory for Liver ResearchThe University of Hong KongHong Kong,Department of PathologyThe University of Hong KongHong Kong
| | - Jack Chun‐Ming Wong
- State Key Laboratory for Liver ResearchThe University of Hong KongHong Kong,Department of PathologyThe University of Hong KongHong Kong
| | - Irene Oi‐Lin Ng
- State Key Laboratory for Liver ResearchThe University of Hong KongHong Kong,Department of PathologyThe University of Hong KongHong Kong
| |
Collapse
|
43
|
Xu J, Liu XJ, Li L, Zhang SH, Li Y, Gao RJ, Zhen YS. An engineered TIMP2-based and enediyne-integrated fusion protein for targeting MMP-14 shows potent antitumor efficacy. Oncotarget 2016; 6:26322-34. [PMID: 26314845 PMCID: PMC4694904 DOI: 10.18632/oncotarget.4709] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022] Open
Abstract
Recent studies have shown that MMP-14 is highly expressed in a panel of human solid tumors and poses as a potential molecular target for anticancer drugs. Currently, major strategies for targeted therapeutics have mainly focused on the use of antibody or ligand-based agents. For seeking an alternative approach, it is of interest to employ endogenous proteins as drug delivery carriers. Considering the facts that TIMP2, the tissue inhibitor of metalloproteinase 2, shows specific interaction with MMP-14 and that Lidamycin (LDM), an extremely potent cytotoxic antitumor antibiotic, consists of an apoprotein (LDP) and a highly active enediyne (AE); we designed and prepared a TIMP2-based and enediyne-integrated fusion protein LDP(AE)-TIMP2 by DNA recombination and molecular reconstitution consecutively. Furthermore, the MMP-14 binding attributes of the active fusion protein were determined and its therapeutic efficacy against human esophageal carcinoma KYSE150 xenograft and human fibrosarcoma HT1080 xenograft models in nude mice was investigated. It is suggested that TIMP2, the endogenous and MMP-14 binding protein, might serve as a guided carrier for targeted therapeutics.
Collapse
Affiliation(s)
- Jian Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiu-Jun Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liang Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Sheng-Hua Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yi Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rui-Juan Gao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yong-Su Zhen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
44
|
Liu HY, Gu WJ, Wang CZ, Ji XJ, Mu YM. Matrix metalloproteinase-9 and -2 and tissue inhibitor of matrix metalloproteinase-2 in invasive pituitary adenomas: A systematic review and meta-analysis of case-control trials. Medicine (Baltimore) 2016; 95:e3904. [PMID: 27310993 PMCID: PMC4998479 DOI: 10.1097/md.0000000000003904] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The extracellular matrix is important for tumor invasion and metastasis. Normal function of the extracellular matrix depends on the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). The objective of this meta-analysis was to assess the relationship between expression of MMP-9, MMP-2, and TIMP-2 and invasion of pituitary adenomas.We searched Pubmed, Embase, and the Chinese Biomedical Database up to October 2015. RevMan 5.1 software (Cochrane Collaboration, Copenhagen, Denmark) was used for statistical analysis. We calculated the standardized mean difference (SMD) for data expressed as mean ± standard deviation because of the difference in the detection method.Twenty-four studies (1320 patients) were included. MMP-9 expression was higher in the patients with invasive pituitary adenomas (IPAs) than patients with noninvasive pituitary adenomas (NIPAs) with detection methods of IHC [odds ratio (OR) = 5.48, 95% confidence interval (CI) = 2.61-11.50, P < 0.00001), and reverse transcriptase-polymerase chain reaction (SMD = 2.28, 95% CI = 0.91-3.64, P = 0.001). MMP-2 expression was also increased in patients with IPAs at the protein level (OR = 3.58, 95% CI = 1.63-7.87, P = 0.001), and RNA level (SMD = 3.91, 95% CI = 1.52-6.29, P = 0.001). Meta-analysis showed that there was no difference in TIMP-2 expression between invasive and NIPAs at the protein level (OR = 0.38, 95% CI = 0.06-2.26, P = 0.29). MMP-9 expression in prolactinomas and nonfunctioning pituitary adenomas was also no difference (OR = 1.03, 95% CI = 0.48-2.20, P = 0.95).The results indicated that MMP-9 and -2 may be correlated with invasiveness of pituitary adenomas, although their relationship with functional status of pituitary adenomas is still not clear. TIMP-2 expression in IPAs needs to be investigated further.
Collapse
Affiliation(s)
- Hong-Yan Liu
- Department of Endocrinology Department of rheumatology, Chinese PLA General Hospital, Haidian District, Beijing, P.R. China
| | | | | | | | | |
Collapse
|
45
|
Xu H, Ma Y, Zhang Y, Pan Z, Lu Y, Liu P, Lu B. Identification of Cathepsin K in the Peritoneal Metastasis of Ovarian Carcinoma Using In-silico, Gene Expression Analysis. J Cancer 2016; 7:722-9. [PMID: 27076854 PMCID: PMC4829559 DOI: 10.7150/jca.14277] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/22/2016] [Indexed: 12/22/2022] Open
Abstract
Ovarian carcinomas (OC) are often found in the advanced stage with wide peritoneal dissemination. Differentially-expressed genes (DEGs) between primary ovarian carcinoma (POC) and peritoneal metastatic ovarian carcinomas (PMOC) may have diagnostic and therapeutic values. In this study, we identified 246 DEGs by in-silico analysis using microarrays for 153 POCs and 57 PMOCs. Pathway analysis shows that many of these genes are associated with lipid metabolism. Microfluidic, card-based, quantitative PCR validated 19 DEGs in PMOCs versus POCs (p<0.05). Immunohistochemistry confirmed overexpression of MMP13, CTSK, FGF1 and GREM1 in PMOCs (p<0.05). ELISA detection indicated that serum CTSK levels were significantly increased in OCs versus controls (p<0.001). CTSK levels discriminated between OCs and healthy controls (ROC 0.739; range 0.685-0.793). Combining CA125 and HE4 with CTSK levels produced an improved specificity in the predictive of OCs (sensitivity 88.3%, specificity 92.0%, Youden's index 80.3%). Our study suggests that CTSK levels may be helpful in the diagnosis of primary, ovarian carcinoma.
Collapse
Affiliation(s)
- Haiming Xu
- 1. Institute of Bioinformatics, School of Agriculture & Biological Technology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Ma
- 2. Department of Clinical Laboratory, 4Gynecologic Oncology, 6Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Zhang
- 2. Department of Clinical Laboratory, 4Gynecologic Oncology, 6Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.; 3. Department of Clinical Laboratory, Yiwu Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Zimin Pan
- 4. Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Lu
- 4. Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.; 5. Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pengyuan Liu
- 5. Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bingjian Lu
- 6. Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
46
|
Xia Y, Wu S. Tissue inhibitor of metalloproteinase 2 inhibits activation of the β-catenin signaling in melanoma cells. Cell Cycle 2016; 14:1666-74. [PMID: 25839957 DOI: 10.1080/15384101.2015.1030557] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The tissue inhibitor of metalloproteinase (TIMP) family, including TIMP-2, regulates the activity of multifunctional metalloproteinases in pathogenesis of melanoma. The Wnt/β-catenin pathway is constitutively activated and plays a critical role in melanoma progression. However, the relationship between TIMP-2 expression and β-catenin activity is still unclear. We hypothesize that TIMP-2 over expression inhibits the activation of the Wnt/β-catenin pathway in melanoma cells. Protein expression, distribution, and transcriptional activity of β-catenin were assayed in established stable melanoma cell lines: parental A2058 expressing, A2058 T2-1 over-expressing (T2-1), and A2058 T2R-7 under-expressing (T2R-7) TIMP-2. Compared to T2-1 cells at the basal level, T2R-7 showed significantly lower amount protein and weaker immunofluorescence staining of β-catenin. This regulation is through posttranslational level via ubiquitination. Functionally, proliferation and cell growth were lower in T2R-7 compared to A2058 and T2-1. Lithium treatment was used to mimics activation of the Wnt/β-catenin pathway. In T2R-7 cells under-expressing TIMP2, lithium significantly increased total β-catenin, nuclear β-catenin, and its downstream protein phosphor-c-Myc (S62). Nuclear β-catenin staining was enhanced in T2R-7. Beta-catenin transcriptional activity and cell proliferation were also increased significantly. Axins inhibit β-catenin pathway via GSK-3 β. We further found the ratio of p-GSK-3 β (S9) to β-catenin and protein levels of Axins were significantly lower, whereas downstream Wnt 11 was high in T2R-7 treated with lithium. Collectively, the high level of TIMP-2 protein inhibits the activation of the Wnt/β-catenin pathway, thus suppressing proliferation. Insights in the molecular mechanisms of TIMP-2 may provide promising opportunities for anti-proliferative therapeutic intervention.
Collapse
Affiliation(s)
- Yuxuan Xia
- a Department of Biochemistry; Rush University ; Chicago , IL , USA
| | | |
Collapse
|
47
|
Ohshima M, Yamaguchi Y, Ambe K, Horie M, Saito A, Nagase T, Nakashima K, Ohki H, Kawai T, Abiko Y, Micke P, Kappert K. Fibroblast VEGF-receptor 1 expression as molecular target in periodontitis. J Clin Periodontol 2016; 43:128-37. [PMID: 26932322 DOI: 10.1111/jcpe.12495] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2015] [Indexed: 01/08/2023]
Abstract
AIM Degradation of extracellular matrices is an integral part in periodontitis. For antagonizing this pathophysiological mechanism, we aimed at identifying gene expression profiles in disease progression contributing periodontitis-associated fibroblasts (PAFs) versus normal gingival fibroblasts to determine their molecular repertoire, and exploit it for therapeutic intervention. MATERIALS AND METHODS Applying an exploratory analysis using a small number of microarrays in combination with a three dimensional (3D) in vitro culture model that incorporates some aspects of periodontitis, PAFs were initially characterized by gene-expression analyses, followed by targeted gene down-regulation and pharmacological intervention in vitro. Further, immunohistochemistry was applied for phosphorylation analyses in tissue specimens. RESULTS PAFs were characterized by 42 genes being commonly up-regulated >1.5-fold, and by five genes that were concordantly down-regulated (<0.7-fold). Expression of vascular endothelial growth factor (VEGF)-receptor 1 (Flt-1) was highly enhanced, and was thus further explored in in vitro culture models of periodontal fibroblasts without accounting for the microbiome. Phosphorylation of the VEGF-receptor 1 was enhanced in PAFs. Receptor inhibition by a specific VEGF-receptor inhibitor or intrinsic down-regulation by RNAi of the VEGF-receptor kinase in 3D gel cultures resulted in significant reduction in collagen degradation associated with increased tissue inhibitor of metalloproteinase expression, suggesting that Flt-1 may contribute to periodontitis. CONCLUSION Based on the finding that VEGF-receptor kinase inhibition impaired collagen degradation pathways, Flt-1 may represent a candidate for therapeutic approaches in periodontitis.
Collapse
Affiliation(s)
- Mitsuhiro Ohshima
- Department of Biochemistry, Ohu University School of Pharmaceutical Sciences, Koriyama, Fukushima, Japan
| | - Yoko Yamaguchi
- Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan
| | - Kimiharu Ambe
- Department of Morphological Biology, Ohu University School of Dentistry, Koriyama, Fukushima, Japan
| | - Masafumi Horie
- Department of Respiratory Medicine, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Keisuke Nakashima
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, Fukuoka, Japan
| | - Hidero Ohki
- First Department of Oral Surgery, Nihon University School of Dentistry, Tokyo, Japan
| | - Toshihisa Kawai
- Department of Immunology, The Forsyth Institute, Cambridge, MA, USA
| | - Yoshimitsu Abiko
- Department of Molecular Biology and Biochemistry, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Hospital, Uppsala, Sweden
| | - Kai Kappert
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Center for Cardiovascular Research (CCR), Charité-University Medicine Berlin, Berlin, Germany
| |
Collapse
|
48
|
Abstract
The two biological mechanisms that determine types of malignancy are infiltration and metastasis, for which tumour microenvironment plays a key role in developing and establishing the morphology, growth and invasiveness of a malignancy. The microenvironment is formed by complex tissue containing the extracellular matrix, tumour and non-tumour cells, a signalling network of cytokines, chemokines, growth factors, and proteases that control autocrine and paracrine communication among individual cells, facilitating tumour progression. During the development of the primary tumour, the tumour stroma and continuous genetic changes within the cells makes it possible for them to migrate, having to count on a pre-metastatic niche receptor that allows the tumour’s survival and distant growth. These niches are induced by factors produced by the primary tumour; if it is eradicated, the active niches become responsible for activating the latent disseminated cells. Due to the importance of these mechanisms, the strategies that develop tumour cells during tumour progression and the way in which the microenvironment influences the formation of metastasis are reviewed. It also suggests that the metastatic niche can be an ideal target for new treatments that make controlling metastasis possible.
Collapse
Affiliation(s)
- Francisco Arvelo
- Centro de Biociencias, Fundación Instituto de Estudios Avanzado [IDEA], Caracas 1015-A, Venezuela, Apartado 17606, Caracas 1015-A, Venezuela; Laboratorio de Cultivo de Tejidos y Biología de Tumores, Instituto de Biología Experimental, Universidad Central de Venezuela, Apartado 47114, Caracas, 1041-A, Venezuela
| | - Felipe Sojo
- Centro de Biociencias, Fundación Instituto de Estudios Avanzado [IDEA], Caracas 1015-A, Venezuela, Apartado 17606, Caracas 1015-A, Venezuela; Laboratorio de Cultivo de Tejidos y Biología de Tumores, Instituto de Biología Experimental, Universidad Central de Venezuela, Apartado 47114, Caracas, 1041-A, Venezuela
| | - Carlos Cotte
- Laboratorio de Cultivo de Tejidos y Biología de Tumores, Instituto de Biología Experimental, Universidad Central de Venezuela, Apartado 47114, Caracas, 1041-A, Venezuela
| |
Collapse
|
49
|
Fan H, Jiang W, Li H, Fang M, Xu Y, Zheng J. MMP-1/2 and TIMP-1/2 expression levels, and the levels of collagenous and elastic fibers correlate with disease progression in a hamster model of tongue cancer. Oncol Lett 2015; 11:63-68. [PMID: 26870168 PMCID: PMC4727109 DOI: 10.3892/ol.2015.3837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 09/04/2015] [Indexed: 11/06/2022] Open
Abstract
In the present study, the presence of extracellular matrix components, including collagenous and elastic fibers, and the expression of their key regulating enzymes, were investigated in different stages of hamster tongue carcinoma development. Immunohistochemical and computer-assisted morphological analyses were performed to quantify the staining intensity and area (integral optical density) of matrix metalloproteinase (MMP)-1 and -2, tissue inhibitors of metalloproteinase (TIMP)-1 and -2, and the extent of elastic and collagenous fibers in histological sections. MMP-1, MMP-2, TIMP-1 and TIMP-2 expression levels gradually increased with tongue cancer progression, and were associated with disease pathology staging (r=0.705, 0.633, 0.759 and 0.751, respectively). By contrast, elastic fiber levels gradually decreased with cancer progression and were negatively correlated with disease staging (r=-0.881). The levels of collagenous fibers gradually increased with cancer progression and showed a positive correlation (r=0.619). In summary, the study demonstrated that MMP1/2 and TIMP1/2 expression levels, and collagenous and elastic fiber levels were significantly correlated with disease progression in a hamster model of tongue cancer.
Collapse
Affiliation(s)
- Haixia Fan
- Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Wenhao Jiang
- Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Haixia Li
- Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ming Fang
- Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yudong Xu
- Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jinhua Zheng
- Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
50
|
Gupta P, Sharma PK, Mir H, Singh R, Singh N, Kloecker GH, Lillard JW, Singh S. CCR9/CCL25 expression in non-small cell lung cancer correlates with aggressive disease and mediates key steps of metastasis. Oncotarget 2015; 5:10170-9. [PMID: 25296976 PMCID: PMC4259413 DOI: 10.18632/oncotarget.2526] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Poor clinical outcome of lung cancer (LuCa) is primarily due to lack of knowledge about specific molecules involved in its progression and metastasis. In this study, we for the first time show the clinical and biological significance of CC chemokine receptor-9 (CCR9) in non-small cell lung cancer (NSCLC). Expression of CCR9 and CCL25, the only natural ligand of CCR9, was significantly higher (p < 0.0001) in NSCLC tissues and serum respectively, compared to their respective controls. Interestingly, expression of both CCR9 and CCL25 was significantly higher in adenocarcinomas (ACs) compared to squamous cell carcinomas (SCCs) (p = 0.04, and p < 0.0001). Similar to tissues, AC and SCC cell lines were positive for CCR9 expression. Despite of marginal difference in CCR9 expression, AC cells showed higher migratory and invasive potential in response to CCL25, compared to SCC cells. This differential biological response of AC cells was primarily due to differential expression of matrix metalloproteinases and tissue inhibitor of metalloproteinases under the influence of CCL25. Our results suggest CCR9 as a potential target for developing new treatment modality for NSCLC. Additionally, differential serum CCL25 level in ACs and SCCs, two NSCLC subtypes, suggest its potential as a non-invasive diagnostic/prognostic biomarker.
Collapse
Affiliation(s)
| | - Praveen K Sharma
- School of Natural Sciences, Center of Life Sciences, Central University of Jharkhand, Ranchi, India
| | - Hina Mir
- Morehouse School of Medicine, Atlanta, GA, USA
| | | | | | - Goetz H Kloecker
- James Graham Brown Cancer Center, University of Louisville, School of Medicine, Louisville, KY, USA
| | | | | |
Collapse
|