1
|
Farooq R, Gendron T, Edwards RS, Witney TH. Compact and cGMP-compliant automated synthesis of [ 18F]FSPG on the Trasis AllinOne™. EJNMMI Radiopharm Chem 2025; 10:2. [PMID: 39821860 PMCID: PMC11748660 DOI: 10.1186/s41181-024-00322-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND (S)-4-(3-18F-Fluoropropyl)-ʟ-glutamic acid ([18F]FSPG) is a positron emission tomography radiotracer used to image system xc-, an antiporter that is upregulated in several cancers. Not only does imaging system xc- with [18F]FSPG identify tumours, but it can also provide an early readout of response and resistance to therapy. Unfortunately, the clinical production of [18F]FSPG has been hampered by a lack of robust, cGMP-compliant methods. Here, we report the automated synthesis of [18F]FSPG on the Trasis AllinOne™, overcoming previous limitations to provide a user-friendly method ready for clinical adoption. RESULTS The optimised method provided [18F]FSPG in 33.5 ± 4.9% radiochemical yield in just 35 min when starting with 18-25 GBq. Importantly, this method could be scaled up to > 100 GBq starting activity with only a modest reduction in radiochemical yield, providing [18F]FSPG with a molar activity of 372 ± 65 GBq/µmol and excellent radiochemical purity (96.8 ± 1.1%). The formulated product was stable when produced with these high starting activities. CONCLUSIONS We have developed the first automated synthesis of [18F]FSPG on the Trasis AllinOne™. The method produces [18F]FSPG with excellent radiochemical purity and in high amounts suitable for large clinical trials and off-site distribution. The method expands the number of synthesis modules capable of producing [18F]FSPG and has been carefully designed for cGMP compliance to simplify regulatory approval for clinical production. The methods developed for the purification of high-activity [18F]FSPG are transferrable and should aid the development of clinical [18F]FSPG productions on other synthesis modules.
Collapse
Affiliation(s)
- Rizwan Farooq
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Thibault Gendron
- GIGA-CRC Human Imaging, Cyclotron Research Centre, University of Liege, Liege, Belgium
| | - Richard S Edwards
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| | - Timothy H Witney
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
2
|
Fan D, Wang X, Ling X, Li H, Zhang L, Zheng W, Wu Z, Ai L. Utilisation of the Innovative [18F]-Labelled Radiotracer [18F]-BIBD-071 Within HR+ Breast Cancer Xenograft Mouse Models. Pharmaceuticals (Basel) 2025; 18:66. [PMID: 39861129 PMCID: PMC11768299 DOI: 10.3390/ph18010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Aromatase plays a crucial role in the conversion of androgens to oestrogens and is often overexpressed in hormone-dependent tumours, particularly breast cancer. [18F]BIBD-071, which has excellent binding affinity for aromatase and good pharmacokinetics, has potential for the diagnosis and treatment of aromatase-related diseases. The MCF-7 cell line, which is hormone receptor-positive (HR+), was used in the assessment of the novel [18F]-labelled radiotracer [18F]BIBD-071 via positron emission tomography (PET) imaging of an HR+ breast cancer xenograft model. Methods: [18F]BIBD-071 was synthesised, radiolabelled, and then subjected to in vitro stability testing. MCF-7 cells were cultured and implanted into BALB/c nude mice to establish subcutaneous tumour models. MicroPET/CT imaging was conducted after injection of the tracer at 1 and 2 h, and a blocking study was also conducted using the aromatase inhibitor letrozole. A block experiment was used to prove the specificity of the probe. Biodistribution studies were performed at 0.5, 1, and 2 h post injection (p.i.). Immunofluorescence was used to assess aromatase expression in MCF-7 cells. Results: [18F]BIBD-071 showed excellent in vitro stability and specific uptake in an MCF-7 xenograft tumour model. MicroPET/CT imaging at 1 and 2 h p.i. revealed excellent tumour visualisation with a favourable tumour-to-background ratio. Biodistribution data revealed high tracer uptake in the liver, small intestine, and stomach, with significant washout from the bloodstream and tumour over time. The tumour uptakes at 0.5 h, 1 h, and 2 h were 3.84 ± 0.13, 2.5 ± 0.17, and 2.54 ± 0.32, respectively. The tumour uptake significantly decreased between 0.5 h and 1 h (p < 0.0001), whereas there was no significant difference between 1 and 2 h. The tumour/background ratios at 0.5 h, 1 h, and 2 h were 1.19 ± 0.03, 1.12 ± 0.17, and 1.42 ± 0.11, respectively. Immunofluorescence confirmed robust aromatase expression in MCF-7 cells, which was correlated with [18F]BIBD-071 tumour uptake. Conclusions: [18F]BIBD-071 is a promising PET tracer for diagnosing and monitoring HR+ breast cancer, warranting further research into hormone-dependent cancers.
Collapse
Affiliation(s)
- Di Fan
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China; (D.F.); (X.W.); (H.L.)
| | - Xin Wang
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China; (D.F.); (X.W.); (H.L.)
| | - Xueyuan Ling
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China;
| | - Hongbin Li
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China; (D.F.); (X.W.); (H.L.)
| | - Lu Zhang
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China; (L.Z.); (W.Z.)
| | - Wei Zheng
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China; (L.Z.); (W.Z.)
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China; (L.Z.); (W.Z.)
| | - Lin Ai
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China; (D.F.); (X.W.); (H.L.)
| |
Collapse
|
3
|
Li K, Gilberti AL, Marden JA, Akula HK, Pollard AC, Guo S, Hu B, Tonge PJ, Qu W. Synthesis and Biological Evaluation of Fluorine-18 and Deuterium Labeled l-Fluoroalanines as Positron Emission Tomography Imaging Agents for Cancer Detection. J Med Chem 2024; 67:10293-10305. [PMID: 38838188 PMCID: PMC11258582 DOI: 10.1021/acs.jmedchem.4c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
To fully explore the potential of 18F-labeled l-fluoroalanine for imaging cancer and other chronic diseases, a simple and mild radiosynthesis method has been established to produce optically pure l-3-[18F]fluoroalanine (l-[18F]FAla), using a serine-derivatized, five-membered-ring sulfamidate as the radiofluorination precursor. A deuterated analogue, l-3-[18F]fluoroalanine-d3 (l-[18F]FAla-d3), was also prepared to improve metabolic stability. Both l-[18F]FAla and l-[18F]FAla-d3 were rapidly taken up by 9L/lacZ, MIA PaCa-2, and U87MG cells and were shown to be substrates for the alanine-serine-cysteine (ASC) amino acid transporter. The ability of l-[18F]FAla, l-[18F]FAla-d3, and the d-enantiomer, d-[18F]FAla-d3, to image tumors was evaluated in U87MG tumor-bearing mice. Despite the significant bone uptake was observed for both l-[18F]FAla and l-[18F]FAla-d3, the latter had enhanced tumor uptake compared to l-[18F]FAla, and d-[18F]FAla-d3 was not specifically taken up by the tumors. The enhanced tumor uptake of l-[18F]FAla-d3 compared with its nondeuterated counterpart, l-[18F]FAla, warranted the further biological investigation of this radiotracer as a potential cancer imaging agent.
Collapse
Affiliation(s)
- Kaixuan Li
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Alexa L. Gilberti
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Jocelyn A. Marden
- Department of Psychiatry and Behavioral Health, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Hari K. Akula
- Department of Psychiatry and Behavioral Health, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
- PET Research Core, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Alyssa C. Pollard
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Shuwen Guo
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Bao Hu
- Department of Psychiatry and Behavioral Health, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
- PET Research Core, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Peter J. Tonge
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Radiology, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
- Stony Brook Cancer Center, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Wenchao Qu
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Psychiatry and Behavioral Health, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
- PET Research Core, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| |
Collapse
|
4
|
Huang Y, Chen H, Zhang L, Xie Y, Li C, Yu Z, Jiang Z, Zheng W, Li Z, Ge X, Liang Y, Wu Z. Design of Novel 18F-Labeled Amino Acid Tracers Using Sulfur 18F-Fluoride Exchange Click Chemistry. ACS Med Chem Lett 2024; 15:294-301. [PMID: 38352831 PMCID: PMC10860173 DOI: 10.1021/acsmedchemlett.3c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
[18F]Gln-OSO2F, [18F]Arg-OSO2F, and [18F]FSY-OSO2F were designed by introducing sulfonyl 18F-fluoride onto glutamine, arginine, and tyrosine, respectively. [18F]FSY-OSO2F can be prepared directly by sulfur 18F-fluoride exchange, while [18F]Gln-OSO2F and [18F]Arg-OSO2F require a two-step labeling method. Those tracers retain their typical transport characteristics for unmodified amino acids. Both PET imaging and biodistribution confirmed that [18F]FSY-OSO2F visualized MCF-7 and 22Rv1 subcutaneous tumors with high contrast, and its tumor-to-muscle ratio was better than that of [18F]FET. However, [18F]Gln-OSO2F and [18F]Arg-OSO2F poorly image MCF-7 subcutaneous tumors, possibly due to differences in the types and amounts of transporters expressed in tumors. All three tracers can visualize the U87MG glioma. According to our biological evaluation, none of the tracers evaluated in this study exhibited obvious defluorination, and subtle structural changes led to different imaging characteristics, indicating that the application of sulfur 18F-fluoride exchange click chemistry in the design of radioactive sulfonyl fluoride amino acids is feasible and offers significant advantages.
Collapse
Affiliation(s)
- Yong Huang
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Hualong Chen
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Lu Zhang
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Yi Xie
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Chengze Li
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Ziyue Yu
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Zeng Jiang
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Wei Zheng
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Zhongjing Li
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Xuan Ge
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Ying Liang
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Zehui Wu
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
5
|
Huang Y, Li C, Li Z, Xie Y, Chen H, Li S, Liang Y, Wu Z. Design, Synthesis, and Biological Evaluation of a Novel [ 18F]-Labeled Arginine Derivative for Tumor Imaging. Pharmaceuticals (Basel) 2023; 16:1477. [PMID: 37895948 PMCID: PMC10610273 DOI: 10.3390/ph16101477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
To better diagnose and treat tumors related to arginine metabolism, (2S,4S)-2-amino-4-(4-(2-(fluoro-18F)ethoxy)benzyl)-5-guanidinopentanoic acid ([18F]7) was designed and prepared by introducing [18F]fluoroethoxy benzyl on carbon-4 of arginine. [18F]7 and 7 were successfully prepared using synthesis methods similar to those used for (2S,4S)-4-[18F]FEBGln and (2S,4S)-4-FEBGln, respectively. In vitro experiments on cell transport mechanisms showed that [18F]7 was similar to (2S,4S)4-[18F]FPArg and was transported into tumor cells by cationic amino acid transporters. However, [18F]7 can also enter MCF-7 cells via ASC and ASC2 amino acid transporters. Further microPET-CT imaging showed that the initial uptake and retention properties of [18F]7 in MCF-7 subcutaneous tumors were good (2.29 ± 0.09%ID/g at 2.5 min and 1.71 ± 0.09%ID/g at 60 min after administration), without significant defluorination in vivo. However, compared to (2S,4S)4-[18F]FPArg (3.06 ± 0.59%ID/g at 60 min after administration), [18F]7 exhibited lower tumor uptake and higher nonspecific uptake. When further applied to U87MG imaging, [18F]7 can quickly visualize brain gliomas (tumor-to-brain, 1.85 at 60 min after administration). Therefore, based on the above results, [18F]7 will likely be applied for the diagnosis of arginine nutrition-deficient tumors and efficacy evaluations.
Collapse
Affiliation(s)
- Yong Huang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Chengze Li
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Zhongjing Li
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Yi Xie
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Shengli Li
- Department of Laboratory Animal Science, Capital Medical University, Beijing 100069, China
| | - Ying Liang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
6
|
Vaios EJ, Winter SF, Shih HA, Dietrich J, Peters KB, Floyd SR, Kirkpatrick JP, Reitman ZJ. Novel Mechanisms and Future Opportunities for the Management of Radiation Necrosis in Patients Treated for Brain Metastases in the Era of Immunotherapy. Cancers (Basel) 2023; 15:2432. [PMID: 37173897 PMCID: PMC10177360 DOI: 10.3390/cancers15092432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Radiation necrosis, also known as treatment-induced necrosis, has emerged as an important adverse effect following stereotactic radiotherapy (SRS) for brain metastases. The improved survival of patients with brain metastases and increased use of combined systemic therapy and SRS have contributed to a growing incidence of necrosis. The cyclic GMP-AMP (cGAMP) synthase (cGAS) and stimulator of interferon genes (STING) pathway (cGAS-STING) represents a key biological mechanism linking radiation-induced DNA damage to pro-inflammatory effects and innate immunity. By recognizing cytosolic double-stranded DNA, cGAS induces a signaling cascade that results in the upregulation of type 1 interferons and dendritic cell activation. This pathway could play a key role in the pathogenesis of necrosis and provides attractive targets for therapeutic development. Immunotherapy and other novel systemic agents may potentiate activation of cGAS-STING signaling following radiotherapy and increase necrosis risk. Advancements in dosimetric strategies, novel imaging modalities, artificial intelligence, and circulating biomarkers could improve the management of necrosis. This review provides new insights into the pathophysiology of necrosis and synthesizes our current understanding regarding the diagnosis, risk factors, and management options of necrosis while highlighting novel avenues for discovery.
Collapse
Affiliation(s)
- Eugene J. Vaios
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sebastian F. Winter
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Helen A. Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jorg Dietrich
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Katherine B. Peters
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Scott R. Floyd
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - John P. Kirkpatrick
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Zachary J. Reitman
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
7
|
A Sequential Stimulus-Responsive Nanoparticle Platform for Enhanced Tumor Growth Inhibition and Efficient Drug Delivery. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Radionuclide-Based Imaging of Breast Cancer: State of the Art. Cancers (Basel) 2021; 13:cancers13215459. [PMID: 34771622 PMCID: PMC8582396 DOI: 10.3390/cancers13215459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Breast cancer is one of the most commonly diagnosed malignant tumors, possessing high incidence and mortality rates that threaten women’s health. Thus, early and effective breast cancer diagnosis is crucial for enhancing the survival rate. Radionuclide molecular imaging displays its advantages for detecting breast cancer from a functional perspective. Noninvasive visualization of biological processes with radionuclide-labeled small metabolic compounds helps elucidate the metabolic state of breast cancer, while radionuclide-labeled ligands/antibodies for receptor-targeted radionuclide molecular imaging is sensitive and specific for visualization of the overexpressed molecular markers in breast cancer. This review focuses on the most recent developments of novel radiotracers as promising tools for early breast cancer diagnosis. Abstract Breast cancer is a malignant tumor that can affect women worldwide and endanger their health and wellbeing. Early detection of breast cancer can significantly improve the prognosis and survival rate of patients, but with traditional anatomical imagine methods, it is difficult to detect lesions before morphological changes occur. Radionuclide-based molecular imaging based on positron emission tomography (PET) and single-photon emission computed tomography (SPECT) displays its advantages for detecting breast cancer from a functional perspective. Radionuclide labeling of small metabolic compounds can be used for imaging biological processes, while radionuclide labeling of ligands/antibodies can be used for imaging receptors. Noninvasive visualization of biological processes helps elucidate the metabolic state of breast cancer, while receptor-targeted radionuclide molecular imaging is sensitive and specific for visualization of the overexpressed molecular markers in breast cancer, contributing to early diagnosis and better management of cancer patients. The rapid development of radionuclide probes aids the diagnosis of breast cancer in various aspects. These probes target metabolism, amino acid transporters, cell proliferation, hypoxia, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), gastrin-releasing peptide receptor (GRPR) and so on. This article provides an overview of the development of radionuclide molecular imaging techniques present in preclinical or clinical studies, which are used as tools for early breast cancer diagnosis.
Collapse
|
9
|
Edwards R, Greenwood HE, McRobbie G, Khan I, Witney TH. Robust and Facile Automated Radiosynthesis of [ 18F]FSPG on the GE FASTlab. Mol Imaging Biol 2021; 23:854-864. [PMID: 34013395 PMCID: PMC8578107 DOI: 10.1007/s11307-021-01609-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/19/2021] [Accepted: 04/18/2021] [Indexed: 01/18/2023]
Abstract
Purpose (S)-4-(3-18F-Fluoropropyl)-ʟ-Glutamic Acid ([18F]FSPG) is a radiolabeled non-natural amino acid that is used for positron emission tomography (PET) imaging of the glutamate/cystine antiporter, system xC-, whose expression is upregulated in many cancer types. To increase the clinical adoption of this radiotracer, reliable and facile automated procedures for [18F]FSPG production are required. Here, we report a cassette-based method to produce [18F]FSPG at high radioactivity concentrations from low amounts of starting activity. Procedures An automated synthesis and purification of [18F]FSPG was developed using the GE FASTlab. Optimization of the reaction conditions and automated manipulations were performed by measuring the isolated radiochemical yield of [18F]FSPG and by assessing radiochemical purity using radio-HPLC. Purification of [18F]FSPG was conducted by trapping and washing of the radiotracer on Oasis MCX SPE cartridges, followed by a reverse elution of [18F]FSPG in phosphate-buffered saline. Subsequently, the [18F]FSPG obtained from the optimized process was used to image an animal model of non-small cell lung cancer. Results The optimized protocol produced [18F]FSPG in 38.4 ± 2.6 % radiochemical yield and >96 % radiochemical purity with a molar activity of 11.1 ± 7.7 GBq/μmol. Small alterations, including the implementation of a reverse elution and an altered Hypercarb cartridge, led to significant improvements in radiotracer concentration from <10 MBq/ml to >100 MBq/ml. The improved radiotracer concentration allowed for the imaging of up to 20 mice, starting with just 1.5 GBq of [18F]Fluoride. Conclusions We have developed a robust and facile method for [18F]FSPG radiosynthesis in high radiotracer concentration, radiochemical yield, and radiochemical purity. This cassette-based method enabled the production of [18F]FSPG at radioactive concentrations sufficient to facilitate large-scale preclinical experiments with a single prep of starting activity. The use of a cassette-based radiosynthesis on an automated synthesis module routinely used for clinical production makes the method amenable to rapid and widespread clinical translation. Supplementary Information The online version contains supplementary material available at 10.1007/s11307-021-01609-w.
Collapse
Affiliation(s)
- Richard Edwards
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Hannah E Greenwood
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Graeme McRobbie
- Pharmaceutical Diagnostics, Life Sciences, GE Healthcare, Pollards Wood, Nightingales Lane, Chalfont St. Giles, Buckinghamshire, HP8 4SP, UK
| | - Imtiaz Khan
- Pharmaceutical Diagnostics, Life Sciences, GE Healthcare, Pollards Wood, Nightingales Lane, Chalfont St. Giles, Buckinghamshire, HP8 4SP, UK
| | - Timothy H Witney
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
10
|
Cheng X, Yang Z, Sun Y, Zheng W, Chen H, Liu Y, Wu Z. Synthesis and preliminary evaluation of a PET-FI bimodal imaging agent targeting estrogen receptor. Bioorg Med Chem Lett 2021; 34:127776. [PMID: 33418064 DOI: 10.1016/j.bmcl.2021.127776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/21/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
Abstract
Estrogen receptor is an attractive target for the diagnosis and treatment of breast cancer. This article reports for the first time a dual-modality imaging agent targeting estrogen receptor that can use PET imaging to diagnose breast cancer and utilize fluorescence imaging to achieve intraoperative navigation. Fluorescence experiments show that [natGa] 1 has typical aggregate induced emission characteristics. Above the critical concentration, [natGa] 1 can form biocompatible nanomicelles. [natGa] 1 can quickly light up estrogen receptor positive MCF-7 cells. Cell uptake experiments show that [68Ga] 1 is mediated by estrogen receptor. Therefore, [nat/68Ga] 1 shows the characteristics of highly sensitive diagnosis and visualization of breast cancer, and can be used as a lead compound for the development of a novel PET-FI bimodal imaging agent targeting the estrogen receptor.
Collapse
Affiliation(s)
- Xuebo Cheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Zequn Yang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yuli Sun
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Wei Zheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yajing Liu
- School of Pharmaceutical Science, Capital Medical University, Beijing 100069, China.
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
11
|
Mogadam HY, Erfani M, Nikpassand M, Mokhtary M. Preparation and assessment of a new radiotracer technetium-99m-6-hydrazinonicotinic acid-tyrosine as a targeting agent in tumor detecting through single photon emission tomography. Bioorg Chem 2020; 104:104181. [PMID: 32920354 DOI: 10.1016/j.bioorg.2020.104181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/06/2020] [Accepted: 08/02/2020] [Indexed: 10/23/2022]
Abstract
The goal of investigation was to bring up an impressive way to synthesize technetium-99 m-6-hydrazinonicotinic acid-tyrosine (99mTc-HYNIC-Tyr), a newfound radiotracer, and to assess the capacity of being as a tumor scintigraphy agent. The conjugate was prepared by solid phase method using tritely chloride resin. The precursor HYNIC-Tyr was labeled with 99mTc which was accomplished at 100 °C through the coligands tricine and EDDA. Furthermore, the serum albumin binding, cellular attachment, organs uptake and tumor accumulation were measured. C6 glioma cells were used for cellular and tumor uptake studies. 99mTc-HYNIC-Tyr was prepared with labeling yield of >99% (n = 3). Radiotracer showed stability in serum proteins in incubates temperature. Specific cellular attachment of radiotracer was noticeable in C6 glioma cells with dissociation constant in nano molar range (21.03 ± 1.54 nM). The amount of uptake in C6 rat glioma xenograft was 2.61 ± 0.12 percent of injection dose per gram after 30 min. In whole-body scintigraphy, C6 glioma tumor was easy to be traced and interpreted at 1 h after administration of radiotracer. Our data suggest that 99mTc-HYNIC-Tyr, a new radiotracer based on amino acid, efficiently differentiates the tumor cells and goes into them. Our results indicate that this radiotracer has excellent capacity to detect tumor cells in rat and to be included as a radiopharmaceutical for detecting cancer tumors.
Collapse
Affiliation(s)
| | - Mostafa Erfani
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran, Iran.
| | | | - Masoud Mokhtary
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
12
|
Guerrero I, Correa A. Site‐Selective Trifluoromethylation Reactions of Oligopeptides. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000170] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Itziar Guerrero
- Department of Organic Chemistry IUniversity of the Basque Country (UPV/EHU) Joxe Mari Korta R&D Center, Avda. Tolosa 72 20018 Donostia-San Sebastián Spain
| | - Arkaitz Correa
- Department of Organic Chemistry IUniversity of the Basque Country (UPV/EHU) Joxe Mari Korta R&D Center, Avda. Tolosa 72 20018 Donostia-San Sebastián Spain
| |
Collapse
|
13
|
Zhekova HR, Sakuma T, Johnson R, Concilio SC, Lech PJ, Zdravkovic I, Damergi M, Suksanpaisan L, Peng KW, Russell SJ, Noskov S. Mapping of Ion and Substrate Binding Sites in Human Sodium Iodide Symporter (hNIS). J Chem Inf Model 2020; 60:1652-1665. [PMID: 32134653 DOI: 10.1021/acs.jcim.9b01114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human sodium iodide symporter (hNIS) is a theranostic reporter gene which concentrates several clinically approved SPECT and PET radiotracers and plays an essential role for the synthesis of thyroid hormones as an iodide transporter in the thyroid gland. Development of hNIS mutants which could enhance translocation of the desired imaging ions is currently underway. Unfortunately, it is hindered by lack of understanding of the 3D organization of hNIS and its relation to anion transport. There are no known crystal structures of hNIS in any of its conformational states. Homology modeling can be very effective in such situations; however, the low sequence identity between hNIS and relevant secondary transporters with available experimental structures makes the choice of a template and the generation of 3D models nontrivial. Here, we report a combined application of homology modeling and molecular dynamics refining of the hNIS structure in its semioccluded state. The modeling was based on templates from the LeuT-fold protein family and was done with emphasis on the refinement of the substrate-ion binding pocket. The consensus model developed in this work is compared to available biophysical and biochemical experimental data for a number of different LeuT-fold proteins. Some functionally important residues contributing to the formation of putative binding sites and permeation pathways for the cotransported Na+ ions and I- substrate were identified. The model predictions were experimentally tested by generation of mutant versions of hNIS and measurement of relative (to WT hNIS) 125I- uptake of 35 hNIS variants.
Collapse
Affiliation(s)
- Hristina R Zhekova
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Toshie Sakuma
- Imanis Life Sciences, Rochester, Minnesota 55901, United States.,Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Ryan Johnson
- Imanis Life Sciences, Rochester, Minnesota 55901, United States
| | - Susanna C Concilio
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota 55902, United States.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Patrycja J Lech
- Imanis Life Sciences, Rochester, Minnesota 55901, United States
| | - Igor Zdravkovic
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Mirna Damergi
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Kah-Whye Peng
- Imanis Life Sciences, Rochester, Minnesota 55901, United States.,Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Stephen J Russell
- Imanis Life Sciences, Rochester, Minnesota 55901, United States.,Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Sergei Noskov
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
14
|
Wu R, Liu S, Liu Y, Sun Y, Xiao H, Huang Y, Yang Z, Wu Z. PET probe with Aggregation Induced Emission characteristics for the specific turn-on of aromatase. Talanta 2020; 208:120412. [DOI: 10.1016/j.talanta.2019.120412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/04/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022]
|
15
|
The Effect of Chirality on the Application of 5-[18F]Fluoro-Aminosuberic Acid ([18F]FASu) for Oxidative Stress Imaging. Mol Imaging Biol 2019; 22:873-882. [DOI: 10.1007/s11307-019-01450-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Wu R, Liu S, Liu Y, Sun Y, Cheng X, Huang Y, Yang Z, Wu Z. Synthesis and biological evaluation of [18F](2S,4S)4-(3-fluoropropyl) arginine as a tumor imaging agent. Eur J Med Chem 2019; 183:111730. [DOI: 10.1016/j.ejmech.2019.111730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/21/2019] [Accepted: 09/21/2019] [Indexed: 12/31/2022]
|
17
|
Choi YK, Kim JJ, Chang YT. Holding-Oriented versus Gating-Oriented Live-Cell Distinction: Highlighting the Role of Transporters in Cell Imaging Probe Development. Acc Chem Res 2019; 52:3097-3107. [PMID: 31265234 DOI: 10.1021/acs.accounts.9b00253] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Small molecule imaging probes are powerful tools to understand complex biological systems. The mainstreams of imaging probe developments have been focused on the target holding of the probes; the holding targets are often cell-type-specific biomarkers. This type of the probe mechanism can be designated as holding-oriented live-cell distinction (HOLD). Our group has worked on the development of cell-type-selective probes using a diversity-oriented fluorescence library approach (DOFLA), where unbiased phenotypic screening is employed using fluorescent library compounds. Through the conventional target identification methods such as an affinity-based analysis, we elucidated that some of the probe mechanisms are HOLD. However, we also realized that sometimes there is no specific holding target for probes or the holding targets are ubiquitous. The observation led us to test an alternative mechanism of cell-type-specific probes as gating-oriented live-cell distinction (GOLD). We started to examine the gating mechanism of probes, which is mainly based on transporters but which does not necessarily require probe holding to cellular targets. Transporters can control the in and out movement of various nutrients and chemicals. Different expression levels of transporters in various cell types could provide the molecular mechanism of differential staining of cells by regulating the intracellular accumulation of a certain specific probe. A number of GOLD probes have been developed by modifying or mimicking endogenous substrates of transporters such as inorganic ions, glucose, amino acids, or neurotransmitters, utilizing broad substrate specificity of transporters. The radiolabeled or fluorophore-conjugated substrate mimetics have been widely used for live cell distinction and various applications such as disease-related cell or tissue imaging. In humans, there are about 400 solute carrier (SLC) transporters and 50 ATP-binding cassette (ABC) transporters. Since some transporters have broad substrate specificity, they can transport not only derivatives of endogenous natural substrates but also totally synthetic diverse imaging probes, such as DOFLA probes. Without preconsidering the structure of endogenous substrates, we recently demonstrated a series of live-cell imaging probes and elucidated their molecular mechanism as a gating one, either by SLC or ABC transporters. Transporter inhibitor panel and CRISPR-based transporter libraries could provide a systematic gating target elucidation platform. Considering the generality of DOFLA and the CRISPR-based genomic tool for transporter systems (>450 in humans), the GOLD approach will offer new insight and promise for unprecedented levels of novel cell imaging probe development.
Collapse
Affiliation(s)
- Yun-Kyu Choi
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jong-Jin Kim
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| |
Collapse
|
18
|
Chen J, Li C, Hong H, Liu H, Wang C, Xu M, Han Y, Liu Z. Side Chain Optimization Remarkably Enhances the in Vivo Stability of 18F-Labeled Glutamine for Tumor Imaging. Mol Pharm 2019; 16:5035-5041. [PMID: 31670970 DOI: 10.1021/acs.molpharmaceut.9b00891] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Similar to glycolysis, glutaminolysis acts as a vital energy source in tumor cells, providing building blocks for the metabolic needs of tumor cells. To capture glutaminolysis in tumors, 18F-(2S,4R)4-fluoroglutamine ([18F]FGln) and 18F-fluoroboronoglutamine ([18F]FBQ) have been successfully developed for positron emission tomography (PET) imaging, but these two molecules lack stability, resulting in undesired yet significant bone uptake. In this study, we found that [18F]FBQ-C2 is a stable Gln PET tracer by adding two more methylene groups to the side chain of [18F]FBQ. [18F]FBQ-C2 was synthesized with a good radiochemical yield of 35% and over 98% radiochemical purity. [18F]FBQ-C2 showed extreme stability in vitro, and no defluorination was observed after 2 h in phosphate buffered saline at 37 °C. The competitive inhibition assay results indicated that [18F]FBQ-C2 enters cells via the system ASC and N, similar to natural glutamine, and can be transported by tumor-overexpressed ASCT2. PET imaging and biodistribution results indicated that [18F]FBQ-C2 is stable in vivo with low bone uptake (0.81 ± 0.20% ID/g) and can be cleared rapidly from most tissues. Dynamic scan and pharmacokinetic studies using BGC823-xenograft-bearing mice revealed that [18F]FBQ-C2 accumulates specifically in tumors, with a longer half-life (101.18 ± 6.50 min) in tumor tissues than in other tissues (52.70 ± 12.44 min in muscle). Biodistribution exhibits a high tumor-to-normal tissue ratio (4.8 ± 1.7 for the muscle, 2.5 ± 1.0 for the stomach, 2.2 ± 0.9 for the liver, and 17.8 ± 8.4 for the brain). In conclusion, [18F]FBQ-C2 can be used to perform high-contrast Gln imaging of tumors and can serve as a PET tracer for clinical research.
Collapse
Affiliation(s)
- Junyi Chen
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Cong Li
- Peking University-Tsinghua University Center for Life Sciences, Beijing 100871, China
| | - Hanyu Hong
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hui Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chunhong Wang
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mengxin Xu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuxiang Han
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhibo Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking University-Tsinghua University Center for Life Sciences, Beijing 100871, China
| |
Collapse
|
19
|
Huang Y, Liu S, Wu R, Zhang L, Zhang Y, Hong H, Zhang A, Xiao H, Liu Y, Wu Z, Zhu L, Kung HF. Synthesis and preliminary evaluation of a novel glutamine derivative: (2S,4S)4-[ 18F]FEBGln. Bioorg Med Chem Lett 2019; 29:1047-1050. [PMID: 30871772 DOI: 10.1016/j.bmcl.2019.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/04/2019] [Accepted: 03/10/2019] [Indexed: 12/22/2022]
Abstract
We report the preparation of a novel glutamine derivative, (2S,4S)-2,5-diamino-4-(4-(2-fluoroethoxy)benzyl)-5-oxopentanoic acid, (2S, 4S)4-[18F]FEBGln ([18F]4), through efficient organic and radiosyntheses. In vitro assays of [18F]4 using MCF-7 cells showed that it entered cells via multiple amino acid transporter systems including system L and ASC2 transporters but not through the system A transporter. [18F]4 showed promising properties for tumor imaging and may serve as a lead compound for further optimizing and targeting the system L transporter associated with enhanced glutamine metabolism in cancer cells.
Collapse
Affiliation(s)
- Yong Huang
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Song Liu
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Renbo Wu
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Lifang Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yan Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Haiyan Hong
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Aili Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hao Xiao
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yajing Liu
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Lin Zhu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hank F Kung
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China; Department of Radiology, University of Pennsylvania, Philadelphia 19104, United States.
| |
Collapse
|
20
|
Verhoeven J, Hulpia F, Kersemans K, Bolcaen J, De Lombaerde S, Goeman J, Descamps B, Hallaert G, Van den Broecke C, Deblaere K, Vanhove C, Van der Eycken J, Van Calenbergh S, Goethals I, De Vos F. New fluoroethyl phenylalanine analogues as potential LAT1-targeting PET tracers for glioblastoma. Sci Rep 2019; 9:2878. [PMID: 30814660 PMCID: PMC6393465 DOI: 10.1038/s41598-019-40013-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/07/2019] [Indexed: 02/07/2023] Open
Abstract
The use of O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) as a positron emission tomography (PET) tracer for brain tumor imaging might have some limitations because of the relatively low affinity for the L-type amino acid transporter 1 (LAT1). To assess the stereospecificity and evaluate the influence of aromatic ring modification of phenylalanine LAT1 targeting tracers, six different fluoroalkylated phenylalanine analogues were synthesized. After in vitro Ki determination, the most promising compound, 2-[18F]-2-fluoroethyl-L-phenylalanine (2-[18F]FELP), was selected for further evaluation and in vitro comparison with [18F]FET. Subsequently, 2-[18F]FELP was assessed in vivo and compared with [18F]FET and [18F]FDG in a F98 glioblastoma rat model. 2-[18F]FELP showed improved in vitro characteristics over [18F]FET, especially when the affinity and specificity for system L is concerned. Based on our results, 2-[18F]FELP is a promising new PET tracer for brain tumor imaging.
Collapse
Affiliation(s)
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry, Ghent University, Ghent, Belgium
| | - Ken Kersemans
- Ghent University Hospital, Department of Nuclear Medicine, Ghent, Belgium
| | - Julie Bolcaen
- Ghent University Hospital, Department of Nuclear Medicine, Ghent, Belgium
| | | | - Jan Goeman
- Laboratory for Organic and Bio-organic synthesis, Ghent University, Ghent, Belgium
| | - Benedicte Descamps
- IBiTech-MEDISIP Ghent University, Department of Electronics and Information Systems, Ghent, Belgium
| | - Giorgio Hallaert
- Ghent University Hospital, Department of Neurosurgery, Ghent, Belgium
| | | | - Karel Deblaere
- Ghent University Hospital, Department of Radiology and Medical Imaging, Ghent, Belgium
| | - Christian Vanhove
- IBiTech-MEDISIP Ghent University, Department of Electronics and Information Systems, Ghent, Belgium
| | - Johan Van der Eycken
- Laboratory for Organic and Bio-organic synthesis, Ghent University, Ghent, Belgium
| | | | - Ingeborg Goethals
- Ghent University Hospital, Department of Nuclear Medicine, Ghent, Belgium
| | - Filip De Vos
- Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Watanabe S, Azim MAU, Nishinaka I, Sasaki I, Ohshima Y, Yamada K, Ishioka NS. A convenient and reproducible method for the synthesis of astatinated 4-[ 211At]astato-l-phenylalanine via electrophilic desilylation. Org Biomol Chem 2019; 17:165-171. [PMID: 30534678 DOI: 10.1039/c8ob02394h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The 211At-labeled compound, 4-[211At]astato-l-phenylalanine, is one of the most promising amino acid derivatives for use in targeted alpha therapy (TAT) for various cancers. Electrophilic demetallation of a stannyl precursor is the most widely used approach for labeling biomolecules with 211At. However, the low acid-resistance of the stannyl precursor necessitates the use of an N- and C-terminus-protected precursor, which results in a low overall radiochemical yield (RCY) due to the multiple synthetic steps involved. In this study, a deprotected organosilyl compound, 4-triethylsilyl-l-phenylalanine, was employed for the direct synthesis of astatinated phenylalanines. 211At was separately recovered from the irradiated 209Bi target using chloroform (CHCl3) and N-chlorosuccinimide-methanol (NCS-MeOH) solution. The RCYs of 4-[211At]astato-l-phenylalanine obtained from the triethylsilyl precursor with the use of 211At, isolated in CHCl3 and NCS-MeOH solution, were 75% and 64% respectively. In both cases, the retention time of the 4-[211At]astato-l-phenylalanine was found to be about 20 min, which showed reasonable correlation with the retention time of non-radioactive 4-halo-l-phenylalanines (4-chloro-, 4-bromo-, and 4-iodo-l-phenylalanine). The one-step reaction examined in this study involved mild reaction conditions (70 °C) and a short time (10 min) compared to the other currently reported procedures for astatination. Electrophilic desilylation was found to be very effective for the labeling of aromatic amino acids with 211At.
Collapse
Affiliation(s)
- Shigeki Watanabe
- Department of Radiation-Applied Biology, Takasaki Advanced Radiation Research Institute, National Institutes of Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Liu S, Ma H, Zhang Z, Lin L, Yuan G, Tang X, Nie D, Jiang S, Yang G, Tang G. Synthesis of enantiopure 18F-trifluoromethyl cysteine as a structure-mimetic amino acid tracer for glioma imaging. Theranostics 2019; 9:1144-1153. [PMID: 30867821 PMCID: PMC6401404 DOI: 10.7150/thno.29405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/05/2019] [Indexed: 12/16/2022] Open
Abstract
Although 11C-labelled sulfur-containing amino acids (SAAs) including L-methyl-[11C]methionine and S-[11C]-methyl-L-cysteine, are attractive tracers for glioma positron emission tomography (PET) imaging, their applications are limited by the short half-life of the radionuclide 11C (t1/2 = 20.4 min). However, development of 18F-labelled SAAs (18F, t1/2 = 109.8 min) without significant structural changes or relying on prosthetic groups remains to be a great challenge due to the absence of adequate space for chemical modification. Methods: We herein present 18F-trifluoromethylated D- and L-cysteines which were designed by replacing the methyl group with 18F-trifluoromethyl group using a structure-based bioisosterism strategy. These two enantiomers were synthesized stereoselectively from serine-derived cyclic sulfamidates via a nucleophilic 18F-trifluoromethylthiolation reaction followed by a deprotection reaction. Furthermore, we conducted preliminary in vitro and in vivo studies to investigate the feasibility of using 18F-trifluoromethylated cysteines as PET tracers for glioma imaging. Results: The two-step radiosynthesis provided the desired products in excellent enantiopurity (ee > 99%) with 14% ± 3% of radiochemical yield. In vitro cell study demonstrated that both enantiomers were taken up efficiently by C6 tumor cells and were mainly transported by systems L and ASC. Among them, the D-enantiomer exhibited relatively good stability and high tumor-specific accumulation in the animal studies. Conclusion: Our findings indicate that 18F-trifluoromethylated D-cysteine, a new SAA tracer, may be a potential candidate for glioma imaging. Taken together, our study represents a first step toward developing 18F-trifluoromethylated cysteines as structure-mimetic tracers for PET tumor imaging.
Collapse
Affiliation(s)
- Shaoyu Liu
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Hui Ma
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Zhanwen Zhang
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
- Department of Nuclear Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, People's Republic of China
| | - Liping Lin
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Gongjun Yuan
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Xiaolan Tang
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Dahong Nie
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Shende Jiang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Ganghua Tang
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| |
Collapse
|
23
|
Differential Diagnosis between Low-Grade and High-Grade Astrocytoma Using System A Amino Acid Transport PET Imaging with C-11-MeAIB: A Comparison Study with C-11-Methionine PET Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:1292746. [PMID: 30026674 PMCID: PMC6031168 DOI: 10.1155/2018/1292746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/06/2018] [Indexed: 11/29/2022]
Abstract
Introductions [N-methyl-C-11]α-Methylaminoisobutyric acid (MeAIB) is an artificial amino acid radiotracer used for PET study, which is metabolically stable in vivo. In addition, MeAIB is transported by system A neutral amino acid transport, which is observed ubiquitously in all types of mammalian cells. It has already been shown that MeAIB-PET is useful for malignant lymphoma, head and neck cancers, and lung tumors. However, there have been no reports evaluating the usefulness of MeAIB-PET in the diagnosis of brain tumors. The purpose of this study is to investigate the efficacy of system A amino acid transport PET imaging, MeAIB-PET, in clinical brain tumor diagnosis compared to [S-methyl-C-11]-L-methionine (MET)-PET. Methods Thirty-one consecutive patients (male: 16, female: 15), who were suspected of having brain tumors, received both MeAIB-PET and MET-PET within a 2-week interval. All patients were classified into two groups: Group A as a benign group, which included patients who were diagnosed as low-grade astrocytoma, grade II or less, or other low-grade astrocytoma (n=12) and Group B as a malignant group, which included patients who were diagnosed as anaplastic astrocytoma, glioblastoma multiforme (GBM), or recurrent GBM despite prior surgery or chemoradiotherapy (n=19). PET imaging was performed 20 min after the IV injection of MeAIB and MET, respectively. Semiquantitative analyses of MeAIB and MET uptake using SUVmax and tumor-to-contralateral normal brain tissue (T/N) ratio were evaluated to compare these PET images. ROC analyses for the diagnostic accuracy of MeAIB-PET and MET-PET were also calculated. Results In MeAIB-PET imaging, the SUVmax was 1.20 ± 1.29 for the benign group and 2.94 ± 1.22 for the malignant group (p < 0.005), and the T/N ratio was 3.77 ± 2.39 for the benign group and 16.83 ± 2.39 for the malignant group (p < 0.001). In MET-PET, the SUVmax was 3.01 ± 0.94 for the benign group and 4.72 ± 1.61 for the malignant group (p < 0.005), and the T/N ratio was 2.64 ± 1.40 for the benign group and 3.21 ± 1.14 for the malignant group (n.s.). For the analysis using the T/N ratio, there was a significant difference between the benign and malignant groups with MeAIB-PET with p < 0.001. The result of ROC analysis using the T/N ratio indicated a better diagnosis accuracy for MeAIB-PET for brain tumors than MET-PET (p < 0.01). Conclusions MeAIB, a system A amino acid transport-specific radiolabeled agents, could provide better assessments for detecting malignant type brain tumors. In a differential diagnosis between low-grade and high-grade astrocytoma, MeAIB-PET is a useful diagnostic imaging tool, especially in evaluations using the T/N ratio. Clinical trial registration This trial was registered with UMIN000032498.
Collapse
|
24
|
Improved Radiosynthesis and Biological Evaluations of L- and D-1-[ 18F]Fluoroethyl-Tryptophan for PET Imaging of IDO-Mediated Kynurenine Pathway of Tryptophan Metabolism. Mol Imaging Biol 2018; 19:589-598. [PMID: 27815661 DOI: 10.1007/s11307-016-1024-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE Tryptophan metabolism via indoleamine 2,3-dioxygenase (IDO)-mediated kynurenine pathway plays a role in immunomodulation and has been emerging as a plausible target for cancer immunotherapy. Imaging IDO-mediated kynurenine pathway of tryptophan metabolism with positron emission tomography (PET) could provide valuable information for noninvasive assessment of cancer immunotherapy response. In this work, radiotracer 1-(2-[18F]fluoroethyl)-L-tryptophan (1-L-[18F]FETrp) and its enantioisomer 1-D-[18F]FETrp were synthesized and evaluated for PET imaging of IDO-mediated kynurenine pathway of tryptophan metabolism. PROCEDURES Enantiopure 1-L-[18F]FETrp and 1-D-[18F]FETrp were prepared by a nucleophilic reaction of N-boc-1-(2-tosylethyl) tryptophan tert-butyl ester with [18F]Fluoride, followed by acid hydrolysis in a GE Tracerlab FX-N module. In vitro cell uptake assays were performed with a breast cancer cell line MDA-MB-231. Small animal PET/computed tomography (CT) imaging was carried out in a mouse model bearing MDA-MB-231 xenografts. RESULTS Automatic radiosynthesis of 1-L-[18F]FETrp and 1-D-[18F]FETrp was achieved by a one-pot two-step approach in 19.0 ± 7.0 and 9.0 ± 3.0 % (n = 3) decay-corrected yield with radiochemical purity over 99 %, respectively. In vitro cell uptake study indicated the uptake of 1-D-[18F]FETrp in MDA-MB-231 cells was 0.73 ± 0.07 %/mg of protein at 60 min, while, the corresponding uptake of 1-L-[18F]FETrp was 6.60 ± 0.77 %/mg. Further mechanistic assays revealed that amino acid transport systems L-tpye amino acid transporter (LAT) and alanine-, serine-, and cysteine-preferring (ASC), and enzyme IDO expression were involved in cell uptake of 1-L-[18F]FETrp. Small animal PET/CT imaging study showed the tumor uptake of 1-L-[18F]FETrp was 4.6 ± 0.4 % ID/g, while, the tumor uptake of 1-D-[18F]FETrp was low to 1.0 ± 0.2 % ID/g, which were confirmed by ex vivo biodistribution study. CONCLUSIONS We have developed a practical method for the automatic radiosynthesis of 1-L-[18F]FETrp and 1-D-[18F]FETrp. Our biological evaluation results suggest that 1-L-[18F]FETrp is a promising radiotracer for PET imaging of IDO-mediated kynurenine pathway of tryptophan metabolism in cancer.
Collapse
|
25
|
Goodman MM, Yu W, Jarkas N. Synthesis and biological properties of radiohalogenated α,α-disubstituted amino acids for PET and SPECT imaging of amino acid transporters (AATs). J Labelled Comp Radiopharm 2018; 61:272-290. [PMID: 29143354 DOI: 10.1002/jlcr.3584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/27/2017] [Accepted: 10/30/2017] [Indexed: 11/08/2022]
Abstract
Fluorine-18 and iodine-123 labeled nonnatural alicyclic and methyl branched disubstituted α,α-amino acids are a diverse and useful class of tumor imaging agents suitable for positron emission tomography and single photon emission computed tomography. These tracers target the increased expression of the cell membrane amino acid transporter systems L, ASC, and A exhibited by many human tumor cells. The most established clinical use for these radiolabeled amino acids is imaging primary and recurrent gliomas and primary, recurrent, and metastatic prostate cancer. This review focuses on the synthesis, radiolabeling, and amino acid transport mechanism of a series of nonnatural fluorine-18 and iodine-123 labeled analogs of 1-aminocyclobutane-1-carboxylic acid, 1-aminocyclopentane-1-carboxylic acid, α-aminoisobutyric acid, and α-methylaminoisobutyric acid.
Collapse
Affiliation(s)
- Mark M Goodman
- Department of Radiology and Imaging Sciences, Center for Systems Imaging, Emory University, Atlanta, GA, USA
| | - Weiping Yu
- Department of Radiology and Imaging Sciences, Center for Systems Imaging, Emory University, Atlanta, GA, USA
| | - Nashwa Jarkas
- Department of Radiology and Imaging Sciences, Center for Systems Imaging, Emory University, Atlanta, GA, USA
| |
Collapse
|
26
|
Sun A, Liu X, Tang G. Carbon-11 and Fluorine-18 Labeled Amino Acid Tracers for Positron Emission Tomography Imaging of Tumors. Front Chem 2018; 5:124. [PMID: 29379780 PMCID: PMC5775220 DOI: 10.3389/fchem.2017.00124] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022] Open
Abstract
Tumor cells have an increased nutritional demand for amino acids (AAs) to satisfy their rapid proliferation. Positron-emitting nuclide labeled AAs are interesting probes and are of great importance for imaging tumors using positron emission tomography (PET). Carbon-11 and fluorine-18 labeled AAs include the [1-11C] AAs, labeling alpha-C- AAs, the branched-chain of AAs and N-substituted carbon-11 labeled AAs. These tracers target protein synthesis or amino acid (AA) transport, and their uptake mechanism mainly involves AA transport. AA PET tracers have been widely used in clinical settings to image brain tumors, neuroendocrine tumors, prostate cancer, breast cancer, non-small cell lung cancer (NSCLC) and hepatocellular carcinoma. This review focuses on the fundamental concepts and the uptake mechanism of AAs, AA PET tracers and their clinical applications.
Collapse
Affiliation(s)
- Aixia Sun
- Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals and Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Liu
- Department of Anesthesiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ganghua Tang
- Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals and Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Morais M, Ferreira VFC, Figueira F, Mendes F, Raposinho P, Santos I, Oliveira BL, Correia JDG. Technetium-99m complexes of l-arginine derivatives for targeting amino acid transporters. Dalton Trans 2017; 46:14537-14547. [PMID: 28612866 DOI: 10.1039/c7dt01146f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although relevant from the clinical point of view, radiotracers targeting cationic amino acid transporters are relatively unexplored and, in particular, no metal-based radiotracers are known. The rare examples of complexes recognized by amino acid transporters, namely by the Na+-independent neutral l-type amino acid transporter 1 (LAT1), are 99mTc(i)/Re(i) compounds. Herein, we describe conjugates comprising a pyrazolyl-diamine chelating unit and the cationic amino acid l-arginine (l-Arg) linked by a propyl (L1) or hexyl linker (L2), which allowed the preparation of stable complexes of the type fac-[99mTc(CO)3(k3-L)]+ (Tc1, L = L1; Tc2, L = L2) and of the respective surrogates Re1 and Re2. Interestingly, complex Tc2 exhibited moderate levels of time-dependent internalization in three human tumoural cell lines, with approximately 3% of total applied activity internalized, corresponding to 21% of the cell-associated activity. A putative mechanism of retention in the cytoplasm of cells could be the interaction of the complex with inducible nitric oxide synthase (iNOS), which is the enzyme responsible for the catalytic oxidation of l-Arg to citrulline and nitric oxide. However, the surrogate complex Re2 does not recognize iNOS, as demonstrated by the in vitro assays with purified iNOS and in studies with lipopolysaccharide(LPS)-activated macrophages. Preliminary mechanistic studies suggest that the internalization of Tc2 is linked to the cationic amino acid transporters, namely system y+. This finding might open the way towards the development of novel families of metal-based radiotracers for probing metabolically active cancer cells.
Collapse
Affiliation(s)
- Maurício Morais
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela LRS, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Rugeri B, Audi H, Jewula P, Koudih R, Malacea-Kabbara R, Vimont D, Schulz J, Fernandez P, Jugé S. Designing Silylatedl-Amino Acids using a Wittig Strategy: Synthesis of Peptide Derivatives and18F-Labelling. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Baptiste Rugeri
- Institut de Chimie Moléculaire de l'Université de Bourgogne-Franche-Comté; ICMUB-OCS (UMR CNRS 6302); 19 avenue A. Savary BP 47870 21078 Dijon CEDEX France
| | - Hassib Audi
- Institut de Chimie Moléculaire de l'Université de Bourgogne-Franche-Comté; ICMUB-OCS (UMR CNRS 6302); 19 avenue A. Savary BP 47870 21078 Dijon CEDEX France
| | - Pawel Jewula
- Institut de Chimie Moléculaire de l'Université de Bourgogne-Franche-Comté; ICMUB-OCS (UMR CNRS 6302); 19 avenue A. Savary BP 47870 21078 Dijon CEDEX France
| | - Radouane Koudih
- Institut de Chimie Moléculaire de l'Université de Bourgogne-Franche-Comté; ICMUB-OCS (UMR CNRS 6302); 19 avenue A. Savary BP 47870 21078 Dijon CEDEX France
| | - Raluca Malacea-Kabbara
- Institut de Chimie Moléculaire de l'Université de Bourgogne-Franche-Comté; ICMUB-OCS (UMR CNRS 6302); 19 avenue A. Savary BP 47870 21078 Dijon CEDEX France
| | - Delphine Vimont
- Department Institut des Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA-UMR CNRS 5287); 146 rue Léo Saignat 33076 Bordeaux CEDEX France
| | - Jürgen Schulz
- Department Institut des Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA-UMR CNRS 5287); 146 rue Léo Saignat 33076 Bordeaux CEDEX France
| | - Philippe Fernandez
- Department Institut des Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA-UMR CNRS 5287); 146 rue Léo Saignat 33076 Bordeaux CEDEX France
| | - Sylvain Jugé
- Institut de Chimie Moléculaire de l'Université de Bourgogne-Franche-Comté; ICMUB-OCS (UMR CNRS 6302); 19 avenue A. Savary BP 47870 21078 Dijon CEDEX France
| |
Collapse
|
29
|
Fluorine-18 labeled amino acids for tumor PET/CT imaging. Oncotarget 2017; 8:60581-60588. [PMID: 28947996 PMCID: PMC5601164 DOI: 10.18632/oncotarget.19943] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022] Open
Abstract
Tumor glucose metabolism and amino acid metabolism are usually enhanced, 18F-FDG for tumor glucose metabolism PET imaging has been clinically well known, but tumor amino acid metabolism PET imaging is not clinically familiar. Radiolabeled amino acids (AAs) are an important class of PET/CT tracers that target the upregulated amino acid transporters to show elevated amino acid metabolism in tumor cells. Radiolabeled amino acids were observed to have high uptake in tumor cells but low in normal tissues and inflammatory tissues. The radionuclides used in labeling amino acids include 15O, 13N, 11C, 123I, 18F and 68Ga, among which the most commonly used is 18F [1]. Available data support the use of certain 18F-labeled AAs for PET/CT imaging of gliomas, neuroendocrine tumors, prostate cancer and breast cancer [2, 3]. With the progress of the method of 18F labeling AAs [4-6], 18F-labeled AAs are well established for tumor PET/CT imaging. This review focuses on the current status of key clinical applications of 18F-labeled AAs in tumor PET/CT imaging.
Collapse
|
30
|
Liu S, Tang X, Nie D, Jiang S, Tang G. Efficient synthesis of (2 S)- tert-butyl 2-(2-bromopropanamido)-5-oxo-5-(tritylamino)pentanoate as a precursor of PET radiotracer [ 18F]FPGLN. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2017.1315671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shaoyu Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaolan Tang
- College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Dahong Nie
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shende Jiang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Ganghua Tang
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
31
|
Liu S, Sun A, Zhang Z, Tang X, Nie D, Ma H, Jiang S, Tang G. Automated synthesis of N-(2-[ 18 F]Fluoropropionyl)-l-glutamic acid as an amino acid tracer for tumor imaging on a modified [ 18 F]FDG synthesis module. J Labelled Comp Radiopharm 2017; 60:331-336. [PMID: 28370543 DOI: 10.1002/jlcr.3505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 01/29/2023]
Abstract
N-(2-[18 F]Fluoropropionyl)-l-glutamic acid ([18 F]FPGLU) is a potential amino acid tracer for tumor imaging with positron emission tomography. However, due to the complicated multistep synthesis, the routine production of [18 F]FPGLU presents many challenging laboratory requirements. To simplify the synthesis process of this interesting radiopharmaceutical, an efficient automated synthesis of [18 F]FPGLU was performed on a modified commercial fluorodeoxyglucose synthesizer via a 2-step on-column hydrolysis procedure, including 18 F-fluorination and on-column hydrolysis reaction. [18 F]FPGLU was synthesized in 12 ± 2% (n = 10, uncorrected) radiochemical yield based on [18 F]fluoride using the tosylated precursor 2. The radiochemical purity was ≥98%, and the overall synthesis time was 35 minutes. To further optimize the radiosynthesis conditions of [18 F]FPGLU, a brominated precursor 3 was also used for the preparation of [18 F]FPGLU, and the improved radiochemical yield was up to 20 ± 3% (n = 10, uncorrected) in 35 minutes. Moreover, all these results were achieved using the similar on-column hydrolysis procedure on the modified fluorodeoxyglucose synthesis module.
Collapse
Affiliation(s)
- Shaoyu Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, Department of Nuclear Medicine, SunYat-sen University, Guangzhou, China
| | - Aixia Sun
- Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, Department of Nuclear Medicine, SunYat-sen University, Guangzhou, China
| | - Zhanwen Zhang
- Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, Department of Nuclear Medicine, SunYat-sen University, Guangzhou, China
| | - Xiaolan Tang
- School of materials and energy, South China Agricultural University, Guangzhou, China
| | - Dahong Nie
- Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, Department of Nuclear Medicine, SunYat-sen University, Guangzhou, China
| | - Hui Ma
- Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, Department of Nuclear Medicine, SunYat-sen University, Guangzhou, China
| | - Shende Jiang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Ganghua Tang
- Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, Department of Nuclear Medicine, SunYat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Liu S, Sun A, Zhang Z, Nie D, Tang X, Ma H, Jiang S, Tang G. Facile radiosynthesis of 18F-labeled β-glutamic acid as a new PET tracer for imaging lung cancer. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5220-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Nodwell MB, Yang H, Čolović M, Yuan Z, Merkens H, Martin RE, Bénard F, Schaffer P, Britton R. 18F-Fluorination of Unactivated C-H Bonds in Branched Aliphatic Amino Acids: Direct Synthesis of Oncological Positron Emission Tomography Imaging Agents. J Am Chem Soc 2017; 139:3595-3598. [PMID: 28248493 DOI: 10.1021/jacs.6b11533] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A mild and selective photocatalytic C-H 18F-fluorination reaction has been developed that provides direct access to 18F-fluorinated amino acids. The biodistribution and uptake of three 18F-labeled leucine analogues via LAT1 mediated transport in several cancer cell lines is reported. Positron emission tomography imaging of mice bearing PC3 (prostate) or U87 (glioma) xenografts using 5-[18F]-fluorohomoleucine showed high tumor uptake and excellent tumor visualization, highlighting the utility of this strategy for rapid tracer discovery for oncology.
Collapse
Affiliation(s)
- Matthew B Nodwell
- Department of Chemistry, Simon Fraser University , Burnaby, British Columbia V5A 1S2, Canada
| | - Hua Yang
- Life Sciences Division, TRIUMF , Vancouver, British Columbia V6T 2A3, Canada
| | - Milena Čolović
- Department of Molecular Oncology, BC Cancer Agency , Vancouver, British Columbia V5Z 1L3 Canada
| | - Zheliang Yuan
- Department of Chemistry, Simon Fraser University , Burnaby, British Columbia V5A 1S2, Canada.,Life Sciences Division, TRIUMF , Vancouver, British Columbia V6T 2A3, Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer Agency , Vancouver, British Columbia V5Z 1L3 Canada
| | - Rainer E Martin
- Medicinal Chemistry, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd , Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Agency , Vancouver, British Columbia V5Z 1L3 Canada
| | - Paul Schaffer
- Department of Chemistry, Simon Fraser University , Burnaby, British Columbia V5A 1S2, Canada.,Life Sciences Division, TRIUMF , Vancouver, British Columbia V6T 2A3, Canada
| | - Robert Britton
- Department of Chemistry, Simon Fraser University , Burnaby, British Columbia V5A 1S2, Canada
| |
Collapse
|
34
|
Pekošak A, Filp U, Škrinjar J, Poot AJ, Windhorst AD. A rapid and highly enantioselective C–11C bond formation of l-[11C]phenylalanine via chiral phase-transfer catalysis. Org Biomol Chem 2017; 15:570-575. [DOI: 10.1039/c6ob02633h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multistep asymmetric phase-transfer catalyzed carbon-11 benzylation for the enantioselective radiolabeling of l- and d-[11C]phenylalanine.
Collapse
Affiliation(s)
- Aleksandra Pekošak
- Department of Radiology and Nuclear Medicine
- VU University Medical Center
- Amsterdam
- the Netherlands
| | - Ulrike Filp
- Department of Radiology and Nuclear Medicine
- VU University Medical Center
- Amsterdam
- the Netherlands
| | - Janja Škrinjar
- Department of Radiology and Nuclear Medicine
- VU University Medical Center
- Amsterdam
- the Netherlands
- Faculty of Pharmacy
| | - Alex J. Poot
- Department of Radiology and Nuclear Medicine
- VU University Medical Center
- Amsterdam
- the Netherlands
| | - Albert D. Windhorst
- Department of Radiology and Nuclear Medicine
- VU University Medical Center
- Amsterdam
- the Netherlands
| |
Collapse
|
35
|
Su X, Li R, Kong KF, Tsang JSH. Transport of haloacids across biological membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:3061-3070. [PMID: 27668346 DOI: 10.1016/j.bbamem.2016.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 12/28/2022]
Abstract
Haloacids are considered to be environmental pollutants, but some of them have also been tested in clinical research. The way that haloacids are transported across biological membranes is important for both biodegradation and drug delivery purposes. In this review, we will first summarize putative haloacids transporters and the information about haloacids transport when studying carboxylates transporters. We will then introduce MCT1 and SLC5A8, which are respective transporter for antitumor agent 3-bromopyruvic acid and dichloroacetic acid, and monochloroacetic acid transporters Deh4p and Dehp2 from a haloacids-degrading bacterium. Phylogenetic analysis of these haloacids transporters and other monocarboxylate transporters reveals their evolutionary relationships. Haloacids transporters are not studied to the extent that they deserve compared with their great application potentials, thus future inter-discipline research are desired to better characterize their transport mechanisms for potential applications in both environmental and clinical fields.
Collapse
Affiliation(s)
- Xianbin Su
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Ruihong Li
- Shanghai Quality Safety Centre of Agricultural Products, Shanghai 200335, PR China.
| | - Ka-Fai Kong
- Molecular Microbiology Laboratory, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | - Jimmy S H Tsang
- Molecular Microbiology Laboratory, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong.
| |
Collapse
|
36
|
Khosravian P, Shafiee Ardestani M, Khoobi M, Ostad SN, Dorkoosh FA, Akbari Javar H, Amanlou M. Mesoporous silica nanoparticles functionalized with folic acid/methionine for active targeted delivery of docetaxel. Onco Targets Ther 2016; 9:7315-7330. [PMID: 27980423 PMCID: PMC5144897 DOI: 10.2147/ott.s113815] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are known as carriers with high loading capacity and large functionalizable surface area for target-directed delivery. In this study, a series of docetaxel-loaded folic acid- or methionine-functionalized mesoporous silica nanoparticles (DTX/MSN-FA or DTX/MSN-Met) with large pores and amine groups at inner pore surface properties were prepared. The results showed that the MSNs were successfully synthesized, having good pay load and pH-sensitive drug release kinetics. The cellular investigation on MCF-7 cells showed better performance of cytotoxicity and cell apoptosis and an increase in cellular uptake of targeted nanoparticles. In vivo fluorescent imaging on healthy BALB/c mice proved that bare MSN-NH2 are mostly accumulated in the liver but MSN-FA or MSN-Met are more concentrated in the kidney. Importantly, ex vivo fluorescent images of tumor-induced BALB/c mice organs revealed the ability of MSN-FA to reach the tumor tissues. In conclusion, DTX/MSNs exhibited a good anticancer activity and enhanced the possibility of targeted drug delivery for breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center
- Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Meghdadi N, Soltani M, Niroomand-Oscuii H, Ghalichi F. Image based modeling of tumor growth. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2016; 39:601-13. [PMID: 27596102 DOI: 10.1007/s13246-016-0475-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 08/16/2016] [Indexed: 01/11/2023]
Abstract
Tumors are a main cause of morbidity and mortality worldwide. Despite the efforts of the clinical and research communities, little has been achieved in the past decades in terms of improving the treatment of aggressive tumors. Understanding the underlying mechanism of tumor growth and evaluating the effects of different therapies are valuable steps in predicting the survival time and improving the patients' quality of life. Several studies have been devoted to tumor growth modeling at different levels to improve the clinical outcome by predicting the results of specific treatments. Recent studies have proposed patient-specific models using clinical data usually obtained from clinical images and evaluating the effects of various therapies. The aim of this review is to highlight the imaging role in tumor growth modeling and provide a worthwhile reference for biomedical and mathematical researchers with respect to tumor modeling using the clinical data to develop personalized models of tumor growth and evaluating the effect of different therapies.
Collapse
Affiliation(s)
- N Meghdadi
- Division of Biomechanics, Department of Mechanical Engineering, Sahand University of Technology, East Azerbaijan, Tabriz, Iran.,Computational Medicine Institute, Tehran, Iran
| | - M Soltani
- Division of Nuclear Medicine, Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287-0807, USA. .,Department of Mechanical Engineering, K. N. T. University of Technology, Tehran, Iran. .,Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran. .,Computational Medicine Institute, Tehran, Iran.
| | - H Niroomand-Oscuii
- Division of Biomechanics, Department of Mechanical Engineering, Sahand University of Technology, East Azerbaijan, Tabriz, Iran.
| | - F Ghalichi
- Division of Biomechanics, Department of Mechanical Engineering, Sahand University of Technology, East Azerbaijan, Tabriz, Iran
| |
Collapse
|
38
|
Arimoto MK, Higashi T, Nishii R, Kagawa S, Takahashi M, Kishibe Y, Yamauchi H, Ishitoya S, Oonishi H, Nakamoto Y, Togashi K. (11)C-methylaminoisobutyric acid (MeAIB) PET for evaluation of prostate cancer: compared with (18)F-fluorodeoxyglucose PET. Ann Nucl Med 2016; 30:553-62. [PMID: 27329084 DOI: 10.1007/s12149-016-1098-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/03/2016] [Indexed: 11/27/2022]
Abstract
OBJECTIVE α-N-methyl-(11)C-methylaminoisobutyric acid ((11)C-MeAIB) is a selective substrate of system A amino acid transport, and known to accumulate in malignant lesions. The aim of this study was to evaluate the utility of MeAIB PET for the assessment of prostate cancer, compared with FDG PET. METHODS Thirty-four men (age range 57-77 years) with prostate cancer were prospectively enrolled, and underwent MeAIB PET and FDG PET between January 2011 and January 2013. MeAIB PET and FDG PET were performed at 20 and 50 min post-injection, respectively. SUVmax of the prostate was calculated, and visual analysis was conducted for MeAIB and FDG PET studies. MRI images were visually evaluated if available. All patients received total prostatectomy subsequently, and imaging findings were compared with pathological results, including T stage, Gleason score, and tumor size. The patient-based and lesion-based sensitivity and specificity were calculated according to pathological significant cancer. RESULTS Mean value of SUVmax of (11)C-MeAIB PET and (18)F-FDG PET in prostate cancer were 3.18 (±1.90, range; 1.55-9.57) and 3.88 (±2.85, range; 2.04-14.47). MeAIB PET and FDG PET were positive by visual analysis in 47.1 % (16/34) and 44.1 % (15/34) of the patients. MRI was positive in 51.5 % (17/33). Pathological stage and Gleason score were as follows: Stage 2 (n = 23), 3 (n = 8), and 4 (n = 3); Gleason score 6 (n = 13), 7 (n = 16), 8 (n = 3), and 9 (n = 2). The sensitivities tended to be higher according to higher pathological T stage or Gleason sum score for both MeAIB and FDG PET studies. Visual analysis of both MeAIB PET and FDG PET had significant correlation with extraprostatic extension (p < 0.05). MeAIB PET and FDG PET had complementary results by visual analysis in the assessment of prostate cancer. The patient-based sensitivity of MeAIB PET, FDG PET, and MRI were 51.6, 48.4, and 56.7 %, respectively. The patient-based specificity of these modalities was 100 % for each modality. CONCLUSIONS MeAIB PET has better diagnostic results than FDG PET for the assessment of significant prostate cancer, and these PET studies showed complementary results. MRI has even better diagnostic results than (11)C-MeAIB PET. MeAIB accumulates in prostate cancer, which indicates that the system A amino acid transport pathway is activated in prostate cancer.
Collapse
Affiliation(s)
- Maya K Arimoto
- Shiga Medical Center Research Institute, 5-4-30 Moriyama, Moriyama, Shiga, 524-8524, Japan
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan
| | - Tatsuya Higashi
- Shiga Medical Center Research Institute, 5-4-30 Moriyama, Moriyama, Shiga, 524-8524, Japan.
| | - Ryuichi Nishii
- National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
- Department of Radiology, Faculty of Medicine, Miyazaki University, 5200 Kihara, Kiyotake-cho, Miyazaki, Miyazaki, 889-1692, Japan
| | - Shinya Kagawa
- Shiga Medical Center Research Institute, 5-4-30 Moriyama, Moriyama, Shiga, 524-8524, Japan
| | - Masaaki Takahashi
- Shiga Medical Center Research Institute, 5-4-30 Moriyama, Moriyama, Shiga, 524-8524, Japan
| | - Yoshihiko Kishibe
- Shiga Medical Center Research Institute, 5-4-30 Moriyama, Moriyama, Shiga, 524-8524, Japan
| | - Hiroshi Yamauchi
- Shiga Medical Center Research Institute, 5-4-30 Moriyama, Moriyama, Shiga, 524-8524, Japan
| | - Satoshi Ishitoya
- Department of Urology, Shiga Medical Center, 5-4-30 Moriyama, Moriyama, Shiga, 524-8524, Japan
- Department of Urology, Otsu Red Cross Hospital, 1-1-35 Nagara, Otsu, Shiga, 520-0046, Japan
| | - Hiroyuki Oonishi
- Department of Urology, Shiga Medical Center, 5-4-30 Moriyama, Moriyama, Shiga, 524-8524, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan
| |
Collapse
|
39
|
Chiotellis A, Müller Herde A, Rössler SL, Brekalo A, Gedeonova E, Mu L, Keller C, Schibli R, Krämer SD, Ametamey SM. Synthesis, Radiolabeling, and Biological Evaluation of 5-Hydroxy-2-[18F]fluoroalkyl-tryptophan Analogues as Potential PET Radiotracers for Tumor Imaging. J Med Chem 2016; 59:5324-40. [DOI: 10.1021/acs.jmedchem.6b00057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Aristeidis Chiotellis
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Adrienne Müller Herde
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Simon L. Rössler
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Ante Brekalo
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Erika Gedeonova
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Linjing Mu
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Department of Nuclear
Medicine, University Hospital Zurich, Zurich 8091, Switzerland
| | - Claudia Keller
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Roger Schibli
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Stefanie D. Krämer
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Simon M. Ametamey
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| |
Collapse
|
40
|
Bouhlel A, Alyami W, Li A, Yuan L, Rich K, McConathy J. Effect of α-Methyl versus α-Hydrogen Substitution on Brain Availability and Tumor Imaging Properties of Heptanoic [F-18]Fluoroalkyl Amino Acids for Positron Emission Tomography (PET). J Med Chem 2016; 59:3515-31. [PMID: 26967318 DOI: 10.1021/acs.jmedchem.6b00189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two [(18)F]fluoroalkyl substituted amino acids differing only by the presence or absence of a methyl group on the α-carbon, (S)-2-amino-7-[(18)F]fluoro-2-methylheptanoic acid ((S)-[(18)F]FAMHep, (S)-[(18)F]14) and (S)-2-amino-7-[(18)F]fluoroheptanoic acid ((S)-[(18)F]FAHep, (S)-[(18)F]15), were developed for brain tumor imaging and compared to the well-established system L amino acid tracer, O-(2-[(18)F]fluoroethyl)-l-tyrosine ([(18)F]FET), in the delayed brain tumor (DBT) mouse model of high-grade glioma. Cell uptake, biodistribution, and PET/CT imaging studies showed differences in amino acid transport of these tracer by DBT cells. Recognition of (S)-[(18)F]15 but not (S)-[(18)F]14 by system L amino acid transporters led to approximately 8-10-fold higher uptake of the α-hydrogen substituted analogue (S)-[(18)F]15 in normal brain. (S)-[(18)F]15 had imaging properties similar to those of (S)-[(18)F]FET in the DBT tumor model while (S)-[(18)F]14 afforded higher tumor to brain ratios due to much lower uptake by normal brain. These results have important implications for the future development of α-alkyl and α,α-dialkyl substituted amino acids for brain tumor imaging.
Collapse
Affiliation(s)
- Ahlem Bouhlel
- Department of Radiology, School of Medicine, Washington University in St. Louis , St. Louis, Missouri 63110, United States.,Inserm, Vascular Center of Marseille (UMR_S1076), CERIMED, Aix-Marseille University , Marseille, France
| | - Wadha Alyami
- Doisy College of Health Sciences, Saint Louis University , St. Louis, Missouri 63103, United States
| | - Aixiao Li
- Department of Radiology, School of Medicine, Washington University in St. Louis , St. Louis, Missouri 63110, United States
| | - Liya Yuan
- Department of Neurosurgery, School of Medicine, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Keith Rich
- Department of Neurosurgery, School of Medicine, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Jonathan McConathy
- Department of Radiology, School of Medicine, Washington University in St. Louis , St. Louis, Missouri 63110, United States.,Department of Radiology, University of Alabama at Birmingham , Birmingham, Alabama 35249, United States
| |
Collapse
|
41
|
Sharma P, Mukherjee A. Newer positron emission tomography radiopharmaceuticals for radiotherapy planning: an overview. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:53. [PMID: 26904575 PMCID: PMC4739998 DOI: 10.3978/j.issn.2305-5839.2016.01.26] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 12/17/2015] [Indexed: 01/30/2023]
Abstract
Positron emission tomography-computed tomography (PET-CT) has changed cancer imaging in the last decade, for better. It can be employed for radiation treatment planning of different cancers with improved accuracy and outcomes as compared to conventional imaging methods. (18)F-fluorodeoxyglucose remains the most widely used though relatively non-specific cancer imaging PET tracer. A wide array of newer PET radiopharmaceuticals has been developed for targeted imaging of different cancers. PET-CT with such new PET radiopharmaceuticals has also been used for radiotherapy planning with encouraging results. In the present review we have briefly outlined the role of PET-CT with newer radiopharmaceuticals for radiotherapy planning and briefly reviewed the available literature in this regard.
Collapse
|
42
|
Burkemper JL, Huang C, Li A, Yuan L, Rich K, McConathy J, Lapi SE. Synthesis and Biological Evaluation of (S)-Amino-2-methyl-4-[(76)Br]bromo-3-(E)-butenoic Acid (BrVAIB) for Brain Tumor Imaging. J Med Chem 2015; 58:8542-52. [PMID: 26444035 PMCID: PMC4764504 DOI: 10.1021/acs.jmedchem.5b01035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The novel compound, (S)-amino-2-methyl-4-[(76)Br]bromo-3-(E)-butenoic acid (BrVAIB, [(76)Br]5), was characterized against the known system A tracer, IVAIB ([(123)I]8). [(76)Br]5 was prepared in a 51% ± 19% radiochemical yield with high radiochemical purity (≥98%). The biological properties of [(76)Br]5 were compared with those of [(123)I]8. Results showed that [(76)Br]5 undergoes mixed amino acid transport by system A and system L transport, while [(123)I]8 had less uptake by system L. [(76)Br]5 demonstrated higher uptake than [(123)I]8 in DBT tumors 1 h after injection (3.7 ± 0.4% ID/g vs 1.5 ± 0.3% ID/g) and also showed higher uptake vs [(123)I]8 in normal brain. Small animal PET studies with [(76)Br]5 demonstrated good tumor visualization of intracranial DBTs up to 24 h with clearance from normal tissues. These results indicate that [(76)Br]5 is a promising PET tracer for brain tumor imaging and lead compound for a mixed system A and system L transport substrate.
Collapse
Affiliation(s)
- Jennifer L. Burkemper
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| | - Chaofeng Huang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| | - Aixiao Li
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| | - Liya Yuan
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| | - Keith Rich
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| | - Jonathan McConathy
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| | - Suzanne E. Lapi
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
43
|
Mahajan A, Goh V, Basu S, Vaish R, Weeks AJ, Thakur MH, Cook GJ. Bench to bedside molecular functional imaging in translational cancer medicine: to image or to imagine? Clin Radiol 2015; 70:1060-1082. [PMID: 26187890 DOI: 10.1016/j.crad.2015.06.082] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 06/03/2015] [Accepted: 06/08/2015] [Indexed: 02/05/2023]
Abstract
Ongoing research on malignant and normal cell biology has substantially enhanced the understanding of the biology of cancer and carcinogenesis. This has led to the development of methods to image the evolution of cancer, target specific biological molecules, and study the anti-tumour effects of novel therapeutic agents. At the same time, there has been a paradigm shift in the field of oncological imaging from purely structural or functional imaging to combined multimodal structure-function approaches that enable the assessment of malignancy from all aspects (including molecular and functional level) in a single examination. The evolving molecular functional imaging using specific molecular targets (especially with combined positron-emission tomography [PET] computed tomography [CT] using 2- [(18)F]-fluoro-2-deoxy-D-glucose [FDG] and other novel PET tracers) has great potential in translational research, giving specific quantitative information with regard to tumour activity, and has been of pivotal importance in diagnoses and therapy tailoring. Furthermore, molecular functional imaging has taken a key place in the present era of translational cancer research, producing an important tool to study and evolve newer receptor-targeted therapies, gene therapies, and in cancer stem cell research, which could form the basis to translate these agents into clinical practice, popularly termed "theranostics". Targeted molecular imaging needs to be developed in close association with biotechnology, information technology, and basic translational scientists for its best utility. This article reviews the current role of molecular functional imaging as one of the main pillars of translational research.
Collapse
Affiliation(s)
- A Mahajan
- Division of Imaging Sciences and Biomedical Engineering, King's College London, UK; Department of Radiodiagnosis, Tata Memorial Centre, Mumbai, 400012, India.
| | - V Goh
- Division of Imaging Sciences and Biomedical Engineering, King's College London, UK
| | - S Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe, Mumbai, 400 012, India
| | - R Vaish
- Department of Head and Neck Surgical Oncology, Tata Memorial Centre, Mumbai, 400012, India
| | - A J Weeks
- Division of Imaging Sciences and Biomedical Engineering, King's College London, UK
| | - M H Thakur
- Department of Radiodiagnosis, Tata Memorial Centre, Mumbai, 400012, India
| | - G J Cook
- Division of Imaging Sciences and Biomedical Engineering, King's College London, UK; Department of Nuclear Medicine, Guy's and St Thomas NHS Foundation Trust Hospital, London, UK
| |
Collapse
|
44
|
Liu Z, Chen H, Chen K, Shao Y, Kiesewetter DO, Niu G, Chen X. Boramino acid as a marker for amino acid transporters. SCIENCE ADVANCES 2015; 1:e1500694. [PMID: 26601275 PMCID: PMC4643766 DOI: 10.1126/sciadv.1500694] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/08/2015] [Indexed: 06/05/2023]
Abstract
Amino acid transporters (AATs) are a series of integral channels for uphill cellular uptake of nutrients and neurotransmitters. Abnormal expression of AATs is often associated with cancer, addiction, and multiple mental diseases. Although methods to evaluate in vivo expression of AATs would be highly useful, efforts to develop them have been hampered by a lack of appropriate tracers. We describe a new class of AA mimics-boramino acids (BAAs)-that can serve as general imaging probes for AATs. The structure of a BAA is identical to that of the corresponding natural AA, except for an exotic replacement of the carboxylate with -BF3 (-). Cellular studies demonstrate strong AAT-mediated cell uptake, and animal studies show high tumor-specific accumulation, suggesting that BAAs hold great promise for the development of new imaging probes and smart AAT-targeting drugs.
Collapse
Affiliation(s)
- Zhibo Liu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Haojun Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Department of nuclear medicine, Xiamen Cancer Center, First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Yihan Shao
- Laboratory of Computational Biology, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Dale O. Kiesewetter
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
45
|
Preclinical evaluation of 2-amino-2-[11C]methyl-butanoic acid as a potential tumor-imaging agent in a mouse model. Nucl Med Commun 2015; 36:1107-12. [PMID: 26259115 DOI: 10.1097/mnm.0000000000000364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE C-labeled 2-amino-2-methyl-butanoic acid (Iva) was previously reported to provide high tumor uptake; however, the pharmacokinetic properties of C-labeled Iva have not been characterized. In the present study, we evaluated the potential of [C]Iva as a PET probe for tumor imaging. METHODS [C]Iva was incubated in mouse serum for 60 min at 37°C and then analyzed by high-performance liquid chromatography and thin-layer chromatography. In-vitro cellular uptake of [C]Iva was determined in PBS and sodium-free buffer at 37°C using SY human small-cell lung cancer cells. The effects of inhibitors of amino acid transporters on [C]Iva uptake were also determined in PBS. In-vivo distribution and dynamic PET studies were conducted in SY tumor-bearing mice. RESULTS [C]Iva was stable in mouse serum in vitro for 60 min. The cellular uptake of [C]Iva was linearly increased for 20 min in both PBS and sodium-free buffer and almost completely inhibited by an inhibitor of system L amino acid transporters and another of LAT1, a transporter of system L. In-vivo distribution and dynamic PET studies showed that [C]Iva was highly accumulated in tumor, but not in normal tissues, except for the pancreas and kidneys. The [C]Iva uptake ratio of tumor to several normal tissues, such as the lung, muscle, and brain, was high. CONCLUSION [C]Iva was stable in mouse serum and transported through system L amino acid transporters including LAT1, which is highly expressed in several tumors. [C]Iva is a promising PET probe for noninvasive tumor imaging.
Collapse
|
46
|
Jeon JY, Lee H, Park J, Lee M, Park SW, Kim JS, Lee M, Cho B, Kim K, Choi AMK, Kim CK, Yun M. The regulation of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase by autophagy in low-glycolytic hepatocellular carcinoma cells. Biochem Biophys Res Commun 2015; 463:440-6. [PMID: 26036577 DOI: 10.1016/j.bbrc.2015.05.103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 05/29/2015] [Indexed: 11/20/2022]
Abstract
The glycolytic phenotype is a dominant metabolic phenomenon in cancer and is reflected in becoming aggressive. Certain hepatocellular carcinoma lack increased glycolysis and prefer to uptake acetate than glucose for metabolism. Autophagy plays a role in preserving energies and nutrients when there is limited external nutrient supply and maintains glucose level of blood though supporting gluconeogenesis in the liver. As the role of autophagy and gluconeogenesis in HCC following the glycolic activity was not clear, we cultured HCC cells with different glycolytic levels in Hank's balanced salt solution (HBSS) to induce autophagy and conducted the activity of gluconeogenesis. Both autophagy and gluconeogenesis were induced in low glycolytic HCC cells (HepG2). In glycolytic Hep3B cells, only autophagy without gluconeogenesis was induced upon starvation. When autophagy was blocked, the level of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) was reduced in HepG2 cells and not in Hep3B. Altogether, we investigated contribution of hepatic gluconeogenesis to the metabolic phenotype of HCC cells and the role of autophagy as a potential mechanism regulating gluconeogenesis in low glycolytic HCC.
Collapse
Affiliation(s)
- Jeong Yong Jeon
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752, South Korea
| | - Hyangkyu Lee
- Department of Clinical Nursing Science, Yonsei University College of Nursing, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752, South Korea
| | - Jeayeo Park
- Department of Clinical Nursing Science, Yonsei University College of Nursing, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752, South Korea
| | - Misu Lee
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752, South Korea
| | - Sae Whan Park
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752, South Korea
| | - Ji Sook Kim
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752, South Korea
| | - Milim Lee
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752, South Korea
| | - Byoungchul Cho
- Division of Medical Oncology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752, South Korea
| | - Kyungsup Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project for Medical Science, Institute of Genetic Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752, South Korea
| | - Augustine M K Choi
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, NY, USA
| | - Chun K Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02026, USA.
| | - Mijin Yun
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752, South Korea.
| |
Collapse
|
47
|
Bouhlel A, Zhou D, Li A, Yuan L, Rich KM, McConathy J. Synthesis, Radiolabeling, and Biological Evaluation of (R)- and (S)-2-Amino-5-[(18)F]fluoro-2-methylpentanoic Acid ((R)-, (S)-[(18)F]FAMPe) as Potential Positron Emission Tomography Tracers for Brain Tumors. J Med Chem 2015; 58:3817-29. [PMID: 25843369 DOI: 10.1021/jm502023y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel (18)F-labeled α,α-disubstituted amino acid-based tracer, 2-amino-5-[(18)F]fluoro-2-methylpentanoic acid ([(18)F]FAMPe), has been developed for brain tumor imaging with a longer alkyl side chain than previously reported compounds to increase brain availability via system L amino acid transport. Both enantiomers of [(18)F]FAMPe were obtained in good radiochemical yield (24-52% n = 8) and high radiochemical purity (>99%). In vitro uptake assays in mouse DBT gliomas cells revealed that (S)-[(18)F]FAMPe enters cells partly via sodium-independent system L transporters and also via other nonsystem A transport systems including transporters that recognize glutamine. Biodistribution and small animal PET/CT studies in the mouse DBT model of glioblastoma showed that both (R)- and (S)-[(18)F]FAMPe have good tumor imaging properties with the (S)-enantiomer providing higher tumor uptake and tumor to brain ratios. Comparison of the SUVs showed that (S)-[(18)F]FAMPe had higher tumor to brain ratios compared to (S)-[(18)F]FET, a well-established system L substrate.
Collapse
Affiliation(s)
- Ahlem Bouhlel
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| | - Dong Zhou
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| | - Aixiao Li
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| | - Liya Yuan
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| | - Keith M Rich
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| | - Jonathan McConathy
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
48
|
Bernard J, Malacea-Kabbara R, Clemente GS, Burke BP, Eymin MJ, Archibald SJ, Jugé S. o-Boronato- and o-Trifluoroborato–Phosphonium Salts Supported by l-α-Amino Acid Side Chain. J Org Chem 2015; 80:4289-98. [DOI: 10.1021/acs.joc.5b00246] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julie Bernard
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB) StéréochIM UMR CNRS 6302, 9 Avenue A. Savary BP 47870, 21078 Dijon Cedex, France
| | - Raluca Malacea-Kabbara
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB) StéréochIM UMR CNRS 6302, 9 Avenue A. Savary BP 47870, 21078 Dijon Cedex, France
| | - Gonçalo S. Clemente
- Department
of Chemistry and Positron Emission Tomography Research Centre, University of Hull, Cottingham Road, Hull, East
Yorkshire HU6 7RX, United Kingdom
| | - Benjamin P. Burke
- Department
of Chemistry and Positron Emission Tomography Research Centre, University of Hull, Cottingham Road, Hull, East
Yorkshire HU6 7RX, United Kingdom
| | - Marie-Joëlle Eymin
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB) StéréochIM UMR CNRS 6302, 9 Avenue A. Savary BP 47870, 21078 Dijon Cedex, France
| | - Stephen J. Archibald
- Department
of Chemistry and Positron Emission Tomography Research Centre, University of Hull, Cottingham Road, Hull, East
Yorkshire HU6 7RX, United Kingdom
| | - Sylvain Jugé
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB) StéréochIM UMR CNRS 6302, 9 Avenue A. Savary BP 47870, 21078 Dijon Cedex, France
| |
Collapse
|
49
|
Tsuji AB, Sugyo A, Sudo H, Suzuki C, Wakizaka H, Zhang MR, Kato K, Saga T. Preclinical assessment of early tumor response after irradiation by positron emission tomography with 2-amino-[3-¹¹C]isobutyric acid. Oncol Rep 2015; 33:2361-7. [PMID: 25813536 DOI: 10.3892/or.2015.3868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/09/2015] [Indexed: 11/06/2022] Open
Abstract
The positron emission tomography (PET) probe, 2-amino-[3-¹¹C]isobutyric acid ([3-¹¹C]AIB), is reported to accumulate less in inflammatory lesions than 2-deoxy-2-[¹⁸F]fluoro-D-glucose ([¹⁸F]FDG) and has the potential for evaluation of the efficacy of radiotherapy. To determine whether [3-¹¹C]AIB is useful to monitor early metabolic change in tumors after radiotherapy, we evaluated the temporal change in [3-¹¹C]AIB tumor uptake, tumor volume, histological features and expression of amino acid transporters early after radiotherapy in a mouse tumor model. PET with [3-¹¹C]AIB was conducted in mice bearing a subcutaneous tumor (SY, derived from small cell lung cancer) in two schedules: schedule 1, before (day -1) and after (days 1 and 3) 15 Gy of radiation and schedule 2, days -1, 1 and 5. [3-¹¹C]AIB tumor uptake tended to increase on day 1 after irradiation and decreased thereafter. Tumor uptake was not correlated with tumor volume in schedule 1. Although tumor uptake was correlated with tumor volume in schedule 2, this correlation was lost when the day 5 data of greatly reduced tumor volumes were excluded. In a separate group of tumor-bearing mice, excised tumor sections were stained with terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) or anti-Ki-67 antibody. There was no correlation between tumor uptake and percentages of TUNEL- or Ki-67-positive cells. Expression of amino acid transporters, SLC38A1, SLC38A2 and SLC38A4, was determined by real-time RT-PCR. SLC38A1 and SLC38A2 were expressed in SY tumors, and a significant correlation was observed between [3-¹¹C]AIB tumor uptake and SLC38A1 expression. In conclusion, early change in [3-¹¹C]AIB tumor uptake after irradiation reflected the temporal change in amino acid transporter expression, while it was independent of change in tumor volume, apoptosis and cell proliferation. PET with [3-¹¹C]AIB has the potential for use in non-invasive evaluation of early metabolic change after irradiation before morphological change of tumors.
Collapse
Affiliation(s)
- Atsushi B Tsuji
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan
| | - Aya Sugyo
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan
| | - Hitomi Sudo
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan
| | - Chie Suzuki
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan
| | - Hidekatsu Wakizaka
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- Molecular Probe Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan
| | - Koichi Kato
- Molecular Probe Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan
| | - Tsuneo Saga
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
50
|
Hanaoka H, Ohshima Y, Suzuki Y, Yamaguchi A, Watanabe S, Uehara T, Nagamori S, Kanai Y, Ishioka NS, Tsushima Y, Endo K, Arano Y. Development of a Widely Usable Amino Acid Tracer: ⁷⁶Br-α-Methyl-Phenylalanine for Tumor PET Imaging. J Nucl Med 2015; 56:791-7. [PMID: 25814518 DOI: 10.2967/jnumed.114.152215] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/03/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Radiolabeled amino acids are superior PET tracers for the imaging of malignant tumors, and amino acids labeled with (76)Br, an attractive positron emitter because of its relatively long half-life (16.2 h), could potentially be a widely usable tumor imaging tracer. In this study, in consideration of its stability and tumor specificity, we designed two (76)Br-labeled amino acid derivatives, 2-(76)Br-bromo-α-methyl-l-phenylalanine (2-(76)Br-BAMP) and 4-(76)Br-bromo-α-methyl-l-phenylalanine (4-(76)Br-BAMP), and investigated their potential as tumor imaging agents. METHODS Both (76)Br- and (77)Br-labeled amino acid derivatives were prepared. We performed in vitro and in vivo stability studies and cellular uptake studies using the LS180 colon adenocarcinoma cell line. Biodistribution studies in normal mice and in LS180 tumor-bearing mice were performed, and the tumors were imaged with a small-animal PET scanner. RESULTS Both (77)Br-BAMPs were stable in the plasma and in the murine body. Although both (77)Br-BAMPs were taken up by LS180 cells and the uptake was inhibited by L-type amino acid transporter 1 inhibitors, 2-(77)Br-BAMP exhibited higher uptake than 4-(77)Br-BAMP. In the biodistribution studies, 2-(77)Br-BAMP showed more rapid blood clearance and lower renal accumulation than 4-(77)Br-BAMP. More than 90% of the injected radioactivity was excreted in the urine by 6 h after the injection of 2-(77)Br-BAMP. High tumor accumulation of 2-(77)Br-BAMP was observed in tumor-bearing mice, and PET imaging with 2-(76)Br-BAMP enabled clear visualization of the tumors. CONCLUSION 2-(77)Br-BAMP exhibited preferred pharmacokinetics and high LS180 tumor accumulation, and 2-(76)Br-BAMP enabled clear visualization of the tumors by PET imaging. These findings suggest that 2-(76)Br-BAMP could constitute a potential new PET tracer for tumor imaging and may eventually enable the wider use of amino acid tracers.
Collapse
Affiliation(s)
- Hirofumi Hanaoka
- Department of Bioimaging Information Analysis, Gunma University Graduate School of Medicine, Maebashi, Japan Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| | - Yasuhiro Ohshima
- Medical Radioisotope Application Group, Life Science and Biotechnology Division, Quantum Beam Science Center, Research Department of Nuclear Science, Japan Atomic Energy Agency, Takasaki, Japan
| | - Yurika Suzuki
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| | - Aiko Yamaguchi
- Department of Bioimaging Information Analysis, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shigeki Watanabe
- Medical Radioisotope Application Group, Life Science and Biotechnology Division, Quantum Beam Science Center, Research Department of Nuclear Science, Japan Atomic Energy Agency, Takasaki, Japan
| | - Tomoya Uehara
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| | - Shushi Nagamori
- Division of Biosystem Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Suita, Japan; and
| | - Yoshikatsu Kanai
- Division of Biosystem Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Suita, Japan; and
| | - Noriko S Ishioka
- Medical Radioisotope Application Group, Life Science and Biotechnology Division, Quantum Beam Science Center, Research Department of Nuclear Science, Japan Atomic Energy Agency, Takasaki, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Keigo Endo
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yasushi Arano
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| |
Collapse
|