1
|
Kim CH, Kim DE, Kim DH, Min GH, Park JW, Kim YB, Sung CK, Yim H. Mitotic protein kinase-driven crosstalk of machineries for mitosis and metastasis. Exp Mol Med 2022; 54:414-425. [PMID: 35379935 PMCID: PMC9076678 DOI: 10.1038/s12276-022-00750-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence indicates that mitotic protein kinases are involved in metastatic migration as well as tumorigenesis. Protein kinases and cytoskeletal proteins play a role in the efficient release of metastatic cells from a tumor mass in the tumor microenvironment, in addition to playing roles in mitosis. Mitotic protein kinases, including Polo-like kinase 1 (PLK1) and Aurora kinases, have been shown to be involved in metastasis in addition to cell proliferation and tumorigenesis, depending on the phosphorylation status and cellular context. Although the genetic programs underlying mitosis and metastasis are different, the same protein kinases and cytoskeletal proteins can participate in both mitosis and cell migration/invasion, resulting in migratory tumors. Cytoskeletal remodeling supports several cellular events, including cell division, movement, and migration. Thus, understanding the contributions of cytoskeletal proteins to the processes of cell division and metastatic motility is crucial for developing efficient therapeutic tools to treat cancer metastases. Here, we identify mitotic kinases that function in cancer metastasis as well as tumorigenesis. Several mitotic kinases, namely, PLK1, Aurora kinases, Rho-associated protein kinase 1, and integrin-linked kinase, are considered in this review, as an understanding of the shared machineries between mitosis and metastasis could be helpful for developing new strategies to treat cancer. Improving understanding of the mechanisms linking cell division and cancer spread (metastasis) could provide novel strategies for treatment. A group of enzymes involved in cell division (mitosis) are also thought to play critical roles in the spread of cancers. Hyungshin Yim at Hanyang University in Ansan, South Korea, and co-workers in Korea and the USA reviewed the roles of several mitotic enzymes that are connected with metastasis as well as tumorigenesis. They discussed how these enzymes modify cytoskeletal proteins and other substrates during cancer progression. Some regulatory control of cell cytoskeletal structures is required for cancer cells to metastasize. Recent research has uncovered crosstalk between mitotic enzymes and metastatic cytoskeletal molecules in various cancers. Targeting mitotic enzymes and the ways they influence cytoskeletal mechanisms could provide valuable therapeutic strategies for suppressing metastasis.
Collapse
Affiliation(s)
- Chang-Hyeon Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Da-Eun Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Dae-Hoon Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Ga-Hong Min
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Jung-Won Park
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Yeo-Bin Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Chang K Sung
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, Kingsville, TX, 78363, USA
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea.
| |
Collapse
|
2
|
Górska A, Mazur AJ. Integrin-linked kinase (ILK): the known vs. the unknown and perspectives. Cell Mol Life Sci 2022; 79:100. [PMID: 35089438 PMCID: PMC8799556 DOI: 10.1007/s00018-021-04104-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023]
Abstract
Integrin-linked kinase (ILK) is a multifunctional molecular actor in cell-matrix interactions, cell adhesion, and anchorage-dependent cell growth. It combines functions of a signal transductor and a scaffold protein through its interaction with integrins, then facilitating further protein recruitment within the ILK-PINCH-Parvin complex. ILK is involved in crucial cellular processes including proliferation, survival, differentiation, migration, invasion, and angiogenesis, which reflects on systemic changes in the kidney, heart, muscle, skin, and vascular system, also during the embryonal development. Dysfunction of ILK underlies the pathogenesis of various diseases, including the pro-oncogenic activity in tumorigenesis. ILK localizes mostly to the cell membrane and remains an important component of focal adhesion. We do know much about ILK but a lot still remains either uncovered or unclear. Although it was initially classified as a serine/threonine-protein kinase, its catalytical activity is now questioned due to structural and functional issues, leaving the exact molecular mechanism of signal transduction by ILK unsolved. While it is known that the three isoforms of ILK vary in length, the presence of crucial domains, and modification sites, most of the research tends to focus on the main isoform of this protein while the issue of functional differences of ILK2 and ILK3 still awaits clarification. The activity of ILK is regulated on the transcriptional, protein, and post-transcriptional levels. The crucial role of phosphorylation and ubiquitylation has been investigated, but the functions of the vast majority of modifications are still unknown. In the light of all those open issues, here we present an extensive literature survey covering a wide spectrum of latest findings as well as a past-to-present view on controversies regarding ILK, finishing with pointing out some open questions to be resolved by further research.
Collapse
Affiliation(s)
- Agata Górska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland.
| | - Antonina Joanna Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland.
| |
Collapse
|
3
|
Khayer N, Jalessi M, Jahanbakhshi A, Tabib Khooei A, Mirzaie M. Nkx3-1 and Fech genes might be switch genes involved in pituitary non-functioning adenoma invasiveness. Sci Rep 2021; 11:20943. [PMID: 34686726 PMCID: PMC8536755 DOI: 10.1038/s41598-021-00431-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Non-functioning pituitary adenomas (NFPAs) are typical pituitary macroadenomas in adults associated with increased mortality and morbidity. Although pituitary adenomas are commonly considered slow-growing benign brain tumors, numerous of them possess an invasive nature. Such tumors destroy sella turcica and invade the adjacent tissues such as the cavernous sinus and sphenoid sinus. In these cases, the most critical obstacle for complete surgical removal is the high risk of damaging adjacent vital structures. Therefore, the development of novel therapeutic strategies for either early diagnosis through biomarkers or medical therapies to reduce the recurrence rate of NFPAs is imperative. Identification of gene interactions has paved the way for decoding complex molecular mechanisms, including disease-related pathways, and identifying the most momentous genes involved in a specific disease. Currently, our knowledge of the invasion of the pituitary adenoma at the molecular level is not sufficient. The current study aimed to identify critical biomarkers and biological pathways associated with invasiveness in the NFPAs using a three-way interaction model for the first time. In the current study, the Liquid association method was applied to capture the statistically significant triplets involved in NFPAs invasiveness. Subsequently, Random Forest analysis was applied to select the most important switch genes. Finally, gene set enrichment (GSE) and gene regulatory network (GRN) analyses were applied to trace the biological relevance of the statistically significant triplets. The results of this study suggest that "mRNA processing" and "spindle organization" biological processes are important in NFAPs invasiveness. Specifically, our results suggest Nkx3-1 and Fech as two switch genes in NFAPs invasiveness that may be potential biomarkers or target genes in this pathology.
Collapse
Affiliation(s)
- Nasibeh Khayer
- Skull Base Research Center, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Jalessi
- Skull Base Research Center, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran.
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Amin Jahanbakhshi
- Skull Base Research Center, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran
- Neurology Department, Hazrat Rasoul Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Tabib Khooei
- Neurology Department, Hazrat Rasoul Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirzaie
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Gava SG, Tavares NC, Falcone FH, Oliveira G, Mourão MM. Profiling Transcriptional Regulation and Functional Roles of Schistosoma mansoni c-Jun N-Terminal Kinase. Front Genet 2019; 10:1036. [PMID: 31681440 PMCID: PMC6813216 DOI: 10.3389/fgene.2019.01036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) play a regulatory role and influence various biological activities, such as cell proliferation, differentiation, and survival. Our group has demonstrated through functional studies that Schistosoma mansoni c-Jun N-terminal kinase (SmJNK) MAPK is involved in the parasite's development, reproduction, and survival. SmJNK can, therefore, be considered a potential target for the development of new drugs. Considering the importance of SmJNK in S. mansoni maturation, we aimed at understanding of SmJNK regulated signaling pathways in the parasite, correlating expression data with S. mansoni development. To better understand the role of SmJNK in S. mansoni intravertebrate host life stages, RNA interference knockdown was performed in adult worms and in schistosomula larval stage. SmJNK knocked-down in adult worms showed a decrease in oviposition and no significant alteration in their movement. RNASeq libraries of SmJNK knockdown schistosomula were sequenced. A total of 495 differentially expressed genes were observed in the SmJNK knockdown parasites, of which 373 were down-regulated and 122 up-regulated. Among the down-regulated genes, we found transcripts related to protein folding, purine nucleotide metabolism, the structural composition of ribosomes and cytoskeleton. Genes coding for proteins that bind to nucleic acids and proteins involved in the phagosome and spliceosome pathways were enriched. Additionally, we found that SmJNK and Smp38 MAPK signaling pathways converge regulating the expression of a large set of genes. C. elegans orthologous genes were enriched for genes related to sterility and oocyte maturation, corroborating the observed phenotype alteration. This work allowed an in-depth analysis of the SmJNK signaling pathway, elucidating gene targets of regulation and functional roles of this critical kinase for parasite maturation.
Collapse
Affiliation(s)
- Sandra Grossi Gava
- Laboratório de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Naiara Clemente Tavares
- Laboratório de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Franco Harald Falcone
- Allergy and Infectious Diseases Laboratory, Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- Institute of Parasitology, BFS, Justus Liebig University, Giessen, Germany
| | | | - Marina Moraes Mourão
- Laboratório de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| |
Collapse
|
5
|
Beauséjour M, Boutin A, Vachon PH. Anoikis Regulation: Complexities, Distinctions, and Cell Differentiation. APOPTOSIS AND BEYOND 2018:145-182. [DOI: 10.1002/9781119432463.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
6
|
Gelmedin V, Morel M, Hahnel S, Cailliau K, Dissous C, Grevelding CG. Evidence for Integrin - Venus Kinase Receptor 1 Alliance in the Ovary of Schistosoma mansoni Females Controlling Cell Survival. PLoS Pathog 2017; 13:e1006147. [PMID: 28114363 PMCID: PMC5289644 DOI: 10.1371/journal.ppat.1006147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/02/2017] [Accepted: 12/21/2016] [Indexed: 12/21/2022] Open
Abstract
In metazoan integrin signaling is an important process of mediating extracellular and intracellular communication processes. This can be achieved by cooperation of integrins with growth factor receptors (GFRs). Schistosoma mansoni is a helminth parasite inducing schistosomiasis, an infectious disease of worldwide significance for humans and animals. First studies on schistosome integrins revealed their role in reproductive processes, being involved in spermatogenesis and oogenesis. With respect to the roles of eggs for maintaining the parasite´s life cycle and for inducing the pathology of schistosomiasis, elucidating reproductive processes is of high importance. Here we studied the interaction of the integrin receptor Smβ-Int1 with the venus kinase receptor SmVKR1 in S. mansoni. To this end we cloned and characterized SmILK, SmPINCH, and SmNck2, three putative bridging molecules for their role in mediating Smβ-Int1/SmVKR1 cooperation. Phylogenetic analyses showed that these molecules form clusters that are specific for parasitic platyhelminths as it was shown for integrins before. Transcripts of all genes colocalized in the ovary. In Xenopus oocytes germinal vesicle breakdown (GVBD) was only induced if all members were simultaneously expressed. Coimmunoprecipitation results suggest that a Smβ-Int1-SmILK-SmPINCH-SmNck2-SmVKR1 complex can be formed leading to the phosphorylation and activation of SmVKR1. These results indicate that SmVKR1 can be activated in a ligand-independent manner by receptor-complex interaction. RNAi and inhibitor studies to knock-down SmILK as a representative complex member concurrently revealed effects on the extracellular matrix surrounding the ovary and oocyte localization within the ovary, oocyte survival, and egg production. By TUNEL assays, confocal laser scanning microscopy (CLSM), Caspase-3 assay, and transcript profiling of the pro-apoptotic BCL-2 family members BAK/BAX we obtained first evidence for roles of this signaling complex in mediating cell death in immature and primary oocytes. These results suggest that the Smβ-Int1/SmVKR1 signaling complex is important for differentiation and survival in oocytes of paired schistosomes. Parasites of the genus Schistosoma cause schistosomiasis, a life-threatening infectious disease for humans and animals worldwide. Among the remarkable biological features of schistosomes is the differentiation of the female gonads which is controlled by pairing with the male and a prerequisite for egg production. Eggs, however, are not only important for the maintenance of the life-cycle; they also cause the pathological consequences of schistosomiasis. Part of the eggs gets trapped in host tissues such as liver and spleen and trigger inflammatory processes, finally leading to liver cirrhosis. Research activities of the last decade have indicated that different families of cellular and receptor-type kinases but also integrins contribute to the control of mitogenic activity and differentiation the female goands. In this context an unusual class of receptor tyrosine kinases (RTKs) has been identified, the venus kinase receptors (SmVKRs). By biochemical and molecular approaches we demonstrate that SmVKR1 activation can be achieved by cooperation with a signaling complex consisting of the beta integrin receptor Smβ-Int1 and the bridging molecules SmILK, SmPINCH, SmNck2. Besides unravelling a novel way of SmVKR1 activation, we provide evidence that this complex controls the differentiation status of oocytes by regulating cell death-associated processes.
Collapse
Affiliation(s)
- Verena Gelmedin
- Institute for Parasitology, Justus-Liebig-University, Giessen, Germany
| | - Marion Morel
- CIIL – Center for Infection and Immunity of Lille Inserm U1019 - CNRS UMR 8204, University Lille, Lille, France
| | - Steffen Hahnel
- Institute for Parasitology, Justus-Liebig-University, Giessen, Germany
| | - Katia Cailliau
- UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR 8576, University Lille, Lille, France
| | - Colette Dissous
- CIIL – Center for Infection and Immunity of Lille Inserm U1019 - CNRS UMR 8204, University Lille, Lille, France
| | | |
Collapse
|
7
|
Cosenza MR, Krämer A. Centrosome amplification, chromosomal instability and cancer: mechanistic, clinical and therapeutic issues. Chromosome Res 2016; 24:105-26. [PMID: 26645976 DOI: 10.1007/s10577-015-9505-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Centrosomes, the main microtubule-organizing centers in most animal cells, are of crucial importance for the assembly of a bipolar mitotic spindle and subsequent faithful segregation of chromosomes into two daughter cells. Centrosome abnormalities can be found in virtually all cancer types and have been linked to chromosomal instability (CIN) and tumorigenesis. Although our knowledge on centrosome structure, replication, and amplification has greatly increased within recent years, still only very little is known on nature, causes, and consequences of centrosome aberrations in primary tumor tissues. In this review, we summarize our current insights into the mechanistic link between centrosome aberrations, aneuploidy, CIN and tumorigenesis. Mechanisms of induction and cellular consequences of aneuploidy, tetraploidization and CIN, as well as origin and effects of supernumerary centrosomes will be discussed. In addition, animal models for both CIN and centrosome amplification will be outlined. Finally, we describe approaches to exploit centrosome amplification, aneuploidy and CIN for novel and specific anticancer treatment strategies based on the modulation of chromosome missegregation rates.
Collapse
Affiliation(s)
- Marco Raffaele Cosenza
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
8
|
Duminuco R, Noble JW, Goody J, Sharma M, Ksander BR, Roskelley CD, Cox ME, Mills J. Integrin-linked kinase regulates senescence in an Rb-dependent manner in cancer cell lines. Cell Cycle 2016; 14:2924-37. [PMID: 26176204 DOI: 10.1080/15384101.2015.1064205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Anti-integrin-linked kinase (ILK) therapies result in aberrant mitosis including altered mitotic spindle organization, centrosome declustering and mitotic arrest. In contrast to cells that expressed the retinoblastoma tumor suppressor protein Rb, we have shown that in retinoblastoma cell lines that do not express Rb, anti-ILK therapies induced aberrant mitosis that led to the accumulation of temporarily viable multinucleated cells. The present work was undertaken to: 1) determine the ultimate fate of cells that had survived anti-ILK therapies and 2) determine whether or not Rb expression altered the outcome of these cells. Our data indicate that ILK, a chemotherapy drug target is expressed in both well-differentiated, Rb-negative and relatively undifferentiated, Rb-positive retinoblastoma tissue. We show that small molecule targeting of ILK in Rb-positive and Rb-deficient cancer cells results in increased centrosomal declustering, aberrant mitotic spindle formation and multinucleation. However, anti-ILK therapies in vitro have different outcomes in retinoblastoma and glioblastoma cell lines that depend on Rb expression. TUNEL labeling and propidium iodide FACS analysis indicate that Rb-positive cells exposed to anti-ILK therapies are more susceptible to apoptosis and senescence than their Rb-deficient counterparts wherein aberrant mitosis induced by anti-ILK therapies exhibit mitotic arrest instead. These studies are the first to show a role for ILK in chemotherapy-induced senescence in Rb-positive cancer lines. Taken together these results indicate that the oncosuppressive outcomes for anti-ILK therapies in vitro, depend on the expression of the tumor suppressor Rb, a known G1 checkpoint and senescence regulator.
Collapse
Affiliation(s)
- Rose Duminuco
- a Department of Biology ; Trinity Western University ; Langley , British Columbia , Canada
| | - Jake W Noble
- a Department of Biology ; Trinity Western University ; Langley , British Columbia , Canada
| | - Joseph Goody
- a Department of Biology ; Trinity Western University ; Langley , British Columbia , Canada
| | - Manju Sharma
- b Vancouver Prostate Center; Vancouver Coastal Health Research Institute ; Vancouver , British Columbia
| | - Bruce R Ksander
- d Department of Ophthalmology ; Schepens Eye Research Institute; Harvard Medical School ; Boston , Massachusetts , United States of America
| | - Calvin D Roskelley
- c Department of Cellular and Physiological Sciences ; University of British Columbia ; Canada
| | - Michael E Cox
- b Vancouver Prostate Center; Vancouver Coastal Health Research Institute ; Vancouver , British Columbia
| | - Julia Mills
- a Department of Biology ; Trinity Western University ; Langley , British Columbia , Canada.,e Adjunct in the Department of Molecular Biology and Biochemistry ; Simon Fraser University ; Burnaby , British Columbia , Canada
| |
Collapse
|
9
|
Que L, Zhao D, Tang XF, Liu JY, Zhang XY, Zhan YH, Zhang L. Effects of lentivirus-mediated shRNA targeting integrin-linked kinase on oral squamous cell carcinoma in vitro and in vivo. Oncol Rep 2015; 35:89-98. [PMID: 26531674 DOI: 10.3892/or.2015.4374] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/15/2015] [Indexed: 11/06/2022] Open
Abstract
Integrin-linked kinase (ILK), a highly conserved intracellular protein of serine/threonine protein kinase activities, which is associated with the integrin and growth factor receptor signaling pathway, is involved in the regulation of cell proliferation, apoptosis, differentiation, migration and epithelial-mesenchymal transition (EMT). Findings of a previous study showed that ILK overexpression was strongly correlated with a more aggressive tumor phenotype, recurrence and poor survival for oral squamous cell carcinoma (OSCC) patients, as well as some EMT markers. In order to investigate the underlying mechanisms involved, a lentivirus-mediated short hairpin RNA (shRNA) was employed to downregulate ILK. The results showed that the knockdown of ILK inhibited cell growth, adhesion and invasion ability in vitro, and OSCC cells deficient of ILK were blocked in the S phase and underwent apoptosis. Additionally, ILK shRNA inhibited EMT by impairing the expression of Snail, Slug and Twist2 and enhacning E-cadherin expression. ILK shRNA suppressed the phosphorylation of downstream signaling targets Akt and GSk-3β. In addition, the knockdown of ILK inhibited tumor growth, invasion and metastasis of xenograft tumors in vivo. These results suggested that ILK is a promising therapeutic target for the treatment of OSCC.
Collapse
Affiliation(s)
- Lin Que
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, P.R. China
| | - Dan Zhao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiu-Fa Tang
- Department of Head and Neck Carcinoma, West China College of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Ji-Yuan Liu
- Department of Head and Neck Carcinoma, West China College of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Xiang-Yu Zhang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, P.R. China
| | - Yu-Hua Zhan
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, P.R. China
| | - Lei Zhang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
10
|
Glucose Oxidase Induces Cellular Senescence in Immortal Renal Cells through ILK by Downregulating Klotho Gene Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:416738. [PMID: 26583057 PMCID: PMC4637093 DOI: 10.1155/2015/416738] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/17/2015] [Indexed: 02/07/2023]
Abstract
Cellular senescence can be prematurely induced by oxidative stress involved in aging. In this work, we were searching for novel intermediaries in oxidative stress-induced senescence, focusing our interest on integrin-linked kinase (ILK), a scaffold protein at cell-extracellular matrix (ECM) adhesion sites, and on the Klotho gene. Cultured renal cells were treated with glucose oxidase (GOx) for long time periods. GOx induced senescence, increasing senescence associated β-galactosidase activity and the expression of p16. In parallel, GOx increased ILK protein expression and activity. Ectopic overexpression of ILK in cells increased p16 expression, even in the absence of GOx, whereas downregulation of ILK inhibited the increase in p16 due to oxidative stress. Additionally, GOx reduced Klotho gene expression and cells overexpressing Klotho protein did not undergo senescence after GOx addition. We demonstrated a direct link between ILK and Klotho since silencing ILK expression in cells and mice increases Klotho expression and reduces p53 and p16 expression in renal cortex. In conclusion, oxidative stress induces cellular senescence in kidney cells by increasing ILK protein expression and activity, which in turn reduces Klotho expression. We hereby present ILK as a novel downregulator of Klotho gene expression.
Collapse
|
11
|
Lezhnina K, Kovalchuk O, Zhavoronkov AA, Korzinkin MB, Zabolotneva AA, Shegay PV, Sokov DG, Gaifullin NM, Rusakov IG, Aliper AM, Roumiantsev SA, Alekseev BY, Borisov NM, Buzdin AA. Novel robust biomarkers for human bladder cancer based on activation of intracellular signaling pathways. Oncotarget 2015; 5:9022-32. [PMID: 25296972 PMCID: PMC4253415 DOI: 10.18632/oncotarget.2493] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We recently proposed a new bioinformatic algorithm called OncoFinder for quantifying the activation of intracellular signaling pathways. It was proved advantageous for minimizing errors of high-throughput gene expression analyses and showed strong potential for identifying new biomarkers. Here, for the first time, we applied OncoFinder for normal and cancerous tissues of the human bladder to identify biomarkers of bladder cancer. Using Illumina HT12v4 microarrays, we profiled gene expression in 17 cancer and seven non-cancerous bladder tissue samples. These experiments were done in two independent laboratories located in Russia and Canada. We calculated pathway activation strength values for the investigated transcriptomes and identified signaling pathways that were regulated differently in bladder cancer (BC) tissues compared with normal controls. We found, for both experimental datasets, 44 signaling pathways that serve as excellent new biomarkers of BC, supported by high area under the curve (AUC) values. We conclude that the OncoFinder approach is highly efficient in finding new biomarkers for cancer. These markers are mathematical functions involving multiple gene products, which distinguishes them from “traditional” expression biomarkers that only assess concentrations of single genes.
Collapse
Affiliation(s)
- Ksenia Lezhnina
- Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR. Laboratory of Bioinformatics, D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4. Canada Cancer and Aging Research Laboratories, Lethbridge, AB, Canada
| | - Alexander A Zhavoronkov
- Laboratory of Bioinformatics, D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia. Insilico Medicine, Inc, ETC, Johns Hopkins University, Baltimore, MD. Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology
| | | | - Anastasia A Zabolotneva
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakn-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Peter V Shegay
- P.A. Herzen Moscow Oncological Research Institute, Moscow, Russia
| | | | - Nurshat M Gaifullin
- Lomonosov Moscow State University, Faculty of Fundamental Medicine, Moscow, Russia. Russian medical postgraduate academy,Moscow, Russia
| | - Igor G Rusakov
- P.A. Herzen Moscow Oncological Research Institute, Moscow, Russia
| | - Alexander M Aliper
- Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR. Laboratory of Bioinformatics, D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Sergey A Roumiantsev
- Laboratory of Bioinformatics, D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Boris Y Alekseev
- P.A. Herzen Moscow Oncological Research Institute, Moscow, Russia
| | - Nikolay M Borisov
- Laboratory of Systems Biology, A.I. Burnasyan Federal Medical Biophysical Center, Moscow, Russia
| | - Anton A Buzdin
- Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR. Laboratory of Bioinformatics, D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia. Group for Genomic Regulation of Cell Signaling Systems, Shemyakn-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
12
|
Integrin-linked kinase links dynactin-1/dynactin-2 with cortical integrin receptors to orient the mitotic spindle relative to the substratum. Sci Rep 2015; 5:8389. [PMID: 25669897 PMCID: PMC4323648 DOI: 10.1038/srep08389] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/19/2015] [Indexed: 01/15/2023] Open
Abstract
Cells must divide strictly along a plane to form an epithelial layer parallel to the basal lamina. The axis of cell division is primarily governed by the orientation of the mitotic spindle and spindle misorientation pathways have been implicated in cancer initiation. While β1-Integrin and the Dynein/Dynactin complex are known to be involved, the pathways linking these complexes in positioning mitotic spindles relative to the basal cortex and extracellular matrix remain to be elucidated. Here, we show that Integrin-Linked Kinase (ILK) and α-Parvin regulate mitotic spindle orientation by linking Dynactin-1 and Dynactin-2 subunits of the Dynein/Dynactin complex to Integrin receptors at the basal cortex of mitotic cells. ILK and α-Parvin are required for spindle orientation. ILK interacts with Dynactin-1 and Dynactin-2 and ILK siRNA attenuates Dynactin-2 localization to the basal cortex. Furthermore we show that Dynactin-2 can no longer colocalize or interact with Integrins when ILK is absent, suggesting mechanistically that ILK is acting as a linking protein. Finally we demonstrate that spindle orientation and cell proliferation are disrupted in intestinal epithelial cells in vivo using tissue-specific ILK knockout mice. These data demonstrate that ILK is a linker between Integrin receptors and the Dynactin complex to regulate mitotic spindle orientation.
Collapse
|
13
|
Kalatova B, Jesenska R, Hlinka D, Dudas M. Tripolar mitosis in human cells and embryos: occurrence, pathophysiology and medical implications. Acta Histochem 2015; 117:111-25. [PMID: 25554607 DOI: 10.1016/j.acthis.2014.11.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 01/08/2023]
Abstract
Tripolar mitosis is a specific case of cell division driven by typical molecular mechanisms of mitosis, but resulting in three daughter cells instead of the usual count of two. Other variants of multipolar mitosis show even more mitotic poles and are relatively rare. In nature, this phenomenon was frequently observed or suspected in multiple common cancers, infected cells, the placenta, and in early human embryos with impaired pregnancy-yielding potential. Artificial causes include radiation and various toxins. Here we combine several pieces of the most recent evidence for the existence of different types of multipolar mitosis in preimplantation embryos together with a detailed review of the literature. The related molecular and cellular mechanisms are discussed, including the regulation of centriole duplication, mitotic spindle biology, centromere functions, cell cycle checkpoints, mitotic autocorrection mechanisms, and the related complicating factors in healthy and affected cells, including post-mitotic cell-cell fusion often associated with multipolar cell division. Clinical relevance for oncology and embryo selection in assisted reproduction is also briefly discussed in this context.
Collapse
|
14
|
Sikkema WKA, Strikwerda A, Sharma M, Assi K, Salh B, Cox ME, Mills J. Regulation of mitotic cytoskeleton dynamics and cytokinesis by integrin-linked kinase in retinoblastoma cells. PLoS One 2014; 9:e98838. [PMID: 24911651 PMCID: PMC4049663 DOI: 10.1371/journal.pone.0098838] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 05/07/2014] [Indexed: 12/31/2022] Open
Abstract
During cell division integrin-linked kinase (ILK) has been shown to regulate microtubule dynamics and centrosome clustering, processes involved in cell cycle progression, and malignant transformation. In this study, we examine the effects of downregulating ILK on mitotic function in human retinoblastoma cell lines. These retinal cancer cells, caused by the loss of function of two gene alleles (Rb1) that encode the retinoblastoma tumour suppressor, have elevated expression of ILK. Here we show that inhibition of ILK activity results in a concentration-dependent increase in nuclear area and multinucleated cells. Moreover, inhibition of ILK activity and expression increased the accumulation of multinucleated cells over time. In these cells, aberrant cytokinesis and karyokinesis correlate with altered mitotic spindle organization, decreased levels of cortical F-actin and centrosome de-clustering. Centrosome de-clustering, induced by ILK siRNA, was rescued in FLAG-ILK expressing Y79 cells as compared to those expressing FLAG-tag alone. Inhibition of ILK increased the proportion of cells exhibiting mitotic spindles and caused a significant G2/M arrest as early as 24 hours after exposure to QLT-0267. Live cell analysis indicate ILK downregulation causes an increase in multipolar anaphases and failed cytokinesis (bipolar and multipolar) of viable cells. These studies extend those indicating a critical function for ILK in mitotic cytoskeletal organization and describe a novel role for ILK in cytokinesis of Rb deficient cells.
Collapse
Affiliation(s)
- William K. A. Sikkema
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada
| | - Arend Strikwerda
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada
| | - Manju Sharma
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Kiran Assi
- Division of Gastroenterology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Baljinder Salh
- Division of Gastroenterology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael E. Cox
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Julia Mills
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada
- Adjunct, Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- External Associate Member, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
15
|
Peng H, Ong YM, Shah WA, Holland PC, Carbonetto S. Integrins regulate centrosome integrity and astrocyte polarization following a wound. Dev Neurobiol 2013; 73:333-53. [PMID: 22949126 DOI: 10.1002/dneu.22055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/14/2012] [Accepted: 08/27/2012] [Indexed: 12/31/2022]
Abstract
In response to a wound, astrocytes in culture extend microtubule-rich processes and polarize, orienting their centrosomes and Golgi apparatus woundside. β1 Integrin null astrocytes fail to extend processes toward the wound, and are disoriented, and often migrate away orthogonal, to the wound. The centrosome is unusually fragmented in β1 integrin null astrocytes. Expression of a β1 integrin cDNA in the null background yields cells with intact centrosomes that polarize and extend processes normally. Fragmented centrosomes rapidly assemble following integrin ligation and cell attachment. However, several experiments indicated that cell adhesion is not necessary. For example, astrocytes in suspension expressing a chimeric β1 subunit that can be activated by an antibody assemble centrosomes suggesting that β1 activation is sufficient to cause centrosome assembly in the absence of cell adhesion. siRNA knockdown of PCM1, a major centrosomal protein, inhibits cell polarization, consistent with the notion that centrosomes are necessary for polarity and that integrins regulate polarity via centrosome integrity. Screening inhibitors of molecules downstream of integrins indicate that neither FAK nor ILK is involved in regulation of centrosome integrity. In contrast, blebbistatin, a specific inhibitor of non-muscle myosin II (NMII), mimics the response of β1 integrin null astrocytes by disrupting centrosome integrity and cell polarization. Blebbistatin also inhibits integrin-mediated centrosome assembly in astrocytes attaching to fibronectin, consistent with the hypothesis that NMII functions downstream of integrins in regulating centrosome integrity.
Collapse
Affiliation(s)
- Huashan Peng
- Centre for Research in Neuroscience, McGill University Health Centre, Montreal, Quebec, H3G 1A4, Canada
| | | | | | | | | |
Collapse
|
16
|
El-Hoss J, Arabian A, Dedhar S, St-Arnaud R. Inactivation of the integrin-linked kinase (ILK) in osteoblasts increases mineralization. Gene 2013; 533:246-52. [PMID: 24095779 DOI: 10.1016/j.gene.2013.09.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/05/2013] [Accepted: 09/20/2013] [Indexed: 11/16/2022]
Abstract
In osteoblasts, Integrin-Linked Kinase (ILK)-dependent phosphorylation of the cJUN transcriptional coactivator, αNAC, induces the nuclear accumulation of the coactivator and potentiates cJUN-dependent transcription. Mutation of the ILK phosphoacceptor site within the αNAC protein leads to cytoplasmic retention of the coactivator and cell-autonomous increases in osteoblastic activity. In order to gain further insight into the ILK-αNAC signaling cascade, we inactivated ILK using RNA knockdown in osteoblastic cells and engineered mice with specific ablation of ILK in osteoblasts. ILK knockdown in MC3T3-E1 osteoblast-like cells reduced phosphorylation of its downstream target glycogen synthase kinase 3β (GSK3β), which led to cytoplasmic retention of αNAC and increased mineralization with augmented expression of the osteoblastic differentiation markers, pro-α1(I) collagen (col1A1), Bone Sialoprotein (Bsp) and Osteocalcin (Ocn). Cultured ILK-deficient primary osteoblasts also showed increased cytoplasmic αNAC levels, and augmented mineralization with higher Runx2, Col1a1 and Bsp expression. Histomorphometric analysis of bones from mutant mice with ILK-deficient osteoblasts (Col1-Cre;Ilk(-/fl)) revealed transient changes, with increased bone volume in newborn animals that was corrected by two weeks of age. Our data suggest that the ILK-αNAC cascade acts to reduce the pace of osteoblast maturation. We propose that in vivo, functional redundancy is able to compensate for the loss of ILK activity, leading to the absence of an obvious phenotype when osteoblast-specific Ilk-deficient mice reach puberty.
Collapse
Affiliation(s)
- Jad El-Hoss
- Research Unit, Shriners Hospital for Children, Montreal, Quebec H3G 1A6, Canada; Department of Human Genetics, McGill University, Montreal, Quebec H3A 2T5, Canada
| | | | | | | |
Collapse
|
17
|
Dumaual CM, Steere BA, Walls CD, Wang M, Zhang ZY, Randall SK. Integrated analysis of global mRNA and protein expression data in HEK293 cells overexpressing PRL-1. PLoS One 2013; 8:e72977. [PMID: 24019887 PMCID: PMC3760866 DOI: 10.1371/journal.pone.0072977] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 07/17/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The protein tyrosine phosphatase PRL-1 represents a putative oncogene with wide-ranging cellular effects. Overexpression of PRL-1 can promote cell proliferation, survival, migration, invasion, and metastasis, but the underlying mechanisms by which it influences these processes remain poorly understood. METHODOLOGY To increase our comprehension of PRL-1 mediated signaling events, we employed transcriptional profiling (DNA microarray) and proteomics (mass spectrometry) to perform a thorough characterization of the global molecular changes in gene expression that occur in response to stable PRL-1 overexpression in a relevant model system (HEK293). PRINCIPAL FINDINGS Overexpression of PRL-1 led to several significant changes in the mRNA and protein expression profiles of HEK293 cells. The differentially expressed gene set was highly enriched in genes involved in cytoskeletal remodeling, integrin-mediated cell-matrix adhesion, and RNA recognition and splicing. In particular, members of the Rho signaling pathway and molecules that converge on this pathway were heavily influenced by PRL-1 overexpression, supporting observations from previous studies that link PRL-1 to the Rho GTPase signaling network. In addition, several genes not previously associated with PRL-1 were found to be significantly altered by its expression. Most notable among these were Filamin A, RhoGDIα, SPARC, hnRNPH2, and PRDX2. CONCLUSIONS AND SIGNIFICANCE This systems-level approach sheds new light on the molecular networks underlying PRL-1 action and presents several novel directions for future, hypothesis-based studies.
Collapse
Affiliation(s)
- Carmen M. Dumaual
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Boyd A. Steere
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Chad D. Walls
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Mu Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Stephen K. Randall
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| |
Collapse
|
18
|
Gonzalez-Ramos M, de Frutos S, Griera M, Luengo A, Olmos G, Rodriguez-Puyol D, Calleros L, Rodriguez-Puyol M. Integrin-linked kinase mediates the hydrogen peroxide-dependent transforming growth factor-β1 up-regulation. Free Radic Biol Med 2013; 61:416-27. [PMID: 23624332 DOI: 10.1016/j.freeradbiomed.2013.04.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/21/2013] [Accepted: 04/17/2013] [Indexed: 01/04/2023]
Abstract
Transforming growth factor type-β1 (TGF-β1) has been recognized as a central mediator in many pathological events related to extracellular matrix (ECM) proteins accumulation, where their locally increased expression has been implicated in the fibrosis process of numerous organs, including glomerular fibrosis in the kidney. We and others have reported the TGF-β1 synthesis regulation by reactive oxygen species (ROS), and moreover we also described the implication of integrin-linked kinase (ILK) in the AP-1-dependent TGF-β1 up-regulation. Thus, we propose here that hydrogen peroxide (H2O2)-dependent TGF-β1 regulation may be mediated by ILK activation. First we confirmed the increase in TGF-β1 expression in human mesangial cells (HMC) after treatment with H2O2 or with an alternative H2O2-generating system such as the glucose-oxidase enzyme (GOX). By using immunoblotting, immunofluorescence, and ELISA techniques, we demonstrate that extracellular H2O2 up-regulates TGF-β1 transcription, as well as increases TGF-β1 promoter activity. Furthermore, catalase-decreased intracellular H2O2 abolished TGF-β1 up-regulation. The use of pharmacological inhibitors as well as knockdown of ILK with small interfering RNA (siRNA) demonstrated the implication of a PI3K/ILK/AKT/ERK MAPK signaling pathway axis in the H2O2-induced TGF-β1 overexpression. Finally, we explored the physiological relevance of these findings by treating HMC with angiotensin II, a known stimuli of H2O2 synthesis. Our results confirm the relevance of previous findings after a more physiological stimulus. In summary, our results provide evidence that ILK activity changes may act as a mechanism in response to different stimuli such as H2O2 in the induced TGF-β1 up-regulation in pathological or even physiological conditions.
Collapse
Affiliation(s)
- M Gonzalez-Ramos
- Department of Physiology, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; IRSIN, Madrid, Spain; RedInRen (Instituto de Salud Carlos III), Madrid, Spain
| | - S de Frutos
- Department of Physiology, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; IRSIN, Madrid, Spain; RedInRen (Instituto de Salud Carlos III), Madrid, Spain
| | - M Griera
- IRSIN, Madrid, Spain; RedInRen (Instituto de Salud Carlos III), Madrid, Spain; Biomedical Research Unit Foundation, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - A Luengo
- Department of Physiology, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; IRSIN, Madrid, Spain; RedInRen (Instituto de Salud Carlos III), Madrid, Spain
| | - G Olmos
- Department of Physiology, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; IRSIN, Madrid, Spain; RedInRen (Instituto de Salud Carlos III), Madrid, Spain
| | - D Rodriguez-Puyol
- IRSIN, Madrid, Spain; RedInRen (Instituto de Salud Carlos III), Madrid, Spain; Department of Medicine, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; Nephrology Section, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - L Calleros
- Department of Physiology, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; IRSIN, Madrid, Spain; RedInRen (Instituto de Salud Carlos III), Madrid, Spain.
| | - M Rodriguez-Puyol
- Department of Physiology, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; IRSIN, Madrid, Spain; RedInRen (Instituto de Salud Carlos III), Madrid, Spain
| |
Collapse
|
19
|
Chang LH, Pan SL, Lai CY, Tsai AC, Teng CM. Activated PAR-2 regulates pancreatic cancer progression through ILK/HIF-α-induced TGF-α expression and MEK/VEGF-A-mediated angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:566-75. [PMID: 23764046 DOI: 10.1016/j.ajpath.2013.04.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/11/2013] [Accepted: 04/08/2013] [Indexed: 01/03/2023]
Abstract
Tissue factor initiates the process of thrombosis and activates cell signaling through protease-activated receptor-2 (PAR-2). The aim of this study was to investigate the pathological role of PAR-2 signaling in pancreatic cancer. We first demonstrated that activated PAR-2 up-regulated the protein expression of both hypoxia-inducible factor-1α (HIF-1α) and HIF-2α, resulting in enhanced transcription of transforming growth factor-α (TGF-α). Down-regulation of HIFs-α by siRNA or YC-1, an HIF inhibitor, resulted in depleted levels of TGF-α protein. Furthermore, PAR-2, through integrin-linked kinase (ILK) signaling, including the p-AKT, promoted HIF protein expression. Diminishing ILK by siRNA decreased the levels of PAR-2-induced p-AKT, HIFs-α, and TGF-α; our results suggest that ILK is involved in the PAR-2-mediated TGF-α via an HIF-α-dependent pathway. Furthermore, the culture medium from PAR-2-treated pancreatic cancer cells enhanced human umbilical vein endothelial cell proliferation and tube formation, which was blocked by the MEK inhibitor, PD98059. We also found that activated PAR-2 enhanced tumor angiogenesis through the release of vascular endothelial growth factor-A (VEGF-A) from cancer cells, independent of the ILK/HIFs-α pathways. Consistent with microarray analysis, activated PAR-2 induced TGF-A and VEGF-A gene expression. In conclusion, the activation of PAR-2 signaling induced human pancreatic cancer progression through the induction of TGF-α expression by ILK/HIFs-α, as well as through MEK/VEGF-A-mediated angiogenesis, and it plays a role in the interaction between cancer progression and cancer-related thrombosis.
Collapse
Affiliation(s)
- Li-Hsun Chang
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
20
|
Integrin signaling, cell survival, and anoikis: distinctions, differences, and differentiation. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:738137. [PMID: 21785723 PMCID: PMC3139189 DOI: 10.1155/2011/738137] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 01/06/2011] [Accepted: 03/10/2011] [Indexed: 01/01/2023]
Abstract
Cell survival and apoptosis implicate an increasing complexity of players and signaling pathways which regulate not only the decision-making process of surviving (or dying), but as well the execution of cell death proper. The same complex nature applies to anoikis, a form of caspase-dependent apoptosis that is largely regulated by integrin-mediated, cell-extracellular matrix interactions. Not surprisingly, the regulation of cell survival, apoptosis, and anoikis furthermore implicates additional mechanistic distinctions according to the specific tissue, cell type, and species. Incidentally, studies in recent years have unearthed yet another layer of complexity in the regulation of these cell processes, namely, the implication of cell differentiation state-specific mechanisms. Further analyses of such differentiation state-distinct mechanisms, either under normal or physiopathological contexts, should increase our understanding of diseases which implicate a deregulation of integrin function, cell survival, and anoikis.
Collapse
|
21
|
Bub1 and BubR1: at the interface between chromosome attachment and the spindle checkpoint. Mol Cell Biol 2011; 31:3085-93. [PMID: 21628528 DOI: 10.1128/mcb.05326-11] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spindle checkpoint ensures genome fidelity by temporarily halting chromosome segregation and the ensuing mitotic exit until the last kinetochore is productively attached to the mitotic spindle. At the interface between proper chromosome attachment and the metaphase-to-anaphase transition are the mammalian spindle checkpoint kinases. Compelling evidence indicates that the checkpoint kinases Bub1 and BubR1 have the added task of regulating kinetochore-microtubule attachments. However, the debate on the requirement of kinase activity is in full swing. This minireview summarizes recent advances in our understanding of the core spindle checkpoint kinases Bub1 and BubR1 and considers evidence that supports and opposes the role of kinase activity in regulating their functions during mitosis.
Collapse
|
22
|
Han C, Zou H, Li Q, Wang Y, Shi Y, Lv T, Chen L, Zhou W. Expression of the Integrin-Linked Kinase in a Rat Kidney Model of Chronic Allograft Nephropathy. Cell Biochem Biophys 2011; 61:73-81. [DOI: 10.1007/s12013-011-9163-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Dossa T, Arabian A, Windle JJ, Dedhar S, Teitelbaum SL, Ross FP, Roodman GD, St-Arnaud R. Osteoclast-specific inactivation of the integrin-linked kinase (ILK) inhibits bone resorption. J Cell Biochem 2010; 110:960-7. [PMID: 20564195 DOI: 10.1002/jcb.22609] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bone resorption requires the adhesion of osteoclasts to extracellular matrix (ECM) components, a process mediated by the alpha(v)beta(3) integrin. Following engagement with the ECM, integrin receptors signal via multiple downstream effectors, including the integrin-linked kinase (ILK). In order to characterize the physiological role of ILK in bone resorption, we generated mice with an osteoclast-specific Ilk gene ablation by mating mice with a floxed Ilk allele with TRAP-Cre transgenic mice. The TRAP-Cre mice specifically excised floxed alleles in osteoclasts, as revealed by crossing them with the ROSA26R reporter strain. Osteoclast-specific Ilk mutant mice appeared phenotypically normal, but histomorphometric analysis of the proximal tibia revealed an increase in bone volume and trabecular thickness. Osteoclast-specific Ilk ablation was associated with an increase in osteoclastogenesis both in vitro and in vivo. However, the mutant osteoclasts displayed a decrease in resorption activity as assessed by reduced pit formation on dentin slices in vitro and decreased serum concentrations of the C-terminal telopeptide of collagen in vivo. Interestingly, compound heterozygous mice in which one allele of Ilk and one allele of the beta(3) integrin gene were inactivated (ILK(+/-); beta(3) (+/-)) also had increased trabecular thickness, confirming that beta(3) integrin and Ilk form part of the same genetic cascade. Our results show that ILK is important for the function, but not the differentiation, of osteoclasts.
Collapse
Affiliation(s)
- Tanya Dossa
- Genetics Unit, Shriners Hospital for Children, Montreal, Quebec, Canada H3G 1A6
| | | | | | | | | | | | | | | |
Collapse
|