1
|
Dang Q, Zhang L, Ma H, Sun X, Ren A, Chen J, Huang X, Zhang B, Sun W. Lighthouses illuminating tumor metastasis: The application of fluorescent probes in the localization and imaging metastatic lymph nodes across various tumors. Biomaterials 2025; 316:123020. [PMID: 39693784 DOI: 10.1016/j.biomaterials.2024.123020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/24/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
The significance of metastatic lymph nodes in tumor diagnosis and prognosis is self-evident. With the deepening of research on the lymphatic system and the advancement of imaging technology, an increasing number of near-infrared fluorescent probes targeting tumor metastatic lymph nodes have been developed. These probes can identify tumors while further detecting lymph nodes (LNs), showcasing great potential in image-guided surgery. In this review, we comprehensively outline the design strategies and applications of near-infrared fluorescent probes for cancers with a high propensity for lymph node metastasis during disease progression. Particular emphasis is placed on two targeting mechanisms: tumor-directed probes capable of identifying metastatic lymph nodes and lymph node-specific probes utilizing passive targeting of metastatic lymph nodes or active targeting of lymph nodes directly. Additionally, we discuss current issues and future prospects in this field, which will facilitate the development of new fluorescent probes and their further clinical translation.
Collapse
Affiliation(s)
- Qi Dang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Linhao Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Huipeng Ma
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Xiaoshan Sun
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Anguo Ren
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Jiuyang Chen
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Xiaohua Huang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Boyu Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China.
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
2
|
Kojima K, Sakurai K, Ando T, Sakai Y, Ochiai M, Kato T, Ito H. Immunohistochemical investigation of the transcription factor PROX1 emphasizing on neuroendocrine neoplasms. Med Mol Morphol 2025:10.1007/s00795-025-00437-z. [PMID: 40234276 DOI: 10.1007/s00795-025-00437-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
Prospero homeobox protein 1 (PROX1) is aberrantly expressed in tumors, including neuroendocrine neoplasms (NENs); however, the detailed expression pattern remains elusive. This study aimed to immunohistochemically assess PROX1 expression. Immunohistochemistry (IHC) for PROX1 was performed on tissue microarrays of normal tissues (n = 107), NENs (n = 152) (small cell lung carcinoma [SCLC], lung carcinoid [LC], gastroenteropancreatic-NEN [GEP-NEN], esophageal neuroendocrine carcinoma [ENEC], medullary thyroid carcinoma [MTC], neuroblastoma [NB], and pheochromocytoma [PHEO]), and non-NENs (n = 469). In normal tissues, PROX1 was expressed in lymphatic endothelial cells and a subset of epithelial cells in the gastrointestinal tract and the distal convoluted tubules. In NENs, the positive expression was observed in the nucleus of tumor cells in 19/26 SCLC (73.1%), 13/16 LC (81.3%), 10/15 GEP-NEN (66.7%), 2/2 ENEC (100%), 17/43 MTC (39.5%), 1/25 NB (4.0%), and 0/25 PHEO (0%). Although PROX1 was negative in many non-NENs, our analysis revealed high expression in certain cases with medulloblastoma and one case with juvenile granulosa cell tumor. PROX1 was expressed in specific cases with epithelial NENs and some cases with non-NENs. Analysis of PROX1 should provide insights into the molecular characteristics of distinct tumors.
Collapse
Affiliation(s)
- Kanata Kojima
- Department of Clinical Laboratory, Fujita Health University Hospital, Toyoake, Aichi, 470-1192, Japan
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Kouhei Sakurai
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| | - Tatsuya Ando
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yasuhiro Sakai
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Mako Ochiai
- Department of Clinical Laboratory, Fujita Health University Hospital, Toyoake, Aichi, 470-1192, Japan
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Taku Kato
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Hiroyasu Ito
- Department of Clinical Laboratory, Fujita Health University Hospital, Toyoake, Aichi, 470-1192, Japan
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
3
|
Su G, Wang J, Liu S, Fu X, Li Y, Pan G. Identification and Validation of Epithelial Cell Centre Regulatory Transcription Factors in the Gastric Cancer Microenvironment. Int J Gen Med 2024; 17:6567-6584. [PMID: 39759895 PMCID: PMC11697670 DOI: 10.2147/ijgm.s496006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/13/2024] [Indexed: 01/07/2025] Open
Abstract
Purpose To identify the epithelial cell centre regulatory transcription factors in the gastric cancer (GC) microenvironment and provide a new strategy for the diagnosis and treatment of GC. Methods The GC single-cell dataset was downloaded from the Gene Expression Omnibus (GEO) database. The regulatory mechanisms of transcription factors in both pan-cancer and GC microenvironments were analysed using the Cancer Genome Atlas (TGCA) database. Real-time quantitative PCR (RT-qPCR) was used to determine the mRNA expression levels of Prospero homeobox gene 1 (PROX1) and Endothelial PAS domain-containing protein 1 (EPAS1) in the human gastric mucosal normal epithelial cell line (GES-1) and the GC cell line (AGS). Immunohistochemistry (IHC) was used to determine the amounts of PROX1 and EPAS1 protein expression in GC and adjacent tissues. GC patients' overall survival (OS) was tracked through outpatient, Inpatient case inquiry, or phone follow-up. Results The single-cell data from GSE184198 was re-annotated, resulting in nine cell subsets: T cells (13364), NK cells (606), B cells (2525), Epithelial cells (2497), DC cells (1167), Fibroblast cells (372), Endothelial cells (271), Neutrophils cells (246) and Macrophage cells (420). Analysis of cell subgroup signalling pathways revealed that communication intensity between epithelial cells and smooth muscle cells was highest. Transcription factors PROX1 and EPAS1 were notably active in epithelial cells. Cell communication analysis indicated that IFNG may interact with IFNGR1/2 and LIF with IL6ST and LIFR to regulate the downstream PROX1 and EPAS1. PROX1 and EPAS1 were upregulated and negatively correlated with tumour mutation burden (TMB). They also exhibited high positive correlations with immune checkpoints CTLA4 and PDCD1LG2, as well as with chemokines CCL24 and CXCL12 and their receptors CCR3 and CCR4. Additionally, PROX1 and EPAS1 were positively correlated with immunosuppressive factors ADORA2A, CD160, IL10, TGFBR1, KDR and CSF1R, as well as with immunostimulators CD276, PVR, TNFRSF25, ULBP1, CXCL12 and ENTPD1. In GC tissues and AGS, PROX1 and EPAS1 were both substantially expressed. In the meantime, they showed a positive correlation with clinicopathological features such TNM stage and degree of differentiation. In GC patients, the up-regulated group's PROX1 and EPAS1 prognosis was noticeably poorer than the down-regulated group's. Conclusion PROX1 and EPAS1 are likely central regulatory transcription factors in the epithelial cells of the GC environment, regulated by IFNG and LIF. They may contribute to GC progression by modulating the tumour's immune microenvironment.
Collapse
Affiliation(s)
- Guomiao Su
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yun Nan, People’s Republic of China
| | - Juan Wang
- Clinical Laboratory, Yunnan Province Third People’s Hospital, Kunming, Yun Nan, People’s Republic of China
| | - Shiyue Liu
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yun Nan, People’s Republic of China
| | - Xiaonan Fu
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yun Nan, People’s Republic of China
| | - Yanxi Li
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yun Nan, People’s Republic of China
| | - Guoqing Pan
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yun Nan, People’s Republic of China
| |
Collapse
|
4
|
Iglesia MD, Jayasinghe RG, Chen S, Terekhanova NV, Herndon JM, Storrs E, Karpova A, Zhou DC, Naser Al Deen N, Shinkle AT, Lu RJH, Caravan W, Houston A, Zhao Y, Sato K, Lal P, Street C, Martins Rodrigues F, Southard-Smith AN, Targino da Costa ALN, Zhu H, Mo CK, Crowson L, Fulton RS, Wyczalkowski MA, Fronick CC, Fulton LA, Sun H, Davies SR, Appelbaum EL, Chasnoff SE, Carmody M, Brooks C, Liu R, Wendl MC, Oh C, Bender D, Cruchaga C, Harari O, Bredemeyer A, Lavine K, Bose R, Margenthaler J, Held JM, Achilefu S, Ademuyiwa F, Aft R, Ma C, Colditz GA, Ju T, Oh ST, Fitzpatrick J, Hwang ES, Shoghi KI, Chheda MG, Veis DJ, Chen F, Fields RC, Gillanders WE, Ding L. Differential chromatin accessibility and transcriptional dynamics define breast cancer subtypes and their lineages. NATURE CANCER 2024; 5:1713-1736. [PMID: 39478117 PMCID: PMC11584403 DOI: 10.1038/s43018-024-00773-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/24/2024] [Indexed: 11/06/2024]
Abstract
Breast cancer (BC) is defined by distinct molecular subtypes with different cells of origin. The transcriptional networks that characterize the subtype-specific tumor-normal lineages are not established. In this work, we applied bulk, single-cell and single-nucleus multi-omic techniques as well as spatial transcriptomics and multiplex imaging on 61 samples from 37 patients with BC to show characteristic links in gene expression and chromatin accessibility between BC subtypes and their putative cells of origin. Regulatory network analysis of transcription factors underscored the importance of BHLHE40 in luminal BC and luminal mature cells and KLF5 in basal-like tumors and luminal progenitor cells. Furthermore, we identify key genes defining the basal-like (SOX6 and KCNQ3) and luminal A/B (FAM155A and LRP1B) lineages. Exhausted CTLA4-expressing CD8+ T cells were enriched in basal-like BC, suggesting an altered means of immune dysfunction. These findings demonstrate analysis of paired transcription and chromatin accessibility at the single-cell level is a powerful tool for investigating cancer lineage and highlight transcriptional networks that define basal and luminal BC lineages.
Collapse
Affiliation(s)
- Michael D Iglesia
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Reyka G Jayasinghe
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Siqi Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Nadezhda V Terekhanova
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - John M Herndon
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Erik Storrs
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Alla Karpova
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Daniel Cui Zhou
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Nataly Naser Al Deen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew T Shinkle
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Rita Jui-Hsien Lu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Wagma Caravan
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew Houston
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Yanyan Zhao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Kazuhito Sato
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Preet Lal
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Cherease Street
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Fernanda Martins Rodrigues
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Austin N Southard-Smith
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - André Luiz N Targino da Costa
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Houxiang Zhu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Chia-Kuei Mo
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Lisa Crowson
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Robert S Fulton
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Catrina C Fronick
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Lucinda A Fulton
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Hua Sun
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Sherri R Davies
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Sara E Chasnoff
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Madelyn Carmody
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Candace Brooks
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Ruiyang Liu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael C Wendl
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mathematics, Washington University in St. Louis, St. Louis, MO, USA
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Clara Oh
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Diane Bender
- Bursky Center for Human Immunology & Immunotherapy, Washington University in St. Louis, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrea Bredemeyer
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Kory Lavine
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ron Bose
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Julie Margenthaler
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Jason M Held
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Samuel Achilefu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Foluso Ademuyiwa
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Rebecca Aft
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
- John Cochran Veterans Hospital, St. Louis, MO, USA
| | - Cynthia Ma
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Graham A Colditz
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Division of Public Health Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Tao Ju
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Stephen T Oh
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - James Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University in St. Louis, St. Louis, MO, USA
- Departments of Neuroscience and Cell Biology & Physiology, Washington University in St. Louis, St. Louis, MO, USA
| | - E Shelley Hwang
- Department of Surgery, Duke University Medical Center, Durham, NC, England
| | - Kooresh I Shoghi
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Milan G Chheda
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Deborah J Veis
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Ryan C Fields
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - William E Gillanders
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA.
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
5
|
Sakurai K, Ando T, Sakai Y, Mori Y, Nakamura S, Kato T, Ito H. PROX1 is a regulator of neuroendocrine-related gene expression in lung carcinoid. Hum Cell 2024; 37:1559-1566. [PMID: 39066858 DOI: 10.1007/s13577-024-01109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Lung neuroendocrine neoplasms (NENs) are a diverse group of tumors characterized by neuroendocrine (NE) differentiation. Among lung NENs, lung carcinoid (LC) is a rare tumor with unique characteristics. Recent research has highlighted the importance of transcription factors (TFs) in establishing gene expression programs in lung NENs such as small cell lung carcinoma. However, the TFs that control the gene expression of LC are largely unknown. In this study, we report the expression and potential function of a TF called Prospero homeobox protein1 (PROX1) in LC. Publicly available transcriptome data suggested that PROX1 was highly expressed in LC tissues, which was confirmed by immunohistochemical analysis on a tissue microarray. Knockdown of PROX1 did not impact the cellular viability of an LC-derived cell line, NCI-H727. Meanwhile, transcriptome analysis revealed that PROX1 knockdown altered the expression of genes involved in NE differentiation. ASCL1, CHGA, CALCA, and LINC00261 were suggested as downstream genes of PROX1. These findings indicate that PROX1 may play an important role in the NE identity of LC by regulating the expression of key target genes.
Collapse
Affiliation(s)
- Kouhei Sakurai
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| | - Tatsuya Ando
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yasuhiro Sakai
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yuichiro Mori
- School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Satoru Nakamura
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
- Central Research Laboratory, Nitto Fuji Flour Milling Co., Ltd., Tokyo, 143-0001, Japan
| | - Taku Kato
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Hiroyasu Ito
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
6
|
Ducos C, Aba N, Rosselli F, Fresneau B, Al Ahmad Nachar B, Zidane M, de Vathaire F, Benhamou S, Haddy N. Genetic Risk of Second Malignant Neoplasm after Childhood Cancer Treatment: A Systematic Review. Cancer Epidemiol Biomarkers Prev 2024; 33:999-1011. [PMID: 38801411 DOI: 10.1158/1055-9965.epi-24-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/07/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
Second malignant neoplasm (SMN) is one of the most severe long-term risks for childhood cancer survivors (CCS), significantly impacting long-term patient survival. While radiotherapy and chemotherapy are known risk factors, the observed inter-individual variability suggests a genetic component contributing to the risk of SMN. This article aims to conduct a systematic review of genetic factors implicated in the SMN risk among CCS. Searches were performed in PubMed, Scopus, and Web of Sciences. Eighteen studies were included (eleven candidate gene studies, three genome-wide association studies, and four whole exome/genome sequencing studies). The included studies were based on different types of first cancers, investigated any or specific types of SMN, and focused mainly on genes involved in drug metabolism and DNA repair pathways. These differences in study design and methods used to characterize genetic variants limit the scope of the results and highlight the need for further extensive and standardized investigations. However, this review provides a valuable compilation of SMN risk-associated variants and genes, facilitating efficient replication and advancing our understanding of the genetic basis for this major risk for CCS.
Collapse
Affiliation(s)
- Claire Ducos
- Radiation Epidemiology Team, Center for Research in Epidemiology and Population Health, INSERM Unit 1018, University Paris Saclay, Villejuif, France
| | - Naïla Aba
- Radiation Epidemiology Team, Center for Research in Epidemiology and Population Health, INSERM Unit 1018, University Paris Saclay, Villejuif, France
| | - Filippo Rosselli
- CNRS UMR9019, Gustave Roussy Cancer Campus, Université Paris-Saclay, Equipe Labellisée Ligue Nationale Contre le Cancer Villejuif, France
| | - Brice Fresneau
- Radiation Epidemiology Team, Center for Research in Epidemiology and Population Health, INSERM Unit 1018, University Paris Saclay, Villejuif, France
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Baraah Al Ahmad Nachar
- CNRS UMR9019, Gustave Roussy Cancer Campus, Université Paris-Saclay, Equipe Labellisée Ligue Nationale Contre le Cancer Villejuif, France
| | - Monia Zidane
- Radiation Epidemiology Team, Center for Research in Epidemiology and Population Health, INSERM Unit 1018, University Paris Saclay, Villejuif, France
| | - Florent de Vathaire
- Radiation Epidemiology Team, Center for Research in Epidemiology and Population Health, INSERM Unit 1018, University Paris Saclay, Villejuif, France
| | - Simone Benhamou
- Oncostat Team, Center for Research in Epidemiology and Population Health, INSERM Unit 1018, University Paris Saclay, Villejuif, France
| | - Nadia Haddy
- Radiation Epidemiology Team, Center for Research in Epidemiology and Population Health, INSERM Unit 1018, University Paris Saclay, Villejuif, France
| |
Collapse
|
7
|
Benitha G, Ramani P, Jayakumar S, Ramalingam K. Molecular expression of Forkhead Box C2 gene (FOXC2) and Prospero homeobox gene (PROX-1) in oral squamous carcinoma and their correlation with clinicopathological parameters: A prospective cohort study. J Oral Maxillofac Pathol 2024; 28:216-225. [PMID: 39157851 PMCID: PMC11329087 DOI: 10.4103/jomfp.jomfp_394_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/05/2024] [Accepted: 03/29/2024] [Indexed: 08/20/2024] Open
Abstract
Background Forkhead box C2 gene (FOXC2) acts as an epithelial-mesenchymal transition (EMT) inducer while Prospero homeobox 1 gene (PROX-1) function as a regulator of lymphangiogenesis and angiogenesis in oral squamous cell carcinoma (OSCC). It is presumed that PROX-1 has both tumour-suppressive and oncogenic effects. The main aim of this study is to evaluate the role of PROX-1 and FOXC2 in the invasion and progression of OSCC cases and to correlate their expression with various histopathological parameters. Materials and Methods A prospective cohort study was conducted in a total sample size of 52 OSCC tissues and histologically tumour-free margins of 20. mRNA expression and protein levels of FOXC2 and PROX-1 were evaluated using real-time PCR and sandwich enzyme-linked immunosorbent assay techniques. Chi-square analysis and correlation analysis were done. Kaplan-Meier analysis evaluated the survival rate. Results Mean Ct values of FOXC2 were 1.915 ± 0.519 and PROX-1 was 0.061 ± 0.173. There was a significant 2-fold increase in the FOXC2 expression and a 0.5-fold decrease in the PROX-1 expression in OSCC tissue. Increased levels of FOXC2 protein and decreased levels of PROX-1 with a mean difference of 1.64 ± 0.73 ng/ml and 1.27 ± 0.33 ng/ml were observed in OSCC compared to histologically tumour-free margins. A significant positive correlation was found between the FOXC2 expression and clinicopathological parameters such as staging, perineural invasion (PNI) and lymphovascular invasion (LVI) whereas PROX-1 showed a significant negative correlation with histopathological parameters such as staging, PNI, LVI and tumour staging. There was a significant positive correlation between the PROX-1 and histologically tumour-free margins in disease-free survival patients (P-value = 0.03). Conclusion FOXC2 and PROX-1 expressions were correlated with lymphovascular invasion, OSCC tumour staging and PNI. Thus, FOXC2 and PROX-1 could be possible therapeutic targets in the treatment of OSCC that can inhibit the EMT in OSCC and thereby favouring a better prognosis.
Collapse
Affiliation(s)
- Georgia Benitha
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Pratibha Ramani
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Selvaraj Jayakumar
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Karthikeyan Ramalingam
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
8
|
Simkin J, Aloysius A, Adam M, Safaee F, Donahue RR, Biswas S, Lakhani Z, Gensel JC, Thybert D, Potter S, Seifert AW. Tissue-resident macrophages specifically express Lactotransferrin and Vegfc during ear pinna regeneration in spiny mice. Dev Cell 2024; 59:496-516.e6. [PMID: 38228141 PMCID: PMC10922778 DOI: 10.1016/j.devcel.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/30/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024]
Abstract
The details of how macrophages control different healing trajectories (regeneration vs. scar formation) remain poorly defined. Spiny mice (Acomys spp.) can regenerate external ear pinnae tissue, whereas lab mice (Mus musculus) form scar tissue in response to an identical injury. Here, we used this dual species system to dissect macrophage phenotypes between healing modes. We identified secreted factors from activated Acomys macrophages that induce a pro-regenerative phenotype in fibroblasts from both species. Transcriptional profiling of Acomys macrophages and subsequent in vitro tests identified VEGFC, PDGFA, and Lactotransferrin (LTF) as potential pro-regenerative modulators. Examining macrophages in vivo, we found that Acomys-resident macrophages secreted VEGFC and LTF, whereas Mus macrophages do not. Lastly, we demonstrate the requirement for VEGFC during regeneration and find that interrupting lymphangiogenesis delays blastema and new tissue formation. Together, our results demonstrate that cell-autonomous mechanisms govern how macrophages react to the same stimuli to differentially produce factors that facilitate regeneration.
Collapse
Affiliation(s)
- Jennifer Simkin
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; Department of Orthopaedic Surgery, LSU Health-New Orleans, New Orleans, LA 70112, USA.
| | - Ajoy Aloysius
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Mike Adam
- Department of Pediatrics, University of Cincinnati Children's Hospital Medical Center, Division of Developmental Biology, Cincinnati, OH 45229, USA
| | - Fatemeh Safaee
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Renée R Donahue
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Shishir Biswas
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Zohaib Lakhani
- Department of Orthopaedic Surgery, LSU Health-New Orleans, New Orleans, LA 70112, USA
| | - John C Gensel
- Department of Physiology, University of Kentucky, Lexington, KY 40506, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40506, USA
| | - David Thybert
- European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Steven Potter
- Department of Pediatrics, University of Cincinnati Children's Hospital Medical Center, Division of Developmental Biology, Cincinnati, OH 45229, USA
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
9
|
Lai SW, Cheng YC, Kiu KT, Yen MH, Chen YW, Yadav VK, Yeh CT, Kuo KT, Chang TC. PROX1 interaction with α-SMA-rich cancer-associated fibroblasts facilitates colorectal cancer progression and correlates with poor clinical outcomes and therapeutic resistance. Aging (Albany NY) 2024; 16:1620-1639. [PMID: 38244581 PMCID: PMC10866434 DOI: 10.18632/aging.205447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND The tumor microenvironment (TME) plays a vital role in tumor progression through intricate molecular interactions. Cancer-associated fibroblasts (CAFs), notably those expressing alpha-smooth muscle actin (α-SMA) or myofibroblasts, are instrumental in this context and correlate with unfavorable outcomes in colorectal cancer (CRC). While several transcription factors influence TME, the exact regulator causing CAF dysregulation in CRC remains elusive. Prospero Homeobox 1 (PROX1) stands out, as its inhibition reduces α-SMA-rich CAF activity. However, the therapeutic role of PROX1 is debated due to inconsistent study findings. METHODS Using the ULCAN portal, we noted an elevated PROX1 level in advanced colon adenocarcinoma, linking to a poor prognosis. Assays determined the impact of PROX1 overexpression on CRC cell properties, while co-culture experiments spotlighted the PROX1-CAF relationship. Molecular expressions were validated by qRT-PCR and Western blots, with in vivo studies further solidifying the observations. RESULTS Our study emphasized the connection between PROX1 and α-SMA in CAFs. Elevated PROX1 in CRC samples correlated with increased α-SMA in tumors. PROX1 modulation influenced the behavior of specific CRC cells, with its overexpression fostering invasiveness. Kaplan-Meier evaluations demonstrated a link between PROX1 or α-SMA and survival outcomes. Consequently, PROX1, alone or with α-SMA, emerges as a CRC prognostic marker. Co-culture and animal experiments further highlighted this relationship. CONCLUSION PROX1 appears crucial in modulating CRC behavior and therapeutic resistance within the TME by influencing CAFs, signifying the combined PROX1/α-SMA gene as a potential CRC prognostic marker. The concept of developing inhibitors targeting this gene set emerges as a prospective therapeutic strategy. However, this study is bound by limitations, including potential challenges in clinical translation, a focused exploration on PROX1/α-SMA potentially overlooking other significant molecular contributors, and the preliminary nature of the inhibitor development proposition.
Collapse
Affiliation(s)
- Shiue-Wei Lai
- Department of Internal Medicine, Division of Hematology and Oncology, Tri-service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Chiao Cheng
- Department of Surgery, Division of Colon and Rectal Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kee-Thai Kiu
- Department of Surgery, Division of Colorectal Surgery, Taipei Medical University Shuang-Ho Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Min-Hsuan Yen
- Department of Surgery, Division of Colorectal Surgery, Taipei Medical University Shuang-Ho Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ying-Wei Chen
- Department of Surgery, Division of Colorectal Surgery, Taipei Medical University Shuang-Ho Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Vijesh Kumar Yadav
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Shuang-Ho Hospital, New Taipei City, Taiwan
- Department of Medical Research and Education, Taipei Medical University Shuang-Ho Hospital, New Taipei City 23561, Taiwan
| | - Chi-Tai Yeh
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Shuang-Ho Hospital, New Taipei City, Taiwan
- Department of Medical Research and Education, Taipei Medical University Shuang-Ho Hospital, New Taipei City 23561, Taiwan
- Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung 95092, Taiwan
| | - Kuang-Tai Kuo
- Department of Surgery, Division of Thoracic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Surgery, Division of Thoracic Surgery, Taipei Medical University Shuang-Ho Hospital, New Taipei City 23561, Taiwan
| | - Tung-Cheng Chang
- Department of Surgery, Division of Colorectal Surgery, Taipei Medical University Shuang-Ho Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
10
|
Lumour-Mensah T, Lemos B. Defining high confidence targets of differential CpG methylation in response to in utero arsenic exposure and implications for cancer risk. Toxicol Appl Pharmacol 2024; 482:116768. [PMID: 38030093 PMCID: PMC10889851 DOI: 10.1016/j.taap.2023.116768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/11/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023]
Abstract
Arsenic is a relatively abundant metalloid that impacts DNA methylation and has been implicated in various adverse health outcomes including several cancers and diabetes. However, uncertainty remains about the identity of genomic CpGs that are sensitive to arsenic exposure, in utero or otherwise. Here we identified a high confidence set of CpG sites whose methylation is sensitive to in utero arsenic exposure. To do so, we analyzed methylation of infant CpGs as a function of maternal urinary arsenic in cord blood and placenta from geographically and ancestrally distinct human populations. Independent analyses of these distinct populations were followed by combination of results across sexes and populations/tissue types. Following these analyses, we concluded that both sex and tissue type are important drivers of heterogeneity in methylation response at several CpGs. We also identified 17 high confidence CpGs that were hypermethylated across sex, tissue type and population; 11 of these were located within protein coding genes. This pattern is consistent with hypotheses that arsenic increases cancer risk by inducing the hypermethylation of genic regions. This study represents an opportunity to understand consistent, reproducible patterns of epigenomic responses after in utero arsenic exposure and may aid towards novel biomarkers or signatures of arsenic exposure. Identifying arsenic-responsive sites can also contribute to our understanding of the biological mechanisms by which arsenic exposure can affect biological function and increase risk of cancer and other age-related diseases.
Collapse
Affiliation(s)
- Tabitha Lumour-Mensah
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
| | - Bernardo Lemos
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America; R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, United States of America.
| |
Collapse
|
11
|
Iglesia MD, Jayasinghe RG, Chen S, Terekhanova NV, Herndon JM, Storrs E, Karpova A, Zhou DC, Al Deen NN, Shinkle AT, Lu RJH, Caravan W, Houston A, Zhao Y, Sato K, Lal P, Street C, Rodrigues FM, Southard-Smith AN, Targino da Costa ALN, Zhu H, Mo CK, Crowson L, Fulton RS, Wyczalkowski MA, Fronick CC, Fulton LA, Sun H, Davies SR, Appelbaum EL, Chasnoff SE, Carmody M, Brooks C, Liu R, Wendl MC, Oh C, Bender D, Cruchaga C, Harari O, Bredemeyer A, Lavine K, Bose R, Margenthaler J, Held JM, Achilefu S, Ademuyiwa F, Aft R, Ma C, Colditz GA, Ju T, Oh ST, Fitzpatrick J, Hwang ES, Shoghi KI, Chheda MG, Veis DJ, Chen F, Fields RC, Gillanders WE, Ding L. Differential chromatin accessibility and transcriptional dynamics define breast cancer subtypes and their lineages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.565031. [PMID: 37961519 PMCID: PMC10634973 DOI: 10.1101/2023.10.31.565031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Breast cancer is a heterogeneous disease, and treatment is guided by biomarker profiles representing distinct molecular subtypes. Breast cancer arises from the breast ductal epithelium, and experimental data suggests breast cancer subtypes have different cells of origin within that lineage. The precise cells of origin for each subtype and the transcriptional networks that characterize these tumor-normal lineages are not established. In this work, we applied bulk, single-cell (sc), and single-nucleus (sn) multi-omic techniques as well as spatial transcriptomics and multiplex imaging on 61 samples from 37 breast cancer patients to show characteristic links in gene expression and chromatin accessibility between breast cancer subtypes and their putative cells of origin. We applied the PAM50 subtyping algorithm in tandem with bulk RNA-seq and snRNA-seq to reliably subtype even low-purity tumor samples and confirm promoter accessibility using snATAC. Trajectory analysis of chromatin accessibility and differentially accessible motifs clearly connected progenitor populations with breast cancer subtypes supporting the cell of origin for basal-like and luminal A and B tumors. Regulatory network analysis of transcription factors underscored the importance of BHLHE40 in luminal breast cancer and luminal mature cells, and KLF5 in basal-like tumors and luminal progenitor cells. Furthermore, we identify key genes defining the basal-like ( PRKCA , SOX6 , RGS6 , KCNQ3 ) and luminal A/B ( FAM155A , LRP1B ) lineages, with expression in both precursor and cancer cells and further upregulation in tumors. Exhausted CTLA4-expressing CD8+ T cells were enriched in basal-like breast cancer, suggesting altered means of immune dysfunction among breast cancer subtypes. We used spatial transcriptomics and multiplex imaging to provide spatial detail for key markers of benign and malignant cell types and immune cell colocation. These findings demonstrate analysis of paired transcription and chromatin accessibility at the single cell level is a powerful tool for investigating breast cancer lineage development and highlight transcriptional networks that define basal and luminal breast cancer lineages.
Collapse
|
12
|
Alfaro AJ, Dittner C, Becker J, Loft A, Mhamane A, Maida A, Georgiadi A, Tsokanos F, Klepac K, Molocea C, El‐Merahbi R, Motzler K, Geppert J, Karikari RA, Szendrödi J, Feuchtinger A, Hofmann S, Karaca S, Urlaub H, Berriel Diaz M, Melchior F, Herzig S. Fasting-sensitive SUMO-switch on Prox1 controls hepatic cholesterol metabolism. EMBO Rep 2023; 24:e55981. [PMID: 37560809 PMCID: PMC10561358 DOI: 10.15252/embr.202255981] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 07/12/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
Accumulation of excess nutrients hampers proper liver function and is linked to nonalcoholic fatty liver disease (NAFLD) in obesity. However, the signals responsible for an impaired adaptation of hepatocytes to obesogenic dietary cues remain still largely unknown. Post-translational modification by the small ubiquitin-like modifier (SUMO) allows for a dynamic regulation of numerous processes including transcriptional reprogramming. We demonstrate that specific SUMOylation of transcription factor Prox1 represents a nutrient-sensitive determinant of hepatic fasting metabolism. Prox1 is highly SUMOylated on lysine 556 in the liver of ad libitum and refed mice, while this modification is abolished upon fasting. In the context of diet-induced obesity, Prox1 SUMOylation becomes less sensitive to fasting cues. The hepatocyte-selective knock-in of a SUMOylation-deficient Prox1 mutant into mice fed a high-fat/high-fructose diet leads to a reduction of systemic cholesterol levels, associated with the induction of liver bile acid detoxifying pathways during fasting. The generation of tools to maintain the nutrient-sensitive SUMO-switch on Prox1 may thus contribute to the development of "fasting-based" approaches for the preservation of metabolic health.
Collapse
Affiliation(s)
- Ana Jimena Alfaro
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
| | - Claudia Dittner
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)Heidelberg University, DKFZ‐ZMBH AllianceHeidelbergGermany
| | - Janina Becker
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)Heidelberg University, DKFZ‐ZMBH AllianceHeidelbergGermany
| | - Anne Loft
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
- Center for Functional Genomics and Tissue Plasticity (ATLAS), SDUOdenseDenmark
| | - Amit Mhamane
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
| | - Adriano Maida
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
| | - Anastasia Georgiadi
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
| | - Foivos‐Filippos Tsokanos
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
| | - Katarina Klepac
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
| | - Claudia‐Eveline Molocea
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
| | - Rabih El‐Merahbi
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
| | - Karsten Motzler
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
| | - Julia Geppert
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
| | - Rhoda Anane Karikari
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
| | - Julia Szendrödi
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
| | | | - Susanna Hofmann
- Institute of Diabetes and Regeneration ResearchHelmholtz MunichNeuherbergGermany
| | - Samir Karaca
- Bioanalytical Mass Spectrometry GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Bioanalytics, Institute of Clinical ChemistryUniversity Medical Center GöttingenGöttingenGermany
| | - Mauricio Berriel Diaz
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
| | - Frauke Melchior
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)Heidelberg University, DKFZ‐ZMBH AllianceHeidelbergGermany
| | - Stephan Herzig
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
- Chair Molecular Metabolic ControlTechnical University MunichMunichGermany
| |
Collapse
|
13
|
Moorman AR, Cambuli F, Benitez EK, Jiang Q, Xie Y, Mahmoud A, Lumish M, Hartner S, Balkaran S, Bermeo J, Asawa S, Firat C, Saxena A, Luthra A, Sgambati V, Luckett K, Wu F, Li Y, Yi Z, Masilionis I, Soares K, Pappou E, Yaeger R, Kingham P, Jarnagin W, Paty P, Weiser MR, Mazutis L, D'Angelica M, Shia J, Garcia-Aguilar J, Nawy T, Hollmann TJ, Chaligné R, Sanchez-Vega F, Sharma R, Pe'er D, Ganesh K. Progressive plasticity during colorectal cancer metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553925. [PMID: 37662289 PMCID: PMC10473595 DOI: 10.1101/2023.08.18.553925] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Metastasis is the principal cause of cancer death, yet we lack an understanding of metastatic cell states, their relationship to primary tumor states, and the mechanisms by which they transition. In a cohort of biospecimen trios from same-patient normal colon, primary and metastatic colorectal cancer, we show that while primary tumors largely adopt LGR5 + intestinal stem-like states, metastases display progressive plasticity. Loss of intestinal cell states is accompanied by reprogramming into a highly conserved fetal progenitor state, followed by non-canonical differentiation into divergent squamous and neuroendocrine-like states, which is exacerbated by chemotherapy and associated with poor patient survival. Using matched patient-derived organoids, we demonstrate that metastatic cancer cells exhibit greater cell-autonomous multilineage differentiation potential in response to microenvironment cues than their intestinal lineage-restricted primary tumor counterparts. We identify PROX1 as a stabilizer of intestinal lineage in the fetal progenitor state, whose downregulation licenses non-canonical reprogramming.
Collapse
|
14
|
Xu X, An H, Wu C, Sang R, Wu L, Lou Y, Yang X, Xi Y. HR repair pathway plays a crucial role in maintaining neural stem cell fate under irradiation stress. Life Sci Alliance 2023; 6:e202201802. [PMID: 37197982 PMCID: PMC10192720 DOI: 10.26508/lsa.202201802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023] Open
Abstract
Environmental stress can cause mutation or genomic instability in stem cells which, in some cases, leads to tumorigenesis. Mechanisms to monitor and eliminate these mutant stem cells remain elusive. Here, using the Drosophila larval brain as a model, we show that X-ray irradiation (IR) at the early larval stage leads to accumulation of nuclear Prospero (Pros), resulting in premature differentiation of neural stem cells (neuroblasts, NBs). Through NB-specific RNAi screenings, we determined that it is the Mre11-Rad50-Nbs1 complex and the homologous recombination (HR) repair pathway, rather than non-homologous end-joining pathway that plays, a dominant role in the maintenance of NBs under IR stress. The DNA damage sensor ATR/mei-41 is shown to act to prevent IR-induced nuclear Pros in a WRNexo-dependent manner. The accumulation of nuclear Pros in NBs under IR stress, leads to NB cell fate termination, rather than resulting in mutant cell proliferation. Our study reveals an emerging mechanism for the HR repair pathway in maintaining neural stem cell fate under irradiation stress.
Collapse
Affiliation(s)
- Xiao Xu
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic & Development Disorders, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huanping An
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic & Development Disorders, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Clinical Molecular Biology of Hanzhong City, Hanzhong Vocational and Technique College, Hanzhong, China
| | - Cheng Wu
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic & Development Disorders, School of Medicine, Zhejiang University, Hangzhou, China
| | - Rong Sang
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic & Development Disorders, School of Medicine, Zhejiang University, Hangzhou, China
| | - Litao Wu
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic & Development Disorders, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuhan Lou
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic & Development Disorders, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohang Yang
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic & Development Disorders, School of Medicine, Zhejiang University, Hangzhou, China
- Joint Institute of Genetics and Genomic Medicine, Between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, China
| | - Yongmei Xi
- The Women's Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic & Development Disorders, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
O’Donnell A, Gonzalez BA, Mukherjee S, Wilson R, Alfieri CM, Swoboda CO, Millay DP, Zorn AM, Yutzey KE. Localized Prox1 Regulates Aortic Valve Endothelial Cell Diversity and Extracellular Matrix Stratification in Mice. Arterioscler Thromb Vasc Biol 2023; 43:1478-1493. [PMID: 37381982 PMCID: PMC10528305 DOI: 10.1161/atvbaha.123.319424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Specialized valve endothelial cell (VEC) populations are localized oriented to blood flow in developing aortic and mitral valves, but their roles in valve development and disease are unknown. In the aortic valve (AoV), a population of VECs on the fibrosa side expresses the transcription factor Prox1 together with genes found in lymphatic ECs. In this study, we examine Prox1's role in regulating a lymphatic-like gene network and promoting VEC diversity required for the development of the stratified trilaminar extracellular matrix (ECM) of murine AoV leaflets. METHODS To determine whether disruption of Prox1 localization affects heart valve development, we generated mice (NFATc1enCre Prox1 gain-of-function) in which Prox1 is overexpressed on the ventricularis side of the AoV beginning in embryonic development. To identify potential targets of Prox1, we performed cleavage under targets and release using nuclease on wild-type and NFATc1enCre Prox1 gain-of-function AoVs with validation by colocalization in vivo using RNA in situ hybridization in NFATc1enCre Prox1 gain-of-function AoVs. Natural induction of Prox1 and target gene expression was evaluated in myxomatous AoVs in a mouse model of Marfan syndrome (Fbn1C1039G/+). RESULTS The overexpression of Prox1 is sufficient to cause enlargement of AoVs by postnatal day (P)0, as well as a decrease in ventricularis-specific gene expression and disorganized interstitial ECM layers at P7. We identified potential targets of Prox1 known to play roles in lymphatic ECs including Flt1, Efnb2, Egfl7, and Cx37. Ectopic Prox1 colocalized with induced Flt1, Efnb2, and Cx37 expression in NFATc1enCre Prox1 gain-of-function AoVs. Moreover, in Marfan syndrome myxomatous AoVs, endogenous Prox1, and its identified targets, were ectopically induced in ventricularis side VECs. CONCLUSIONS Our results support a role for Prox1 in localized lymphatic-like gene expression on the fibrosa side of the AoV. Furthermore, localized VEC specialization is required for development of the stratified trilaminar ECM critical for AoV function and is dysregulated in congenitally malformed valves.
Collapse
Affiliation(s)
- Anna O’Donnell
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| | - Brittany A. Gonzalez
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Shreyasi Mukherjee
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Ruby Wilson
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Christina M. Alfieri
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Casey O. Swoboda
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Douglas P. Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Aaron M. Zorn
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Katherine E. Yutzey
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
16
|
Michail A, Gkikas D, Stellas D, Kaltezioti V, Politis PK. Prox1 Suppresses the Proliferation of Breast Cancer Cells via Direct Inhibition of c-Myc Gene Expression. Cells 2023; 12:1869. [PMID: 37508533 PMCID: PMC10377922 DOI: 10.3390/cells12141869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer is one of the most lethal malignancies in women worldwide and is characterized by rapid growth and low survival rates, despite advances in tumor biology and therapies. Novel therapeutic approaches require new insights into the molecular mechanisms of malignant transformation and progression. To this end, here, we identified Prox1 as a negative regulator of proliferation and tumor-related metabolism in breast cancer. In particular, we showed that breast tumors from human patients exhibited reduced levels of Prox1 expression, while high expression levels of Prox1 were associated with a favorable prognosis in breast cancer patients. Moreover, we experimentally demonstrated that Prox1 was sufficient to strongly suppress proliferation, migration, and the Warburg effect in human breast cancer cells without inducing apoptosis. Most importantly, over-expression of Prox1 inhibited breast tumor growth in vivo in both heterotopic and orthotopic xenograft mouse models. The anti-tumorigenic effect of Prox1 was mediated by the direct repression of c-Myc transcription and its downstream target genes. Consistently, c-Myc over-expression from an artificial promoter that was not targeted by Prox1 reversed Prox1's anti-tumor effects. These findings suggest that Prox1 has a tumor suppressive role via direct transcriptional regulation of c-Myc, making it a promising therapeutic gene for breast cancer.
Collapse
Affiliation(s)
- Artemis Michail
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str., 115 27 Athens, Greece
- Department of Biology, University of Patras, 265 04 Patras, Greece
| | - Dimitrios Gkikas
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str., 115 27 Athens, Greece
| | - Dimitris Stellas
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece
| | - Valeria Kaltezioti
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str., 115 27 Athens, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str., 115 27 Athens, Greece
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus
| |
Collapse
|
17
|
Ivanov KI, Samuilova OV, Zamyatnin AA. The emerging roles of long noncoding RNAs in lymphatic vascular development and disease. Cell Mol Life Sci 2023; 80:197. [PMID: 37407839 PMCID: PMC10322780 DOI: 10.1007/s00018-023-04842-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Recent advances in RNA sequencing technologies helped uncover what was once uncharted territory in the human genome-the complex and versatile world of long noncoding RNAs (lncRNAs). Previously thought of as merely transcriptional "noise", lncRNAs have now emerged as essential regulators of gene expression networks controlling development, homeostasis and disease progression. The regulatory functions of lncRNAs are broad and diverse, and the underlying molecular mechanisms are highly variable, acting at the transcriptional, post-transcriptional, translational, and post-translational levels. In recent years, evidence has accumulated to support the important role of lncRNAs in the development and functioning of the lymphatic vasculature and associated pathological processes such as tumor-induced lymphangiogenesis and cancer metastasis. In this review, we summarize the current knowledge on the role of lncRNAs in regulating the key genes and pathways involved in lymphatic vascular development and disease. Furthermore, we discuss the potential of lncRNAs as novel therapeutic targets and outline possible strategies for the development of lncRNA-based therapeutics to treat diseases of the lymphatic system.
Collapse
Affiliation(s)
- Konstantin I Ivanov
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi, Russian Federation.
- Department of Microbiology, University of Helsinki, Helsinki, Finland.
| | - Olga V Samuilova
- Department of Biochemistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
- HSE University, Moscow, Russian Federation
| | - Andrey A Zamyatnin
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi, Russian Federation
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
18
|
Yuan C, Liao Y, Liao S, Huang M, Li D, Wu W, Quan Y, Li L, Yu X, Si W. Triptolide inhibits the progression of Glioblastoma U251 cells via targeting PROX1. Front Oncol 2023; 13:1077640. [PMID: 36969058 PMCID: PMC10038275 DOI: 10.3389/fonc.2023.1077640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundGlioblastoma multiforme (GBM) is the most lethal brain cancer in adults, characterized by rapid growth, extensive invasiveness, and poor prognosis, and there is still a lack of effective treatments. Here, we aimed to explore the role of triptolide (TPL), purified from Tripterygium wilfordii Hook F, on glioblastoma cell growth, apoptosis, proliferation, migration and invasion, as well as potential underlying mechanisms.MethodsThe publicly available clinical data of Brain Lower Grade Glioma (LGG) from The Cancer Genome Atlas (TCGA) had been screened to observe PROX1 expression. The Kaplan-Meier analysis was used to analyze the relationship between PROX1 expression and GBM prognosis. CCK8, cell cycle, EDU, apoptosis, wound healing, and transwell assays were performed to detect the effects of TPL on glioblastoma U251 cell viability, cell cycle, proliferation, apoptosis, migration and invasion, respectively. Further, a soft agar colony assay was used to calculate the growth of glioblastoma cells. The qRT-PCR and western blot were conducted to quantify PROX1 mRNA and protein levels. The transcriptional regulation of TPL was detected by Dual luciferase reporter assay.ResultsWe found that TPL inhibited glioblastoma cell viability, proliferation, cell cycle, migration and invasion, but enhanced apoptosis in a dose-dependent manner. The expression of cell cycle inhibitor, P21, and pro-apoptosis factor, Bax was increased, while invasion-related factors MMP2 and MMP9 were silenced after TPL treatments. Mechanistically, TPL showed transcriptional inhibition of PROX1 appearance. Moreover, ectopic expression of PROX1 partially rescued the effects of TPL on glioblastoma cell viability, proliferation, apoptosis, migration and invasion, and on the expression of cell function-related genes.ConclusionThis study verified that TPL inhibited the progression of glioblastoma cells by transcriptionally depressing the expression of PROX1.
Collapse
Affiliation(s)
- Chao Yuan
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
- Department of Oncology, Zhaoqing First People’s Hospital Affiliated to Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Yanli Liao
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Shengjie Liao
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Mi Huang
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Duanzhuo Li
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Weibin Wu
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Yi Quan
- Department of Oncology, Zhaoqing First People’s Hospital Affiliated to Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Liqiang Li
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
- Department of Oncology, Zhaoqing First People’s Hospital Affiliated to Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Xin Yu
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
- *Correspondence: Wenxia Si, ; ; Xin Yu, ;
| | - Wenxia Si
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
- Department of Oncology, Zhaoqing First People’s Hospital Affiliated to Zhaoqing Medical College, Zhaoqing, Guangdong, China
- *Correspondence: Wenxia Si, ; ; Xin Yu, ;
| |
Collapse
|
19
|
Han Y, Shi S, Liu S, Gu X. Effects of spaceflight on the spleen and thymus of mice: Gene pathway analysis and immune infiltration analysis. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:8531-8545. [PMID: 37161210 DOI: 10.3934/mbe.2023374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
During space flight, the immune system function of the body is disrupted due to continuous weightlessness, radiation and other factors, resulting in an increased incidence of infectious diseases in astronauts. However, the effect of space flight on the immune system at the molecular level is unknown. The aim of this study was to identify key genes and pathways of spatial environmental effects on the spleen and thymus using bioinformatics analysis of the GEO dataset. Differentially expressed genes (DEGs) in the spleen and thymus of mice preflight and postflight were screened by comprehensive analysis of gene expression profile data. Then, GO enrichment analysis of DEGs was performed to determine the biological role of DEGs. A protein-protein interaction network was used to identify hub genes. In addition, transcription factors in DEGs were screened, and a TF-target regulatory network was constructed. Finally, immune infiltration analysis was performed on spleen and thymus samples from mice. The results showed that DEGs in the spleen and thymus are mainly involved in immune responses and in biological processes related to platelets. Six hub genes were identified in the spleen and 13 in the thymus, of which Ttr, Aldob, Gc and Fabp1 were common to both tissues. In addition, 5 transcription factors were present in the DEGs of the spleen, and 9 transcription factors were present in the DEGs of the thymus. The spatial environment can influence the degree of immune cell infiltration in the spleen and thymus. Our study bioinformatically analyzed the GEO dataset of spacefaring mice to identify the effects of the space environment on the immune system and the genes that play key roles, providing insights for the treatment of spaceflight-induced immune system disorders.
Collapse
Affiliation(s)
- Yuru Han
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Shuo Shi
- China COMAC Shanghai Aircraft Design and Research Institute, Shanghai, China
| | - Shuang Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xuefeng Gu
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
20
|
Jeong M, Jung E, Oh S, Shin SY. Homeobox Protein PROX1 Expression is Negatively Regulated by Histone Deacetylase 1 and c-JUN Complex in MDA-MB-231 Human Breast Cancer Cells. Folia Biol (Praha) 2023; 69:81-90. [PMID: 38206773 DOI: 10.14712/fb2023069030081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Prospero homeobox 1 (PROX1) is a member of the homeobox transcription factor family that plays a critical role in the development of multiple tissues and specification of cell fate. PROX1 expression is differentially regulated based on the cellular context and plays an antagonistic role as a tumour promoter or suppressor in different tumour types. In human breast cancer, PROX1 expression is suppress-ed; however, the molecular mechanism by which it is down-regulated remains poorly understood. Here, we show that ectopic expression of PROX1 reduces the motility and invasiveness of MDA-MB-231 human breast cancer cells, suggesting that PROX1 functions as a negative regulator of tumour invasion in MDA-MB-231 cells. Treatment with histone deacetylase (HDAC) inhibitors up-regulates PROX1 mRNA and protein expression levels. Knockdown of HDAC1 using short hairpin RNA also up-regulates PROX1 mRNA and protein expression levels. We found that HDAC1 interacted with c-JUN at the activator protein (AP)-1-binding site located at -734 to -710 in the PROX1 promoter region to suppress PROX1 expression. In addition, c-JUN N-terminal kinase-mediated c-JUN phosphorylation was found to be crucial for silencing PROX1 expression. In conclusion, PROX1 expression can be silenced by the epigenetic mechanism involved in the complex formation of HDAC1 and c-JUN at the AP-1 site in the PROX1 promoter region in MDA-MB-231 human breast cancer cells. Therefore, this study revealed the epigenetic regulatory mechanism involved in the suppression of PROX1 expression in breast cancer cells.
Collapse
Affiliation(s)
- Munki Jeong
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Euitaek Jung
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Sukjin Oh
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Soon Young Shin
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
21
|
Chen X, Chen L, Qin Y, Mao Z, Jia G, Zhao H, Liu G, Huang Z. Effect of dietary L-theanine supplementation on skeletal muscle fiber type transformation in weaning piglets. Anim Biotechnol 2022; 33:1389-1397. [PMID: 35635297 DOI: 10.1080/10495398.2022.2078725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aim of this study was to explore the effect of dietary L-theanine (LT) supplementation on skeletal muscle fiber type transformation in weaning piglets. Our data showed that LT significantly increased the slow-twitch fiber-related genes expression and the percentage of slow oxidative fiber, and decreased the MyHC IIb mRNA expression and the percentage of fast glycolytic fiber. In addition, LT significantly increased the succinic dehydrogenase (SDH) and malate dehydrogenase (MDH) activities and increased the LDH activities. In addition, LT significantly affected mitochondrial biogenesis and function and antioxidative related genes expression, and increased the protein expression of p-adenosine monophosphate (AMP)-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear factor E2-related factor 2 (Nrf2), NADPH quinone oxidoreductase-1 (NQO1) and heme oxygenase-1 (HO-1) and decreased the Keap1 protein levels. Furthermore, our data indicated that LT significantly increased the mRNA and protein expression of prospero-related homeobox 1 (Prox1), calcineurin A (CnA), and NFATc1, suggesting that dietary LT supplementation promoted skeletal muscle fiber transition from types II to I might be via activation of calcineurin signaling pathway. Taken together, these findings suggested that LT promoted the transformation of muscle fiber types from slow oxidative to fast glycolytic by increasing antioxidant capacity and improving mitochondrial biogenesis and function and activation of calcineurin signaling pathway.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, PR China
| | - Lili Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, PR China
| | - Yaning Qin
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, PR China
| | - Zhengyu Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, PR China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, PR China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, PR China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, PR China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, PR China
| |
Collapse
|
22
|
Wang Y, Luo M, Wang F, Tong Y, Li L, Shu Y, Qiao K, Zhang L, Yan G, Liu J, Ji H, Xie Y, Zhang Y, Gao WQ, Liu Y. AMPK induces degradation of the transcriptional repressor PROX1 impairing branched amino acid metabolism and tumourigenesis. Nat Commun 2022; 13:7215. [PMID: 36433955 PMCID: PMC9700865 DOI: 10.1038/s41467-022-34747-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/04/2022] [Indexed: 11/26/2022] Open
Abstract
Tumour cell metabolic plasticity is essential for tumour progression and therapeutic responses, yet the underlying mechanisms remain poorly understood. Here, we identify Prospero-related homeobox 1 (PROX1) as a crucial factor for tumour metabolic plasticity. Notably, PROX1 is reduced by glucose starvation or AMP-activated protein kinase (AMPK) activation and is elevated in liver kinase B1 (LKB1)-deficient tumours. Furthermore, the Ser79 phosphorylation of PROX1 by AMPK enhances the recruitment of CUL4-DDB1 ubiquitin ligase to promote PROX1 degradation. Downregulation of PROX1 activates branched-chain amino acids (BCAA) degradation through mediating epigenetic modifications and inhibits mammalian target-of-rapamycin (mTOR) signalling. Importantly, PROX1 deficiency or Ser79 phosphorylation in liver tumour shows therapeutic resistance to metformin. Clinically, the AMPK-PROX1 axis in human cancers is important for patient clinical outcomes. Collectively, our results demonstrate that deficiency of the LKB1-AMPK axis in cancers reactivates PROX1 to sustain intracellular BCAA pools, resulting in enhanced mTOR signalling, and facilitating tumourigenesis and aggressiveness.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengjun Luo
- Key Laboratory of Medical Molecular Virology (MOE & MOH), Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fan Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Tong
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Linfeng Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Shu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Qiao
- Key Laboratory of Medical Molecular Virology (MOE & MOH), Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Zhang
- Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoquan Yan
- Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Liu
- Key Laboratory of Medical Molecular Virology (MOE & MOH), Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongbin Ji
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE & MOH), Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
- Children's Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yonglong Zhang
- Central Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| | - Yanfeng Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
23
|
Wright BA, Kvansakul M, Schierwater B, Humbert PO. Cell polarity signalling at the birth of multicellularity: What can we learn from the first animals. Front Cell Dev Biol 2022; 10:1024489. [PMID: 36506100 PMCID: PMC9729800 DOI: 10.3389/fcell.2022.1024489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
The innovation of multicellularity has driven the unparalleled evolution of animals (Metazoa). But how is a multicellular organism formed and how is its architecture maintained faithfully? The defining properties and rules required for the establishment of the architecture of multicellular organisms include the development of adhesive cell interactions, orientation of division axis, and the ability to reposition daughter cells over long distances. Central to all these properties is the ability to generate asymmetry (polarity), coordinated by a highly conserved set of proteins known as cell polarity regulators. The cell polarity complexes, Scribble, Par and Crumbs, are considered to be a metazoan innovation with apicobasal polarity and adherens junctions both believed to be present in all animals. A better understanding of the fundamental mechanisms regulating cell polarity and tissue architecture should provide key insights into the development and regeneration of all animals including humans. Here we review what is currently known about cell polarity and its control in the most basal metazoans, and how these first examples of multicellular life can inform us about the core mechanisms of tissue organisation and repair, and ultimately diseases of tissue organisation, such as cancer.
Collapse
Affiliation(s)
- Bree A. Wright
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marc Kvansakul
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, VIC, Australia
| | - Bernd Schierwater
- Institute of Animal Ecology and Evolution, University of Veterinary Medicine Hannover, Foundation, Bünteweg, Hannover, Germany
| | - Patrick O. Humbert
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, VIC, Australia,Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, Australia,Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia,*Correspondence: Patrick O. Humbert,
| |
Collapse
|
24
|
Lamri A, De Paoli M, De Souza R, Werstuck G, Anand S, Pigeyre M. Insight into genetic, biological, and environmental determinants of sexual-dimorphism in type 2 diabetes and glucose-related traits. Front Cardiovasc Med 2022; 9:964743. [PMID: 36505380 PMCID: PMC9729955 DOI: 10.3389/fcvm.2022.964743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
There is growing evidence that sex and gender differences play an important role in risk and pathophysiology of type 2 diabetes (T2D). Men develop T2D earlier than women, even though there is more obesity in young women than men. This difference in T2D prevalence is attenuated after the menopause. However, not all women are equally protected against T2D before the menopause, and gestational diabetes represents an important risk factor for future T2D. Biological mechanisms underlying sex and gender differences on T2D physiopathology are not yet fully understood. Sex hormones affect behavior and biological changes, and can have implications on lifestyle; thus, both sex-specific environmental and biological risk factors interact within a complex network to explain the differences in T2D risk and physiopathology in men and women. In addition, lifetime hormone fluctuations and body changes due to reproductive factors are generally more dramatic in women than men (ovarian cycle, pregnancy, and menopause). Progress in genetic studies and rodent models have significantly advanced our understanding of the biological pathways involved in the physiopathology of T2D. However, evidence of the sex-specific effects on genetic factors involved in T2D is still limited, and this gap of knowledge is even more important when investigating sex-specific differences during the life course. In this narrative review, we will focus on the current state of knowledge on the sex-specific effects of genetic factors associated with T2D over a lifetime, as well as the biological effects of these different hormonal stages on T2D risk. We will also discuss how biological insights from rodent models complement the genetic insights into the sex-dimorphism effects on T2D. Finally, we will suggest future directions to cover the knowledge gaps.
Collapse
Affiliation(s)
- Amel Lamri
- Department of Medicine, McMaster University, Hamilton, ON, Canada,Population Health Research Institute (PHRI), Hamilton, ON, Canada
| | - Monica De Paoli
- Department of Medicine, McMaster University, Hamilton, ON, Canada,Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton, ON, Canada
| | - Russell De Souza
- Population Health Research Institute (PHRI), Hamilton, ON, Canada,Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Geoff Werstuck
- Department of Medicine, McMaster University, Hamilton, ON, Canada,Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton, ON, Canada
| | - Sonia Anand
- Department of Medicine, McMaster University, Hamilton, ON, Canada,Population Health Research Institute (PHRI), Hamilton, ON, Canada,Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Marie Pigeyre
- Department of Medicine, McMaster University, Hamilton, ON, Canada,Population Health Research Institute (PHRI), Hamilton, ON, Canada,*Correspondence: Marie Pigeyre
| |
Collapse
|
25
|
Perez-Castro L, Venkateswaran N, Garcia R, Hao YH, Lafita-Navarro MC, Kim J, Segal D, Saponzik E, Chang BJ, Fiolka R, Danuser G, Xu L, Brabletz T, Conacci-Sorrell M. The AHR target gene scinderin activates the WNT pathway by facilitating the nuclear translocation of β-catenin. J Cell Sci 2022; 135:jcs260028. [PMID: 36148682 PMCID: PMC10658791 DOI: 10.1242/jcs.260028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/12/2022] [Indexed: 01/12/2023] Open
Abstract
The ligand-activated transcription factor aryl hydrocarbon receptor (AHR) regulates cellular detoxification, proliferation and immune evasion in a range of cell types and tissues, including cancer cells. In this study, we used RNA-sequencing to identify the signature of the AHR target genes regulated by the pollutant 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and the endogenous ligand kynurenine (Kyn), a tryptophan-derived metabolite. This approach identified a signature of six genes (CYP1A1, ALDH1A3, ABCG2, ADGRF1 and SCIN) as commonly activated by endogenous or exogenous ligands of AHR in multiple colon cancer cell lines. Among these, the actin-severing protein scinderin (SCIN) was necessary for cell proliferation; SCIN downregulation limited cell proliferation and its expression increased it. SCIN expression was elevated in a subset of colon cancer patient samples, which also contained elevated β-catenin levels. Remarkably, SCIN expression promoted nuclear translocation of β-catenin and activates the WNT pathway. Our study identifies a new mechanism for adhesion-mediated signaling in which SCIN, likely via its ability to alter the actin cytoskeleton, facilitates the nuclear translocation of β-catenin. This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Lizbeth Perez-Castro
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Roy Garcia
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi-Heng Hao
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - M. C. Lafita-Navarro
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dagan Segal
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Etai Saponzik
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bo-Jui Chang
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reto Fiolka
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gaudenz Danuser
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, Division of Hematology/Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas Brabletz
- Nikolaus-Fiebiger Center for Molecular Medicine, University Erlangen-Nurnberg, Erlangen 91054, Germany
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
26
|
Topham JT, Tsang ES, Karasinska JM, Metcalfe A, Ali H, Kalloger SE, Csizmok V, Williamson LM, Titmuss E, Nielsen K, Negri GL, Spencer Miko SE, Jang GH, Denroche RE, Wong HL, O'Kane GM, Moore RA, Mungall AJ, Loree JM, Notta F, Wilson JM, Bathe OF, Tang PA, Goodwin R, Morin GB, Knox JJ, Gallinger S, Laskin J, Marra MA, Jones SJM, Schaeffer DF, Renouf DJ. Integrative analysis of KRAS wildtype metastatic pancreatic ductal adenocarcinoma reveals mutation and expression-based similarities to cholangiocarcinoma. Nat Commun 2022; 13:5941. [PMID: 36209277 PMCID: PMC9547977 DOI: 10.1038/s41467-022-33718-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 09/29/2022] [Indexed: 11/15/2022] Open
Abstract
Oncogenic KRAS mutations are absent in approximately 10% of patients with metastatic pancreatic ductal adenocarcinoma (mPDAC) and may represent a subgroup of mPDAC with therapeutic options beyond standard-of-care cytotoxic chemotherapy. While distinct gene fusions have been implicated in KRAS wildtype mPDAC, information regarding other types of mutations remain limited, and gene expression patterns associated with KRAS wildtype mPDAC have not been reported. Here, we leverage sequencing data from the PanGen trial to perform comprehensive characterization of the molecular landscape of KRAS wildtype mPDAC and reveal increased frequency of chr1q amplification encompassing transcription factors PROX1 and NR5A2. By leveraging data from colorectal adenocarcinoma and cholangiocarcinoma samples, we highlight similarities between cholangiocarcinoma and KRAS wildtype mPDAC involving both mutation and expression-based signatures and validate these findings using an independent dataset. These data further establish KRAS wildtype mPDAC as a unique molecular entity, with therapeutic opportunities extending beyond gene fusion events. KRAS wildtype metastatic pancreatic ductal adenocarcinoma (mPDAC) could represent a distinct molecular entity from other PDACs. Here, the authors analyse KRAS wildtype mPDAC tumours using genomics and transcriptomics and find molecular similarities with cholangiocarcinomas.
Collapse
Affiliation(s)
| | - Erica S Tsang
- Division of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | | | | | - Hassan Ali
- Pancreas Centre BC, Vancouver, BC, Canada
| | - Steve E Kalloger
- Pancreas Centre BC, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, UBC, Vancouver, BC, Canada
| | - Veronika Csizmok
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Laura M Williamson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Emma Titmuss
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Karina Nielsen
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Gian Luca Negri
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | | | - Gun Ho Jang
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | | | - Hui-Li Wong
- Division of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | | | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | | | - Faiyaz Notta
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Julie M Wilson
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Oliver F Bathe
- Departments of Surgery and Oncology, Cummings School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Patricia A Tang
- Departments of Surgery and Oncology, Cummings School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rachel Goodwin
- The Ottawa Hospital Cancer Centre, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Gregg B Morin
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer J Knox
- University Health Network, University of Toronto, Toronto, ON, Canada
| | - Steven Gallinger
- Ontario Institute for Cancer Research, Toronto, ON, Canada.,University Health Network, University of Toronto, Toronto, ON, Canada
| | - Janessa Laskin
- Division of Medical Oncology, BC Cancer, Vancouver, BC, Canada.,Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - David F Schaeffer
- Pancreas Centre BC, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, UBC, Vancouver, BC, Canada.,Division of Anatomic Pathology, Vancouver General Hospital, Vancouver, BC, Canada
| | - Daniel J Renouf
- Pancreas Centre BC, Vancouver, BC, Canada. .,Division of Medical Oncology, BC Cancer, Vancouver, BC, Canada. .,Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
27
|
Huuska N, Netti E, Lehti S, Kovanen PT, Niemelä M, Tulamo R. Lymphatic vessels are present in human saccular intracranial aneurysms. Acta Neuropathol Commun 2022; 10:130. [PMID: 36064651 PMCID: PMC9446758 DOI: 10.1186/s40478-022-01430-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Abstract
Saccular intracranial aneurysm (sIA) rupture leads to subarachnoid haemorrhage and is preceded by chronic inflammation and atherosclerotic changes of the sIA wall. Increased lymphangiogenesis has been detected in atherosclerotic extracranial arteries and in abdominal aortic aneurysms, but the presence of lymphatic vessels in sIAs has remained unexplored. Here we studied the presence of lymphatic vessels in 36 intraoperatively resected sIAs (16 unruptured and 20 ruptured), using immunohistochemical and immunofluorescence stainings for lymphatic endothelial cell (LEC) markers. Of these LEC-markers, both extracellular and intracellular LYVE-1-, podoplanin-, VEGFR-3-, and Prox1-positive stainings were detected in 83%, 94%, 100%, and 72% of the 36 sIA walls, respectively. Lymphatic vessels were identified as ring-shaped structures positive for one or more of the LEC markers. Of the sIAs, 78% contained lymphatic vessels positive for at least one LEC marker. The presence of LECs and lymphatic vessels were associated with the number of CD68+ and CD163+ cells in the sIA walls, and with the expression of inflammation indicators such as serum amyloid A, myeloperoxidase, and cyclo-oxygenase 2, with the presence of a thrombus, and with the sIA wall rupture. Large areas of VEGFR-3 and α-smooth muscle actin (αSMA) double-positive cells were detected in medial parts of the sIA walls. Also, a few podoplanin and αSMA double-positive cells were discovered. In addition, LYVE-1 and CD68 double-positive cells were detected in the sIA walls and in the thrombus revealing that certain CD68+ macrophages are capable of expressing LEC markers. This study demonstrates for the first time the presence of lymphatic vessels in human sIA walls. Further studies are needed to understand the role of lymphatic vessels in the pathogenesis of sIA.
Collapse
Affiliation(s)
- Nora Huuska
- Neurosurgery Research Group, Room B410b, Biomedicum 1, Haartmaninkatu 8, 00290, Helsinki, Finland.
| | - Eliisa Netti
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Topeliuksenkatu 5, 00260, Helsinki, Finland
| | - Satu Lehti
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, 40700, Jyväskylä, Finland
| | - Petri T Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Haartmaninkatu 8, Biomedicum 1, Helsinki, Finland
| | - Mika Niemelä
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Topeliuksenkatu 5, 00260, Helsinki, Finland
| | - Riikka Tulamo
- Department of Vascular Surgery, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, 00290, Helsinki, Finland
| |
Collapse
|
28
|
Place E, Manning E, Kim DW, Kinjo A, Nakamura G, Ohyama K. SHH and Notch regulate SOX9+ progenitors to govern arcuate POMC neurogenesis. Front Neurosci 2022; 16:855288. [PMID: 36033614 PMCID: PMC9404380 DOI: 10.3389/fnins.2022.855288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/20/2022] [Indexed: 12/05/2022] Open
Abstract
Pro-opiomelanocortin (POMC)-expressing neurons in the hypothalamic arcuate nucleus (ARC) play key roles in feeding and energy homoeostasis, hence their development is of great research interest. As the process of neurogenesis is accompanied by changes in adhesion, polarity, and migration that resemble aspects of epithelial-to-mesenchymal transitions (EMTs), we have characterised the expression and regulation within the prospective ARC of transcription factors with context-dependent abilities to regulate aspects of EMT. Informed by pseudotime meta-analysis of recent scRNA-seq data, we use immunohistochemistry and multiplex in situ hybridisation to show that SOX2, SRY-Box transcription factor 9 (SOX9), PROX1, Islet1 (ISL1), and SOX11 are sequentially expressed over the course of POMC neurogenesis in the embryonic chick. Through pharmacological studies ex vivo, we demonstrate that while inhibiting either sonic hedgehog (SHH) or Notch signalling reduces the number of SOX9+ neural progenitor cells, these treatments lead, respectively, to lesser and greater numbers of differentiating ISL1+/POMC+ neurons. These results are consistent with a model in which SHH promotes the formation of SOX9+ progenitors, and Notch acts to limit their differentiation. Both pathways are also required to maintain normal levels of proliferation and to suppress apoptosis. Together our findings demonstrate that hypothalamic neurogenesis is accompanied by dynamic expression of transcription factors (TFs) that mediate EMTs, and that SHH and Notch signalling converge to regulate hypothalamic cellular homoeostasis.
Collapse
Affiliation(s)
- Elsie Place
- School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Elizabeth Manning
- School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Arisa Kinjo
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Go Nakamura
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Kyoji Ohyama
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
29
|
Cherianidou A, Seidel F, Kappenberg F, Dreser N, Blum J, Waldmann T, Blüthgen N, Meisig J, Madjar K, Henry M, Rotshteyn T, Marchan R, Edlund K, Leist M, Rahnenführer J, Sachinidis A, Hengstler JG. Classification of Developmental Toxicants in a Human iPSC Transcriptomics-Based Test. Chem Res Toxicol 2022; 35:760-773. [PMID: 35416653 PMCID: PMC9377669 DOI: 10.1021/acs.chemrestox.1c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the progress made in developmental toxicology, there is a great need for in vitro tests that identify developmental toxicants in relation to human oral doses and blood concentrations. In the present study, we established the hiPSC-based UKK2 in vitro test and analyzed genome-wide expression profiles of 23 known teratogens and 16 non-teratogens. Compounds were analyzed at the maximal plasma concentration (Cmax) and at 20-fold Cmax for a 24 h incubation period in three independent experiments. Based on the 1000 probe sets with the highest variance and including information on cytotoxicity, penalized logistic regression with leave-one-out cross-validation was used to classify the compounds as test-positive or test-negative, reaching an area under the curve (AUC), accuracy, sensitivity, and specificity of 0.96, 0.92, 0.96, and 0.88, respectively. Omitting the cytotoxicity information reduced the test performance to an AUC of 0.94, an accuracy of 0.79, and a sensitivity of 0.74. A second method, which used the number of significantly deregulated probe sets to classify the compounds, resulted in a specificity of 1; however, the AUC (0.90), accuracy (0.90), and sensitivity (0.83) were inferior compared to those of the logistic regression-based procedure. Finally, no increased performance was achieved when the high test concentrations (20-fold Cmax) were used, in comparison to testing within the realistic clinical range (1-fold Cmax). In conclusion, although further optimization is required, for example, by including additional readouts and cell systems that model different developmental processes, the UKK2-test in its present form can support the early discovery-phase detection of human developmental toxicants.
Collapse
Affiliation(s)
- Anna Cherianidou
- Faculty
of Medicine and University Hospital Cologne, Center for Physiology,
Working Group Sachinidis, University of
Cologne, Robert-Koch-Str.
39, 50931 Cologne, Germany
| | - Florian Seidel
- Leibniz
Research Centre for Working Environment and Human Factors at the Technical
University of Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Franziska Kappenberg
- Department
of Statistics, TU Dortmund University, Vogelpothsweg 87, 44227 Dortmund, Germany
| | - Nadine Dreser
- In
Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, P.O.
Box M657, 78457 Konstanz, Germany
| | - Jonathan Blum
- In
Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, P.O.
Box M657, 78457 Konstanz, Germany
| | - Tanja Waldmann
- Department
of Advanced Cell Systems, trenzyme GmbH, Byk-Gulden-Str. 2, 78467 Konstanz, Germany
| | - Nils Blüthgen
- Institute
of Pathology, Charité-Universitätsmedizin
Berlin, Chariteplatz
1, 10117 Berlin, Germany
- IRI
Life Sciences, Humboldt Universität zu Berlin, Philippstraße 13, Haus 18, 10115 Berlin, Germany
| | - Johannes Meisig
- Institute
of Pathology, Charité-Universitätsmedizin
Berlin, Chariteplatz
1, 10117 Berlin, Germany
- IRI
Life Sciences, Humboldt Universität zu Berlin, Philippstraße 13, Haus 18, 10115 Berlin, Germany
| | - Katrin Madjar
- Department
of Statistics, TU Dortmund University, Vogelpothsweg 87, 44227 Dortmund, Germany
| | - Margit Henry
- Faculty
of Medicine and University Hospital Cologne, Center for Physiology,
Working Group Sachinidis, University of
Cologne, Robert-Koch-Str.
39, 50931 Cologne, Germany
- Center
for Molecular Medicine Cologne (CMMC), University
of Cologne, 50931 Cologne, Germany
| | - Tamara Rotshteyn
- Faculty
of Medicine and University Hospital Cologne, Center for Physiology,
Working Group Sachinidis, University of
Cologne, Robert-Koch-Str.
39, 50931 Cologne, Germany
- Center
for Molecular Medicine Cologne (CMMC), University
of Cologne, 50931 Cologne, Germany
| | - Rosemarie Marchan
- Leibniz
Research Centre for Working Environment and Human Factors at the Technical
University of Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Karolina Edlund
- Leibniz
Research Centre for Working Environment and Human Factors at the Technical
University of Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Marcel Leist
- In
Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, P.O.
Box M657, 78457 Konstanz, Germany
| | - Jörg Rahnenführer
- Department
of Statistics, TU Dortmund University, Vogelpothsweg 87, 44227 Dortmund, Germany
| | - Agapios Sachinidis
- Faculty
of Medicine and University Hospital Cologne, Center for Physiology,
Working Group Sachinidis, University of
Cologne, Robert-Koch-Str.
39, 50931 Cologne, Germany
- Center
for Molecular Medicine Cologne (CMMC), University
of Cologne, 50931 Cologne, Germany
| | - Jan G. Hengstler
- Leibniz
Research Centre for Working Environment and Human Factors at the Technical
University of Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| |
Collapse
|
30
|
Liu Q, Zhu Z, Kraft P, Deng Q, Stener-Victorin E, Jiang X. Genomic correlation, shared loci, and causal relationship between obesity and polycystic ovary syndrome: a large-scale genome-wide cross-trait analysis. BMC Med 2022; 20:66. [PMID: 35144605 PMCID: PMC8832782 DOI: 10.1186/s12916-022-02238-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/05/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The comorbidity between polycystic ovary syndrome (PCOS) and obesity has long been observed in clinical settings, but their shared genetic basis remains unclear. METHODS Leveraging summary statistics of large-scale GWAS(s) conducted in European-ancestry populations on body mass index (adult BMI, Nfemale=434,794; childhood BMI, N=39,620), waist-to-hip ratio (WHR, Nfemale=381,152), WHR adjusted for BMI (WHRadjBMI, Nfemale=379,501), and PCOS (Ncase=10,074, Ncontrol=103,164), we performed a large-scale genome-wide cross-trait analysis to quantify overall and local genetic correlation, to identify shared loci, and to infer causal relationship. RESULTS We found positive genetic correlations between PCOS and adult BMI (rg=0.47, P=2.19×10-16), childhood BMI (rg=0.31, P=6.72×10-5), and WHR (rg=0.32, P=1.34×10-10), all withstanding Bonferroni correction. A suggestive significant genetic correlation was found between PCOS and WHRadjBMI (rg=0.09, P=0.04). Partitioning the whole genome into 1703 nearly independent regions, we observed a significant local genetic correlation for adult BMI and PCOS at chromosome 18: 57630483-59020751. We identified 16 shared loci underlying PCOS and obesity-related traits via cross-trait meta-analysis including 9 loci shared between BMI and PCOS (adult BMI and PCOS: 5 loci; childhood BMI and PCOS: 4 loci), 6 loci shared between WHR and PCOS, and 5 loci shared between WHRadjBMI and PCOS. Mendelian randomization (MR) supported the causal roles of both adult BMI (OR=2.92, 95% CI=2.33-3.67) and childhood BMI (OR=2.76, 95% CI=2.09-3.66) in PCOS, but not WHR (OR=1.19, 95% CI=0.93-1.52) or WHRadjBMI (OR=1.03, 95% CI=0.87-1.22). Genetic predisposition to PCOS did not seem to influence the risk of obesity-related traits. CONCLUSIONS Our cross-trait analysis suggests a shared genetic basis underlying obesity and PCOS and provides novel insights into the biological mechanisms underlying these complex traits. Our work informs public health intervention by confirming the important role of weight management in PCOS prevention.
Collapse
Affiliation(s)
- Qianwen Liu
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Kraft
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Xia Jiang
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Solna, Stockholm, Sweden.
| |
Collapse
|
31
|
Liu D, Wang R, Wang Y, Wang Y, Wang L. Prospero homeobox 1 promotes proliferation, migration, and invasion of osteosarcoma cells and its clinical significance. Bioengineered 2022; 13:2259-2271. [PMID: 35030967 PMCID: PMC8974179 DOI: 10.1080/21655979.2021.2024330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor. Prospero homeobox 1 (PROX1) is a key transcription factor involved in some cancers, but the role of PROX1 in OS is unclear. This study aimed to explore the clinical and biology significance of PROX1 in OS. Fifty-four OS tissues and matched nontumor tissues were collected to explore the relationship between PROX1 expression and clinical characteristics and prognosis. qRT-PCR and immunohistochemistry were used to investigate the expression patterns of PROX1 in OS tissues and cells. CCK-8, wound healing, and transwell assays were used to detect the effects of PROX1 on the proliferation, migration, and invasion of OS cells. Transcriptome sequencing, bioinformatics analysis and qRT-PCR were used to explore the regulatory network of PROX1. PROX1 was significantly higher in OS tissues and cells compared to normal tissues and cell lines. In OS patients, high expression of PROX1 was associated with Enneking stage (P < 0.001) and M classification (P < 0.001). High PROX1 expression predicted a poorer overall survival (P = 0.0047). Compared with untreated cells, OS cells overexpressing PROX1 showed higher proliferation, migration, and invasion abilities, while knockdown of PROX1 suppressed these abilities. The results of Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that the down regulated genes were mainly enriched in TNF signaling pathway, MAPK signaling pathway, and neuroactive ligand-receptor interaction. High PROX1 expression was significantly associated with poor overall survival in OS patients. PROX1 may be a promising prognostic marker and therapeutic target for OS patients.
Collapse
Affiliation(s)
- Dawei Liu
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ran Wang
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuefeng Wang
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ye Wang
- Faculty of Medicine and Surgery, University of Pavia, Pavia (PV), Italy
| | - Liantang Wang
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Abdelrahman AE, El-Azony A, Elsebai E, Ibrahim HM. Prognostic Impact of LGR5, Prox1, and Notch1 Biomarkers in Stage II to III Colon Cancer. Appl Immunohistochem Mol Morphol 2022; 30:126-135. [PMID: 34657081 DOI: 10.1097/pai.0000000000000983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022]
Abstract
The potentiation and activation of Wnt signaling pathways are now assumed to mediate the self-renewal and proliferation of colon cancer stem cells that are responsible for therapeutic resistance, tumor relapse, and metastasis. We aimed to evaluate LGR5, Prox1, and Notch1 immunohistochemical expression in stage II to III colon cancer. Their predictive role of tumor relapse, overall survival, and disease-free survival was statistically analyzed. Our results revealed that high LGR5 expression was identified in 56.7% of the patients, LGR5 expression was significantly associated with left-sided tumors (P<0.001). Moreover, its expression was significantly associated with the unfavorable tumor characteristics including high grade, deep invasion (pT), lymph node metastasis, and advanced tumor stage (P<0.001 for each). High Prox1 expression was observed in 65% of the cases, and its expression was significantly associated with tumor grade, lymph node metastasis, and the advanced tumor stage (P=0.004, 0.009, 0.016, respectively). Positive Notch1 expression was identified in 35% of patients, and it was inversely associated with high grade lymph node metastasis, deep invasion (pT), and advanced tumor stage (P<0.001 for each). During the follow-up period, the tumor relapse was significantly associated with high LGR5, high Prox1, and negative Notch1 expression. Shorter overall survival and disease-free survival were significantly associated with high LGR5, high Prox1, and negative Notch1 expression. High LGR5, high Prox1, and negative Notch1 expression are unfavorable prognostic factors in colon cancer. Prox1 is a crucial regulator of Notch-independent LGR5+ stem cells that is mostly responsible for relapse and therapeutic resistance in stage II to III colon cancer.
Collapse
Affiliation(s)
| | - Ahmed El-Azony
- Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman Elsebai
- Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | |
Collapse
|
33
|
Kwon S, Ban K, Hong YK, Sung JS, Choi I. PROX1, a Key Mediator of the Anti-Proliferative Effect of Rapamycin on Hepatocellular Carcinoma Cells. Cells 2022; 11:cells11030446. [PMID: 35159256 PMCID: PMC8834064 DOI: 10.3390/cells11030446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
The MTOR signal is known to be activated in various cancer cells including hepatocellular carcinoma (HCC) cells. Rapamycin, a specific inhibitor of MTOR, has been widely used as an immunosuppressant in organ transplant patients, and its clinical application has been recently expanded to cancer therapy. In this study, the anti-proliferative effect of rapamycin was investigated in four different HCC cell lines. Rapamycin effectively inhibited the proliferation of Huh7 or Hep3B, but not that of HepG2 or SNU3160 cells. Interestingly, rapamycin increased Prospero-related homeobox 1 (PROX1) expression at the protein level, but did not affect its transcript in Huh7 as well as Hep3B cells. Moreover, immunoprecipitation assays showed that PROX1 ubiquitination was downregulated by rapamycin. Furthermore, PROX1 over-expression or siRNA knock-down in Huh7 and Hep3B cells reduced or increased proliferation, respectively. The effect of PROX1 over-expression on the sensitivity to rapamycin was not synergistic, but the effect of MTOR inhibition on cell proliferation was diminished by PROX1 siRNA. Finally, Huh7 cells were inoculated into the flanks of nude mice and rapamycin was injected daily for 14 days. The xenograft volume was decreased and PROX1 expression was increased by rapamycin. These results indicate that PROX1 plays a key role in the anti-proliferative effect of rapamycin and suggest that the increased PROX1 by MTOR inhibition can be used as a useful marker for predicting whether HCC cells can be affected by rapamycin.
Collapse
Affiliation(s)
- Sora Kwon
- Department of Pharmaceutical Engineering, Hoseo University, Asan 31499, Korea;
| | - Kiwon Ban
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China;
| | - Young-Kwon Hong
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Soutern California, Los Angeles, CA 90033, USA;
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University, Goyang 10326, Korea;
| | - Inho Choi
- Department of Pharmaceutical Engineering, Hoseo University, Asan 31499, Korea;
- Correspondence:
| |
Collapse
|
34
|
The Role of Lymphatic Marker Prox-1 in Relation to Brain Tumours. FOLIA VETERINARIA 2021. [DOI: 10.2478/fv-2021-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The homeobox gene, Prox-1 is a transcription factor essential for lymphatic development (lymphangiogenesis) during embryogenesis. It also performs different functions in various tissues such as: retina, lens, liver, pancreas and the central nervous system. Intense expression of Prox-1 has been demonstrated in the developing spinal cord and brain. In adulthood its expression continues in the hippocampus and cerebellum. In adult tissues the process of lymphatic vasculature formation is accompanied under certain pathological conditions such as inflammation, tissue repair and tumour growth. Prox-1 expression is typical for lymphatic vessels; thus it belongs to one of the most specific and widely used mammalian lymphatic endothelial marker in the detection of lymphangiogenesis and lymphatic vessel invasion in oncogenesis. It has been shown that Prox-1 is involved in cancer development and progression. It’s tumour suppressive and oncogenic properties are proven in several human cancers, including brain tumours. Among all body cancers the brain tumours represent the most feared tumours with very limited treatment options and a poor diagnosis. The aim of this paper was to show the current knowledge of the gene Prox-1 with an emphasis on brain tumours, especially in gliomas.
Collapse
|
35
|
Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010146. [PMID: 35008569 PMCID: PMC8745566 DOI: 10.3390/ijms23010146] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell-matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper understanding of the underlying functional mechanisms is beneficial for the development of new prognostic and predictive markers and for targeted therapies, this review examined the current knowledge of the interplay of the various MMPs in the cancer context on the protein, subcellular, and cellular level with a focus on MMP14.
Collapse
|
36
|
Wang D, Xiong F, Wu G, Liu W, Wang B, Chen Y. MiR-155-5p suppresses SOX1 to promote proliferation of cholangiocarcinoma via RAF/MEK/ERK pathway. Cancer Cell Int 2021; 21:656. [PMID: 34876142 PMCID: PMC8650398 DOI: 10.1186/s12935-021-02374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
Background Accumulating evidence has demonstrated the close relation of SOX1 with tumorigenesis and tumor progression. Upregulation of SOX1 was recently shown to suppress growth of human cancers. However, the expression and role of SOX1 in cholangiocarcinoma (CCA) is not well characterized. Methods Expression levels of SOX1 in CCA tissues and normal bile duct tissues were examined using public GEO database. Western blot and immunohistochemistry were used to confirm the expression levels. Cell proliferation assay (CCK-8) and colony formation assay were performed to assess proliferation of CCA cells. A mouse model of subcutaneous transplantable tumors was used to evaluated proliferation of CCA in vivo. The putative regulating factor of SOX1 were determined using Targetscan and dual-luciferase reporter assay. Results SOX1 was downregulated in CCA tissues. Overexpression of SOX1 significantly inhibited cell proliferation in vitro and suppressed tumor growth in vivo. miR-155-5p directly targeted the 3′-untranslated region (3′UTR) of SOX1 and inhibited expression of SOX1, resulting in the activation of RAF, MEK and ERK phosphorylation, and thus CCA proliferation. However, restoration of SOX1 expression in miR-155-5p overexpressing cell lines decreased the phosphorylation level of RAF, MEK and ERK, as well as the proliferation of CCA cells. Conclusion MiR-155-5p decreased the expression of SOX1 by binding to its 3′UTR, which activated the RAF/MEK/ERK signaling pathway and promoted CCA progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02374-0.
Collapse
Affiliation(s)
- Da Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang avenue 1095, Wuhan, Hubei, China.,Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Fei Xiong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang avenue 1095, Wuhan, Hubei, China
| | - Guanhua Wu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang avenue 1095, Wuhan, Hubei, China
| | - Wenzheng Liu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang avenue 1095, Wuhan, Hubei, China
| | - Bing Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang avenue 1095, Wuhan, Hubei, China.
| | - Yongjun Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang avenue 1095, Wuhan, Hubei, China.
| |
Collapse
|
37
|
Kenney JW, Steadman PE, Young O, Shi MT, Polanco M, Dubaishi S, Covert K, Mueller T, Frankland PW. A 3D adult zebrafish brain atlas (AZBA) for the digital age. eLife 2021; 10:69988. [PMID: 34806976 PMCID: PMC8639146 DOI: 10.7554/elife.69988] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/21/2021] [Indexed: 01/19/2023] Open
Abstract
Zebrafish have made significant contributions to our understanding of the vertebrate brain and the neural basis of behavior, earning a place as one of the most widely used model organisms in neuroscience. Their appeal arises from the marriage of low cost, early life transparency, and ease of genetic manipulation with a behavioral repertoire that becomes more sophisticated as animals transition from larvae to adults. To further enhance the use of adult zebrafish, we created the first fully segmented three-dimensional digital adult zebrafish brain atlas (AZBA). AZBA was built by combining tissue clearing, light-sheet fluorescence microscopy, and three-dimensional image registration of nuclear and antibody stains. These images were used to guide segmentation of the atlas into over 200 neuroanatomical regions comprising the entirety of the adult zebrafish brain. As an open source, online (azba.wayne.edu), updatable digital resource, AZBA will significantly enhance the use of adult zebrafish in furthering our understanding of vertebrate brain function in both health and disease.
Collapse
Affiliation(s)
- Justin W Kenney
- Department of Biological Sciences, Wayne State University, Detroit, United States.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Patrick E Steadman
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Olivia Young
- Department of Biological Sciences, Wayne State University, Detroit, United States
| | - Meng Ting Shi
- Department of Biological Sciences, Wayne State University, Detroit, United States
| | - Maris Polanco
- Department of Biological Sciences, Wayne State University, Detroit, United States
| | - Saba Dubaishi
- Department of Biological Sciences, Wayne State University, Detroit, United States
| | - Kristopher Covert
- Department of Biological Sciences, Wayne State University, Detroit, United States
| | - Thomas Mueller
- Division of Biology, Kansas State University, Manhattan, United States
| | - Paul W Frankland
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Canada.,Department of Psychology, University of Toronto, Toronto, Canada
| |
Collapse
|
38
|
Ito Y, Furuya F, Taki K, Suzuki H, Shimura H. NKX2-1 re-expression induces cell death through apoptosis and necrosis in dedifferentiated thyroid carcinoma cells. PLoS One 2021; 16:e0259558. [PMID: 34748583 PMCID: PMC8575255 DOI: 10.1371/journal.pone.0259558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 10/21/2021] [Indexed: 11/23/2022] Open
Abstract
NK2 homeobox 1 (NKX2-1) is a thyroid transcription factor essential for proper thyroid formation and maintaining its physiological function. In thyroid cancer, NKX2-1 expression decreases in parallel with declined differentiation. However, the molecular pathways and mechanisms connecting NKX2-1 to thyroid cancer phenotypes are largely unknown. This study aimed to examine the effects of NKX2-1 re-expression on dedifferentiated thyroid cancer cell death and explore the underlying mechanisms. A human papillary thyroid carcinoma cell line lacking NKX2-1 expression was infected with an adenoviral vector containing Nkx2-1. Cell viability decreased after Nkx2-1 transduction and apoptosis and necrosis were detected. Arginase 2 (ARG2), regulator of G protein signaling 4 (RGS4), and RGS5 mRNA expression was greatly increased in Nkx2-1-transducted cells. After suppressing these genes by siRNA, cell death, apoptosis, and necrosis decreased in RGS4 knockdown cells. These findings demonstrated that cell death was induced via apoptosis and necrosis by NKX2-1 re-expression and involves RGS4.
Collapse
Affiliation(s)
- Yuko Ito
- Department of Laboratory Medicine, School of Medicine, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Fumihiko Furuya
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Katsumi Taki
- Department of Internal Medicine, Fujiyoshida Municipal Medical Center, Fujiyoshida, Yamanashi, Japan
| | - Hideaki Suzuki
- Department of Laboratory Medicine, School of Medicine, Fukushima Medical University, Fukushima, Fukushima, Japan
- Department of Clinical Laboratory Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Hiroki Shimura
- Department of Laboratory Medicine, School of Medicine, Fukushima Medical University, Fukushima, Fukushima, Japan
| |
Collapse
|
39
|
CD147 Promotes Tumor Lymphangiogenesis in Melanoma via PROX-1. Cancers (Basel) 2021; 13:cancers13194859. [PMID: 34638342 PMCID: PMC8508014 DOI: 10.3390/cancers13194859] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/19/2023] Open
Abstract
Simple Summary Melanoma is one of the most aggressive skin cancers, characterized by metastasis to the lymph nodes and a high capacity to develop drug resistance. There is a lack of knowledge on the mechanisms contributing to lymphatic vessel formation and metastasis regulation in malignant melanoma. We previously reported the involvement of CD147, a transmembrane glycoprotein overexpressed in melanoma, in the regulation of the tumor microenvironment and angiogenesis. The aim of our study was to further determine how CD147 is involved in lymphangiogenesis regulation. Our results revealed that high CD147 expression is correlated with the number of lymphatic vessels in the human melanoma lymph nodes and that paracrine CD147 upregulates lymphangiogenesis through lymphangiogenic mediators in vitro and in vivo, suggesting that CD147 could be a promising target for melanoma-associated lymphangiogenesis inhibition. Abstract Malignant melanoma is one of the most aggressive skin cancers and is characterized by early lymph node metastasis and the capacity to develop resistance to therapies. Hence, understanding the regulation of lymphangiogenesis through mechanisms contributing to lymphatic vessel formation represents a treatment strategy for metastatic cancer. We have previously shown that CD147, a transmembrane glycoprotein overexpressed in melanoma, regulates the angiogenic process in endothelial cells. In this study, we show a correlation between high CD147 expression levels and the number of lymphatic vessels expressing LYVE-1, Podoplanin, and VEGFR-3 in human melanoma lymph nodes. CD147 upregulates in vitro lymphangiogenesis and its related mediators through the PROX-1 transcription factor. In vivo studies in a melanoma model confirmed that CD147 is involved in metastasis through a similar mechanism as in vitro. This study, demonstrating the paracrine role of CD147 in the lymphangiogenesis process, suggests that CD147 could be a promising target for the inhibition of melanoma-associated lymphangiogenesis.
Collapse
|
40
|
Chen S, Wang W, Tan HY, Lu Y, Li Z, Qu Y, Wang N, Wang D. Role of Autophagy in the Maintenance of Stemness in Adult Stem Cells: A Disease-Relevant Mechanism of Action. Front Cell Dev Biol 2021; 9:715200. [PMID: 34414192 PMCID: PMC8369482 DOI: 10.3389/fcell.2021.715200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 01/07/2023] Open
Abstract
Autophagy is an intracellular scavenging mechanism induced to eliminate damaged, denatured, or senescent macromolecular substances and organelles in the body. The regulation of autophagy plays essential roles in the processes of cellular homeostasis and senescence. Dysregulated autophagy is a common feature of several human diseases, including cancers and neurodegenerative disorders. The initiation and development of these disorders have been shown to be associated with the maintenance of disease-specific stem cell compartments. In this review, we summarize recent advances in our understanding of the role of autophagy in the maintenance of stemness. Specifically, we focus on the intersection between autophagy and adult stem cells in the initiation and progression of specific diseases. Accordingly, this review highlights the role of autophagy in stemness maintenance from the perspective of disease-associated mechanisms, which may be fundamental to our understanding of the pathogeneses of human diseases and the development of effective therapies.
Collapse
Affiliation(s)
- Shanshan Chen
- School of Life Sciences, Jilin University, Changchun, China
| | - Wenqi Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Hor-Yue Tan
- Centre for Chinese Herbal Medicine Drug Development, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yuanjun Lu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhiping Li
- School of Life Sciences, Jilin University, Changchun, China
| | - Yidi Qu
- School of Life Sciences, Jilin University, Changchun, China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, China
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| |
Collapse
|
41
|
Wang J, Han Q, Yan H, Yao W, Wang Z, Li K. Overexpression Prox1 in HemECs resembles Kaposiform hemangioendothelioma and cytotoxicity of sirolimus in vitro. J Pediatr Surg 2021; 56:1203-1210. [PMID: 33865602 DOI: 10.1016/j.jpedsurg.2021.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Kaposiform hemangioendothelioma (KHE) is a rare vascular tumor that occurs in children. Prox1 is a specific lymphatic marker for KHE. We intended to establish a Prox1 transgenic cell line resembling KHE and investigate the mechanism of sirolimus in treating KHE. METHODS Prox1 was stably expressed in infantile hemangioma cell HemECs. RT-qPCR and Western blot were conducted to measure the expression of target genes. CCK-8, EdU assay, and cell cycle analysis were conducted to detect cell proliferation. Wound healing and transwell assay were used to evaluate cell migration and invasion. RESULTS Both mRNA and protein levels of Prox1, LYVE-1, Podoplanin were upregulated in Prox1+ HemECs. An acceleration of cell growth and a rise in migration and invasion were observed with Prox1 overexpression. Sirolimus inhibited cell proliferation, promoted apoptosis and led to G1 phase arrest in Prox1+ HemECs. The expression of p-mTOR, p-4EBP1, and p-P70S6K decreased and the ratio of LC-3 II/LC-3 I elevated after treatment of sirolimus. CONCLUSIONS Stable overexpression of Prox1 in HemECs induced a lymphatic endothelial reprogramming, and enhanced aggressive biological effects, partly resembled the invasion of KHE, and could serve as a novel model for KHE. Sirolimus may block mTOR-mediated pathways and induced autophagy in KHE.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Qilei Han
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Hanlei Yan
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Wei Yao
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Zuopeng Wang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China.
| | - Kai Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China.
| |
Collapse
|
42
|
Hao X, Luo W, Qiu X. The association of transcription factor Prox1 with the proliferation, migration, and invasion of lung cancer. Open Life Sci 2021; 16:602-610. [PMID: 34183992 PMCID: PMC8218550 DOI: 10.1515/biol-2021-0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background The current study investigates the effect of transcription factor Prox1 on the proliferation, migration, and invasion ability of lung cancer. Methods Lung cancer cell lines (A549 and H446 cells) were transfected with Prox1NAD and siRNA, respectively. Thus, the A549 and H446 cells overexpressed Prox1 after transfection of Prox1NAD plasmids, and A549 and H446 cells have low expression of Prox1 after transfection with siRNA. Reverse transcriptase quantitative PCR and western blot analyses were used to detect Prox1 mRNA and protein expression in cells. Plate clone formation experiments and MTT experiments were used to detect cell proliferation. Western blot was used to detect the expression of Rho family-related proteins in cells. Results Compared to untransfected wild-type A549 and H446 that served as blank controls, the expression level of Prox1mRNA and protein in A549 and H446 cells overexpressing Prox1 after plasmid transfection was high, while the expression level of Prox1mRNA and protein in A549 and H446 cells with low expression of Prox1 after siRNA transfection was low. With the increase of Prox1 expression, the expression of RhoA and RhoC increased, while the expression of RhoB decreased. Conclusion The finding of this study may provide a new approach for the treatment of lung cancer using targeted gene therapy.
Collapse
Affiliation(s)
- Xinxin Hao
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China.,Department of Blood Transfusion, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xueshan Qiu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
| |
Collapse
|
43
|
Papanikolaou S, Vourda A, Syggelos S, Gyftopoulos K. Cell Plasticity and Prostate Cancer: The Role of Epithelial-Mesenchymal Transition in Tumor Progression, Invasion, Metastasis and Cancer Therapy Resistance. Cancers (Basel) 2021; 13:cancers13112795. [PMID: 34199763 PMCID: PMC8199975 DOI: 10.3390/cancers13112795] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Although epithelial-to-mesenchymal transition (EMT) is a well-known cellular process involved during normal embryogenesis and wound healing, it also has a dark side; it is a complex process that provides tumor cells with a more aggressive phenotype, facilitating tumor metastasis and even resistance to therapy. This review focuses on the key pathways of EMT in the pathogenesis of prostate cancer and the development of metastases and evasion of currently available treatments. Abstract Prostate cancer, the second most common malignancy in men, is characterized by high heterogeneity that poses several therapeutic challenges. Epithelial–mesenchymal transition (EMT) is a dynamic, reversible cellular process which is essential in normal embryonic morphogenesis and wound healing. However, the cellular changes that are induced by EMT suggest that it may also play a central role in tumor progression, invasion, metastasis, and resistance to current therapeutic options. These changes include enhanced motility and loss of cell–cell adhesion that form a more aggressive cellular phenotype. Moreover, the reverse process (MET) is a necessary element of the metastatic tumor process. It is highly probable that this cell plasticity reflects a hybrid state between epithelial and mesenchymal status. In this review, we describe the underlying key mechanisms of the EMT-induced phenotype modulation that contribute to prostate tumor aggressiveness and cancer therapy resistance, in an effort to provide a framework of this complex cellular process.
Collapse
|
44
|
Kaltezioti V, Foskolou IP, Lavigne MD, Ninou E, Tsampoula M, Fousteri M, Margarity M, Politis PK. Prox1 inhibits neurite outgrowth during central nervous system development. Cell Mol Life Sci 2021; 78:3443-3465. [PMID: 33247761 PMCID: PMC11072475 DOI: 10.1007/s00018-020-03709-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022]
Abstract
During central nervous system (CNS) development, proper and timely induction of neurite elongation is critical for generating functional, mature neurons, and neuronal networks. Despite the wealth of information on the action of extracellular cues, little is known about the intrinsic gene regulatory factors that control this developmental decision. Here, we report the identification of Prox1, a homeobox transcription factor, as a key player in inhibiting neurite elongation. Although Prox1 promotes acquisition of early neuronal identity and is expressed in nascent post-mitotic neurons, it is heavily down-regulated in the majority of terminally differentiated neurons, indicating a regulatory role in delaying neurite outgrowth in newly formed neurons. Consistently, we show that Prox1 is sufficient to inhibit neurite extension in mouse and human neuroblastoma cell lines. More importantly, Prox1 overexpression suppresses neurite elongation in primary neuronal cultures as well as in the developing mouse brain, while Prox1 knock-down promotes neurite outgrowth. Mechanistically, RNA-Seq analysis reveals that Prox1 affects critical pathways for neuronal maturation and neurite extension. Interestingly, Prox1 strongly inhibits many components of Ca2+ signaling pathway, an important mediator of neurite extension and neuronal maturation. In accordance, Prox1 represses Ca2+ entry upon KCl-mediated depolarization and reduces CREB phosphorylation. These observations suggest that Prox1 acts as a potent suppressor of neurite outgrowth by inhibiting Ca2+ signaling pathway. This action may provide the appropriate time window for nascent neurons to find the correct position in the CNS prior to initiation of neurites and axon elongation.
Collapse
Affiliation(s)
- Valeria Kaltezioti
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Street, 115 27, Athens, Greece
| | - Iosifina P Foskolou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Street, 115 27, Athens, Greece
| | - Matthieu D Lavigne
- Institute for Fundamental Biomedical Research, BSRC 'Alexander Fleming', 34 Fleming Street, Vari, 16672, Athens, Greece
| | - Elpinickie Ninou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Street, 115 27, Athens, Greece
| | - Matina Tsampoula
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Street, 115 27, Athens, Greece
| | - Maria Fousteri
- Institute for Fundamental Biomedical Research, BSRC 'Alexander Fleming', 34 Fleming Street, Vari, 16672, Athens, Greece
| | - Marigoula Margarity
- Laboratory of Human and Animal Physiology, Department of Biology, School of Natural Sciences, University of Patras, 26500, Rio Achaias, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Street, 115 27, Athens, Greece.
| |
Collapse
|
45
|
Long non-coding RNA DANCR modulates osteogenic differentiation by regulating the miR-1301-3p/PROX1 axis. Mol Cell Biochem 2021; 476:2503-2512. [PMID: 33629241 DOI: 10.1007/s11010-021-04074-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/17/2021] [Indexed: 10/22/2022]
Abstract
The balance of osteoblasts and marrow adipocytes from bone marrow mesenchymal stem cells (BM-MSCs) maintains bone health. Under aging or other pathological stimuli, BM-MSCs will preferentially differentiate into marrow adipocytes and reduce osteoblasts, leading to osteoporosis. Long non-coding RNA differentiation antagonizing non-protein coding RNA (DANCR) participates in the osteogenic differentiation of human BM-MSCs, but the mechanism by which DANCR regulates the osteogenic differentiation of human BM-MSCs has not been fully explained. We observed that DANCR and prospero homeobox 1 (PROX1) were downregulated during osteogenic differentiation of human BM-MSCs, while miR-1301-3p had an opposite trend. DANCR overexpression decreased the levels of alkaline phosphatase, RUNX2, osteocalcin, Osterix in BM-MSCs after osteogenic induction, but DANCR silencing had the opposite result. Moreover, DANCR sponged miR-1301-3p to regulate PROX1 expression. miR-1301-3p overexpression reversed the suppressive role of DANCR elevation on the osteogenic differentiation of human BM-MSCs. Also, PROX1 elevation abolished the promoting role of miR-1301-3p overexpression on the osteogenic differentiation of human BM-MSCs. In conclusion, DANCR suppressed the osteogenic differentiation of human BM-MSCs through the miR-1301-3p/PROX1 axis, offering a novel mechanism by which DANCR is responsible for the osteogenic differentiation of human BM-MSCs.
Collapse
|
46
|
Niland S, Eble JA. Hold on or Cut? Integrin- and MMP-Mediated Cell-Matrix Interactions in the Tumor Microenvironment. Int J Mol Sci 2020; 22:ijms22010238. [PMID: 33379400 PMCID: PMC7794804 DOI: 10.3390/ijms22010238] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) has become the focus of interest in cancer research and treatment. It includes the extracellular matrix (ECM) and ECM-modifying enzymes that are secreted by cancer and neighboring cells. The ECM serves both to anchor the tumor cells embedded in it and as a means of communication between the various cellular and non-cellular components of the TME. The cells of the TME modify their surrounding cancer-characteristic ECM. This in turn provides feedback to them via cellular receptors, thereby regulating, together with cytokines and exosomes, differentiation processes as well as tumor progression and spread. Matrix remodeling is accomplished by altering the repertoire of ECM components and by biophysical changes in stiffness and tension caused by ECM-crosslinking and ECM-degrading enzymes, in particular matrix metalloproteinases (MMPs). These can degrade ECM barriers or, by partial proteolysis, release soluble ECM fragments called matrikines, which influence cells inside and outside the TME. This review examines the changes in the ECM of the TME and the interaction between cells and the ECM, with a particular focus on MMPs.
Collapse
|
47
|
Deletion of the transcription factor Prox-1 specifically in the renal distal convoluted tubule causes hypomagnesemia via reduced expression of TRPM6 and NCC. Pflugers Arch 2020; 473:79-93. [PMID: 33200256 PMCID: PMC7782375 DOI: 10.1007/s00424-020-02491-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/25/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022]
Abstract
The renal distal convoluted tubule (DCT) is critical for the fine-tuning of urinary ion excretion and the control of blood pressure. Ion transport along the DCT is tightly controlled by posttranscriptional mechanisms including a complex interplay of kinases, phosphatases, and ubiquitin ligases. Previous work identified the transcription factor Prox-1 as a gene significantly enriched in the DCT of adult mice. To test if Prox-1 contributes to the transcriptional regulation of DCT function and structure, we developed a novel mouse model (NCCcre:Prox-1flox/flox) for an inducible deletion of Prox-1 specifically in the DCT. The deletion of Prox-1 had no obvious impact on DCT structure and growth independent whether the deletion was achieved in newborn or adult mice. Furthermore, DCT-specific Prox-1 deficiency did not alter DCT-proliferation in response to loop diuretic treatment. Likewise, the DCT-specific deletion of Prox-1 did not cause other gross phenotypic abnormalities. Body weight, urinary volume, Na+ and K+ excretion as well as plasma Na+, K+, and aldosterone levels were similar in Prox-1DCTKO and Prox-1DCTCtrl mice. However, Prox-1DCTKO mice exhibited a significant hypomagnesemia with a profound downregulation of the DCT-specific apical Mg2+ channel TRPM6 and the NaCl cotransporter (NCC) at both mRNA and protein levels. The expression of other proteins involved in distal tubule Mg2+ and Na+ handling was not affected. Thus, Prox-1 is a DCT-enriched transcription factor that does not control DCT growth but contributes to the molecular control of DCT-dependent Mg2+ homeostasis in the adult kidney.
Collapse
|
48
|
Bui K, Hong YK. Ras Pathways on Prox1 and Lymphangiogenesis: Insights for Therapeutics. Front Cardiovasc Med 2020; 7:597374. [PMID: 33263009 PMCID: PMC7688453 DOI: 10.3389/fcvm.2020.597374] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Over the past couple of decades, lymphatics research has accelerated and gained a much-needed recognition in pathophysiology. As the lymphatic system plays heavy roles in interstitial fluid drainage, immune surveillance and lipid absorption, the ablation or excessive growth of this vasculature could be associated with many complications, from lymphedema to metastasis. Despite their growing importance in cancer, few anti-lymphangiogenic therapies exist today, as they have yet to pass phase 3 clinical trials and acquire FDA approval. As such, many studies are being done to better define the signaling pathways that govern lymphangiogenesis, in hopes of developing new therapeutic approaches to inhibit or stimulate this process. This review will cover our current understanding of the Ras signaling pathways and their interactions with Prox1, the master transcriptional switch involved in specifying lymphatic endothelial cell fate and lymphangiogenesis, in hopes of providing insights to lymphangiogenesis-based therapies.
Collapse
Affiliation(s)
| | - Young-Kwon Hong
- Department of Surgery, Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
49
|
Shiokawa D, Sakai H, Ohata H, Miyazaki T, Kanda Y, Sekine S, Narushima D, Hosokawa M, Kato M, Suzuki Y, Takeyama H, Kambara H, Nakagama H, Okamoto K. Slow-Cycling Cancer Stem Cells Regulate Progression and Chemoresistance in Colon Cancer. Cancer Res 2020; 80:4451-4464. [PMID: 32816913 DOI: 10.1158/0008-5472.can-20-0378] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/03/2020] [Accepted: 08/14/2020] [Indexed: 11/16/2022]
Abstract
Cancer chemoresistance is often attributed to the presence of cancer stem cell (CSC)-like cells, but whether they are homogeneously chemoresistant remains unclear. We previously showed that in colon tumors, a subpopulation of LGR5+ CSC-like cells driven by TCF1 (TCF7), a Wnt-responsive transcription factor, were responsible for tumorigenicity. Here we demonstrate that the tumorigenic subpopulation of mouse LGR5+ cells exists in a slow-cycling state and identify a unique 22-gene signature that characterizes these slow-cycling CSC. Seven of the signature genes are specifically expressed in slow-cycling LGR5+ cells from xenografted human colon tumors and are upregulated in colon cancer clinical specimens. Among these seven, four genes (APCDD1, NOTUM, PROX1, and SP5) are known to be direct Wnt target genes, and PROX1 was expressed in the invasive fronts of colon tumors. PROX1 was activated by TCF1 to induce CDKN1C and maintain a slow-cycling state in colon cancer organoids. Strikingly, PROX1 was required for recurrent growth after chemotherapeutic treatment, suggesting that inhibition of slow-cycling CSC by targeting the TCF1-PROX1-CDKN1C pathway is an effective strategy to combat refractory colon cancer in combination with conventional chemotherapy. SIGNIFICANCE: These findings illustrate the importance of a slow-cycling CSC subpopulation in colon cancer development and chemoresistance, with potential implications for the identified slow-cycling CSC signatures and the TCF1-PROX1-CDKN1C pathway as therapeutic targets.
Collapse
Affiliation(s)
- Daisuke Shiokawa
- Division of Cancer Differentiation, National Cancer Center, Tokyo, Japan
| | - Hiroaki Sakai
- Division of Cancer Differentiation, National Cancer Center, Tokyo, Japan
| | - Hirokazu Ohata
- Division of Cancer Differentiation, National Cancer Center, Tokyo, Japan
| | - Toshiaki Miyazaki
- Division of Cancer Differentiation, National Cancer Center, Tokyo, Japan
| | - Yusuke Kanda
- Division of Cancer Differentiation, National Cancer Center, Tokyo, Japan
| | - Shigeki Sekine
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Daichi Narushima
- Fundamental Innovate Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
| | - Masahito Hosokawa
- Research Organization for Nano and Life Innovation, Tokyo, Japan.,Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Mamoru Kato
- Fundamental Innovate Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Haruko Takeyama
- Research Organization for Nano and Life Innovation, Tokyo, Japan.,Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Tokyo, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Hideki Kambara
- Research Organization for Nano and Life Innovation, Tokyo, Japan
| | | | - Koji Okamoto
- Division of Cancer Differentiation, National Cancer Center, Tokyo, Japan.
| |
Collapse
|
50
|
Keegan SE, Hughes SC. Role of nuclear-cytoplasmic protein localization during Drosophila neuroblast development. Genome 2020; 64:75-85. [PMID: 32526151 DOI: 10.1139/gen-2020-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuclear-cytoplasmic localization is an efficient way to regulate transcription factors and chromatin remodelers. Altering the location of existing protein pools also facilitates a more rapid response to changes in cell activity or extracellular signals. There are several examples of proteins that are regulated by nucleo-cytoplasmic shuttling, which are required for Drosophila neuroblast development. Disruption of the localization of homologs of these proteins has also been linked to several neurodegenerative disorders in humans. Drosophila has been used extensively to model the neurodegenerative disorders caused by aberrant nucleo-cytoplasmic localization. Here, we focus on the role of alternative nucleo-cytoplasmic protein localization in regulating proliferation and cell fate decisions in the Drosophila neuroblast and in neurodegenerative disorders. We also explore the analogous role of RNA binding proteins and mRNA localization in the context of regulation of nucleo-cytoplasmic localization during neural development and a role in neurodegenerative disorders.
Collapse
Affiliation(s)
- Sophie E Keegan
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah C Hughes
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|