1
|
Ma YY, Zhou WY, Qian Y, Mu YY, Zhang W. SOX13 as a potential prognostic biomarker linked to immune infiltration and ferroptosis inhibits the proliferation, migration, and metastasis of thyroid cancer cells. Front Immunol 2024; 15:1478395. [PMID: 39726600 PMCID: PMC11670200 DOI: 10.3389/fimmu.2024.1478395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Background SOX13 is a transcription factor belonging to the SOX family. SOX proteins are critical regulators of multiple cancer progression, and some are known to control carcinogenesis. Nevertheless, the functional and clinical significance of SOX13 in human thyroid cancer (THCA) remain largely unelucidated. Methods Data on SOX13 expression were obtained through The Cancer Genome Atlas together with Gene Expression Omnibus. Co-expression, differential expression, and functional analyses of genes were investigated by databases. Associations between SOX13 levels, immune infiltration, ferroptosis, and immune checkpoint gene levels were analyzed. Genetic changes in SOX13 were investigated using CBioPortal. Associations between SOX13 levels and THCA clinicopathological features were analyzed and nomogram modeling for diagnostic and prognostic prediction. The influence of SOX13 on proliferation, migration, and metastasis was determined in KTC-1 and TPC-1 cell lines. Results SOX13 was significantly lower in THCA tumors compared to controls. In addition, upregulated SOX13 gene mutation were evident in thyroid cancer. SOX13-associated genes exhibited differential expression in pathways associated with thyroid cancer development. Significant associations were found between SOX13 levels, immune infiltration, ferroptosis, and immune checkpoint genes in THCA tissue. SOX13 levels correlated with THCA stage, histologic grade, and primary neoplasm focus types, and independently predicted overall and progression-free intervals. SOX13 expression effectively distinguished between tumor and normal thyroid tissue. Spearman correlations highlighted a significant relationship between SOX13 and ferroptosis-associated genes. Overexpression of SOX13 enhances the inhibition of RSL3 (iron death activator) on the cell viability of TPC-1. Higher SOX13 levels in Thyroid cancer cells may lead to reduced proliferation, migration, and metastasis by regulating ferroptosis. Conclusion Reduced SOX13 expression inversely impacts patient prognosis. In addition, SOX13 strongly regulates cancer immunity and Ferroptosis. Hence, SOX13 has great promise as a bioindicator for both thyroid cancer prognosis and immune cell invasion.
Collapse
Affiliation(s)
- Yan-yan Ma
- Department of Rehabilitation Medicine, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou, China
| | - Wei-ye Zhou
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yue Qian
- Department of Pathogen Biology, Guizhou Nursing Vocational College, Guiyang, Guizhou, China
| | - Ying-ying Mu
- Department of Pathology, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, Guizhou, China
| | - Wei Zhang
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Pathogen Biology, Guizhou Nursing Vocational College, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Wang L, Chen F, Liu R, Shi L, Zhao G, Yan Z. Gene expression and immune infiltration in melanoma patients with different mutation burden. BMC Cancer 2021; 21:379. [PMID: 33836680 PMCID: PMC8034108 DOI: 10.1186/s12885-021-08083-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/22/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Immunotherapy is a vital component in cancer treatment. However, due to the complex genetic bases of cancer, a clear prediction index for efficacy has not been established. Tumor mutation burden (TMB) is one of the essential factors that affect immunotherapeutic efficacies, but it has not been determined whether the mutation is associated with the survival of Skin Cutaneous Melanoma (SKCM) patients. This study aimed at evaluating the correlation between TMB and immune infiltration. METHODS Somatic mutation profiles (n = 467), transcriptome data (n = 471), and their clinical information (n = 447) of all SKCM samples were downloaded from The Cancer Genome Atlas (TCGA) database. For each sample, TMB was calculated as the number of variants per megabase. Based on K-M survival analysis, they were allocated into the high-TMB and low-TMB groups (the optimal cutoff was determined by the 'surv_cutpoint' algorithm of survival R package). Then, Gene ontology (GO) and Gene Set Enrichment Analyses (GSEA) were performed, with immune-associated biological pathways found to be significantly enriched in the low-TMB group. Therefore, immune genes that were differentially expressed between the two groups were evaluated in Cox regression to determine their prognostic values, and a four-gene TMB immune prognostic model (TMB-IP) was constructed. RESULTS Elevated TMB levels were associated with better survival outcomes in SKCM patients. Based on the cutoff value in OS analysis, they were divided into high-TMB and low-TMB groups. GSEA revealed that the low-TMB group was associated with immunity while intersection analysis revealed that there were 38 differentially expressed immune-related genes between the two groups. Four TMB-associated immune genes were used to construct a TMB-IP model. The AUC of the ROC curve of this model reached a maximum of 0.75 (95%CI, 0.66-0.85) for OS outcomes. Validation in each clinical subgroup confirmed the efficacy of the model to distinguish between high and low TMB-IP score patients. CONCLUSIONS In SKCM patients, low TMB was associated with worse survival outcomes and enriched immune-associated pathways. The four TMB-associated immune genes model can effectively distinguish between high and low-risk patients.
Collapse
Affiliation(s)
- Liwei Wang
- Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.,Unit 32357 of People's Liberation Army, Pujiang, Sichuan, 611630, China
| | - Fu Chen
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Rui Liu
- Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Lei Shi
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Guosheng Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Zhengjian Yan
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
3
|
Akil H, Quintana M, Raymond JH, Billoux T, Benboubker V, Besse S, Auzeloux P, Delmas V, Petit V, Larue L, D’Incan M, Degoul F, Rouanet J. Efficacy of Targeted Radionuclide Therapy Using [ 131I]ICF01012 in 3D Pigmented BRAF- and NRAS-Mutant Melanoma Models and In Vivo NRAS-Mutant Melanoma. Cancers (Basel) 2021; 13:cancers13061421. [PMID: 33804655 PMCID: PMC8003594 DOI: 10.3390/cancers13061421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Targeted radionuclide therapy (TRT) aims to selectively deliver radioactive molecules to tumor cells. For this purpose, we deliver iodine-131 ([131I]) to melanoma cells by using our laboratory-developed melanin specific radiotracer, the ICF01012. Approximately 50% and 20%–30% of human melanomas have activating mutation in BRAF or NRAS genes, respectively. These mutations lead to a constitutive activation of the MAPK/ERK pathway, which is known to be involved in tumor cells’ radioresistance. In this work, we showed using 3D in vitro tumor models, an additive efficiency of combining [131I]ICF01012-TRT and MAPK/ERK inhibitors in BRAF- and NRAS-mutant melanoma cells. In mice bearing NRASQ61K-mutated melanoma, TRT induced an impressive decrease in tumor growth, as well as a highly extended survival. Additionally, we showed that TRT reduces the metastatic capacity of melanoma, especially through lymph-node dissemination. These results are therefore of great interest, especially for patients with NRAS-mutant metastatic melanoma who currently lack specific efficient therapies. Abstract Purpose: To assess the efficiency of targeted radionuclide therapy (TRT), alone or in combination with MEK inhibitors (MEKi), in melanomas harboring constitutive MAPK/ERK activation responsible for tumor radioresistance. Methods: For TRT, we used a melanin radiotracer ([131I]ICF01012) currently in phase 1 clinical trial (NCT03784625). TRT alone or combined with MEKi was evaluated in three-dimensional melanoma spheroid models of human BRAFV600E SK-MEL-3, murine NRASQ61K 1007, and WT B16F10 melanomas. TRT in vivo biodistribution, dosimetry, efficiency, and molecular mechanisms were studied using the C57BL/6J-NRASQ61K 1007 syngeneic model. Results: TRT cooperated with MEKi to increase apoptosis in both BRAF- and NRAS-mutant spheroids. NRASQ61K spheroids were highly radiosensitive towards [131I]ICF01012-TRT. In mice bearing NRASQ61K 1007 melanoma, [131I]ICF01012 induced a significant extended survival (92 vs. 44 days, p < 0.0001), associated with a 93-Gy tumor deposit, and reduced lymph-node metastases. Comparative transcriptomic analyses confirmed a decrease in mitosis, proliferation, and metastasis signatures in TRT-treated vs. control tumors and suggest that TRT acts through an increase in oxidation and inflammation and P53 activation. Conclusion: Our data suggest that [131I]ICF01012-TRT and MEKi combination could be of benefit for advanced pigmented BRAF-mutant melanoma care and that [131I]ICF01012 alone could constitute a new potential NRAS-mutant melanoma treatment.
Collapse
Affiliation(s)
- Hussein Akil
- INSERM U1240, University of Clermont Auvergne, 58 rue Montalembert, 63000 Clermont-Ferrand, France; (H.A.); (M.Q.); (V.B.); (S.B.); (P.A.); (M.D.); (F.D.)
- CNRS 7276, INSERM U1262, 2 rue du Pr Descottes, 87025 Limoges, France
| | - Mercedes Quintana
- INSERM U1240, University of Clermont Auvergne, 58 rue Montalembert, 63000 Clermont-Ferrand, France; (H.A.); (M.Q.); (V.B.); (S.B.); (P.A.); (M.D.); (F.D.)
| | - Jérémy H. Raymond
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Campus Universitaire, 91898 Orsay, France; (J.H.R.); (V.D.); (V.P.); (L.L.)
- Campus Universitaire, University Paris-Sud, University Paris-Saclay, CNRS UMR3347, 91898 Orsay, France
- Equipes Labellisées-Ligue Contre le Cancer, Campus Universitaire, 91898 Orsay, France
| | - Tommy Billoux
- Cirmen, Centre Jean Perrin, 58 rue Montalembert, 63000 Clermont-Ferrand, France;
| | - Valentin Benboubker
- INSERM U1240, University of Clermont Auvergne, 58 rue Montalembert, 63000 Clermont-Ferrand, France; (H.A.); (M.Q.); (V.B.); (S.B.); (P.A.); (M.D.); (F.D.)
| | - Sophie Besse
- INSERM U1240, University of Clermont Auvergne, 58 rue Montalembert, 63000 Clermont-Ferrand, France; (H.A.); (M.Q.); (V.B.); (S.B.); (P.A.); (M.D.); (F.D.)
| | - Philippe Auzeloux
- INSERM U1240, University of Clermont Auvergne, 58 rue Montalembert, 63000 Clermont-Ferrand, France; (H.A.); (M.Q.); (V.B.); (S.B.); (P.A.); (M.D.); (F.D.)
| | - Véronique Delmas
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Campus Universitaire, 91898 Orsay, France; (J.H.R.); (V.D.); (V.P.); (L.L.)
- Campus Universitaire, University Paris-Sud, University Paris-Saclay, CNRS UMR3347, 91898 Orsay, France
- Equipes Labellisées-Ligue Contre le Cancer, Campus Universitaire, 91898 Orsay, France
| | - Valérie Petit
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Campus Universitaire, 91898 Orsay, France; (J.H.R.); (V.D.); (V.P.); (L.L.)
- Campus Universitaire, University Paris-Sud, University Paris-Saclay, CNRS UMR3347, 91898 Orsay, France
- Equipes Labellisées-Ligue Contre le Cancer, Campus Universitaire, 91898 Orsay, France
| | - Lionel Larue
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Campus Universitaire, 91898 Orsay, France; (J.H.R.); (V.D.); (V.P.); (L.L.)
- Campus Universitaire, University Paris-Sud, University Paris-Saclay, CNRS UMR3347, 91898 Orsay, France
- Equipes Labellisées-Ligue Contre le Cancer, Campus Universitaire, 91898 Orsay, France
| | - Michel D’Incan
- INSERM U1240, University of Clermont Auvergne, 58 rue Montalembert, 63000 Clermont-Ferrand, France; (H.A.); (M.Q.); (V.B.); (S.B.); (P.A.); (M.D.); (F.D.)
- Department of Dermatology and Oncodermatology, CHU Estaing, 1 Place Aubrac, 63000 Clermont-Ferrand, France
| | - Françoise Degoul
- INSERM U1240, University of Clermont Auvergne, 58 rue Montalembert, 63000 Clermont-Ferrand, France; (H.A.); (M.Q.); (V.B.); (S.B.); (P.A.); (M.D.); (F.D.)
- CNRS 6293 INSERM U1103, University of Clermont Auvergne, 28, Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Jacques Rouanet
- INSERM U1240, University of Clermont Auvergne, 58 rue Montalembert, 63000 Clermont-Ferrand, France; (H.A.); (M.Q.); (V.B.); (S.B.); (P.A.); (M.D.); (F.D.)
- Department of Dermatology and Oncodermatology, CHU Estaing, 1 Place Aubrac, 63000 Clermont-Ferrand, France
- Correspondence:
| |
Collapse
|
4
|
Liu SR, Yang X, Qi L, Zhu Z, Ji YZ. SMARCA4 promotes benign skin malignant transformation into melanoma through Adherens junction signal transduction. Clin Transl Oncol 2021; 23:591-600. [PMID: 32720055 DOI: 10.1007/s12094-020-02453-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/04/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE Melanoma is a malignant skin tumor, and its incidence is rising. To explore the specific differences in benign and malignant melanoma at the genetic level, we performed a series of bioinformatics analyses, including differential gene analysis, co-expression analysis, enrichment analysis, and regulatory prediction. METHODS The microarray data of benign and malignant melanocytes were downloaded from GEO, and 1917 differential genes were obtained by differential analysis (p < 0.05). Weighted gene co-expression network analysis obtained three functional barrier modules. The essential genes of each module are SMARTA4, HECA, and C1R. RESULTS The results of the enrichment analysis showed that the dysfunctional module gene was mainly associated with RNA splicing and Adherens junction. Through the pivotal analysis of ncRNA, it was found that miR-448, miR-152-3p, and miR-302b-3p essentially regulate three modules, which we consider to be critical regulators. In the pivot analysis of TF, more control modules include ARID3A, E2F1, E2F3, and E2F8. CONCLUSIONS We believe that the regulator (miR-448, miR-152-3p, miR-302b-3p) regulates the expression of the core gene SMARCA4, which in turn affects the signal transduction of the Adherens junction. It eventually leads to the deterioration of benign skin spasms into melanoma.
Collapse
Affiliation(s)
- S-R Liu
- Department of Dermatology, The Second Hospital of Jilin University, No.218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China
| | - X Yang
- Department of Urology, The Second Hospital of Jilin University, Changchun, 130041, Jilin, People's Republic of China
| | - L Qi
- Department of Dermatology, The Second Hospital of Jilin University, No.218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China
| | - Z Zhu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, 130041, Jilin, People's Republic of China
| | - Y-Z Ji
- Department of Dermatology, The Second Hospital of Jilin University, No.218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China.
| |
Collapse
|
5
|
Kosiol N, Juranek S, Brossart P, Heine A, Paeschke K. G-quadruplexes: a promising target for cancer therapy. Mol Cancer 2021; 20:40. [PMID: 33632214 PMCID: PMC7905668 DOI: 10.1186/s12943-021-01328-4] [Citation(s) in RCA: 302] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
DNA and RNA can fold into a variety of alternative conformations. In recent years, a particular nucleic acid structure was discussed to play a role in malignant transformation and cancer development. This structure is called a G-quadruplex (G4). G4 structure formation can drive genome instability by creating mutations, deletions and stimulating recombination events. The importance of G4 structures in the characterization of malignant cells was currently demonstrated in breast cancer samples. In this analysis a correlation between G4 structure formation and an increased intratumor heterogeneity was identified. This suggests that G4 structures might allow breast cancer stratification and supports the identification of new personalized treatment options. Because of the stability of G4 structures and their presence within most human oncogenic promoters and at telomeres, G4 structures are currently tested as a therapeutic target to downregulate transcription or to block telomere elongation in cancer cells. To date, different chemical molecules (G4 ligands) have been developed that aim to target G4 structures. In this review we discuss and compare G4 function and relevance for therapeutic approaches and their impact on cancer development for three cancer entities, which differ significantly in their amount and type of mutations: pancreatic cancer, leukemia and malignant melanoma. G4 structures might present a promising new strategy to individually target tumor cells and could support personalized treatment approaches in the future.
Collapse
Affiliation(s)
- Nils Kosiol
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Stefan Juranek
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Peter Brossart
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Annkristin Heine
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
6
|
Melixetian M, Bossi D, Mihailovich M, Punzi S, Barozzi I, Marocchi F, Cuomo A, Bonaldi T, Testa G, Marine JC, Leucci E, Minucci S, Pelicci PG, Lanfrancone L. Long non-coding RNA TINCR suppresses metastatic melanoma dissemination by preventing ATF4 translation. EMBO Rep 2021; 22:e50852. [PMID: 33586907 PMCID: PMC7926219 DOI: 10.15252/embr.202050852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Transition from proliferative‐to‐invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is challenged by the poor understanding of mechanisms underlying its maintenance. Here, we report that the lncRNA TINCR is down‐regulated in metastatic melanoma and its silencing increases the expression levels of invasive markers, in vitro migration, in vivo tumor growth, and resistance to BRAF and MEK inhibitors. The critical mediator is ATF4, a central player of the integrated stress response (ISR), which is activated in TINCR‐depleted cells in the absence of starvation and eIF2α phosphorylation. TINCR depletion increases global protein synthesis and induces translational reprogramming, leading to increased translation of mRNAs encoding ATF4 and other ISR proteins. Strikingly, re‐expression of TINCR in metastatic melanoma suppresses the invasive phenotype, reduces numbers of tumor‐initiating cells and metastasis formation, and increases drug sensitivity. Mechanistically, TINCR interacts with mRNAs associated with the invasive phenotype, including ATF4, preventing their binding to ribosomes. Thus, TINCR is a suppressor of the melanoma invasive phenotype, which functions in nutrient‐rich conditions by repressing translation of selected ISR RNAs.
Collapse
Affiliation(s)
- Marine Melixetian
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Daniela Bossi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Marija Mihailovich
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Simona Punzi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Iros Barozzi
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Federica Marocchi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Testa
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Leuven, Belgium.,Center for Cancer Biology, VIB, Leuven, Belgium
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, KULeuven, Leuven, Belgium
| | - Saverio Minucci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Biosciences, University of Milan, Milan, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Luisa Lanfrancone
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
7
|
Binder H, Schmidt M, Loeffler-Wirth H, Mortensen LS, Kunz M. Melanoma Single-Cell Biology in Experimental and Clinical Settings. J Clin Med 2021; 10:506. [PMID: 33535416 PMCID: PMC7867095 DOI: 10.3390/jcm10030506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 01/05/2023] Open
Abstract
Cellular heterogeneity is regarded as a major factor for treatment response and resistance in a variety of malignant tumors, including malignant melanoma. More recent developments of single-cell sequencing technology provided deeper insights into this phenomenon. Single-cell data were used to identify prognostic subtypes of melanoma tumors, with a special emphasis on immune cells and fibroblasts in the tumor microenvironment. Moreover, treatment resistance to checkpoint inhibitor therapy has been shown to be associated with a set of differentially expressed immune cell signatures unraveling new targetable intracellular signaling pathways. Characterization of T cell states under checkpoint inhibitor treatment showed that exhausted CD8+ T cell types in melanoma lesions still have a high proliferative index. Other studies identified treatment resistance mechanisms to targeted treatment against the mutated BRAF serine/threonine protein kinase including repression of the melanoma differentiation gene microphthalmia-associated transcription factor (MITF) and induction of AXL receptor tyrosine kinase. Interestingly, treatment resistance mechanisms not only included selection processes of pre-existing subclones but also transition between different states of gene expression. Taken together, single-cell technology has provided deeper insights into melanoma biology and has put forward our understanding of the role of tumor heterogeneity and transcriptional plasticity, which may impact on innovative clinical trial designs and experimental approaches.
Collapse
Affiliation(s)
- Hans Binder
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany; (H.B.); (M.S.); (H.L.-W.); (L.S.M.)
| | - Maria Schmidt
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany; (H.B.); (M.S.); (H.L.-W.); (L.S.M.)
| | - Henry Loeffler-Wirth
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany; (H.B.); (M.S.); (H.L.-W.); (L.S.M.)
| | - Lena Suenke Mortensen
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany; (H.B.); (M.S.); (H.L.-W.); (L.S.M.)
| | - Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Philipp-Rosenthal-Str. 23-25, 04103 Leipzig, Germany
| |
Collapse
|
8
|
Tan S, Zhao Z, Qiao Y, Zhang B, Zhang T, Zhang M, Qi J, Wang X, Meng M, Zhou Q. Activation of the tumor suppressive Hippo pathway by triptonide as a new strategy to potently inhibit aggressive melanoma cell metastasis. Biochem Pharmacol 2021; 185:114423. [PMID: 33476574 DOI: 10.1016/j.bcp.2021.114423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/02/2021] [Accepted: 01/13/2021] [Indexed: 02/08/2023]
Abstract
Metastatic melanoma has a very high mortality rate despite the availability of chemotherapy, radiotherapy, and immunotherapy; therefore, more effective therapeutics are needed. The Hippo pathway plays an inhibitory role in melanoma progression, but the tumor suppressors Salvador homolog-1 (SAV1) and large tumor suppressor 1 (LATS1) in this pathway are down-regulated in melanoma. As a result, the downstream oncogenic Yes-associated protein (YAP) is active, resulting in uncontrolled melanoma growth and metastasis. Therapeutics for remedying SAV1 and LATS1 deficiency in melanoma have not yet been reported in the literature. Here, we show that the small molecule triptonide (MW 358 Da) robustly suppressed melanoma cell tumorigenicity, migration, and invasion. Furthermore, triptonide markedly reduced tumor growth and melanoma lung metastasis in tumor-bearing mice with low toxicity. Molecular mechanistic studies revealed that triptonide promoted SAV1 and LATS1 expression, strongly activated the tumor-suppressive Hippo pathway, degraded oncogenic YAP via the lysosomal pathway, and reduced levels of tumorigenic microphthalmia-associated transcription factor (MITF) in melanoma cells. Triptonide also strongly inhibited activation of AKT, a SAV1-binding signaling protein. Collectively, our results conceptually demonstrate that induction of SAV1 and LATS1 expression and activation of the tumor-suppressive Hippo pathway by triptonide potently inhibits aggressive melanoma cell growth and metastasis. These findings suggest a new strategy for developing therapeutics to treat metastatic melanoma and highlight a novel drug candidate against aggressive melanoma.
Collapse
Affiliation(s)
- Shijie Tan
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Zhe Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu 215123, PR China
| | - Yingnan Qiao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Bin Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China; Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, PR China; Suzhou Institute of Systems Medicine, Suzhou 215123, PR China
| | - Tong Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Mengli Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jindan Qi
- School of Nursing, Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Xiaohua Wang
- School of Nursing, Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China.
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China; State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, PR China; National Clinical Research Center for Hematology Diseases, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China.
| |
Collapse
|
9
|
Carreira B, Acúrcio RC, Matos AI, Peres C, Pozzi S, Vaskovich‐Koubi D, Kleiner R, Bento M, Satchi‐Fainaro R, Florindo HF. Nanomedicines as Multifunctional Modulators of Melanoma Immune Microenvironment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Barbara Carreira
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Rita C. Acúrcio
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Ana I. Matos
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Carina Peres
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Daniella Vaskovich‐Koubi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Ron Kleiner
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Mariana Bento
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Helena F. Florindo
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| |
Collapse
|
10
|
Lee DS, Oh K. Cancer Stem Cells in the Immune Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1187:245-266. [PMID: 33983582 DOI: 10.1007/978-981-32-9620-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer stem cells are a subpopulation of cancer cells responsible for the most demanding and aggressive cancer cell phenotypes: therapy resistance, a self-protective feature of stem cells; distant metastasis, requiring anchorage independence for survival in the circulation; and recurrence, which is related to the dormant-active cycling of stem cells. Normal tissues are composed of parenchymal cells, supportive connective components, and cellular disposal systems for removing the products of physiological wear and tear. Cancer stem cells develop from normal counterparts and progressively interact with their microenvironments, modifying and conditioning the cancer microenvironment. Cancer-associated myeloid cells constitute a major element of the cancer microenvironment. During the process of carcinogenesis, cancer stem cells and their intimately associated myeloid cells mutually interact and evolve, such that the cancer cells potentiate the activity of the myeloid cells and, in return, the myeloid cells increase cancer stem cell characteristics. Normal myeloid cells function as key accessory cells to maintain homeostasis in normal tissues and organs; in cancers, these cells co-evolve with the malignant parenchymal cells and are involved in every aspect of cancer cell biology, including proliferation, invasion, distant metastasis, and the development of resistance to therapy. In this way, cancer-associated myeloid cells provide two of the key hallmarks of cancer: evasion of immune destruction and cancer-promoting inflammation.
Collapse
Affiliation(s)
- Dong-Sup Lee
- Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Keunhee Oh
- SillaJen, Inc., Seoul, Republic of Korea
| |
Collapse
|
11
|
Zippel D, Yalon T, Nevo Y, Markel G, Asher N, Schachter J, Goitein D, Segal TA, Nissan A, Hazzan D. The non-responding adrenal metastasis in melanoma: The case for minimally invasive adrenalectomy in the age of modern therapies. Am J Surg 2020; 220:349-353. [DOI: 10.1016/j.amjsurg.2019.11.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
|
12
|
Hallajzadeh J, Amirani E, Mirzaei H, Shafabakhsh R, Mirhashemi SM, Sharifi M, Yousefi B, Mansournia MA, Asemi Z. Circular RNAs: new genetic tools in melanoma. Biomark Med 2020; 14:563-571. [PMID: 32462914 DOI: 10.2217/bmm-2019-0567] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Melanoma is the most lethal form of skin cancer. New technologies have resulted in major advances in the diagnosis and treatment of melanoma and other cancer types. Recently, some studies have investigated the role of circular RNAs (circRNAs) in different cancers. CircRNAs are a member of long noncoding RNA family mainly formed through back-splicing and have a closed-loop structure. These molecules affect several biological and oncogenic cascades in diverse ways via acting as microRNA sponge, interacting with RNA-binding proteins and acting as a transcription regulator. In this review, we made an insight into the impact of circRNA dysregulation in the melanoma tumorigenesis based on the presented evidences.
Collapse
Affiliation(s)
- Jamal Hallajzadeh
- Department of Biochemistry & Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Elaheh Amirani
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyyed M Mirhashemi
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehran Sharifi
- Department of Hematology & Oncology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad A Mansournia
- Department of Epidemiology & Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
13
|
Hu B, Lin JZ, Yang XB, Sang XT. The roles of mutated SWI/SNF complexes in the initiation and development of hepatocellular carcinoma and its regulatory effect on the immune system: A review. Cell Prolif 2020; 53:e12791. [PMID: 32162380 PMCID: PMC7162795 DOI: 10.1111/cpr.12791] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/13/2020] [Accepted: 02/22/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver malignancy with a high global prevalence and a dismal prognosis. Studies are urgently needed to examine the molecular pathogenesis and biological characteristics of HCC. Chromatin remodelling, an integral component of the DNA damage response, protects against DNA damage‐induced genome instability and tumorigenesis by triggering the signalling events that activate the interconnected DNA repair pathways. The SWI/SNF complexes are one of the most extensively investigated adenosine triphosphate‐dependent chromatin remodelling complexes, and mutations in genes encoding SWI/SNF subunits are frequently observed in various human cancers, including HCC. The mutated SWI/SNF complex subunits exert dual functions by accelerating or inhibiting HCC initiation and progression. Furthermore, the abnormal SWI/SNF complexes influence the transcription of interferon‐stimulated genes, as well as the differentiation, activation and recruitment of several immune cell types. In addition, they exhibit synergistic effects with immune checkpoint inhibitors in the treatment of diverse tumour types. Therefore, understanding the mutations and deficiencies of the SMI/SNF complexes, together with the associated functional mechanisms, may provide a novel strategy to treat HCC through targeting the related genes or modulating the tumour microenvironment.
Collapse
Affiliation(s)
- Bo Hu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Zhen Lin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Bo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Reger de Moura C, Vercellino L, Jouenne F, Baroudjian B, Sadoux A, Louveau B, Delyon J, Serror K, Goldwirt L, Merlet P, Bouquet F, Battistella M, Lebbé C, Mourah S. Intermittent Versus Continuous Dosing of MAPK Inhibitors in the Treatment of BRAF-Mutated Melanoma. Transl Oncol 2020; 13:275-286. [PMID: 31874374 PMCID: PMC6931208 DOI: 10.1016/j.tranon.2019.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/08/2019] [Indexed: 02/02/2023] Open
Abstract
The development of BRAF and MEK inhibitors (BRAFi/MEKi) has led to major advances in melanoma treatment. However, the emergence of resistance mechanisms limits the benefit duration and a complete response occurs in less than 20% of patients receiving BRAFi ± MEKi. In this study, we evaluated the impact of an intermittent versus continuous dosing schedule of BRAF/MEK inhibition in a melanoma model mildly sensitive to a BRAF inhibitor. The combination of a BRAFi with three different MEKi was studied with a continuous or intermittent dosing schedule in vivo, in a xenografted melanoma model and ex vivo using histoculture drug response assays (HDRAs) of patient-derived xenografts (PDX). To further understand the underlying molecular mechanisms of therapeutic efficacy, a biomarker pharmacodynamic readout was evaluated. An equal impact on tumor growth was observed in monotherapy or bitherapy regimens whether we used continuous and intermittent dosing schedules, with no significant differences in biomarkers expression between the treatments. The antitumoral effect was mostly due to modulations of expression of cell cycle and apoptotic mediators. Moreover, ex vivo studies did not show significant differences between the dosing schedules. In this context, our preclinical and pharmacodynamic results converged to show the similarity between intermittent and continuous treatments with either BRAFi or MEKi alone or with the combination of both.
Collapse
Affiliation(s)
- Coralie Reger de Moura
- Université de Paris, Inserm, UMR_S976, Paris, France; Department of Pharmacogenomics, Hôpital Saint-Louis, AP-HP, Paris, France
| | | | - Fanélie Jouenne
- Université de Paris, Inserm, UMR_S976, Paris, France; Department of Pharmacogenomics, Hôpital Saint-Louis, AP-HP, Paris, France
| | | | - Aurélie Sadoux
- Université de Paris, Inserm, UMR_S976, Paris, France; Department of Pharmacogenomics, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Baptiste Louveau
- Université de Paris, Inserm, UMR_S976, Paris, France; Department of Pharmacogenomics, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Julie Delyon
- Department of Dermatology, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Kevin Serror
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Lauriane Goldwirt
- Université de Paris, Inserm, UMR_S976, Paris, France; Department of Pharmacogenomics, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Pascal Merlet
- Department of Nuclear Medicine, Hôpital Saint-Louis, AP-HP, Paris, France
| | | | - Maxime Battistella
- Department of Pathology, Hôpital Saint-Louis, AP-HP, Paris, France; Université de Paris, Inserm, UMR_S1165, Paris, France
| | - Céleste Lebbé
- Université de Paris, Inserm, UMR_S976, Paris, France; Department of Dermatology, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Samia Mourah
- Université de Paris, Inserm, UMR_S976, Paris, France; Department of Pharmacogenomics, Hôpital Saint-Louis, AP-HP, Paris, France.
| |
Collapse
|
15
|
Recagni M, Tassinari M, Doria F, Cimino-Reale G, Zaffaroni N, Freccero M, Folini M, Richter SN. The Oncogenic Signaling Pathways in BRAF-Mutant Melanoma Cells are Modulated by Naphthalene Diimide-Like G-Quadruplex Ligands. Cells 2019; 8:cells8101274. [PMID: 31635389 PMCID: PMC6830342 DOI: 10.3390/cells8101274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/27/2019] [Accepted: 10/16/2019] [Indexed: 01/12/2023] Open
Abstract
Melanoma is the most aggressive and deadly type of skin cancer. Despite the advent of targeted therapies directed against specific oncogene mutations, melanoma remains a tumor that is very difficult to treat, and ultimately remains incurable. In the past two decades, stabilization of the non-canonical nucleic acid G-quadruplex structures within oncogene promoters has stood out as a promising approach to interfere with oncogenic signaling pathways in cancer cells, paving the way toward the development of G-quadruplex ligands as antitumor drugs. Here, we present the synthesis and screening of a library of differently functionalized core-extended naphthalene diimides for their activity against the BRAFV600E-mutant melanoma cell line. The most promising compound was able to stabilize G-quadruplexes that formed in the promoter regions of two target genes relevant to melanoma, KIT and BCL-2. This activity led to the suppression of protein expression and thus to interference with oncogenic signaling pathways involved in BRAF-mutant melanoma cell survival, apoptosis, and resistance to drugs. This G-quadruplex ligand thus represents a suitable candidate for the development of melanoma treatment options based on a new mechanism of action and could reveal particular significance in the context of resistance to targeted therapies of BRAF-mutant melanoma cells.
Collapse
Affiliation(s)
- Marta Recagni
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy.
| | - Martina Tassinari
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy.
| | - Filippo Doria
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100 Pavia, Italy.
| | - Graziella Cimino-Reale
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy.
| | - Nadia Zaffaroni
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy.
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100 Pavia, Italy.
| | - Marco Folini
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy.
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy.
| |
Collapse
|
16
|
Melanoma and autoimmunity: spontaneous regressions as a possible model for new therapeutic approaches. Melanoma Res 2019; 29:231-236. [PMID: 30615013 DOI: 10.1097/cmr.0000000000000573] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Until now, malignancy has been considered a cellular problem represented by the perturbed (uncontrolled) division of the cells associated with invasion and metastasis. Contrary to this classical approach, a new perspective suggests that cancerous disease is, in fact, a supracellular problem represented by inadequate evolution of complex supracellular processes (embryogenesis, development, regeneration, etc.). Such complex processes would be disconnected from the real needs of the body, inducing unnecessary or even dangerous events such as an exacerbated rate of the cell division, angiogenesis, immunosuppression (specific to embryogenesis and melanoma), invasion (mediated by trophoblastic/placental factors in melanoma), and migration (specific to neural crest cells, which generate melanocytes - the most common origin for melanoma). As a result, a correct and comprehensive interpretation of cancer (causes, evolution, therapy, and prevention) should be conducted from a supracellular perspective. After presenting the supracellular perspective, this article further investigates the favorable evolution of malignant melanoma in two distinct situations: in patients receiving no therapy and in patients treated with immune-checkpoint inhibitors. In patients receiving no therapy, spontaneous regressions of melanoma could be the result of several autoimmune reactions (inducing not only melanoma regression but also vitiligo, an autoimmune event frequently associated with melanoma). Patients treated with immune-checkpoint inhibitors develop similar autoimmune reactions, which are clearly correlated with better therapeutic results. The best example is vitiligo, which is considered a positive prognostic factor for patients receiving immune-checkpoint inhibitors. This finding indicates that immune-checkpoint inhibitors induce distinct types of autoimmune events, some corresponding to specific favorable autoimmune mechanisms (favoring tumor regression) and others to common unfavorable adverse reactions (which should be avoided or minimized). In conclusion, the spectrum of autoimmune reactions induced by immune-checkpoint inhibitors should be restricted in the near future to only these specific favorable autoimmune mechanisms. In this way, the unnecessary autoimmune reactions/autoaggressions could be avoided (a better quality of life), and treatment specificity and efficiency should increase (a higher response rate for melanoma therapy).
Collapse
|
17
|
Louveau B, Jouenne F, Reger de Moura C, Sadoux A, Baroudjian B, Delyon J, Herms F, De Masson A, Da Meda L, Battistella M, Dumaz N, Lebbe C, Mourah S. Baseline Genomic Features in BRAFV600-Mutated Metastatic Melanoma Patients Treated with BRAF Inhibitor + MEK Inhibitor in Routine Care. Cancers (Basel) 2019; 11:E1203. [PMID: 31426590 PMCID: PMC6721518 DOI: 10.3390/cancers11081203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/26/2022] Open
Abstract
In BRAFV600mut metastatic melanoma, the combination of BRAF and MEK inhibitors (BRAFi, MEKi) has undergone multiple resistance mechanisms, limiting its clinical benefit and resulting in the need for response predicting biomarkers. Based on phase III clinical trial data, several studies have previously explored baseline genomic features associated with response to BRAFi + MEKi. Using a targeted approach that combines the examination of mRNA expression and DNA alterations in a subset of genes, we performed an analysis of baseline genomic alterations involved in MAPK inhibitors' resistance in a real-life cohort of BRAFV600mut metastatic melanoma patients. Twenty-seven patients were included in this retrospective study, and tumor samples were analyzed when the BRAFi + MEKi therapy was initiated. The clinical characteristics of our cohort were consistent with previously published studies. The BRAFi + MEKi treatment was initiated in seven patients as a following-line treatment, and had a specific transcriptomic profile exhibiting 14 genes with lower mRNA expression. However, DNA alterations in CCND1, RB1, and MET were only observed in patients who received BRAFi + MEKi as the first-line treatment. Furthermore, KIT mRNA expression was significantly higher in patients showing clinical benefit from the combined therapy, emphasizing the tumor-suppressor role of KIT already described within the context of BRAF-mutant melanoma.
Collapse
Affiliation(s)
- Baptiste Louveau
- Pharmacogenomics Department, Assistance Publique-Hôpitaux de Paris (APHP), Saint Louis Hospital, 75010 Paris, France
- Université de Paris, INSERM UMRS 976, 75010 Paris, France
| | - Fanelie Jouenne
- Pharmacogenomics Department, Assistance Publique-Hôpitaux de Paris (APHP), Saint Louis Hospital, 75010 Paris, France
- Université de Paris, INSERM UMRS 976, 75010 Paris, France
| | - Coralie Reger de Moura
- Pharmacogenomics Department, Assistance Publique-Hôpitaux de Paris (APHP), Saint Louis Hospital, 75010 Paris, France
| | - Aurelie Sadoux
- Pharmacogenomics Department, Assistance Publique-Hôpitaux de Paris (APHP), Saint Louis Hospital, 75010 Paris, France
| | - Barouyr Baroudjian
- Université de Paris, INSERM UMRS 976, 75010 Paris, France
- Dermatology Department and Centre d'investigation clinique (CIC), Assistance Publique-Hôpitaux de Paris (APHP), Saint Louis Hospital, 75010 Paris, France
| | - Julie Delyon
- Université de Paris, INSERM UMRS 976, 75010 Paris, France
- Dermatology Department and Centre d'investigation clinique (CIC), Assistance Publique-Hôpitaux de Paris (APHP), Saint Louis Hospital, 75010 Paris, France
| | - Florian Herms
- Dermatology Department and Centre d'investigation clinique (CIC), Assistance Publique-Hôpitaux de Paris (APHP), Saint Louis Hospital, 75010 Paris, France
| | - Adele De Masson
- Dermatology Department and Centre d'investigation clinique (CIC), Assistance Publique-Hôpitaux de Paris (APHP), Saint Louis Hospital, 75010 Paris, France
| | - Laetitia Da Meda
- Dermatology Department and Centre d'investigation clinique (CIC), Assistance Publique-Hôpitaux de Paris (APHP), Saint Louis Hospital, 75010 Paris, France
| | - Maxime Battistella
- Pathology Department, Assistance Publique-Hôpitaux de Paris (APHP), Saint Louis Hospital, 75010 Paris, France
- Université de Paris, INSERM UMRS 1165, 75010 Paris, France
| | - Nicolas Dumaz
- Université de Paris, INSERM UMRS 976, 75010 Paris, France
| | - Celeste Lebbe
- Université de Paris, INSERM UMRS 976, 75010 Paris, France
- Dermatology Department and Centre d'investigation clinique (CIC), Assistance Publique-Hôpitaux de Paris (APHP), Saint Louis Hospital, 75010 Paris, France
| | - Samia Mourah
- Pharmacogenomics Department, Assistance Publique-Hôpitaux de Paris (APHP), Saint Louis Hospital, 75010 Paris, France.
- Université de Paris, INSERM UMRS 976, 75010 Paris, France.
| |
Collapse
|
18
|
Flørenes VA, Flem-Karlsen K, McFadden E, Bergheim IR, Nygaard V, Nygård V, Farstad IN, Øy GF, Emilsen E, Giller-Fleten K, Ree AH, Flatmark K, Gullestad HP, Hermann R, Ryder T, Wernhoff P, Mælandsmo GM. A Three-dimensional Ex Vivo Viability Assay Reveals a Strong Correlation Between Response to Targeted Inhibitors and Mutation Status in Melanoma Lymph Node Metastases. Transl Oncol 2019; 12:951-958. [PMID: 31096111 PMCID: PMC6520638 DOI: 10.1016/j.tranon.2019.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022] Open
Abstract
Although clinical management of melanoma has changed considerably in recent years, intrinsic treatment resistance remains a severe problem and strategies to design personal treatment regimens are highly warranted. We have applied a three-dimensional (3D) ex vivo drug efficacy assay, exposing disaggregated cells from 38 freshly harvested melanoma lymph node metastases and 21 patient derived xenografts (PDXs) to clinical relevant drugs for 7 days, and examined its potential to evaluate therapy response. A strong association between Vemurafenib response and BRAF mutation status was achieved (P < .0001), while enhanced viability was seen in some NRAS mutated tumors. BRAF and NRAS mutated tumors responded comparably to the MEK inhibitor Cobimetinib. Based on the ex vivo results, two tumors diagnosed as BRAF wild-type by routine pathology examinations had to be re-evaluated; one was subsequently found to have a complex V600E mutation, the other a double BRAF mutation (V600E/K601 N). No BRAF inhibitor resistance mechanisms were identified, but PIK3CA and NF1 mutations were identified in two highly responsive tumors. Concordance between ex vivo drug responses using tissue from PDXs and corresponding patient tumors demonstrate that PDX models represent an indefinite source of tumor material that may allow ex vivo evaluation of numerous drugs and combinations, as well as studies of underlying molecular mechanisms. In conclusion, we have established a rapid and low cost ex vivo drug efficacy assay applicable on tumor tissue from patient biopsies. The 3D/spheroid format, limiting the influence from normal adjacent cells and allowing assessment of drug sensitivity to numerous drugs in one week, confirms its potential as a supplement to guide clinical decision, in particular in identifying non-responding patients.
Collapse
Affiliation(s)
- Vivi Ann Flørenes
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Karine Flem-Karlsen
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Erin McFadden
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Inger Riise Bergheim
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Vigdis Nygaard
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Vegard Nygård
- Department of Core Facilities, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Inger Nina Farstad
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Geir Frode Øy
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Elisabeth Emilsen
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Karianne Giller-Fleten
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, N-1478 Lørenskog, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Kjersti Flatmark
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway; Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; Department of Gastroenterological Surgery, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Hans Petter Gullestad
- Department of Plastic and Reconstructive Surgery, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Robert Hermann
- Department of Plastic and Reconstructive Surgery, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Truls Ryder
- Department of Plastic and Reconstructive Surgery, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Patrik Wernhoff
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Gunhild Mari Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; Institute of Medical Biology, Faculty of Health Sciences, UiT-Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
19
|
Abstract
In the past decades, a vast amount of data accumulated on the role of lipid signaling pathways in the progression of malignant melanoma, the most metastatic/aggressive human cancer type. Genomic studies identified that PTEN loss is the leading factor behind the activation of the PI3K-signaling pathway in melanoma, mutations of which are one of the main resistance mechanisms behind target therapy failures. On the other hand, illegitimate expressions of megakaryocytic genes p12-lipoxyganse, cyclooxygenase-2, and phosphodiestherase-2/autotaxin (ATX) are mostly involved in the regulation of motility signaling in melanoma through various G-protein-coupled bioactive lipid receptors. Furthermore, endocannabinoid signaling can also be a novel paracrine survival factor in melanoma. Last but not least, prenylation inhibitors acting even on mutated small GTP-ases, such as NRAS of melanoma may offer novel therapeutic opportunities. As regards melanoma, the most effective therapy nowadays is immunotherapy, with the resistance mechanisms also possibly involving the lipid signaling activities of melanoma cells, which further supports the idea of their being therapeutic targets.
Collapse
Affiliation(s)
- József Tímár
- 2nd Department of Pathology, Semmelweis University, 93. Üllöi u, Budapest, 1091, Hungary. .,Molecular Oncology Research Group, Semmelweis University, Budapest, Hungary.
| | - B Hegedüs
- Molecular Oncology Research Group, Semmelweis University, Budapest, Hungary.,Department of Throracic Surgery, University Hospital Essen, Essen, Germany
| | - E Rásó
- 2nd Department of Pathology, Semmelweis University, 93. Üllöi u, Budapest, 1091, Hungary
| |
Collapse
|
20
|
Louveau B, Delyon J, De Moura CR, Battistella M, Jouenne F, Golmard L, Sadoux A, Podgorniak MP, Chami I, Marco O, Caramel J, Dalle S, Feugeas JP, Dumaz N, Lebbe C, Mourah S. A targeted genomic alteration analysis predicts survival of melanoma patients under BRAF inhibitors. Oncotarget 2019; 10:1669-1687. [PMID: 30899440 PMCID: PMC6422198 DOI: 10.18632/oncotarget.26707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 01/31/2019] [Indexed: 11/25/2022] Open
Abstract
Several mechanisms have been described to elucidate the emergence of resistance to MAPK inhibitors in melanoma and there is a crucial need for biomarkers to identify patients who are likely to achieve a better and long-lasting response to BRAF inhibitors therapy. In this study, we developed a targeted approach combining both mRNA and DNA alterations analysis focusing on relevant gene alterations involved in acquired BRAF inhibitor resistance. We collected baseline tumor samples from 64 melanoma patients at BRAF inhibitor treatment initiation and showed that the presence, prior to treatment, of mRNA over-expression of genes' subset was significantly associated with improved progression free survival and overall survival. The presence of DNA alterations was in favor of better overall survival. The genomic analysis of relapsed-matched tumor samples from 20 patients allowed us to uncover the largest landscape of resistance mechanisms reported to date as at least one resistance mechanism was identified for each patient studied. Alterations in RB1 have been most frequent and hence represent an important additional acquired resistance mechanism. Our targeted genomic analysis emerges as a relevant tool in clinical practice to identify those patients who are more likely to achieve durable response to targeted therapies and to exhaustively describe the spectrum of resistance mechanisms. Our approach can be adapted to new targeted therapies by including newly identified genetic alterations.
Collapse
Affiliation(s)
- Baptiste Louveau
- Paris-Diderot University, Sorbonne Paris Cité, Paris, France.,Paris-Diderot University, Inserm, UMR_S976, Paris, France.,Department of Pharmacogenomics, Saint-Louis Hospital, AP-HP, Paris, France
| | - Julie Delyon
- Paris-Diderot University, Sorbonne Paris Cité, Paris, France.,Paris-Diderot University, Inserm, UMR_S976, Paris, France.,Department of Dermatology, Saint-Louis Hospital, AP-HP, Paris, France
| | - Coralie Reger De Moura
- Paris-Diderot University, Inserm, UMR_S976, Paris, France.,Department of Pharmacogenomics, Saint-Louis Hospital, AP-HP, Paris, France
| | - Maxime Battistella
- Paris-Diderot University, Sorbonne Paris Cité, Paris, France.,Department of Pathology, Saint-Louis Hospital, AP-HP, Paris, France.,Paris Diderot University, Inserm, UMR_S1165, Paris, France
| | - Fanelie Jouenne
- Paris-Diderot University, Sorbonne Paris Cité, Paris, France.,Paris-Diderot University, Inserm, UMR_S976, Paris, France.,Department of Pharmacogenomics, Saint-Louis Hospital, AP-HP, Paris, France
| | - Lisa Golmard
- Department of Genetics, Pôle de Médecine Diagnostique et Théranostique, Institut Curie, Paris, France
| | - Aurelie Sadoux
- Paris-Diderot University, Sorbonne Paris Cité, Paris, France.,Paris-Diderot University, Inserm, UMR_S976, Paris, France.,Department of Pharmacogenomics, Saint-Louis Hospital, AP-HP, Paris, France
| | - Marie-Pierre Podgorniak
- Paris-Diderot University, Sorbonne Paris Cité, Paris, France.,Paris-Diderot University, Inserm, UMR_S976, Paris, France.,Department of Pharmacogenomics, Saint-Louis Hospital, AP-HP, Paris, France
| | - Ichrak Chami
- Department of Dermatology, Saint-Louis Hospital, AP-HP, Paris, France
| | - Oren Marco
- Department of Plastic, Reconstructive and Esthetic Surgery, Saint-Louis Hospital, AP-HP, Paris, France
| | - Julie Caramel
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon, France
| | - Stephane Dalle
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon, France.,Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France
| | | | - Nicolas Dumaz
- Paris-Diderot University, Sorbonne Paris Cité, Paris, France.,Paris-Diderot University, Inserm, UMR_S976, Paris, France
| | - Celeste Lebbe
- Paris-Diderot University, Sorbonne Paris Cité, Paris, France.,Paris-Diderot University, Inserm, UMR_S976, Paris, France.,Department of Dermatology, Saint-Louis Hospital, AP-HP, Paris, France
| | - Samia Mourah
- Paris-Diderot University, Sorbonne Paris Cité, Paris, France.,Paris-Diderot University, Inserm, UMR_S976, Paris, France.,Department of Pharmacogenomics, Saint-Louis Hospital, AP-HP, Paris, France
| |
Collapse
|
21
|
Bagatini MD, Bertolin K, Bridi A, Pelinson LP, da Silva Rosa Bonadiman B, Pillat MM, Gonçalves PBD, Ulrich H, Schetinger MRC, Morsch VM. 1α, 25-Dihydroxyvitamin D3 alters ectonucleotidase expression and activity in human cutaneous melanoma cells. J Cell Biochem 2018; 120:9992-10000. [PMID: 30548323 DOI: 10.1002/jcb.28281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022]
Abstract
PURPOSE We hypothesized that vitamin D decreases rates of adenosine formation in human cutaneous melanoma cells through the inhibition of extracellular adenosine 5'-triphosphate breakdown, thereby affecting tumor cell viability. Therefore, the objective of this study was to explore the mechanisms of action of 1α, 25-dihydroxyvitamin D3 (1,25(OH)2 D3) on the activity and expression of ectonucleotidases in cutaneous melanoma cells. METHODS A human melanoma cell line, SK-Mel-28, was treated with 1 to 50 nM of the active vitamin D metabolite (1,25(OH)2 D3) over 24 hours, followed by determination of NTPDase1/CD39 and ecto-5'-nucleotidase/CD73 activity and expression rates of the purinergic system-related NTPDASE1, NT5E and adenosine deaminase and vitamin D receptor. An 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay was used to evaluate cellular viability. RESULTS 1,25(OH)2 D3 decreased adenosine monophosphate hydrolysis via ecto-5'-nucleotidase/CD73 and expression of CD73, but did not change NTPDase1/CD39 activity; it increased the CD39 expression. We also observed an increase of cell viability at 1 nM, but this viability decreased as the concentrations of vitamin D active metabolite increased to 50 nM. There were no differences in gene expression levels. CONCLUSION To the best of our knowledge, we showed for the first time a mechanism of control of adenosine production via modulation of the purinergic system in cutaneous melanoma cells treated with the active metabolite of vitamin D. This study provides original information regarding mechanisms, in which vitamin D plays a key role in preventing tumor progression in human melanoma cells.
Collapse
Affiliation(s)
- Margarete Dulce Bagatini
- Department of Biochemistry and Molecular Biology, Academic Coordination, Campus Chapecó, Federal University of Fronteira Sul, Chapecó, SC, Brazil.,Department of Biochemistry and Molecular Biology, PPGBtox, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Kalyne Bertolin
- Department of Large Animal, Clinical Sciences, Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Alessandra Bridi
- Department of Large Animal, Clinical Sciences, Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Luana Paula Pelinson
- Department of Biochemistry and Molecular Biology, PPGBtox, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Michele Mainardi Pillat
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Paulo Bayard Dias Gonçalves
- Department of Large Animal, Clinical Sciences, Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | | | - Vera Maria Morsch
- Department of Biochemistry and Molecular Biology, PPGBtox, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
22
|
WIPI1, BAG1, and PEX3 Autophagy-Related Genes Are Relevant Melanoma Markers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1471682. [PMID: 30622661 PMCID: PMC6304818 DOI: 10.1155/2018/1471682] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023]
Abstract
ROS and oxidative stress may promote autophagy; on the other hand, autophagy may help reduce oxidative damages. According to the known interplay of ROS, autophagy, and melanoma onset, we hypothesized that autophagy-related genes (ARGs) may represent useful melanoma biomarkers. We therefore analyzed the gene and protein expression of 222 ARGs in human melanoma samples, from 5 independent expression databases (overall 572 patients). Gene expression was first evaluated in the GEO database. Forty-two genes showed extremely high ability to discriminate melanoma from nevi (63 samples) according to ROC (AUC ≥ 0.85) and Mann-Whitney (p < 0.0001) analyses. The 9 genes never related to melanoma before were then in silico validated in the IST online database. BAG1, CHMP2B, PEX3, and WIPI1 confirmed a strong differential gene expression, in 355 samples. A second-round validation performed on the Human Protein Atlas database showed strong differential protein expression for BAG1, PEX3, and WIPI1 in melanoma vs control samples, according to the image analysis of 80 human histological sections. WIPI1 gene expression also showed a significant prognostic value (p < 0.0001) according to 102 melanoma patients' survival data. We finally addressed in Oncomine database whether WIPI1 overexpression is melanoma-specific. Within more than 20 cancer types, the most relevant WIPI1 expression change (p = 0.00002; fold change = 3.1) was observed in melanoma. Molecular/functional relationships of the investigated molecules with melanoma and their molecular/functional network were analyzed via Chilibot software, STRING analysis, and gene ontology enrichment analysis. We conclude that WIPI1 (AUC = 0.99), BAG1 (AUC = 1), and PEX3 (AUC = 0.93) are relevant novel melanoma markers at both gene and protein levels.
Collapse
|
23
|
Palmieri G, Colombino M, Casula M, Manca A, Mandalà M, Cossu A, for the Italian Melanoma Intergroup (IMI). Molecular Pathways in Melanomagenesis: What We Learned from Next-Generation Sequencing Approaches. Curr Oncol Rep 2018; 20:86. [PMID: 30218391 PMCID: PMC6153571 DOI: 10.1007/s11912-018-0733-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Conventional clinico-pathological features in melanoma patients should be integrated with new molecular diagnostic, predictive, and prognostic factors coming from the expanding genomic profiles. Cutaneous melanoma (CM), even differing in biological behavior according to sun-exposure levels on the skin areas where it arises, is molecularly heterogeneous. The next-generation sequencing (NGS) approaches are providing data on mutation landscapes in driver genes that may account for distinct pathogenetic mechanisms and pathways. The purpose was to group and classify all somatic driver mutations observed in the main NGS-based studies. RECENT FINDINGS Whole exome and whole genome sequencing approaches have provided data on spectrum and distribution of genetic and genomic alterations as well as allowed to discover new cancer genes underlying CM pathogenesis. After evaluating the mutational status in a cohort of 686 CM cases from the most representative NGS studies, three molecular CM subtypes were proposed: BRAFmut, RASmut, and non-BRAFmut/non-RASmut.
Collapse
Affiliation(s)
- Giuseppe Palmieri
- Unit of Cancer Genetics, National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), Traversa La Crucca 3, Baldinca Li Punti, 07100 Sassari, Italy
| | - Maria Colombino
- Unit of Cancer Genetics, National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), Traversa La Crucca 3, Baldinca Li Punti, 07100 Sassari, Italy
| | - Milena Casula
- Unit of Cancer Genetics, National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), Traversa La Crucca 3, Baldinca Li Punti, 07100 Sassari, Italy
| | - Antonella Manca
- Unit of Cancer Genetics, National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), Traversa La Crucca 3, Baldinca Li Punti, 07100 Sassari, Italy
| | - Mario Mandalà
- PAPA GIOVANNI XXIII Cancer Center Hospital, Bergamo, Italy
| | - Antonio Cossu
- Institute of Pathology, Azienda Ospedaliero Universitaria (AOU), Sassari, Italy
| | - for the Italian Melanoma Intergroup (IMI)
- Unit of Cancer Genetics, National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), Traversa La Crucca 3, Baldinca Li Punti, 07100 Sassari, Italy
- PAPA GIOVANNI XXIII Cancer Center Hospital, Bergamo, Italy
- Institute of Pathology, Azienda Ospedaliero Universitaria (AOU), Sassari, Italy
| |
Collapse
|
24
|
Tang MR, Guo JY, Wang D, Xu N. Identification of CD24 as a marker for tumorigenesis of melanoma. Onco Targets Ther 2018; 11:3401-3406. [PMID: 29928131 PMCID: PMC6003289 DOI: 10.2147/ott.s157043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective Cutaneous melanoma (CM) is a common skin cancer. Surgery is still the primary treatment for CM, as melanoma is resistant to chemotherapy. In the recent years, it has been found that cancer stem-like cells (CSCs) are responsible for this drug resistance. CD24 is a widely used marker to isolate CSCs. In this study, we aimed to analyze the properties of CD24+ and CD24- subpopulation of melanoma cells. Materials and methods We isolated CD24+ cells CSCs using magnetic-activated cell sorting system. We extracted total RNA and carried out reverse transcription polymerase chain reaction analysis. We counted the cell colonies using soft agar assay and assessed the cell invasion using cell migration assay. We implanted CD24+ or CD24- cells into the flank of non-obese diabetic severe combined immunodeficiency mice, and measured the tumor volumes every 5 days until the end of the experiment. We carried out immunohistochemical analysis to study the tissue sections. Results We demonstrated that the CD24+ subpopulation has self-renewal properties in vitro and in vivo by using soft agar assay and xenograft tumor model. Furthermore, we confirmed that CD24 expression is accompanied by activation of Notch1 signaling pathway. Conclusion This study provides new knowledge on the role of CD24 in the tumorigenic ability of melanoma.
Collapse
Affiliation(s)
- Ming-Rui Tang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Jia-Yan Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Di Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Nan Xu
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| |
Collapse
|
25
|
Kuchar M, Neuber C, Belter B, Bergmann R, Lenk J, Wodtke R, Kniess T, Steinbach J, Pietzsch J, Löser R. Evaluation of Fluorine-18-Labeled α1(I)-N-Telopeptide Analogs as Substrate-Based Radiotracers for PET Imaging of Melanoma-Associated Lysyl Oxidase. Front Chem 2018; 6:121. [PMID: 29755969 PMCID: PMC5932954 DOI: 10.3389/fchem.2018.00121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/30/2018] [Indexed: 12/28/2022] Open
Abstract
Accumulating evidence suggests an unequivocal role of lysyl oxidases as key players of tumor progression and metastasis, which renders this enzyme family highly attractive for targeted non-invasive functional imaging of tumors. Considering their function in matrix remodeling, malignant melanoma appears as particularly interesting neoplasia in this respect. For the development of radiotracers that enable PET imaging of the melanoma-associated lysyl oxidase activity, substrates derived from the type I collagen α1 N-telopeptide were labeled with fluorine-18 using N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) as prosthetic reagent. With regards to potential crosslinking to tumor-associated collagen in vivo, their interaction with triple-helical type I collagen was studied by SPR. A mouse model of human melanoma was established on the basis of the A375 cell line, for which the expression of the oncologically relevant lysyl oxidase isoforms LOX and LOXL2 was demonstrated in Western blot and immunohistochemical experiments. The radiopharmacological profiles of the peptidic radiotracers were evaluated in normal rats and A375 melanoma-bearing mice by ex vivo metabolite analysis, whole-body biodistribution studies and dynamic PET imaging. Out of three 18F-labeled telopeptide analogs, the one with the most favorable substrate properties has shown favorable tumor uptake and tumor-to-muscle ratio. Lysyl oxidase-mediated tumor uptake was proven by pharmacological inhibition using β-aminopropionitrile and by employing negative-control analogs of impeded or abolished targeting capability. The latter were obtained by substituting the lysine residue by ornithine and norleucine, respectively. Comparing the tumor uptake of the lysine-containing peptide with that of the non-functional analogs indicate the feasibility of lysyl oxidase imaging in melanoma using substrate-based radiotracers.
Collapse
Affiliation(s)
- Manuela Kuchar
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Unversität Dresden, Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Birgit Belter
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Ralf Bergmann
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Jens Lenk
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Unversität Dresden, Dresden, Germany
| | - Robert Wodtke
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Unversität Dresden, Dresden, Germany
| | - Torsten Kniess
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Unversität Dresden, Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Unversität Dresden, Dresden, Germany
| | - Reik Löser
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Unversität Dresden, Dresden, Germany
| |
Collapse
|
26
|
Huang D, Leslie KA, Guest D, Yeshcheulova O, Roy IJ, Piva M, Moriceau G, Zangle TA, Lo RS, Teitell MA, Reed J. High-Speed Live-Cell Interferometry: A New Method for Quantifying Tumor Drug Resistance and Heterogeneity. Anal Chem 2018; 90:3299-3306. [PMID: 29381859 DOI: 10.1021/acs.analchem.7b04828] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report the development of high-speed live-cell interferometry (HSLCI), a new multisample, multidrug testing platform for directly measuring tumor therapy response via real-time optical cell biomass measurements. As a proof of concept, we show that HSLCI rapidly profiles changes in biomass in BRAF inhibitor (BRAFi)-sensitive parental melanoma cell lines and in their isogenic BRAFi-resistant sublines. We show reproducible results from two different HSLCI platforms at two institutions that generate biomass kinetic signatures capable of discriminating between BRAFi-sensitive and -resistant melanoma cells within 24 h. Like other quantitative phase imaging (QPI) modalities, HSLCI is well-suited to noninvasive measurements of single cells and cell clusters, requiring no fluorescence or dye labeling. HSLCI is substantially faster and more sensitive than field-standard growth inhibition assays, and in terms of the number of cells measured simultaneously, the number of drugs tested in parallel, and temporal measurement range, it exceeds the state of the art by more than 10-fold. The accuracy and speed of HSLCI in profiling tumor cell heterogeneity and therapy resistance are promising features of potential tools to guide patient therapeutic selections.
Collapse
Affiliation(s)
| | - Kevin A Leslie
- Department of Physics , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | - Daniel Guest
- Department of Physics , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | - Olga Yeshcheulova
- Department of Physics , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | | | | | | | - Thomas A Zangle
- Department of Chemical Engineering , University of Utah , Salt Lake City , Utah 84112 , United States
| | | | | | - Jason Reed
- Department of Physics , Virginia Commonwealth University , Richmond , Virginia 23284 , United States.,Massey Cancer Center , Virginia Commonwealth University , Richmond , Virginia 23298 , United States
| |
Collapse
|
27
|
Guadagni S, Fiorentini G, Clementi M, Palumbo G, Palumbo P, Chiominto A, Baldoni S, Masedu F, Valenti M, Tommaso AD, Fabi B, Aliberti C, Sarti D, Guadagni V, Pellegrini C. Does Locoregional Chemotherapy Still Matter in the Treatment of Advanced Pelvic Melanoma? Int J Mol Sci 2017; 18:2382. [PMID: 29120401 PMCID: PMC5713351 DOI: 10.3390/ijms18112382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 01/19/2023] Open
Abstract
Pelvic Melanoma relapse occurs in 15% of patients with loco regional metastases, and 25% of cases do not respond to new target-therapy and/or immunotherapy. Melphalan hypoxic pelvic perfusion may, therefore, be an option for these non-responsive patients. Overall median survival time (MST), stratified for variables, including BRAF V600E mutation and eligibility for treatments with new immunotherapy drugs, was retrospectively assessed in 41 patients with pelvic melanoma loco regional metastases. They had received a total of 175 treatments with Melphalan hypoxic perfusion and cytoreductive excision. Among the 41 patients, 22 (53.7%) patients exhibited a wild-type BRAF genotype, 11 of which were not eligible for immunotherapy. The first treatment resulted in a 97.5% response-rate in the full cohort and a 100% response-rate in the 22 wild-type BRAF patients. MST was 18 months in the full sample, 20 months for the 22 wild-type BRAF patients and 21 months for the 11 wild-type BRAF patients not eligible for immunotherapy. Melphalan hypoxic perfusion is a potentially effective treatment for patients with pelvic melanoma loco regional metastases that requires confirmation in a larger multicenter study.
Collapse
Affiliation(s)
- Stefano Guadagni
- Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Giammaria Fiorentini
- Department of Oncology and Hematology, Ospedali Riuniti Marche Nord, 61121 Pesaro, Italy.
| | - Marco Clementi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Giancarlo Palumbo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Paola Palumbo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Alessandro Chiominto
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Stefano Baldoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Francesco Masedu
- Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Marco Valenti
- Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Ambra Di Tommaso
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Bianca Fabi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Camillo Aliberti
- Department of Radiology, Institute for the Research and Treatment of Cancer, 35128 Padova, Italy.
| | - Donatella Sarti
- Department of Oncology and Hematology, Ospedali Riuniti Marche Nord, 61121 Pesaro, Italy.
| | - Veronica Guadagni
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Cristina Pellegrini
- Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
28
|
|