1
|
Sukdeo Y, Shozi NP, Ndimande N, Mbara KC, Owira PMO. A review of the human microRNA and the Mycobacterium tuberculosis epigenetic effects on the emergence drug resistance. Life Sci 2025; 374:123637. [PMID: 40287057 DOI: 10.1016/j.lfs.2025.123637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
AIMS Mycobacterium tuberculosis (MTB) uses epigenetics to avoid the hostile host immune defence systems and also mount resistance to chemotherapy when exposed to antibiotic stress. MTB's epigenetic survival tool-kit includes genomic DNA histone acetylation/deacetylation, methylation, phosphorylation, ubiquitylation, etc. The non-coding host microRNAs (miRNAs) as genomic products of epigenetic control of drug extrusion processes, drug permeability barrier formation or metabolism, and target alteration are hijacked by MTB to mount multi-drug resistance. The miRNAs involved and the mechanisms used are not yet completely understood. The role of MTB genome-derived miRNA are currently indeterminate as the current studies are only focused on the host miRNA biogenesis in MTB pathogenesis. However, the contribution of host miRNA to drug resistance in MTB chemotherapy is largely unknown. MATERIALS AND METHODS We have comprehensively searched online databases for medical, health, and nanotechnology for articles published in English between 2020 and 2024 using search words "MTB", "Epigenetics", "microRNA", "TB Chemotherapy" to compile this narrative review. KEY FINDINGS MTB epigenetic tool-kit of DNA methylation, histone acetylation/deacetylation, cell membrane impermeability, drug metabolism and target mimicry are mediated by the hijacked host cell microRNAs in the development of drug resistance. Antisense oligomers or mimetics can therefore, be used as miRNA antagonists/silencers or agomirs, respectively, depending on the pattern of miRNA expression, to combat resistance to MTB chemotherapy. CONCLUSIONS This review discusses microRNAs as epigenetic agents in the emergence of Multi-Drug Resistance TB (MDR-TB) and their potential role in chemotherapeutics.
Collapse
Affiliation(s)
- Yashna Sukdeo
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, University of Kwazulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Nozibusiso Pearl Shozi
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, University of Kwazulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Nonsikelelo Ndimande
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, University of Kwazulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Kingsley Chimaeze Mbara
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, University of Kwazulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Peter M O Owira
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, University of Kwazulu-Natal, P.O. Box X5401, Durban, South Africa.
| |
Collapse
|
2
|
Chauhan W, Setra Janardhana Shetty S, Ferdowsi S, Kafle S, Zennadi R. Rpl13a snoRNAs U34 and U35a: New Targets for Sickle Cell Disease Complications. Circ Res 2025. [PMID: 40371475 DOI: 10.1161/circresaha.124.325093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 04/17/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND In sickle cell disease (SCD), erythrocyte reactive oxygen species (ROS) production and oxidative stress play a critical role in vaso-occlusion, a hallmark of SCD. Small noncoding nucleolar RNAs (snoRNAs) of the Rpl13a locus have been described as regulators of ROS levels. However, whether Rpl13a snoRNAs are present in sickle red blood cells (RBCs) and regulate ROS levels and whether they contribute to SCD pathophysiology remain unknown. METHODS To determine whether sickle RBC ROS levels are associated with Rpl13a snoRNA levels and identify the mechanism by which they regulate ROS and snoRNAs' effects on SCD hemodynamics, we used human RBCs, Rpl13a snoRNA knockout sickle mice, K562 U32a, U33, U34, U35a, and the control U25 knockout mutants generated by CRISPR-Cas9-targeted genome editing, and genetic targeting with antisense oligonucleotides. RESULTS Excessive ROS production in sickle RBCs of patients with SCD is associated with high Rpl13a snoRNAs U32a, U33, U34, and U35a levels. U32a, U34, and U35a regulate ROS and hydrogen peroxide levels in sickle erythroid populations by modulating peroxidase activity. This was due to U32a- and U34-guided 2'-O-methylation on Prdx2 (peroxiredoxin 2) messenger RNA, a modification conveyed by fibrillarin during erythropoiesis, subsequently reducing Prdx2 expression and activity. The snoRNA U35a impaired Prdx2 expression/activity but independently of Prdx2 messenger RNA 2'-O-methylation. Excess sickle RBC ROS increased in turn Rpl13a snoRNAs levels. In vivo targeting combinations of U34+U35a and U32a+U34+U35a in sickle mice with antisense oligonucleotide blunted RBC ROS generation, improved erythropoiesis and anemia, alleviated leukocytosis and endothelial damage, diminished cell adhesion in inflamed vessels and vaso-occlusion, restored blood flow, and reduced animal mortality. CONCLUSIONS Rpl13a snoRNAs U34 and U35a specifically increase ROS levels, which, in turn, regulate snoRNA expression, in sickle erythroid cells, modulating Prdx2 expression/activity, subsequently impairing hemodynamics. Targeted U34+U35a with antisense oligonucleotide may represent a novel and safe therapy to ameliorate erythropoiesis and downstream events in SCD.
Collapse
Affiliation(s)
- Waseem Chauhan
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| | | | - Shirin Ferdowsi
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| | - Sweta Kafle
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| | - Rahima Zennadi
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| |
Collapse
|
3
|
Zhao BW, Su XR, Yang Y, Li DX, Li GD, Hu PW, Luo X, Hu L. A heterogeneous information network learning model with neighborhood-level structural representation for predicting lncRNA-miRNA interactions. Comput Struct Biotechnol J 2024; 23:2924-2933. [PMID: 39963422 PMCID: PMC11832017 DOI: 10.1016/j.csbj.2024.06.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 02/20/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are closely related to the treatment of human diseases. Traditional biological experiments often require time-consuming and labor-intensive in their search for mechanisms of disease. Computational methods are regarded as an effective way to predict unknown lncRNA-miRNA interactions (LMIs). However, most of them complete their tasks by mainly focusing on a single lncRNA-miRNA network without considering the complex mechanism between biomolecular in life activities, which are believed to be useful for improving the accuracy of LMI prediction. To address this, a heterogeneous information network (HIN) learning model with neighborhood-level structural representation, called HINLMI, to precisely identify LMIs. In particular, HINLMI first constructs a HIN by integrating nine interactions of five biomolecules. After that, different representation learning strategies are applied to learn the biological and network representations of lncRNAs and miRNAs in the HIN from different perspectives. Finally, HINLMI incorporates the XGBoost classifier to predict unknown LMIs using final embeddings of lncRNAs and miRNAs. Experimental results show that HINLMI yields a best performance on the real dataset when compared with state-of-the-art computational models. Moreover, several analysis experiments indicate that the simultaneous consideration of biological knowledge and network topology of lncRNAs and miRNAs allows HINLMI to accurately predict LMIs from a more comprehensive perspective. The promising performance of HINLMI also reveals that the utilization of rich heterogeneous information can provide an alternative insight for HINLMI to identify novel interactions between lncRNAs and miRNAs.
Collapse
Affiliation(s)
- Bo-Wei Zhao
- College of Computer and Information Science, School of Software, Southwest University, Chongqing 400715, China
| | - Xiao-Rui Su
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yue Yang
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Dong-Xu Li
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Guo-Dong Li
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Peng-Wei Hu
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xin Luo
- College of Computer and Information Science, School of Software, Southwest University, Chongqing 400715, China
| | - Lun Hu
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
4
|
Hacimoto SYS, Cressoni ACL, da Silva LECM, Padovan CC, Ferriani RA, Rosa-e-Silva JC, Meola J. Selection of reference miRNAs for RT-qPCR assays in endometriosis menstrual blood-derived mesenchymal stem cells. PLoS One 2024; 19:e0306657. [PMID: 39078824 PMCID: PMC11288454 DOI: 10.1371/journal.pone.0306657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
Choosing appropriate reference genes or internal controls to normalize RT-qPCR data is mandatory for the interexperimental reproducibility of gene expression data obtained by RT-qPCR in most studies, including those on endometriosis. Particularly for miRNAs, the choice for reference genes is challenging because of their physicochemical and biological characteristics. Moreover, the retrograde menstruation theory, mesenchymal stem cells in menstrual blood (MenSCs), and changes in post-transcriptional regulatory processes through miRNAs have gained prominence in the scientific community as important players in endometriosis. Therefore, we originally explored the stability of 10 miRNAs expressions as internal control candidates in conditions involving the two-dimensional culture of MenSCs from healthy women and patients with endometriosis. Here, we applied multiple algorithms (geNorm, NormFinder, Bestkeeper, and delta Ct) to screen reference genes and assessed the comprehensive stability classification of miRNAs using RefFinder. Pairwise variation calculated using geNorm identified three miRNAs as a sufficient number of reference genes for accurate normalization. MiR-191-5p, miR-24-3p, and miR-103a-3p were the best combination for suitable gene expression normalization. This study will benefit similar research, but is also attractive for regenerative medicine and clinics that use MenSCs, miRNA expression, and RT-qPCR.
Collapse
Affiliation(s)
- Sabrina Yukari Santos Hacimoto
- Department of Gynecology and Obstetrics of Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana Clara Lagazzi Cressoni
- Department of Gynecology and Obstetrics of Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Cristiana Carolina Padovan
- Department of Gynecology and Obstetrics of Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rui Alberto Ferriani
- Department of Gynecology and Obstetrics of Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute of Hormones and Women’s Health (Hormona), CNPq, Porto Alegre, Rio Grande do Sul, Brazil
| | - Júlio César Rosa-e-Silva
- Department of Gynecology and Obstetrics of Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Juliana Meola
- Department of Gynecology and Obstetrics of Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute of Hormones and Women’s Health (Hormona), CNPq, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
5
|
Jagielski NP, Rai AK, Rajan KS, Mangal V, Garikipati VNS. A contemporary review of snoRNAs in cardiovascular health: RNA modification and beyond. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102087. [PMID: 38178918 PMCID: PMC10765057 DOI: 10.1016/j.omtn.2023.102087] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
As cardiovascular diseases continue to be the leading cause of death worldwide, groundbreaking research is being conducted to mitigate their effects. This review looks into the potential of small nucleolar RNAs (snoRNAs) and the opportunity to use these molecular agents as therapeutic biomarkers for cardiovascular issues specific to the heart. Through an investigation of snoRNA biogenesis, functionality, and roles in cardiovascular diseases, this review relates our past and present knowledge of snoRNAs to the current scientific literature. Considering the initial discovery of snoRNAs and the studies thereafter analyzing the roles of snoRNAs in disease, we look forward to uncovering many other noncanonical functions that could lead researchers closer to finding preventive and curative solutions for cardiovascular diseases.
Collapse
Affiliation(s)
- Noah Peter Jagielski
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Amit Kumar Rai
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - K. Shanmugha Rajan
- Department of Chemical and Structural Biology, Weizmann Institute, Rehovot 76100 001, Israel
| | - Vatsal Mangal
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Venkata Naga Srikanth Garikipati
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
6
|
Raveendran S, Al Massih A, Al Hashmi M, Saeed A, Al-Azwani I, Mathew R, Tomei S. Urinary miRNAs: Technical Updates. Microrna 2024; 13:110-123. [PMID: 38778602 DOI: 10.2174/0122115366305985240502094814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 05/25/2024]
Abstract
Due to its non-invasive nature and easy accessibility, urine serves as a convenient biological fluid for research purposes. Furthermore, urine samples are uncomplicated to preserve and relatively inexpensive. MicroRNAs (miRNAs), small molecules that regulate gene expression post-transcriptionally, play vital roles in numerous cellular processes, including apoptosis, cell differentiation, development, and proliferation. Their dysregulated expression in urine has been proposed as a potential biomarker for various human diseases, including bladder cancer. To draw reliable conclusions about the roles of urinary miRNAs in human diseases, it is essential to have dependable and reproducible methods for miRNA extraction and profiling. In this review, we address the technical challenges associated with studying urinary miRNAs and provide an update on the current technologies used for urinary miRNA isolation, quality control assessment, and miRNA profiling, highlighting both their advantages and limitations.
Collapse
Affiliation(s)
- Santhi Raveendran
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Alia Al Massih
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Muna Al Hashmi
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Asma Saeed
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Iman Al-Azwani
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Rebecca Mathew
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Sara Tomei
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| |
Collapse
|
7
|
Haghmorad D, Khaleghian A, Eslami M, Sadeghnejad A, Tarahomi M, Yousefi B. Bone marrow mesenchymal stem cells to ameliorate experimental autoimmune encephalomyelitis via modifying expression patterns of miRNAs. Mol Biol Rep 2023; 50:9971-9984. [PMID: 37897611 DOI: 10.1007/s11033-023-08843-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/25/2023] [Indexed: 10/30/2023]
Abstract
INTRODUCTION Clinical and experimental studies highlighted the significant therapeutic role of Mesenchymal stem cells (MSCs) in neurodegenerative diseases. MSCs possess potent immunomodulatory properties by releasing exosomes, which generate a suitable microenvironment. microRNAs (miRNAs), as one of several effective bioactive molecules of exosomes, influence cellular communication and activities in recipient cells. Recent studies revealed that miRNAs could control the progression of multiple sclerosis (MS) via differentiation and function of T helper cells (Th). METHODS Here, we investigated the therapeutic effects of syngeneic-derived BM-MSC in experimental autoimmune encephalomyelitis (EAE) mouse model of MS by evaluating expression profile of miRNAs, pro- and anti-inflammatory in serum and brain tissues. Three-time scheme groups (6th day, 6th & 12th days, and 12th day, of post-EAE induction) were applied to determine the therapeutic effects of intraperitoneally received 1*106 of BM-MSCs. RESULTS The expression levels of mature isoforms of miR-193, miR-146a, miR-155, miR-21, and miR-326 showed that BM-MSCs treatment attenuated the EAE clinical score and reduced clinical inflammation as well as demyelination. The improved neurological functional outcome associated with enhanced expression of miR-193 and miR-146a, but decreased expression levels of miR-155, miR-21, and miR-326 were followed by suppressing effects on Th1/Th17 immune responses (reduced levels of IFN-γand IL-17 cytokine expression) and induction of Treg cells, immunoregulatory responses (increase of IL-10, TGF-β, and IL-4) in treatment groups. CONCLUSION Our findings suggest that BM-MSCs administration might change expression patterns of miRNAs and downstream interactions followed by immune system modulation. However, there is a need to carry out future human clinical trials and complementary experiments.
Collapse
Affiliation(s)
- Dariush Haghmorad
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Khaleghian
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Mahdieh Tarahomi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
8
|
Challakkara MF, Chhabra R. snoRNAs in hematopoiesis and blood malignancies: A comprehensive review. J Cell Physiol 2023; 238:1207-1225. [PMID: 37183323 DOI: 10.1002/jcp.31032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023]
Abstract
Small nucleolar RNAs (snoRNAs) are noncoding RNA molecules of highly variable size, usually ranging from 60 to 150 nucleotides. They are classified into H/ACA box snoRNAs, C/D box snoRNAs, and scaRNAs. Their functional profile includes biogenesis of ribosomes, processing of rRNAs, 2'-O-methylation and pseudouridylation of RNAs, alternative splicing and processing of mRNAs and the generation of small RNA molecules like miRNA. The snoRNAs have been observed to have an important role in hematopoiesis and malignant hematopoietic conditions including leukemia, lymphoma, and multiple myeloma. Blood malignancies arise in immune system cells or the bone marrow due to chromosome abnormalities. It has been estimated that annually over 1.25 million cases of blood cancer occur worldwide. The snoRNAs often show a differential expression profile in blood malignancies. Recent reports associate the abnormal expression of snoRNAs with the inhibition of apoptosis, uncontrolled cell proliferation, angiogenesis, and metastasis. This implies that targeting snoRNAs could be a potential way to treat hematologic malignancies. In this review, we describe the various functions of snoRNAs, their role in hematopoiesis, and the consequences of their dysregulation in blood malignancies. We also evaluate the potential of the dysregulated snoRNAs as biomarkers and therapeutic targets for blood malignancies.
Collapse
Affiliation(s)
- Mohamed Fahad Challakkara
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
9
|
Kamarehei F, Saidijam M, Taherkhani A. Prognostic biomarkers and molecular pathways mediating Helicobacter pylori–induced gastric cancer: a network-biology approach. Genomics Inform 2023; 21:e8. [PMID: 37037466 PMCID: PMC10085735 DOI: 10.5808/gi.22072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/02/2023] [Indexed: 04/03/2023] Open
Abstract
Cancer of the stomach is the second most frequent cancer-related death worldwide. The survival rate of patients with gastric cancer (GC) remains fragile. There is a requirement to discover biomarkers for prognosis approaches. Helicobacter pylori in the stomach is closely associated with the progression of GC. We identified the genes associated with poor/favorable prognosis in H. pylori–induced GC. Multivariate statistical analysis was applied on the Gene Expression Omnibus (GEO) dataset GSE54397 to identify differentially expressed miRNAs (DEMs) in gastric tissues with H. pylori–induced cancer compared with the H. pylori–positive with non-cancerous tissue. A protein interaction map (PIM) was built and subjected to DEMs targets. The enriched pathways and biological processes within the PIM were identified based on substantial clusters. Thereafter, the most critical genes in the PIM were illustrated, and their prognostic impact in GC was investigated. Considering p-value less than 0.01 and |Log2 fold change| as >1, five microRNAs demonstrated significant changes among the two groups. Gene functional analysis revealed that the ubiquitination system, neddylation pathway, and ciliary process are primarily involved in H. pylori–induced GC. Survival analysis illustrated that the overexpression of DOCK4, GNAS, CTGF, TGF-b1, ESR1, SELE, TIMP3, SMARCE1, and TXNIP was associated with poor prognosis, while increased MRPS5 expression was related to a favorable prognosis in GC patients. DOCK4, GNAS, CTGF, TGF-b1, ESR1, SELE, TIMP3, SMARCE1, TXNIP, and MRPS5 may be considered prognostic biomarkers for H. pylori–induced GC. However, experimental validation is necessary in the future.
Collapse
Affiliation(s)
- Farideh Kamarehei
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran
- Corresponding author E-mail:
| |
Collapse
|
10
|
Wheat Long Noncoding RNAs from Organelle and Nuclear Genomes Carry Conserved microRNA Precursors Which May Together Comprise Intricate Networks in Insect Responses. Int J Mol Sci 2023; 24:ijms24032226. [PMID: 36768565 PMCID: PMC9917100 DOI: 10.3390/ijms24032226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a diverse class of noncoding RNAs that are typically longer than 200 nucleotides but lack coding potentials. Advances in deep sequencing technologies enabled a better exploration of this type of noncoding transcripts. The poor sequence conservation, however, complicates the identification and annotation of lncRNAs at a large scale. Wheat is among the leading food staples worldwide whose production is threatened by both biotic and abiotic stressors. Here, we identified putative lncRNAs from durum wheat varieties that differ in stem solidness, a major source of defense against wheat stem sawfly, a devastating insect pest. We also analyzed and annotated lncRNAs from two bread wheat varieties, resistant and susceptible to another destructive pest, orange wheat blossom midge, with and without infestation. Several putative lncRNAs contained potential precursor sequences and/or target regions for microRNAs, another type of regulatory noncoding RNAs, which may indicate functional networks. Interestingly, in contrast to lncRNAs themselves, microRNAs with potential precursors within the lncRNA sequences appeared to be highly conserved at the sequence and family levels. We also observed a few putative lncRNAs that have perfect to near-perfect matches to organellar genomes, supporting the recent observations that organellar genomes may contribute to the noncoding transcript pool of the cell.
Collapse
|
11
|
Rai AK, Rajan KS, Bisserier M, Brojakowska A, Sebastian A, Evans AC, Coleman MA, Mills PJ, Arakelyan A, Uchida S, Hadri L, Goukassian DA, Garikipati VNS. Spaceflight-Associated Changes of snoRNAs in Peripheral Blood Mononuclear Cells and Plasma Exosomes-A Pilot Study. Front Cardiovasc Med 2022; 9:886689. [PMID: 35811715 PMCID: PMC9267956 DOI: 10.3389/fcvm.2022.886689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
During spaceflight, astronauts are exposed to various physiological and psychological stressors that have been associated with adverse health effects. Therefore, there is an unmet need to develop novel diagnostic tools to predict early alterations in astronauts' health. Small nucleolar RNA (snoRNA) is a type of short non-coding RNA (60-300 nucleotides) known to guide 2'-O-methylation (Nm) or pseudouridine (ψ) of ribosomal RNA (rRNA), small nuclear RNA (snRNA), or messenger RNA (mRNA). Emerging evidence suggests that dysregulated snoRNAs may be key players in regulating fundamental cellular mechanisms and in the pathogenesis of cancer, heart, and neurological disease. Therefore, we sought to determine whether the spaceflight-induced snoRNA changes in astronaut's peripheral blood (PB) plasma extracellular vesicles (PB-EV) and peripheral blood mononuclear cells (PBMCs). Using unbiased small RNA sequencing (sRNAseq), we evaluated changes in PB-EV snoRNA content isolated from astronauts (n = 5/group) who underwent median 12-day long Shuttle missions between 1998 and 2001. Using stringent cutoff (fold change > 2 or log2-fold change >1, FDR < 0.05), we detected 21 down-and 9-up-regulated snoRNAs in PB-EVs 3 days after return (R + 3) compared to 10 days before launch (L-10). qPCR validation revealed that SNORA74A was significantly down-regulated at R + 3 compared to L-10. We next determined snoRNA expression levels in astronauts' PBMCs at R + 3 and L-10 (n = 6/group). qPCR analysis further confirmed a significant increase in SNORA19 and SNORA47 in astronauts' PBMCs at R + 3 compared to L-10. Notably, many downregulated snoRNA-guided rRNA modifications, including four Nms and five ψs. Our findings revealed that spaceflight induced changes in PB-EV and PBMCs snoRNA expression, thus suggesting snoRNAs may serve as potential novel biomarkers for monitoring astronauts' health.
Collapse
Affiliation(s)
- Amit Kumar Rai
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - K. Shanmugha Rajan
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Malik Bisserier
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Agnieszka Brojakowska
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Angela C. Evans
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- Department of Radiation Oncology, University of California, Davis, Sacramento, CA, United States
| | - Matthew A. Coleman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- Department of Radiation Oncology, University of California, Davis, Sacramento, CA, United States
| | - Paul J. Mills
- Center of Excellence for Research and Training in Integrative Health, University of California, San Diego, La Jolla, CA, United States
| | - Arsen Arakelyan
- Group of Bioinformatics, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Lahouaria Hadri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - David A. Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Venkata Naga Srikanth Garikipati
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
12
|
Sasso J, Ambrose BJB, Tenchov R, Datta RS, Basel MT, DeLong RK, Zhou QA. The Progress and Promise of RNA Medicine─An Arsenal of Targeted Treatments. J Med Chem 2022; 65:6975-7015. [PMID: 35533054 PMCID: PMC9115888 DOI: 10.1021/acs.jmedchem.2c00024] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Indexed: 02/08/2023]
Abstract
In the past decade, there has been a shift in research, clinical development, and commercial activity to exploit the many physiological roles of RNA for use in medicine. With the rapid success in the development of lipid-RNA nanoparticles for mRNA vaccines against COVID-19 and with several approved RNA-based drugs, RNA has catapulted to the forefront of drug research. With diverse functions beyond the role of mRNA in producing antigens or therapeutic proteins, many classes of RNA serve regulatory roles in cells and tissues. These RNAs have potential as new therapeutics, with RNA itself serving as either a drug or a target. Here, based on the CAS Content Collection, we provide a landscape view of the current state and outline trends in RNA research in medicine across time, geography, therapeutic pipelines, chemical modifications, and delivery mechanisms.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Barbara J. B. Ambrose
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Rumiana Tenchov
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Ruchira S. Datta
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Matthew T. Basel
- College
of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Robert K. DeLong
- Nanotechnology
Innovation Center Kansas State, Kansas State
University, Manhattan, Kansas 66506, United States
| | - Qiongqiong Angela Zhou
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
13
|
Surmiak M, Wawrzycka-Adamczyk K, Kosałka-Węgiel J, Polański S, Sanak M. Profile of circulating extracellular vesicles microRNA correlates with the disease activity in granulomatosis with polyangiitis. Clin Exp Immunol 2022; 208:103-113. [PMID: 35380163 PMCID: PMC9113355 DOI: 10.1093/cei/uxac022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 01/12/2023] Open
Abstract
Granulomatosis with polyangiitis is a chronic systemic inflammation of small vessels characterized by circulating anti-proteinase 3 antibodies. MicroRNAs are short transcripts specifically inhibiting protein translation. Neutrophils can release extracellular vesicles (EVs). In this study, we characterized profile of microRNA trafficked by EVs in GPA. Fifty patients with GPA were enrolled in the study, 25 at acute phase and 25 in remission. EVs were isolated from the blood serum, characterized by their number, size distribution. Following unbiased screening for microRNA expression, differentially expressed candidates were measured by quantitative real-time PCR. Circulating DNA-myeloperoxidase complexes and apoptosis-related transcripts in peripheral blood neutrophils were quantified. We identified four differentially expressed microRNAs from EVs in granulomatosis with polyangiitis (GPA). MirRs-223-3p, 664a-3p, and 200b-3p were overexpressed and miR-769-5p suppressed in the disease. A distinction between GPA and healthy controls was the best for miR-223-3p, whereas miR-664a-3p discriminated between active vs. remission of GPA. Correct classification of the disease based on multivariate discriminant analysis was between 92% for acute phase and 85% for all study participants. Bioinformatics tools identified genes transcripts potentially targeted by the microRNAs belonging to pathways of focal adhesion, mTOR signaling and neutrophil extracellular traps formation. Two microRNAs positively correlating with the disease activity were involved in neutrophil extracellular traps formation and apoptosis inhibition. A comprehensive characteristics of microRNAs trafficked in bloodstream inside EVs correlates well with our understanding of the mechanisms of GPA and suggests the importance of EVs in progression of the disease.
Collapse
Affiliation(s)
- Marcin Surmiak
- Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawinska Str., 31-066 Kraków, Poland
| | | | - Joanna Kosałka-Węgiel
- Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawinska Str., 31-066 Kraków, Poland
| | - Stanisław Polański
- Division of Biochemical and Molecular Diagnostics, University Hospital, 8 Skawinska Str., 31-066 Kraków, Poland
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawinska Str., 31-066 Kraków, Poland
| |
Collapse
|
14
|
Genomics and Epigenomics of Gestational Diabetes Mellitus: Understanding the Molecular Pathways of the Disease Pathogenesis. Int J Mol Sci 2022; 23:ijms23073514. [PMID: 35408874 PMCID: PMC8998752 DOI: 10.3390/ijms23073514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most common complications during pregnancy is gestational diabetes mellitus (GDM), hyperglycemia that occurs for the first time during pregnancy. The condition is multifactorial, caused by an interaction between genetic, epigenetic, and environmental factors. However, the underlying mechanisms responsible for its pathogenesis remain elusive. Moreover, in contrast to several common metabolic disorders, molecular research in GDM is lagging. It is important to recognize that GDM is still commonly diagnosed during the second trimester of pregnancy using the oral glucose tolerance test (OGGT), at a time when both a fetal and maternal pathophysiology is already present, demonstrating the increased blood glucose levels associated with exacerbated insulin resistance. Therefore, early detection of metabolic changes and associated epigenetic and genetic factors that can lead to an improved prediction of adverse pregnancy outcomes and future cardio-metabolic pathologies in GDM women and their children is imperative. Several genomic and epigenetic approaches have been used to identify the genes, genetic variants, metabolic pathways, and epigenetic modifications involved in GDM to determine its etiology. In this article, we explore these factors as well as how their functional effects may contribute to immediate and future pathologies in women with GDM and their offspring from birth to adulthood. We also discuss how these approaches contribute to the changes in different molecular pathways that contribute to the GDM pathogenesis, with a special focus on the development of insulin resistance.
Collapse
|
15
|
Oskouie AA, Ahmadi MS, Taherkhani A. Identification of Prognostic Biomarkers in Papillary Thyroid Cancer and Developing Non-Invasive Diagnostic Models Through Integrated Bioinformatics Analysis. Microrna 2022; 11:73-87. [PMID: 35068400 DOI: 10.2174/2211536611666220124115445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Papillary thyroid cancer (PTC) is the most frequent subtype of thyroid carcinoma, mainly detected in patients with benign thyroid nodules (BTN). Due to the invasiveness of accurate diagnostic tests, there is a need to discover applicable biomarkers for PTC. So, in this study, we aimed to identify the genes associated with prognosis in PTC. Besides, we performed a machine learning tool to develop a non-invasive diagnostic approach for PTC. METHODS For the study purposes, the miRNA dataset GSE130512 was downloaded from the GEO database and then analyzed to identify the common differentially expressed miRNAs in patients with non-metastatic PTC (nm-PTC)/metastatic PTC (m-PTC) compared with BTNs. The SVM was also applied to differentiate patients with PTC from those patients with BTN using the common DEMs. A protein-protein interaction network was also constructed based on the targets of the common DEMs. Next, functional analysis was performed, the hub genes were determined, and survival analysis was then executed. RESULTS A total of three common miRNAs were found to be differentially expressed among patients with nm-PTC/m-PTC compared with BTNs. In addition, it was established that the autophagosome maturation, ciliary basal body-plasma membrane docking, antigen processing as ubiquitination & proteasome degradation, and class I MHC mediated antigen processing & presentation are associated with the pathogenesis of PTC. Furthermore, it was illustrated that RPS6KB1, CCNT1, SP1, and CHD4 might serve as new potential biomarkers for PTC prognosis. CONCLUSION RPS6KB1, CCNT1, SP1, and CHD4 may be considered new potential biomarkers used for prognostic aims in PTC. However, performing validation tests is inevitable in the future.
Collapse
Affiliation(s)
- Afsaneh Arefi Oskouie
- Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Saeed Ahmadi
- Department of Otorhinolaryngology, Besat Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
16
|
Zhou H, Tang W, Yang J, Peng J, Guo J, Fan C. MicroRNA-Related Strategies to Improve Cardiac Function in Heart Failure. Front Cardiovasc Med 2021; 8:773083. [PMID: 34869689 PMCID: PMC8639862 DOI: 10.3389/fcvm.2021.773083] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Heart failure (HF) describes a group of manifestations caused by the failure of heart function as a pump that supports blood flow through the body. MicroRNAs (miRNAs), as one type of non-coding RNA molecule, have crucial roles in the etiology of HF. Accordingly, miRNAs related to HF may represent potential novel therapeutic targets. In this review, we first discuss the different roles of miRNAs in the development and diseases of the heart. We then outline commonly used miRNA chemical modifications and delivery systems. Further, we summarize the opportunities and challenges for HF-related miRNA therapeutics targets, and discuss the first clinical trial of an antisense drug (CDR132L) in patients with HF. Finally, we outline current and future challenges and potential new directions for miRNA-based therapeutics for HF.
Collapse
Affiliation(s)
- Huatao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weijie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinfu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacology, Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jun Peng
- Department of Pharmacology, Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jianjun Guo
- Hunan Fangsheng Pharmaceutical Co., Ltd. Changsha, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacology, Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Fangsheng Pharmaceutical Co., Ltd. Changsha, China
| |
Collapse
|
17
|
Bayat Z, Farhadi Z, Taherkhani A. Identification of potential biomarkers associated with poor prognosis in oral squamous cell carcinoma through integrated bioinformatics analysis: A pilot study. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Liu L, Zhang P, Gao Q, Feng X, Han L, Zhang F, Bai Y, Han M, Hu H, Dai F, Zhang G, Tong X. Comparative Transcriptome Analysis Reveals bmo-miR-6497-3p Regulate Circadian Clock Genes during the Embryonic Diapause Induction Process in Bivoltine Silkworm. INSECTS 2021; 12:739. [PMID: 34442305 PMCID: PMC8396838 DOI: 10.3390/insects12080739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022]
Abstract
Diapause is one of the survival strategies of insects for confronting adverse environmental conditions. Bombyx mori displays typical embryonic diapause, and offspring diapause depends on the incubation environment of the maternal embryo in the bivoltine strains of the silkworm. However, the molecular mechanisms of the diapause induction process are still poorly understood. In this study, we compared the differentially expressed miRNAs (DEmiRs) in bivoltine silkworm embryos incubated at diapause- (25 °C) and non-diapause (15 °C)-inducing temperatures during the blastokinesis (BK) and head pigmentation (HP) phases using transcriptome sequencing. There were 411 known miRNAs and 71 novel miRNAs identified during the two phases. Among those miRNAs, there were 108 and 74 DEmiRs in the BK and HP groups, respectively. By the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the predicted target genes of the DEmiRs, we found that aside from metabolism, the targets were also enriched in phototransduction-fly and insect hormone biosynthesis in the BK group and the HP group, respectively. Dual luciferase reporter assay illustrated that bmo-miR-6497-3p directly regulated Bmcycle and subsequently regulated the expression of circadian genes. These results imply that microRNAs, as vitally important regulators, respond to different temperatures and participate in the diapause induction process across species.
Collapse
Affiliation(s)
- Lulu Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (L.L.); (Q.G.); (Y.B.); (M.H.); (H.H.); (F.D.)
| | - Pan Zhang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (P.Z.); (X.F.); (L.H.); (F.Z.)
| | - Qiang Gao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (L.L.); (Q.G.); (Y.B.); (M.H.); (H.H.); (F.D.)
| | - Xiaoge Feng
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (P.Z.); (X.F.); (L.H.); (F.Z.)
| | - Lan Han
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (P.Z.); (X.F.); (L.H.); (F.Z.)
| | - Fengbin Zhang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (P.Z.); (X.F.); (L.H.); (F.Z.)
| | - Yanmin Bai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (L.L.); (Q.G.); (Y.B.); (M.H.); (H.H.); (F.D.)
| | - Minjin Han
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (L.L.); (Q.G.); (Y.B.); (M.H.); (H.H.); (F.D.)
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (L.L.); (Q.G.); (Y.B.); (M.H.); (H.H.); (F.D.)
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (L.L.); (Q.G.); (Y.B.); (M.H.); (H.H.); (F.D.)
| | - Gaojun Zhang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (P.Z.); (X.F.); (L.H.); (F.Z.)
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (L.L.); (Q.G.); (Y.B.); (M.H.); (H.H.); (F.D.)
| |
Collapse
|
19
|
Sánchez JM, Gómez-Redondo I, Browne JA, Planells B, Gutiérrez-Adán A, Lonergan P. MicroRNAs in amniotic fluid and maternal blood plasma associated with sex determination and early gonad differentiation in cattle†. Biol Reprod 2021; 105:345-358. [PMID: 33889937 PMCID: PMC8335352 DOI: 10.1093/biolre/ioab079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/22/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
We hypothesized that sexually dimorphic differences exist in the expression of miRNAs in amniotic fluid (AF) and maternal blood plasma (MP) in association with the process of sex determination and gonad differentiation in cattle. Amniotic fluid and MP were collected from six pregnant heifers (three carrying a single male and three a single female embryo) following slaughter on Day 39 postinsemination, coinciding with the peak of SRY expression. Samples (six AF and six MP) were profiled using an miRNA Serum/Plasma Focus PCR Panel. Differentially expressed (DE) miRNAs were identified in AF (n = 5) and associated MP (n = 56) of male vs. female embryos (P < 0.05). Functional analysis showed that inflammatory and immune response were among the 13 biological processes enriched by miRNAs DE in MP in the male group (FDR < 0.05), suggesting that these sex-dependent DE miRNAs may be implicated in modulating the receptivity of the dam to a male embryo. Further, we compared the downstream targets of the sex-dependent DE miRNAs detected in MP with genes previously identified as DE in male vs. female genital ridges. The analyses revealed potential targets that might be important during this developmental stage such as SHROOM2, DDX3Y, SOX9, SRY, PPP1CB, JARID2, USP9X, KDM6A, and EIF2S3. Results from this study highlight novel aspects of sex determination and embryo–maternal communication in cattle such as the potential role of miRNAs in gonad development as well as in the modulation of the receptivity of the dam to a male embryo.
Collapse
Affiliation(s)
- José María Sánchez
- Animal and Crops Sciences, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.,Departamento de Reproducción Animal, INIA, Madrid, Spain
| | | | - John A Browne
- Animal and Crops Sciences, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | - Pat Lonergan
- Animal and Crops Sciences, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
20
|
Saidijam M, Afshar S, Taherkhani A. Identifying Potential Biomarkers in Colorectal Cancer and Developing Non-invasive Diagnostic Models Using Bioinformatics Approaches. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2020. [DOI: 10.34172/ajmb.2020.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Colorectal cancer (CRC) is one of the most frequent causes of gastrointestinal tumors. Due to the invasiveness of the current diagnostic methods, there is an urgent need to develop non-invasive diagnostic approaches for CRC. The exact mechanisms and the most important genes associated with the development of CRC are not fully demonstrated. Objectives: This study aimed to identify differentially expressed miRNAs (DEMs), key genes, and their regulators associated with the pathogenesis of CRC. The signaling pathways and biological processes (BPs) that were significantly affected in CRC were also indicated. Moreover, two non-invasive models were constructed for CRC diagnosis. Methods: The miRNA dataset GSE59856 was downloaded from the Gene Expression Omnibus (GEO) database and analyzed to identify DEMs in CRC patients compared with healthy controls (HCs). A protein-protein interaction (PPI) network was built and analyzed. Significant clusters in the PPI networks were identified, and the BPs and pathways associated with these clusters were studied. The hub genes in the PPI network, as well as their regulators were identified. Results: A total of 569 DEMs were demonstrated with the criteria of P value <0.001. A total of 110 essential genes and 30 modules were identified in the PPI network. Functional analysis revealed that 1005 BPs, 9 molecular functions (MFs), 14 cellular components (CCs), and 887 pathways were significantly affected in CRC. A total of 22 transcription factors (TFs) were demonstrated as the regulators of the hubs. Conclusion: Our results may provide new insight into the pathogenesis of CRC and advance the diagnostic and therapeutic methods of the disease. However, confirmation is required in the future.
Collapse
Affiliation(s)
- Massoud Saidijam
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
21
|
Salimimoghadam S, Taefehshokr S, Loveless R, Teng Y, Bertoli G, Taefehshokr N, Musaviaroo F, Hajiasgharzadeh K, Baradaran B. The role of tumor suppressor short non-coding RNAs on breast cancer. Crit Rev Oncol Hematol 2020; 158:103210. [PMID: 33385514 DOI: 10.1016/j.critrevonc.2020.103210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 12/11/2022] Open
Abstract
Characterized by remarkable levels of aggression and malignancy, BC remains one of the leading causes of death in females world wide. Accordingly, significant efforts have been made to develop early diagnostic tools, increase treatment efficacy, and improve patient prognosis. Hopefully, many of the molecular mechanisms underlying BC have been detected and show promising targeting potential. In particular, short and long non-coding RNAs (ncRNAs) are a class of endogenous BC controllers and include a number of different species including microRNAs, Piwi-interacting RNAs, small nucleolar RNA, short interfering RNAs, and tRNA-derivatives. In this review, we discuss the tumor suppressing roles of ncRNAs in the context of BC, and the mechanisms by which ncRNAs target tumor hallmarks, including apoptosis, proliferation, invasion, metastasis, epithelial-mesenchymal transition, angiogenesis, and cell cycle progression, in addition to their diagnostic and prognostic significance in cancer treatment.
Collapse
Affiliation(s)
| | - Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA; Georgia Cancer Center, Augusta University, Augusta, GA, USA.
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA; Georgia Cancer Center, Augusta University, Augusta, GA, USA.
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Milan, Italy.
| | - Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada.
| | | | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Rehman S, Aatif M, Rafi Z, Khan MY, Shahab U, Ahmad S, Farhan M. Effect of non-enzymatic glycosylation in the epigenetics of cancer. Semin Cancer Biol 2020; 83:543-555. [DOI: 10.1016/j.semcancer.2020.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/09/2023]
|
23
|
Riasat K, Bardell D, Goljanek-Whysall K, Clegg PD, Peffers MJ. Epigenetic mechanisms in Tendon Ageing. Br Med Bull 2020; 135:90-107. [PMID: 32827252 PMCID: PMC7585832 DOI: 10.1093/bmb/ldaa023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Tendon is a composite material with a well-ordered hierarchical structure exhibiting viscoelastic properties designed to transfer force. It is recognized that the incidence of tendon injury increases with age, suggesting a deterioration in homeostatic mechanisms or reparative processes. This review summarizes epigenetic mechanisms identified in ageing healthy tendon. SOURCES OF DATA We searched multiple databases to produce a systematic review on the role of epigenetic mechanisms in tendon ageing. AREAS OF AGREEMENT Epigenetic mechanisms are important in predisposing ageing tendon to injury. AREAS OF CONTROVERSY The relative importance of epigenetic mechanisms are unknown in terms of promoting healthy ageing. It is also unknown whether these changes represent protective mechanisms to function or predispose to pathology. GROWING POINT Epigenetic markers in ageing tendon, which are under-researched including genome-wide chromatin accessibility, should be investigated. AREAS TIMELY FOR DEVELOPING RESEARCH Metanalysis through integration of multiple datasets and platforms will enable a holistic understanding of the epigenome in ageing and its relevance to disease.
Collapse
Affiliation(s)
- Kiran Riasat
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - David Bardell
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK.,Institute of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, Wirral CH64 7TE, UK
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Peter D Clegg
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Mandy J Peffers
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| |
Collapse
|
24
|
Reyes-Ruiz JM, Osuna-Ramos JF, De Jesús-González LA, Palacios-Rápalo SN, Cordero-Rivera CD, Farfan-Morales CN, Hurtado-Monzón AM, Gallardo-Flores CE, Alcaraz-Estrada SL, Salas-Benito JS, del Ángel RM. The Regulation of Flavivirus Infection by Hijacking Exosome-Mediated Cell-Cell Communication: New Insights on Virus-Host Interactions. Viruses 2020; 12:E765. [PMID: 32708685 PMCID: PMC7412163 DOI: 10.3390/v12070765] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/30/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Abstract
The arthropod-borne flaviviruses are important human pathogens, and a deeper understanding of the virus-host cell interaction is required to identify cellular targets that can be used as therapeutic candidates. It is well reported that the flaviviruses hijack several cellular functions, such as exosome-mediated cell communication during infection, which is modulated by the delivery of the exosomal cargo of pro- or antiviral molecules to the receiving host cells. Therefore, to study the role of exosomes during flavivirus infections is essential, not only to understand its relevance in virus-host interaction, but also to identify molecular factors that may contribute to the development of new strategies to block these viral infections. This review explores the implications of exosomes in flavivirus dissemination and transmission from the vector to human host cells, as well as their involvement in the host immune response. The hypothesis about exosomes as a transplacental infection route of ZIKV and the paradox effect or the dual role of exosomes released during flavivirus infection are also discussed here. Although several studies have been performed in order to identify and characterize cellular and viral molecules released in exosomes, it is not clear how all of these components participate in viral pathogenesis. Further studies will determine the balance between protective and harmful exosomes secreted by flavivirus infected cells, the characteristics and components that distinguish them both, and how they could be a factor that determines the infection outcome.
Collapse
Affiliation(s)
- José Manuel Reyes-Ruiz
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07320, Mexico; (J.M.R.-R.); (J.F.O.-R.); (L.A.D.J.-G.); (S.N.P.-R.); (C.D.C.-R.); (C.N.F.-M.); (A.M.H.-M.); (C.E.G.-F.)
| | - Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07320, Mexico; (J.M.R.-R.); (J.F.O.-R.); (L.A.D.J.-G.); (S.N.P.-R.); (C.D.C.-R.); (C.N.F.-M.); (A.M.H.-M.); (C.E.G.-F.)
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07320, Mexico; (J.M.R.-R.); (J.F.O.-R.); (L.A.D.J.-G.); (S.N.P.-R.); (C.D.C.-R.); (C.N.F.-M.); (A.M.H.-M.); (C.E.G.-F.)
| | - Selvin Noé Palacios-Rápalo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07320, Mexico; (J.M.R.-R.); (J.F.O.-R.); (L.A.D.J.-G.); (S.N.P.-R.); (C.D.C.-R.); (C.N.F.-M.); (A.M.H.-M.); (C.E.G.-F.)
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07320, Mexico; (J.M.R.-R.); (J.F.O.-R.); (L.A.D.J.-G.); (S.N.P.-R.); (C.D.C.-R.); (C.N.F.-M.); (A.M.H.-M.); (C.E.G.-F.)
| | - Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07320, Mexico; (J.M.R.-R.); (J.F.O.-R.); (L.A.D.J.-G.); (S.N.P.-R.); (C.D.C.-R.); (C.N.F.-M.); (A.M.H.-M.); (C.E.G.-F.)
| | - Arianna Mahely Hurtado-Monzón
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07320, Mexico; (J.M.R.-R.); (J.F.O.-R.); (L.A.D.J.-G.); (S.N.P.-R.); (C.D.C.-R.); (C.N.F.-M.); (A.M.H.-M.); (C.E.G.-F.)
| | - Carla Elizabeth Gallardo-Flores
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07320, Mexico; (J.M.R.-R.); (J.F.O.-R.); (L.A.D.J.-G.); (S.N.P.-R.); (C.D.C.-R.); (C.N.F.-M.); (A.M.H.-M.); (C.E.G.-F.)
| | | | - Juan Santiago Salas-Benito
- Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
- Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - Rosa María del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07320, Mexico; (J.M.R.-R.); (J.F.O.-R.); (L.A.D.J.-G.); (S.N.P.-R.); (C.D.C.-R.); (C.N.F.-M.); (A.M.H.-M.); (C.E.G.-F.)
| |
Collapse
|
25
|
Shin SH, Lee JS, Zhang JM, Choi S, Boskovic ZV, Zhao R, Song M, Wang R, Tian J, Lee MH, Kim JH, Jeong M, Lee JH, Petukhov M, Lee SW, Kim SG, Zou L, Byun S. Synthetic lethality by targeting the RUVBL1/2-TTT complex in mTORC1-hyperactive cancer cells. SCIENCE ADVANCES 2020; 6:eaay9131. [PMID: 32789167 PMCID: PMC7399646 DOI: 10.1126/sciadv.aay9131] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/19/2020] [Indexed: 05/08/2023]
Abstract
Despite considerable efforts, mTOR inhibitors have produced limited success in the clinic. To define the vulnerabilities of mTORC1-addicted cancer cells and to find previously unknown therapeutic targets, we investigated the mechanism of piperlongumine, a small molecule identified in a chemical library screen to specifically target cancer cells with a hyperactive mTORC1 phenotype. Sensitivity to piperlongumine was dependent on its ability to suppress RUVBL1/2-TTT, a complex involved in chromatin remodeling and DNA repair. Cancer cells with high mTORC1 activity are subjected to higher levels of DNA damage stress via c-Myc and displayed an increased dependency on RUVBL1/2 for survival and counteracting genotoxic stress. Examination of clinical cancer tissues also demonstrated that high mTORC1 activity was accompanied by high RUVBL2 expression. Our findings reveal a previously unknown role for RUVBL1/2 in cell survival, where it acts as a functional chaperone to mitigate stress levels induced in the mTORC1-Myc-DNA damage axis.
Collapse
Affiliation(s)
- Seung Ho Shin
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Department of Food and Nutrition, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ji Su Lee
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jia-Min Zhang
- Massachusetts General Hospital Cancer Center, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Sungbin Choi
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Zarko V. Boskovic
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Ran Zhao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Mengqiu Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Rui Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Jie Tian
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Mee-Hyun Lee
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Jae Hwan Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Minju Jeong
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Jung Hyun Lee
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Michael Petukhov
- Petersburg Nuclear Physics Institute named after B.P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Sam W. Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sang Gyun Kim
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Building 149 13th Street, Charlestown, MA 02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Sanguine Byun
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
26
|
Feng Y, Qu X, Chen Y, Feng Q, Zhang Y, Hu J, Li X. MicroRNA-33a-5p sponges to inhibit pancreatic β-cell function in gestational diabetes mellitus LncRNA DANCR. Reprod Biol Endocrinol 2020; 18:61. [PMID: 32505219 PMCID: PMC7275540 DOI: 10.1186/s12958-020-00618-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is the most common medical complication associated with pregnancy, which may impose risks on both mother and fetus. Micro RNAs (miRNAs) and long noncoding RNAs (lncRNAs) are implied as vital regulators in GDM. A recent paper revealed dysregulation of miR-33a-5p in placental tissues of GDM patients. However, the biological function of miR-33a-5p in GDM remains elusive. This study focused on exploring the function and underlying mechanisms of miR-33a-5p in GDM. METHODS 12 GDM pregnancies and 12 healthy pregnancies were enrolled in the study. INS-1 cell line was applied in in vitro experiments. The expression levels of miR-33a-5p, lnc-DANCR (Differentiation Antagonizing Non-Protein Coding RNA), and ABCA1 (ATP-binding cassette transporter 1) mRNA were determined by RT-qPCR assay. Glucose and insulin levels were measured by ELISA assay. Luciferase reporter assay and western blot assay were applied to validate the target of miR-33a-5p. RESULTS miR-33a-5p was upregulated in the blood samples from GDM, and was positively correlated with blood glucose (p < 0.0001). Overexpression or inhibition of miR-33a-5p significantly inhibited or promoted cell growth and insulin production of INS-1 cells (p < 0.01). Furthermore, ABCA1 is a direct target of miR-33a-5p, and lnc-DANCR functions as a sponge for miR-33a-5p to antagonize the function of miR-33a-5p in INS-1 cells. CONCLUSION Our study demonstrated that lnc-DANCR-miR-33a-5p-ABCA1 signaling cascade plays a crucial role in the regulation of the cellular function of INS-1 cells.
Collapse
Affiliation(s)
- Yan Feng
- grid.440323.2Department of Clinical Nutrition, Yuhuangding Hospital Affiliated to Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000 Shandong China
| | - Xin Qu
- grid.440323.2Department of Obstetrics and Gynecology, Yuhuangding Hospital Affiliated to Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000 Shandong China
| | - Yu Chen
- Department of Gynecology, Penglai People’s Hospital, No. 89, Xianhou Road, Penglai, 265600 Shandong China
| | - Qi Feng
- grid.460007.50000 0004 1791 6584Department of General Surgery, CPLA No. 71897, No. 1 Bayi Road, Xi’an, 710000 Shaanxi China
| | - Yinghong Zhang
- grid.440323.2Department of Obstetrics and Gynecology, Yuhuangding Hospital Affiliated to Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000 Shandong China
| | - Jianwei Hu
- Department of Group Health, Maternal and Child Health Institution, Kunshan, 215301 Jiangsu China
| | - Xiaoyan Li
- grid.440323.2Department of Obstetrics and Gynecology, Yuhuangding Hospital Affiliated to Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000 Shandong China
| |
Collapse
|
27
|
Ye L, Yu Y, Zhao Y. Icariin-induced miR-875-5p attenuates epithelial-mesenchymal transition by targeting hedgehog signaling in liver fibrosis. J Gastroenterol Hepatol 2020; 35:482-491. [PMID: 31617598 DOI: 10.1111/jgh.14875] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hepatic fibrosis is the final endpoint for most chronic liver diseases and remains a significant public health problem worldwide. Icariin, a naturally occurring flavonol glucoside, has been reported to exhibit protective effects on liver injury and alleviate liver fibrosis. However, the underlying detail molecular mechanism is not fully revealed. METHODS Mouse primary hepatic stellate cells (HSCs) and carbon tetrachloride (CCL4 )-induced liver fibrosis model in mice were used as in vitro and in vivo models in this study. The expression levels of miR-875-5p were detected by quantitative reverse transcription-PCR. The validation of the direct target of miR-875-5p was through dual-luciferase reporter assay and western blotting assay. The cell proliferation and cell mobility were determined using MTT assay and Transwell migration assay, respectively. RESULTS We found that icariin inhibited epithelial-mesenchymal transition and collagen protein section of HSCs. Icariin exerted hepatoprotective effects on mice model of CCL4 -induced liver fibrosis. Our further results revealed that miR-875-5p was downregulated in human cirrhosis tissues and activated murine HSCs. Icariin induced miR-875-5p upregulation and subsequently decreased glioma-associated oncogene homolog 1 (GLI1) expression through direct binding to the three prime untranslated region of GLI1 mRNA. CONCLUSION Our study highlighted the potential therapeutic application of icariin for liver fibrosis management.
Collapse
Affiliation(s)
- Lei Ye
- First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Zhejiang, China
| | - Yaping Yu
- First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Zhejiang, China
| | - Yanping Zhao
- First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Zhejiang, China
| |
Collapse
|
28
|
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with a wide distribution in nature among the living things. They play a key role both in normal signaling pathways and in pathological ones. Bovine leukemia virus (BLV) is an oncogenic retrovirus of Deltaretrovirus genus causing persistent infection in its natural hosts - cattle, zebu and water buffalo with diverse clinical manifestations through the defeat of B-lymphocytes (B-cells). Ten BLV encoded miRNAs (further miRs-B) transcribed from five different pre-miRNA (further pre-miR-B) genes are abundantly detected in BLV infected B-cells. Here we report about several alleles of each of pre-miRs-B' genes, some of which have a highly significant association with an increase or a decrease of the number of leukocytes (WBCs - white blood cells) in BLV-infected cows.
Collapse
Affiliation(s)
- I M Zyrianova
- a Federal State Budget Scientific Institution Center of Experimental Embryology and Reproductive Biotechnologies , Moscow , Russian Federation
| | - S N Koval'chuk
- a Federal State Budget Scientific Institution Center of Experimental Embryology and Reproductive Biotechnologies , Moscow , Russian Federation
| |
Collapse
|
29
|
Yin Y, Li X, Guo Z, Zhou F. MicroRNA‑381 regulates the growth of gastric cancer cell by targeting TWIST1. Mol Med Rep 2019; 20:4376-4382. [PMID: 31545430 DOI: 10.3892/mmr.2019.10651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/29/2019] [Indexed: 11/06/2022] Open
Abstract
Gastric cancer (GC) has one of the highest mortality rates among all types of cancer in the world. At present, an efficient treatment for GC remains elusive. Studies have demonstrated that microRNAs (miRs) are abnormally expressed in cancer, and that these serve important roles in the development and metastasis of various human tumors, including GC. It has been suggested that regulation of miRs may bring about new developments in GC therapy. miR‑381 has been reported to be downregulated in human cancer, and it regulates cancer cell growth in numerous types of cancer. The present study reports that miR‑381 was downregulated in GC cells, and upregulation of miR‑381 may inhibit GC cell growth, which may be attributed to the inhibition of cell proliferation and the promotion of apoptosis. Furthermore, Twist‑related protein 1 (TWIST1) was predicted and confirmed to be a direct target of miR‑381 by dual‑luciferase assay in GC. Upregulation of miR‑381 caused a decrease in the expression of TWIST1 at the mRNA and protein levels in GC cells. Taken together, the present study demonstrated that miR‑381 is downregulated in GC cells, and that miR‑381 may inhibit GC cell growth. Therefore, miR‑381 may serve as a novel target for the clinical treatment of GC in the future.
Collapse
Affiliation(s)
- Yongling Yin
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xiaoyun Li
- Department of Internal Medicine‑Oncology, Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010020, P.R. China
| | - Zongquan Guo
- Digestive Department, Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010020, P.R. China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
30
|
Verstockt S, De Hertogh G, Van der Goten J, Verstockt B, Vancamelbeke M, Machiels K, Van Lommel L, Schuit F, Van Assche G, Rutgeerts P, Ferrante M, Vermeire S, Arijs I, Cleynen I. Gene and Mirna Regulatory Networks During Different Stages of Crohn's Disease. J Crohns Colitis 2019; 13:916-930. [PMID: 30657881 DOI: 10.1093/ecco-jcc/jjz007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/09/2018] [Accepted: 01/11/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Early treatment of Crohn's disease [CD] is required in order to optimize patient outcomes. To this end, we need to gain a better understanding of the molecular changes at the onset of CD. METHODS As a model for the earliest mucosal CD lesions, we study post-operative recurrent CD [Rutgeerts score ≥ i2b]. We are the first to analyse gene and microRNA [miRNA] expression profiles in ileal biopsies from these patients, and compare them with those of newly diagnosed [≤18 months] and late-stage [>10 years after diagnosis] CD patients. RESULTS Except for one gene [WNT5A], there are no differential genes in CD patients without post-operative recurrence [i0], showing that previous disease did not influence gene expression in the neoterminal ileum, and that this model can be used to study early mucosal CD lesions. Gene expression and co-expression network dysregulation is more pronounced in newly diagnosed and late-stage CD than in post-operative recurrent CD, with most important modules associated with [a]granulocyte adhesion/diapedesis, and cholesterol biosynthesis. In contrast, we found a role for snoRNAs/miRNAs in recurrent CD, highlighting the potential importance of regulatory RNAs in early disease stages. Immunohistochemistry confirmed the expression of key dysregulated genes in damaged/regenerating epithelium and immune cells in recurrent CD. CONCLUSIONS Aside from regulatory RNAs, there are no clear gene signatures separating post-operative recurrent, newly diagnosed, and late-stage CD. The relative contribution of dysregulated genes and networks differs, and suggests that surgery may reset the disease at the mucosal site, and therefore post-operative recurrent CD might be a good model a good model to study to study early mucosal CD lesions.
Collapse
Affiliation(s)
- Sare Verstockt
- Laboratory for Complex Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Department of Morphology and Molecular Pathology, University Hospitals, Leuven, Belgium.,Department of Imaging & Pathology, Translational Cell & Tissue Research, KU Leuven, Leuven, Belgium
| | - Jan Van der Goten
- Translational Research Center for Gastrointestinal Disorders [TARGID], Department of Chronic Diseases, Metabolism & Aging [CHROMETA], KU Leuven, Leuven, Belgium
| | - Bram Verstockt
- Translational Research Center for Gastrointestinal Disorders [TARGID], Department of Chronic Diseases, Metabolism & Aging [CHROMETA], KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals, KU Leuven, Leuven, Belgium
| | - Maaike Vancamelbeke
- Translational Research Center for Gastrointestinal Disorders [TARGID], Department of Chronic Diseases, Metabolism & Aging [CHROMETA], KU Leuven, Leuven, Belgium
| | - Kathleen Machiels
- Translational Research Center for Gastrointestinal Disorders [TARGID], Department of Chronic Diseases, Metabolism & Aging [CHROMETA], KU Leuven, Leuven, Belgium
| | - Leentje Van Lommel
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frans Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Gert Van Assche
- Translational Research Center for Gastrointestinal Disorders [TARGID], Department of Chronic Diseases, Metabolism & Aging [CHROMETA], KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals, KU Leuven, Leuven, Belgium
| | - Paul Rutgeerts
- Translational Research Center for Gastrointestinal Disorders [TARGID], Department of Chronic Diseases, Metabolism & Aging [CHROMETA], KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals, KU Leuven, Leuven, Belgium
| | - Marc Ferrante
- Translational Research Center for Gastrointestinal Disorders [TARGID], Department of Chronic Diseases, Metabolism & Aging [CHROMETA], KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Translational Research Center for Gastrointestinal Disorders [TARGID], Department of Chronic Diseases, Metabolism & Aging [CHROMETA], KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals, KU Leuven, Leuven, Belgium
| | - Ingrid Arijs
- Translational Research Center for Gastrointestinal Disorders [TARGID], Department of Chronic Diseases, Metabolism & Aging [CHROMETA], KU Leuven, Leuven, Belgium.,Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Jessa Hospital, Hasselt, Belgium
| | - Isabelle Cleynen
- Laboratory for Complex Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Fang X, Yang D, Luo H, Wu S, Dong W, Xiao J, Yuan S, Ni A, Zhang KJ, Liu XY, Chu L. SNORD126 promotes HCC and CRC cell growth by activating the PI3K-AKT pathway through FGFR2. J Mol Cell Biol 2018; 9:243-255. [PMID: 27913571 DOI: 10.1093/jmcb/mjw048] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/14/2016] [Indexed: 01/19/2023] Open
Abstract
Small nucleolar RNA (snoRNA) dysfunctions have been associated with cancer development. SNORD126 is an orphan C/D box snoRNA that is encoded within introns 5-6 of its host gene, cyclin B1-interacting protein 1 (CCNB1IP1). The cancer-associated molecular mechanisms triggered by SNORD126 are not fully understood. Here, we demonstrate that SNORD126 is highly expressed in hepatocellular carcinoma (HCC) and colorectal cancer (CRC) patient samples. SNORD126 increased Huh-7 and SW480 cell growth and tumorigenicity in nude mice. Knockdown of SNORD126 inhibited HepG2 and LS174T cell growth. We verified that SNORD126 was not processed into small RNAs with miRNA activity. Moreover, SNORD126 did not show a significant expression correlation with CCNB1IP1 in HCC samples or regulate CCNB1IP1 expression. Our gene expression profile analysis indicated that SNORD126-upregulated genes frequently mapped to the PI3K-AKT pathway. SNORD126 overexpression increased the levels of phosphorylated AKT, GSK-3β, and p70S6K and elevated fibroblast growth factor receptor 2 (FGFR2) expression. siRNA-mediated knockdown or AZD4547-mediated inactivation of FGFR2 in SNORD126-overexpressing Huh-7 cells inhibited AKT phosphorylation and suppressed cell growth. These findings indicate an oncogenic role for SNORD126 in cancer and suggest its potential as a therapeutic target.
Collapse
Affiliation(s)
- Xianlong Fang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongmei Yang
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Hongping Luo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuai Wu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenjie Dong
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Jing Xiao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sujing Yuan
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Aimin Ni
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kang-Jian Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Liang Chu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
32
|
Di Mauro V, Barandalla-Sobrados M, Catalucci D. The noncoding-RNA landscape in cardiovascular health and disease. Noncoding RNA Res 2018; 3:12-19. [PMID: 30159435 PMCID: PMC6084835 DOI: 10.1016/j.ncrna.2018.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/27/2017] [Accepted: 02/08/2018] [Indexed: 12/22/2022] Open
Abstract
The cardiovascular system plays a pivotal role in regulating and maintaining homeostasis in the human body. Therefore any alteration in regulatory networks that orchestrate heart development as well as adaptation to physiological and environmental stress might result in pathological conditions, which represent the leading cause of death worldwide [1]. The latest advances in genome-wide techniques challenged the "protein-central dogma" with the discovery of the so-called non-coding RNAs (ncRNAs). Despite their lack of protein coding potential, ncRNAs have been largely demonstrated to regulate the majority of biological processes and have also been largely implicated in cardiovascular disorders. This review will first discuss the important mechanistic aspects of some of the classes of ncRNAs such as biogenesis, mechanism of action, as well as their involvement in cardiac diseases. The ncRNA potential uses as therapeutic molecules, with a specific focus on the latest technologies for their in vivo delivery as drug targets, will be described.
Collapse
Affiliation(s)
- Vittoria Di Mauro
- National Research Council, Institute of Genetics and Biomedical Research, Milan Unit, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Maria Barandalla-Sobrados
- National Research Council, Institute of Genetics and Biomedical Research, Milan Unit, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Daniele Catalucci
- National Research Council, Institute of Genetics and Biomedical Research, Milan Unit, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
33
|
Profiling and identification of pregnancy-associated circulating microRNAs in dairy cattle. Genes Genomics 2018; 40:1111-1117. [DOI: 10.1007/s13258-018-0668-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/04/2018] [Indexed: 01/27/2023]
|
34
|
Fornes D, White V, Higa R, Heinecke F, Capobianco E, Jawerbaum A. Sex-dependent changes in lipid metabolism, PPAR pathways and microRNAs that target PPARs in the fetal liver of rats with gestational diabetes. Mol Cell Endocrinol 2018; 461:12-21. [PMID: 28807878 DOI: 10.1016/j.mce.2017.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/18/2017] [Accepted: 08/09/2017] [Indexed: 12/20/2022]
Abstract
Gestational diabetes mellitus (GDM) is a prevalent disease that impairs fetal metabolism and development. We have previously characterized a rat model of GDM induced by developmental programming. Here, we analyzed lipid content, the levels of the three PPAR isotypes and the expression of microRNAs that regulate PPARs expression in the liver of male and female fetuses of control and GDM rats on day 21 of pregnancy. We found increased levels of triglycerides and cholesterol in the livers of male fetuses of GDM rats compared to controls, and, oppositely, reduced levels of triglycerides, cholesterol, phospholipids and free fatty acids in the livers of female fetuses of GDM rats compared to controls. Although GDM did not change PPARα levels in male and female fetal livers, PPARγ was increased in the liver of male fetuses of GDM rats, a change that occurred in parallel to a reduction in the expression of miR-130, a microRNA that targets PPARγ. In livers of female fetuses of GDM rats, no changes in PPARγ and miR-130 were evidenced, but PPARδ was increased, a change that occurred in parallel to a reduction in the expression of miR-9, a microRNA that targets PPARδ, and was unchanged in the liver of male fetuses of GDM and control rats. These results show clear sex-dependent changes in microRNAs that target different PPAR isotypes in relation to changes in the levels of their targets and the differential regulation of lipid metabolism evidenced in fetal livers of GDM pregnancies.
Collapse
Affiliation(s)
- Daiana Fornes
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Verónica White
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Romina Higa
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Florencia Heinecke
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Evangelina Capobianco
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Alicia Jawerbaum
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina.
| |
Collapse
|
35
|
Chen L, Zhang YH, Huang G, Pan X, Wang S, Huang T, Cai YD. Discriminating cirRNAs from other lncRNAs using a hierarchical extreme learning machine (H-ELM) algorithm with feature selection. Mol Genet Genomics 2017; 293:137-149. [DOI: 10.1007/s00438-017-1372-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022]
|
36
|
MicroRNAs-Dependent Regulation of PPARs in Metabolic Diseases and Cancers. PPAR Res 2017; 2017:7058424. [PMID: 28167956 PMCID: PMC5266863 DOI: 10.1155/2017/7058424] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/05/2016] [Indexed: 12/23/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of ligand-dependent nuclear receptors, which control the transcription of genes involved in energy homeostasis and inflammation and cell proliferation/differentiation. Alterations of PPARs' expression and/or activity are commonly associated with metabolic disorders occurring with obesity, type 2 diabetes, and fatty liver disease, as well as with inflammation and cancer. Emerging evidence now indicates that microRNAs (miRNAs), a family of small noncoding RNAs, which fine-tune gene expression, play a significant role in the pathophysiological mechanisms regulating the expression and activity of PPARs. Herein, the regulation of PPARs by miRNAs is reviewed in the context of metabolic disorders, inflammation, and cancer. The reciprocal control of miRNAs expression by PPARs, as well as the therapeutic potential of modulating PPAR expression/activity by pharmacological compounds targeting miRNA, is also discussed.
Collapse
|
37
|
Genome-wide analysis of miRNAs and Tasi-RNAs in Zea mays in response to phosphate deficiency. Funct Integr Genomics 2017; 17:335-351. [PMID: 28070736 DOI: 10.1007/s10142-016-0538-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/28/2016] [Accepted: 12/05/2016] [Indexed: 12/12/2022]
Abstract
Globally important cereal crop maize provides important nutritions and starch in dietary foods. Low phosphate (LPi) availability in the soil frequently limits the maize quality and yield across the world. Small non-coding RNAs (Snc-RNAs) play crucial roles in growth and adaptation of plants to the environment. Snc-RNAs like microRNAs (miRs) and trans-acting small interfering RNAs (Tasi-Rs) play important functions in posttranscriptional regulation of gene expression, which controls plant development, reproduction, and biotic/abiotic stress responses. In order to identify the miR and Tasi-R alterations in leaf and root of maize in response to sufficient phosphate and LPi at 3LS and 4LS, the snc-RNA population libraries for 0th, 1st, 2nd, 4th, and 8th day were constructed. These libraries were used for genome-wide alignment and RNA-fold analysis for possible prediction of potential miRs and Tasi-Rs. This study reported 174 known and conserved differentially expressed miRs of 27 miR families of maize plant. In addition, leaf and root specific potential novel miRs representing 155 new families were also discovered. Differentially expressed conserved as well as novel miR functions in root and leaf during early stage of Pi starvation were extensively discussed. Leaf and root specific miRs as well as common miRs with their target genes, participating in different biological, cellular, and metabolic processes were explored. Further, four miR390-directed Tasi-Rs which belong to TAS3 gene family along with other orthologs of Tasi-Rs were also identified. Finally, the study provides an insight into the composite regulatory mechanism of miRs in maize in response to Pi deficiency.
Collapse
|
38
|
Zambonelli P, Zappaterra M, Soglia F, Petracci M, Sirri F, Cavani C, Davoli R. Detection of differentially expressed genes in broiler pectoralis major muscle affected by White Striping – Wooden Breast myopathies. Poult Sci 2016; 95:2771-2785. [DOI: 10.3382/ps/pew268] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/24/2016] [Accepted: 06/16/2016] [Indexed: 11/20/2022] Open
|
39
|
Long noncoding RNAs in the progression, metastasis, and prognosis of osteosarcoma. Cell Death Dis 2016; 7:e2389. [PMID: 27685633 PMCID: PMC5059871 DOI: 10.1038/cddis.2016.272] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/27/2016] [Accepted: 08/01/2016] [Indexed: 01/01/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a class of non-protein-coding molecules longer than 200 nucleotides that are involved in the development and progression of many types of tumors. Numerous lncRNAs regulate cell proliferation, metastasis, and chemotherapeutic drug resistance. Osteosarcoma is one of the main bone tumor subtypes that poses a serious threat to adolescent health. We summarized how lncRNAs regulate osteosarcoma progression, invasion, and drug resistance, as well as how lncRNAs can function as biomarkers or independent prognostic indicators with respect to osteosarcoma therapy.
Collapse
|
40
|
Zeng Y, Fu M, Wu GW, Zhang AZ, Chen JP, Lin HY, Fu YA, Jia J, Cai ZD, Wu XJ, Lan P. Upregulation of microRNA-370 promotes cell apoptosis and inhibits proliferation by targeting PTEN in human gastric cancer. Int J Oncol 2016; 49:1589-99. [DOI: 10.3892/ijo.2016.3642] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/06/2016] [Indexed: 11/06/2022] Open
|
41
|
Sadiq S, Crowley TM, Charchar FJ, Sanigorski A, Lewandowski PA. MicroRNAs in a hypertrophic heart: from foetal life to adulthood. Biol Rev Camb Philos Soc 2016; 92:1314-1331. [DOI: 10.1111/brv.12283] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 04/29/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Shahzad Sadiq
- School of Medicine, Faculty of Health; Deakin University; 75 Pigdons Road Waurn Ponds Victoria 3216 Australia
| | - Tamsyn M. Crowley
- School of Medicine, Faculty of Health; Deakin University; 75 Pigdons Road Waurn Ponds Victoria 3216 Australia
| | - Fadi J. Charchar
- School of Health Sciences; Faculty of Science and Technology, Federation University; Ballarat Victoria 3353 Australia
| | - Andrew Sanigorski
- School of Medicine, Faculty of Health; Deakin University; 75 Pigdons Road Waurn Ponds Victoria 3216 Australia
| | - Paul A. Lewandowski
- School of Medicine, Faculty of Health; Deakin University; 75 Pigdons Road Waurn Ponds Victoria 3216 Australia
| |
Collapse
|
42
|
Ng KW, Anderson C, Marshall EA, Minatel BC, Enfield KSS, Saprunoff HL, Lam WL, Martinez VD. Piwi-interacting RNAs in cancer: emerging functions and clinical utility. Mol Cancer 2016; 15:5. [PMID: 26768585 PMCID: PMC4714483 DOI: 10.1186/s12943-016-0491-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/05/2016] [Indexed: 12/29/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are emerging players in cancer genomics. Originally described in the germline, there are over 20,000 piRNA genes in the human genome. In contrast to microRNAs, piRNAs interact with PIWI proteins, another member of the Argonaute family, and function primarily in the nucleus. There, they are involved in the epigenetic silencing of transposable elements in addition to the transcriptional regulation of genes. It has recently been demonstrated that piRNAs are also expressed across a variety of human somatic tissue types in a tissue-specific manner. An increasing number of studies have shown that aberrant piRNA expression is a signature feature across multiple tumour types; however, their specific tumorigenic functions remain unclear. In this article, we discuss the emerging functional roles of piRNAs in a variety of cancers, and highlight their potential clinical utilities.
Collapse
Affiliation(s)
- Kevin W Ng
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, Canada.
| | - Christine Anderson
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, Canada.
| | - Erin A Marshall
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, Canada.
| | - Brenda C Minatel
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, Canada.
| | - Katey S S Enfield
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, Canada.
| | | | - Wan L Lam
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, Canada.
| | - Victor D Martinez
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, Canada.
| |
Collapse
|
43
|
Luzón-Toro B, Bleda M, Navarro E, García-Alonso L, Ruiz-Ferrer M, Medina I, Martín-Sánchez M, Gonzalez CY, Fernández RM, Torroglosa A, Antiñolo G, Dopazo J, Borrego S. Identification of epistatic interactions through genome-wide association studies in sporadic medullary and juvenile papillary thyroid carcinomas. BMC Med Genomics 2015; 8:83. [PMID: 26690675 PMCID: PMC4685628 DOI: 10.1186/s12920-015-0160-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 12/14/2015] [Indexed: 01/27/2023] Open
Abstract
Background The molecular mechanisms leading to sporadic medullary thyroid carcinoma (sMTC) and juvenile papillary thyroid carcinoma (PTC), two rare tumours of the thyroid gland, remain poorly understood. Genetic studies on thyroid carcinomas have been conducted, although just a few loci have been systematically associated. Given the difficulties to obtain single-loci associations, this work expands its scope to the study of epistatic interactions that could help to understand the genetic architecture of complex diseases and explain new heritable components of genetic risk. Methods We carried out the first screening for epistasis by Multifactor-Dimensionality Reduction (MDR) in genome-wide association study (GWAS) on sMTC and juvenile PTC, to identify the potential simultaneous involvement of pairs of variants in the disease. Results We have identified two significant epistatic gene interactions in sMTC (CHFR-AC016582.2 and C8orf37-RNU1-55P) and three in juvenile PTC (RP11-648k4.2-DIO1, RP11-648k4.2-DMGDH and RP11-648k4.2-LOXL1). Interestingly, each interacting gene pair included a non-coding RNA, providing thus support to the relevance that these elements are increasingly gaining to explain carcinoma development and progression. Conclusions Overall, this study contributes to the understanding of the genetic basis of thyroid carcinoma susceptibility in two different case scenarios such as sMTC and juvenile PTC. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0160-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Berta Luzón-Toro
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| | - Marta Bleda
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain. .,Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), C/Eduardo Primo Yúfera, 3, 46012, Valencia, Spain. .,Present Address: Department of Medicine, University of Cambridge, School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, UK.
| | - Elena Navarro
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain. .,Department of Endocrinology, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.
| | - Luz García-Alonso
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), C/Eduardo Primo Yúfera, 3, 46012, Valencia, Spain. .,Present Address: European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | - Macarena Ruiz-Ferrer
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| | - Ignacio Medina
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), C/Eduardo Primo Yúfera, 3, 46012, Valencia, Spain. .,Present Address: HPC Services, University of Cambridge, Cambridge, UK.
| | - Marta Martín-Sánchez
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| | - Cristina Y Gonzalez
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), C/Eduardo Primo Yúfera, 3, 46012, Valencia, Spain. .,Present Address: European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | - Raquel M Fernández
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| | - Ana Torroglosa
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| | - Guillermo Antiñolo
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| | - Joaquin Dopazo
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain. .,Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), C/Eduardo Primo Yúfera, 3, 46012, Valencia, Spain. .,Functional Genomics Node, (INB) at CIPF, Valencia, Spain.
| | - Salud Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| |
Collapse
|
44
|
Poynter JN, Bestrashniy JRBM, Silverstein KAT, Hooten AJ, Lees C, Ross JA, Tolar J. Cross platform analysis of methylation, miRNA and stem cell gene expression data in germ cell tumors highlights characteristic differences by tumor histology. BMC Cancer 2015; 15:769. [PMID: 26497383 PMCID: PMC4619074 DOI: 10.1186/s12885-015-1796-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 10/15/2015] [Indexed: 12/21/2022] Open
Abstract
Background Alterations in methylation patterns, miRNA expression, and stem cell protein expression occur in germ cell tumors (GCTs). Our goal is to integrate molecular data across platforms to identify molecular signatures in the three main histologic subtypes of Type I and Type II GCTs (yolk sac tumor (YST), germinoma, and teratoma). Methods We included 39 GCTs and 7 paired adjacent tissue samples in the current analysis. Molecular data available for analysis include DNA methylation data (Illumina GoldenGate Cancer Methylation Panel I), miRNA expression (NanoString nCounter miRNA platform), and stem cell factor expression (SABiosciences Human Embryonic Stem Cell Array). We evaluated the cross platform correlations of the data features using the Maximum Information Coefficient (MIC). Results In analyses of individual datasets, differences were observed by tumor histology. Germinomas had higher expression of transcription factors maintaining stemness, while YSTs had higher expression of cytokines, endoderm and endothelial markers. We also observed differences in miRNA expression, with miR-371-5p, miR-122, miR-302a, miR-302d, and miR-373 showing elevated expression in one or more histologic subtypes. Using the MIC, we identified correlations across the data features, including six major hubs with higher expression in YST (LEFTY1, LEFTY2, miR302b, miR302a, miR 126, and miR 122) compared with other GCT. Conclusions While prognosis for GCTs is overall favorable, many patients experience resistance to chemotherapy, relapse and/or long term adverse health effects following treatment. Targeted therapies, based on integrated analyses of molecular tumor data such as that presented here, may provide a way to secure high cure rates while reducing unintended health consequences.
Collapse
Affiliation(s)
- Jenny N Poynter
- Division of Pediatric Epidemiology and Clinical Research, University of Minnesota, Minneapolis, MN, 55455, USA. .,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA. .,Corresponding address: 420 Delaware St SE MMC 715, Minneapolis, MN, 55455, USA.
| | - Jessica R B M Bestrashniy
- Division of Pediatric Epidemiology and Clinical Research, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Kevin A T Silverstein
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Anthony J Hooten
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Christopher Lees
- Division of Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Julie A Ross
- Division of Pediatric Epidemiology and Clinical Research, University of Minnesota, Minneapolis, MN, 55455, USA. .,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Jakub Tolar
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA. .,Division of Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA. .,Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
45
|
Ren N, Gao G, Sun Y, Zhang L, Wang H, Hua W, Wan K, Li X. MicroRNA signatures from multidrug‑resistant Mycobacterium tuberculosis. Mol Med Rep 2015; 12:6561-7. [PMID: 26324150 PMCID: PMC4626138 DOI: 10.3892/mmr.2015.4262] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 04/10/2015] [Indexed: 11/30/2022] Open
Abstract
Tuberculosis (TB) infections, caused by multi-drug-resistant Mycobacterium tuberculosis (MDR MTB), remain a significant public health concern worldwide. The regulatory mechanisms underlying the emergence of MDR MTB strains remain to be fully elucidated, and further investigation is required in order to develop better strategies for TB control. The present study investigated the expression profile of microRNA (miRNA) in MTB strains, and examined the differences between sensitive MTB and MDR MTB using next generation sequencing (NGS) with Illumina Deep Sequencing technology to better understand the mechanisms of resistance in MDR MTB, A total of 5, 785 and 195, and 6, 290 and 595 qualified Illumina reads were obtained from two MDR MTB strains, and 6, 673 and 665, and 7, 210 and 217 qualified Illumina reads were obtained from two sensitive MTB strains. The overall de novo assembly of miRNA sequence data generated 62 and 62, and 95 and 112 miRNAs between the 18 and 30 bp long from sensitive MTB strains and MDR MTB strains, respectively. Comparative miRNA analysis revealed that 142 miRNAs were differentially expressed in the MDR MTB strain, compared with the sensitive MTB strain, of which 48 were upregulated and 94 were downregulated. There were six similarly expressed miRNAs between the MDR and sensitive MTB strains, and 108 miRNAs were expressed only in the MDR MTB strain. The present study acquired miRNA data from sensitive MTB and MDR MTB strains using NGS techniques, and this identification miRNAs may serve as an invaluable resource for revealing the molecular basis of the regulation of expression associated with the mechanism of drug-resistance in MTB.
Collapse
Affiliation(s)
- Na Ren
- The National Clinical Key Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Guiju Gao
- The National Clinical Key Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Yue Sun
- Department of Infectious Diseases, First Hospital of Tsinghua University, Beijing 100016, P.R. China
| | - Ling Zhang
- The National Clinical Key Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Huizhu Wang
- The National Clinical Key Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Wenhao Hua
- The National Clinical Key Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Kanglin Wan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Beijing 102206, P.R. China
| | - Xingwang Li
- The National Clinical Key Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| |
Collapse
|
46
|
Vegh P, Magee DA, Nalpas NC, Bryan K, McCabe MS, Browne JA, Conlon KM, Gordon SV, Bradley DG, MacHugh DE, Lynn DJ. MicroRNA profiling of the bovine alveolar macrophage response to Mycobacterium bovis infection suggests pathogen survival is enhanced by microRNA regulation of endocytosis and lysosome trafficking. Tuberculosis (Edinb) 2015; 95:60-7. [PMID: 25692199 DOI: 10.1016/j.tube.2014.10.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mycobacterium bovis, the causative agent of bovine tuberculosis, a major problem for global agriculture, spreads via an airborne route and is taken up by alveolar macrophages (AM) in the lung. Here, we describe the first next-generation sequencing (RNA-seq) approach to temporally profile miRNA expression in primary bovine AMs post-infection with M. bovis. One, six, and forty miRNAs were identified as significantly differentially expressed at 2, 24 and 48 h post-infection, respectively. The differential expression of three miRNAs (bta-miR-142-5p, bta-miR-146a, and bta-miR-423-3p) was confirmed by RT-qPCR. Pathway analysis of the predicted mRNA targets of differentially expressed miRNAs suggests that these miRNAs preferentially target several pathways that are functionally relevant for mycobacterial pathogenesis, including endocytosis and lysosome trafficking, IL-1 signalling and the TGF-β pathway. Over-expression studies using a bovine macrophage cell-line (Bomac) reveal the targeting of two key genes in the innate immune response to M. bovis, IL-1 receptor-associated kinase 1 (IRAK1) and TGF-β receptor 2 (TGFBR2), by miR-146. Taken together, our study suggests that miRNAs play a key role in tuning the complex interplay between M. bovis survival strategies and the host immune response.
Collapse
|
47
|
Abstract
Human T-cell leukemia virus (HTLV)-1 is a human retrovirus and the etiological agent of adult T-cell leukemia/lymphoma (ATLL), a fatal malignancy of CD4/CD25+ T lymphocytes. In recent years, cellular as well as virus-encoded microRNA (miRNA) have been shown to deregulate signaling pathways to favor virus life cycle. HTLV-1 does not encode miRNA, but several studies have demonstrated that cellular miRNA expression is affected in infected cells. Distinct mechanisms such as transcriptional, epigenetic or interference with miRNA processing machinery have been involved. This article reviews the current knowledge of the role of cellular microRNAs in virus infection, replication, immune escape and pathogenesis of HTLV-1.
Collapse
|
48
|
Hubé F, Francastel C. "Pocket-sized RNA-Seq": A Method to Capture New Mature microRNA Produced from a Genomic Region of Interest. Noncoding RNA 2015; 1:127-138. [PMID: 29861419 PMCID: PMC5932543 DOI: 10.3390/ncrna1020127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/03/2015] [Accepted: 06/23/2015] [Indexed: 12/28/2022] Open
Abstract
Currently, the discovery of new small ncRNAs requires high throughput methods even in the case of focused research on the regulation of specific genes or set of genes. We propose herein a simple, rapid, efficient, and cost effective method to clone and sequence single, yet unknown, small ncRNA. This technique that we called “Pocket-sized RNA-Seq” or psRNA-seq is based on in vitro transcription, RNA pull down and adapted RACE-PCR methods that allow its implementation using either available commercial kits or in-house reagents.
Collapse
Affiliation(s)
- Florent Hubé
- University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France.
- Epigénétique et Destin Cellulaire, CNRS UMR 7216, 75013 Paris, France.
| | - Claire Francastel
- University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France.
- Epigénétique et Destin Cellulaire, CNRS UMR 7216, 75013 Paris, France.
| |
Collapse
|
49
|
Keane J, Tajouri L, Gray B. The Effect of Growth Hormone Administration on the Regulation of Mitochondrial Apoptosis in-Vivo. Int J Mol Sci 2015; 16:12753-72. [PMID: 26057745 PMCID: PMC4490471 DOI: 10.3390/ijms160612753] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/21/2015] [Accepted: 05/29/2015] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study was to determine whether recombinant human growth hormone (rhGH) would show any significant effects on the expression of apoptosis regulating proteins in peripheral blood mononuclear cells (PBMCs). Additionally, the potential for post-transcriptional regulation of gene expression by miRNA was assessed in two cellular compartments, the cytosol and the mitochondria. Ten male subjects were subcutaneously injected with either rhGH (1 mg) or saline (0.9%) for seven consecutive days in a double-blinded fashion. Blood sampling was undertaken prior to treatment administration and over a period of three weeks following treatment cessation. Bcl-2 and Bak gene and protein expression levels were measured in PBMCs, while attention was also directed to the expression of miR-181a and miR-125b, known translational inhibitors of Bcl-2 and Bak respectively. Results showed that rhGH significantly decreased Bak protein concentrations compared to placebo samples for up to 8 days post treatment. While cytosolic miRNA expression was not found to be significantly affected by rhGH, measurement of the expression of miR-125b in mitochondrial fractions showed a significant down-regulation eight days post-rhGH administration. These findings suggest that rhGH induces short-term anti-apoptotic effects which may be partially mediated through a novel pathway that alters the concentration of mitochondrially-associated miRNAs.
Collapse
Affiliation(s)
- James Keane
- Faculty of Health Science and Medicine, Bond University, Gold Coast, Queensland 4227, Australia.
| | - Lotti Tajouri
- Faculty of Health Science and Medicine, Bond University, Gold Coast, Queensland 4227, Australia.
| | - Bon Gray
- Faculty of Health Science and Medicine, Bond University, Gold Coast, Queensland 4227, Australia.
| |
Collapse
|
50
|
Gomes CPC, Kim TK, Wang K, He Y. The implications on clinical diagnostics of using microRNA-based biomarkers in exercise. Expert Rev Mol Diagn 2015; 15:761-72. [DOI: 10.1586/14737159.2015.1039517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Taek-Kyun Kim
- 2Institute for Systems Biology, Seattle, WA 98109, USA
| | - Kai Wang
- 2Institute for Systems Biology, Seattle, WA 98109, USA
| | - Yuqing He
- 3Institute of Medical Systems Biology, Guangdong Medical University, Dongguan, Guangdong 523808, China
| |
Collapse
|