1
|
Nam YH, Kim JS, Yum Y, Yoon J, Song H, Kim HJ, Lim J, Park S, Jung SC. Application of Mesenchymal Stem Cell-Derived Schwann Cell-like Cells Spared Neuromuscular Junctions and Enhanced Functional Recovery After Peripheral Nerve Injury. Cells 2024; 13:2137. [PMID: 39768225 PMCID: PMC11674609 DOI: 10.3390/cells13242137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
In general, the nerve cells of the peripheral nervous system regenerate normally within a certain period after the physical damage of their axon. However, when peripheral nerves are transected by trauma or tissue extraction for cancer treatment, spontaneous nerve regeneration cannot occur. Therefore, it is necessary to perform microsurgery to connect the transected nerve directly or insert a nerve conduit to connect it. In this study, we applied human tonsillar mesenchymal stem cell (TMSC)-derived Schwann cell-like cells (TMSC-SCs) to facilitate nerve regeneration and prevent muscle atrophy after neurorrhaphy. The TMSC-SCs were manufactured in a good manufacturing practice facility and termed neuronal regeneration-promoting cells (NRPCs). A rat model of peripheral nerve injury (PNI) was generated and a mixture of NRPCs and fibrin glue was transplanted into the injured nerve after neurorrhaphy. The application of NRPCs and fibrin glue led to the efficient induction of sciatic nerve regeneration, with the sparing of gastrocnemius muscles and neuromuscular junctions. This sparing effect of NRPCs toward neuromuscular junctions might prevent muscle atrophy after neurorrhaphy. These results suggest that a mixture of NRPCs and fibrin glue may be a therapeutic candidate to enable peripheral nerve and muscle regeneration in the context of neurorrhaphy in patients with PNI.
Collapse
Affiliation(s)
- Yu Hwa Nam
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (Y.Y.); (J.Y.); (H.S.)
| | - Ji-Sup Kim
- Department of Orthopaedic Surgery, College of Medicine, Seoul Hospital, Ewha Womans University, Seoul 07804, Republic of Korea;
| | - Yoonji Yum
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (Y.Y.); (J.Y.); (H.S.)
| | - Juhee Yoon
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (Y.Y.); (J.Y.); (H.S.)
| | - Hyeryung Song
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (Y.Y.); (J.Y.); (H.S.)
| | - Ho-Jin Kim
- Cellatoz Therapeutics Inc., Seongnam 13487, Republic of Korea; (H.-J.K.); (J.L.)
| | - Jaeseung Lim
- Cellatoz Therapeutics Inc., Seongnam 13487, Republic of Korea; (H.-J.K.); (J.L.)
| | - Saeyoung Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (Y.Y.); (J.Y.); (H.S.)
| | - Sung-Chul Jung
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (Y.Y.); (J.Y.); (H.S.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07804, Republic of Korea
| |
Collapse
|
2
|
Sun J, Zeng Q, Wu Z, Li Z, Gao Q, Liao Z, Li H, Ling C, Chen C, Wang H, Zhang B. Enhancing intraneural revascularization following peripheral nerve injury through hypoxic Schwann-cell-derived exosomes: an insight into endothelial glycolysis. J Nanobiotechnology 2024; 22:283. [PMID: 38789980 PMCID: PMC11127458 DOI: 10.1186/s12951-024-02536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Endothelial cell (EC)-driven intraneural revascularization (INRV) and Schwann cells-derived exosomes (SCs-Exos) both play crucial roles in peripheral nerve injury (PNI). However, the interplay between them remains unclear. We aimed to elucidate the effects and underlying mechanisms of SCs-Exos on INRV following PNI. RESULTS We found that GW4869 inhibited INRV, as well as that normoxic SCs-Exos (N-SCs-Exos) exhibited significant pro-INRV effects in vivo and in vitro that were potentiated by hypoxic SCs-Exos (H-SCs-Exos). Upregulation of glycolysis emerged as a pivotal factor for INRV after PNI, as evidenced by the observation that 3PO administration, a glycolytic inhibitor, inhibited the INRV process in vivo and in vitro. H-SCs-Exos more significantly enhanced extracellular acidification rate/oxygen consumption rate ratio, lactate production, and glycolytic gene expression while simultaneously suppressing acetyl-CoA production and pyruvate dehydrogenase E1 subunit alpha (PDH-E1α) expression than N-SCs-Exos both in vivo and in vitro. Furthermore, we determined that H-SCs-Exos were more enriched with miR-21-5p than N-SCs-Exos. Knockdown of miR-21-5p significantly attenuated the pro-glycolysis and pro-INRV effects of H-SCs-Exos. Mechanistically, miR-21-5p orchestrated EC metabolism in favor of glycolysis by targeting von Hippel-Lindau/hypoxia-inducible factor-1α and PDH-E1α, thereby enhancing hypoxia-inducible factor-1α-mediated glycolysis and inhibiting PDH-E1α-mediated oxidative phosphorylation. CONCLUSION This study unveiled a novel intrinsic mechanism of pro-INRV after PNI, providing a promising therapeutic target for post-injury peripheral nerve regeneration and repair.
Collapse
Affiliation(s)
- Jun Sun
- Department of Neurosurgery, the Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, 510630, PR China
| | - Qiuhua Zeng
- Department of Radiology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510000, China
| | - Zhimin Wu
- Department of Neurosurgery, the Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, 510630, PR China
| | - Zhangyu Li
- Department of Neurosurgery, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361102, China
| | - Qun Gao
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhi Men South St, Beijing, 100044, China
| | - Zhi Liao
- Department of Neurosurgery, the Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, 510630, PR China
| | - Hao Li
- Department of Neurosurgery, Guangzhou Panyu Central Hospital, No.8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, Guangdong, PR China
| | - Cong Ling
- Department of Neurosurgery, the Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, 510630, PR China
| | - Chuan Chen
- Department of Neurosurgery, the Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, 510630, PR China.
| | - Hui Wang
- Department of Neurosurgery, the Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, 510630, PR China.
| | - Baoyu Zhang
- Department of Neurosurgery, the Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, 510630, PR China
| |
Collapse
|
3
|
Deng B, Zou H, Hu K, Liu Y, Han A. Octanol alleviates chronic constriction injury of sciatic nerve-induced peripheral neuropathy by regulating AKT/mTOR signaling. J Orthop Surg (Hong Kong) 2024; 32:10225536241273556. [PMID: 39208247 DOI: 10.1177/10225536241273556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Activation of gap junction channels can induce neuropathic pain. Octanol can limit the conductance of gap junctions containing connexin 43 proteins. Thus, this study focused on the roles of octanol in chronic constriction injury (CCI)-induced peripheral neuropathy in mice and its mechanisms of action. METHODS Male mice were assigned into control, sham, CCI, CCI + Octanol-20 mg/kg, CCI + Octanol-40 mg/kg and CCI + Octanol-80 mg/kg groups. CCI was performed by applying three loose ligations to mouse sciatic nerve, and the mice with CCI was administered with 20 mg/kg, 40 mg/kg, or 80 mg/kg octanol. The neuropathic pain development was examined by assessing thermal withdrawal latency, paw withdrawal mechanical threshold, and sciatic functional index. Histopathological changes were evaluated by hematoxylin and eosin staining. The phosphorylation of protein kinase B (Akt) and mammalian target of rapamycin (mTOR) was examined by western blotting. The expression of Akt and mTOR was also evaluated by immunofluorescence staining. RESULTS Octanol alleviated the CCI-induced mechanical and thermal hyperalgesia and sciatic functional loss. Additionally, octanol relieved the CCI-induced abnormal histopathological changes. Mechanistically, octanol inactivated the Akt/mTOR pathway in the mice with CCI. CONCLUSION In conclusion, octanol can alleviate CCI-induced peripheral neuropathic by regulating the Akt/mTOR pathway and might be a novel pharmacological intervention for neuropathic pain.
Collapse
Affiliation(s)
- Biquan Deng
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Zou
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Keli Hu
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunlu Liu
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Achao Han
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Huang Y, Ye K, He A, Wan S, Wu M, Hu D, Xu K, Wei P, Yin J. Dual-layer conduit containing VEGF-A - Transfected Schwann cells promotes peripheral nerve regeneration via angiogenesis. Acta Biomater 2024; 180:323-336. [PMID: 38561075 DOI: 10.1016/j.actbio.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Peripheral nerve injuries (PNIs) can cause neuropathies and significantly affect the patient's quality of life. Autograft transplantation is the gold standard for conventional treatment; however, its application is limited by nerve unavailability, size mismatch, and local tissue adhesion. Tissue engineering, such as nerve guidance conduits, is an alternative and promising strategy to guide nerve regeneration for peripheral nerve repair; however, only a few conduits could reach the high repair efficiency of autografts. The healing process of PNI is frequently accompanied by not only axonal and myelination regeneration but also angiogenesis, which initializes nerve regeneration through vascular endothelial growth factor A (VEGF-A). In this study, a composite nerve conduit with a poly (lactic-co-glycolic acid) (PLGA) hollow tube as the outer layer and gelatin methacryloyl (GelMA) encapsulated with VEGF-A transfected Schwann cells (SCs) as the inner layer was established to evaluate its promising ability for peripheral nerve repair. A rat model of peripheral nerve defect was used to examine the efficiency of PLGA/GelMA-SC (VA) conduits, whereas autograft, PLGA, PLGA/GelMA, and PLGA/GelMA-SC (NC) were used as controls. VEGF-A-transfected SCs can provide a stable source for VEGF-A secretion. Furthermore, encapsulation in GelMA cannot only promote proliferation and tube formation of human umbilical vein endothelial cells but also enhance dorsal root ganglia and neuronal cell extension. Previous animal studies have demonstrated that the regenerative effects of PLGA/GelMA-SC (VA) nerve conduit were similar to those of autografts and much better than those of other conduits. These findings indicate that combination of VEGF-A-overexpressing SCs and PLGA/GelMA conduit-guided peripheral nerve repair provides a promising method that enhances angiogenesis and regeneration during nerve repair. STATEMENT OF SIGNIFICANCE: Nerve guidance conduits shows promise for peripheral nerve repair, while achieving the repair efficiency of autografts remains a challenge. In this study, a composite nerve conduit with a PLGA hollow tube as the outer layer and gelatin methacryloyl (GelMA) encapsulated with vascular endothelial growth factor A (VEGF-A)-transfected Schwann cells (SCs) as the inner layer was established to evaluate its potential ability for peripheral nerve repair. This approach preserves growth factor bioactivity and enhances material properties. GelMA insertion promotes Schwann cell proliferation and morphology extension. Moreover, transfected SCs serve as a stable VEGF-A source and fostering angiogenesis. This study offers a method preserving growth factor efficacy and safeguarding SCs, providing a comprehensive solution for enhanced angiogenesis and nerve regeneration.
Collapse
Affiliation(s)
- Yuye Huang
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Kai Ye
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Andong He
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Shaobo Wan
- Yuyao Traditional Chinese Medicine Hospital, Ningbo 315010, China
| | - Miaoben Wu
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Donghao Hu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kailei Xu
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, China.
| | - Peng Wei
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China.
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
5
|
Yang L, Liu SC, Liu YY, Zhu FQ, Xiong MJ, Hu DX, Zhang WJ. Therapeutic role of neural stem cells in neurological diseases. Front Bioeng Biotechnol 2024; 12:1329712. [PMID: 38515621 PMCID: PMC10955145 DOI: 10.3389/fbioe.2024.1329712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
The failure of endogenous repair is the main feature of neurological diseases that cannot recover the damaged tissue and the resulting dysfunction. Currently, the range of treatment options for neurological diseases is limited, and the approved drugs are used to treat neurological diseases, but the therapeutic effect is still not ideal. In recent years, different studies have revealed that neural stem cells (NSCs) have made exciting achievements in the treatment of neurological diseases. NSCs have the potential of self-renewal and differentiation, which shows great foreground as the replacement therapy of endogenous cells in neurological diseases, which broadens a new way of cell therapy. The biological functions of NSCs in the repair of nerve injury include neuroprotection, promoting axonal regeneration and remyelination, secretion of neurotrophic factors, immune regulation, and improve the inflammatory microenvironment of nerve injury. All these reveal that NSCs play an important role in improving the progression of neurological diseases. Therefore, it is of great significance to better understand the functional role of NSCs in the treatment of neurological diseases. In view of this, we comprehensively discussed the application and value of NSCs in neurological diseases as well as the existing problems and challenges.
Collapse
Affiliation(s)
- Ling Yang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Department of Physical Examination, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Si-Cheng Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Yi-Yi Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Fu-Qi Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Mei-Juan Xiong
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Cong M, Wu X, Zhu L, Gu G, Ding F, Li G, Shi H. Anisotropic microtopography surface of chitosan scaffold regulating skin precursor-derived Schwann cells towards repair phenotype promotes neural regeneration. Regen Biomater 2024; 11:rbae005. [PMID: 38414797 PMCID: PMC10898340 DOI: 10.1093/rb/rbae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/29/2024] Open
Abstract
For repairing peripheral nerve and spinal cord defects, biomaterial scaffold-based cell-therapy was emerged as an effective strategy, requiring the positive response of seed cells to biomaterial substrate and environment signals. Previous work highlighted that the imposed surface properties of scaffold could provide important guidance cues to adhered cells for polarization. However, the insufficiency of native Schwann cells and unclear cellular response mechanisms remained to be addressed. Given that, this study aimed to illuminate the micropatterned chitosan-film action on the rat skin precursor-derived Schwann cells (SKP-SCs). Chitosan-film with different ridge/groove size was fabricated and applied for the SKP-SCs induction. Results indicated that SKP-SCs cultured on 30 μm size microgroove surface showed better oriented alignment phenotype. Induced SKP-SCs presented similar genic phenotype as repair Schwann cells, increasing expression of c-Jun, neural cell adhesion molecule, and neurotrophic receptor p75. Moreover, SKP-SC-secretome was subjected to cytokine array GS67 assay, data indicated the regulation of paracrine phenotype, a panel of cytokines was verified up-regulated at secreted level and gene expression level in induced SKP-SCs. These up-regulated cytokines exhibit a series of promotive neural regeneration functions, including cell survival, cell migration, cell proliferation, angiogenesis, axon growth, and cellular organization etc. through bioinformatics analysis. Furthermore, the effectively polarized SKP-SCs-sourced secretome, promoted the proliferation and migration capacity of the primarily cultured native rat Schwann cells, and augmented neurites growth of the cultured motoneurons, as well as boosted axonal regrowth of the axotomy-injured motoneurons. Taken together, SKP-SCs obtained pro-neuroregeneration phenotype in adaptive response to the anisotropic topography surface of chitosan-film, displayed the oriented parallel growth, the transition towards repair Schwann cell genic phenotype, and the enhanced paracrine effect on neural regeneration. This study provided novel insights into the potency of anisotropic microtopography surface to Schwann-like cells phenotype regulation, that facilitating to provide promising engineered cell-scaffold in neural injury therapies.
Collapse
Affiliation(s)
- Meng Cong
- Key Laboratory of Neuroregenration of Jiangsu and Ministry of Education and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xia Wu
- Key Laboratory of Neuroregenration of Jiangsu and Ministry of Education and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Lingjie Zhu
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong 226001, China
| | - Guohao Gu
- Key Laboratory of Neuroregenration of Jiangsu and Ministry of Education and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Fei Ding
- Key Laboratory of Neuroregenration of Jiangsu and Ministry of Education and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Guicai Li
- Key Laboratory of Neuroregenration of Jiangsu and Ministry of Education and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Haiyan Shi
- Key Laboratory of Neuroregenration of Jiangsu and Ministry of Education and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong 226001, China
| |
Collapse
|
7
|
Deng W, Li X, Li Y, Huang Z, Wang Y, Mu N, Wang J, Chen T, Pu X, Yin G, Feng H. Graphene oxide-doped chiral dextro-hydrogel promotes peripheral nerve repair through M2 polarization of macrophages. Colloids Surf B Biointerfaces 2024; 233:113632. [PMID: 37979485 DOI: 10.1016/j.colsurfb.2023.113632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
Dextro-chirality is reported to specifically promote the proliferation and survival of neural cells. However, applying this unique performance to nerve repair remains a great challenge. Graphite oxide (GO)-phenylalanine derivative hydrogel system was constructed through doping 5% GO into self-assembly dextro- or levo-hydrogels (named as dextro and levo group, respectively), which exhibited identical physical and chemical properties, cyto-compatibility, and mirror-symmetrical chirality. In vivo experiments using rat sciatic nerve repair models showed that the functional recovery and histological restoration of regenerating nerves in the dextro group were significantly improved, approaching that of autograft implantation. The doped GO promoted M2 polarization of macrophages, increasing the expression of platelet-derived growth factor BB chain and vascular endothelial growth factor, thereby improving angiogenesis in regenerating nerves. A mechanism is proposed for the facilitated nerve repair through the synergistic effect of GO and dextro-hydrogel, involving dextro-chirality selection of neural cells and GO-induced M2 polarization, which promotes microvascular regeneration and myelination. This study showcases the immense potential of chirality in addressing neurological issues by providing a compelling demonstration of the development of effective therapies that leverage the unique matrix chirality selection of nerve cells to promote peripheral nerve regeneration.
Collapse
Affiliation(s)
- Weiping Deng
- College of Biomedical Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu 610065, China
| | - Xiaohui Li
- College of Biomedical Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu 610065, China
| | - Ya Li
- College of Biomedical Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu 610065, China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu 610065, China.
| | - Yulin Wang
- College of Biomedical Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu 610065, China
| | - Ning Mu
- College of Biomedical Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu 610065, China; Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 29, Gaotanyanzheng Street, Shapingba District, Chongqing 400038, China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu 610065, China
| | - Tunan Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 29, Gaotanyanzheng Street, Shapingba District, Chongqing 400038, China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu 610065, China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu 610065, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 29, Gaotanyanzheng Street, Shapingba District, Chongqing 400038, China
| |
Collapse
|
8
|
Lee HY, Moon SH, Kang D, Choi E, Yang GH, Kim KN, Won JY, Yi S. A multi-channel collagen conduit with aligned Schwann cells and endothelial cells for enhanced neuronal regeneration in spinal cord injury. Biomater Sci 2023; 11:7884-7896. [PMID: 37906468 DOI: 10.1039/d3bm01152f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Traumatic spinal cord injury (SCI) leads to Wallerian degeneration and the accompanying disruption of vasculature leads to ischemia, which damages motor and sensory function. Therefore, understanding the biological environment during regeneration is essential to promote neuronal regeneration and overcome this phenomenon. The band of Büngner is a structure of an aligned Schwann cell (SC) band that guides axon elongation providing a natural recovery environment. During axon elongation, SCs promote axon elongation while migrating along neovessels (endothelial cells [ECs]). To model this, we used extrusion 3D bioprinting to develop a multi-channel conduit (MCC) using collagen for the matrix region and sacrificial alginate to make the channel. The MCC was fabricated with a structure in which SCs and ECs were longitudinally aligned to mimic the sophisticated recovering SCI conditions. Also, we produced an MCC with different numbers of channels. The aligned SCs and ECs in the 9-channel conduit (9MCC-SE) were more biocompatible and led to more proliferation than the 5-channel conduit (5MCC-SE) in vitro. Also, the 9MCC-SE resulted in a greater healing effect than the 5MCC-SE with respect to neuronal regeneration, remyelination, inflammation, and angiogenesis in vivo. The above tissue recovery results led to motor function repair. Our results show that our 9MCC-SE model represents a new therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Hye Yeong Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Seo Hyun Moon
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Donggu Kang
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc., 55 Hanyangdaehak-Ro, Ansan, Gyeonggi-Do, 15588, South Korea
| | - Eunjeong Choi
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc., 55 Hanyangdaehak-Ro, Ansan, Gyeonggi-Do, 15588, South Korea
| | - Gi Hoon Yang
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc., 55 Hanyangdaehak-Ro, Ansan, Gyeonggi-Do, 15588, South Korea
| | - Keung Nyun Kim
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Joo Yun Won
- Clinical & Translational Research Institute, Anymedi INC., Seoul, South Korea
| | - Seong Yi
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
9
|
Ferreira LVDO, Kamura BDC, de Oliveira JPM, Chimenes ND, de Carvalho M, dos Santos LA, Dias-Melicio LA, Amorim RL, Amorim RM. In Vitro Transdifferentiation Potential of Equine Mesenchymal Stem Cells into Schwann-Like Cells. Stem Cells Dev 2023; 32:422-432. [PMID: 37071193 PMCID: PMC10401561 DOI: 10.1089/scd.2022.0274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/17/2023] [Indexed: 04/19/2023] Open
Abstract
Schwann cells (SCs) are essential for the regenerative processes of peripheral nerve injuries. However, their use in cell therapy is limited. In this context, several studies have demonstrated the ability of mesenchymal stem cells (MSCs) to transdifferentiate into Schwann-like cells (SLCs) using chemical protocols or co-culture with SCs. Here, we describe for the first time the in vitro transdifferentiation potential of MSCs derived from equine adipose tissue (AT) and equine bone marrow (BM) into SLCs using a practical method. In this study, the facial nerve of a horse was collected, cut into fragments, and incubated in cell culture medium for 48 h. This medium was used to transdifferentiate the MSCs into SLCs. Equine AT-MSCs and BM-MSCs were incubated with the induction medium for 5 days. After this period, the morphology, cell viability, metabolic activity, gene expression of glial markers glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), p75 and S100β, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and glial cell-derived neurotrophic factor (GDNF), and the protein expression of S100 and GFAP were evaluated in undifferentiated and differentiated cells. The MSCs from the two sources incubated with the induction medium exhibited similar morphology to the SCs and maintained cell viability and metabolic activity. There was a significant increase in the gene expression of BDNF, GDNF, GFAP, MBP, p75, and S100β in equine AT-MSCs and GDNF, GFAP, MBP, p75, and S100β in equine BM-MSCs post-differentiation. Immunofluorescence analysis revealed GFAP expression in undifferentiated and differentiated cells, with a significant increase in the integrated pixel density in differentiated cells and S100 was only expressed in differentiated cells from both sources. These findings indicate that equine AT-MSCs and BM-MSCs have great transdifferentiation potential into SLCs using this method, and they represent a promising strategy for cell-based therapy for peripheral nerve regeneration in horses.
Collapse
Affiliation(s)
- Lucas Vinícius de Oliveira Ferreira
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science; São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- Translational Nucleus of Regenerative Medicine (NUTRAMERE), School of Veterinary Medicine and Animal Science; São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Beatriz da Costa Kamura
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science; São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- Translational Nucleus of Regenerative Medicine (NUTRAMERE), School of Veterinary Medicine and Animal Science; São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - João Pedro Marmol de Oliveira
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science; São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- Translational Nucleus of Regenerative Medicine (NUTRAMERE), School of Veterinary Medicine and Animal Science; São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Natielly Dias Chimenes
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science; São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- Translational Nucleus of Regenerative Medicine (NUTRAMERE), School of Veterinary Medicine and Animal Science; São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Márcio de Carvalho
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science; São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Leandro Alves dos Santos
- Confocal Microscopy Laboratory, UNIPEX–Experimental Research Unit, Medical School of Botucatu; São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Luciane Alarcão Dias-Melicio
- Confocal Microscopy Laboratory, UNIPEX–Experimental Research Unit, Medical School of Botucatu; São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- Department of Pathology, Medical School of Botucatu; São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Renée Laufer Amorim
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science; São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Rogério Martins Amorim
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science; São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- Translational Nucleus of Regenerative Medicine (NUTRAMERE), School of Veterinary Medicine and Animal Science; São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
10
|
Lopes B, Sousa P, Alvites R, Branquinho M, Sousa AC, Mendonça C, Atayde LM, Luís AL, Varejão ASP, Maurício AC. Peripheral Nerve Injury Treatments and Advances: One Health Perspective. Int J Mol Sci 2022; 23:ijms23020918. [PMID: 35055104 PMCID: PMC8779751 DOI: 10.3390/ijms23020918] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Peripheral nerve injuries (PNI) can have several etiologies, such as trauma and iatrogenic interventions, that can lead to the loss of structure and/or function impairment. These changes can cause partial or complete loss of motor and sensory functions, physical disability, and neuropathic pain, which in turn can affect the quality of life. This review aims to revisit the concepts associated with the PNI and the anatomy of the peripheral nerve is detailed to explain the different types of injury. Then, some of the available therapeutic strategies are explained, including surgical methods, pharmacological therapies, and the use of cell-based therapies alone or in combination with biomaterials in the form of tube guides. Nevertheless, even with the various available treatments, it is difficult to achieve a perfect outcome with complete functional recovery. This review aims to enhance the importance of new therapies, especially in severe lesions, to overcome limitations and achieve better outcomes. The urge for new approaches and the understanding of the different methods to evaluate nerve regeneration is fundamental from a One Health perspective. In vitro models followed by in vivo models are very important to be able to translate the achievements to human medicine.
Collapse
Affiliation(s)
- Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Mariana Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Ana Catarina Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Carla Mendonça
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Luís Miguel Atayde
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Ana Lúcia Luís
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Artur S. P. Varejão
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
- CECAV, Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Correspondence: ; Tel.: +351-91-9071286
| |
Collapse
|