1
|
Gerges SH, Helal SA, Silver HL, Dyck JRB, El-Kadi AOS. Sex-dependent alterations in cardiac cytochrome P450-mediated arachidonic acid metabolism in pressure overload-induced cardiac hypertrophy in rats. Drug Metab Dispos 2025; 53:100077. [PMID: 40273825 DOI: 10.1016/j.dmd.2025.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Cardiac hypertrophy is a risk factor for heart failure and is usually less common in young women than in men. Cytochrome P450 (CYP) enzymes in the heart metabolize arachidonic acid into hydroxyeicosatetraenoic acids (HETEs), which generally have hypertrophic effects, and epoxyeicosatrienoic acids, which have cardioprotective effects. In this study, we aimed to investigate sex-specific differences in cardiac hypertrophy and cardiac CYP, HETE, and epoxyeicosatrienoic acid levels in response to pressure overload. Adult male and female Sprague-Dawley rats were subject to sham or abdominal aortic constriction (AAC) surgeries. Five weeks postsurgery, cardiac function was assessed by echocardiography. The mRNA and protein levels of hypertrophic markers and CYP enzymes were measured by real-time polymerase chain reaction and Western blot. Heart tissue HETE levels and microsomal formation of HETEs and epoxyeicosatrienoic acids were measured by liquid chromatography-tandem mass spectrometry. Our results show significant sex-specific differences in AAC-induced cardiac hypertrophy. Echocardiography and ventricular wall measurements showed more hypertrophy in male rats. Some hypertrophic markers were significantly upregulated only in male AAC rats and were significantly higher in the hearts of male rats compared to female AAC rats. Different CYP hydroxylases such as CYP1B1, CYP4A, and CYP4F and epoxygenases such as CYP2C and CYP2J10 were significantly upregulated in the hearts of male AAC rats only. The heart level of 12(R)-HETE and the microsomal formation of several HETEs were also significantly increased only in male rats. In conclusion, male rats developed stronger AAC-induced cardiac hypertrophy compared to female rats, which was accompanied by a significant increase in cardiac CYP enzymes and HETEs. SIGNIFICANCE STATEMENT: Previous studies demonstrated that male rats experience more severe cardiac hypertrophy compared to female rats. To our knowledge, this research is the first to investigate and compare the expression of cytochrome P450 enzymes and arachidonic acid metabolites in male and female rat hearts following pressure overload-induced hypertrophy. This study highlights significant sex-specific differences in cytochrome P450-mediated metabolism during hypertrophy, providing valuable insights into the molecular mechanisms underlying these responses and identifying potential targets for sex-specific therapies in cardiac diseases.
Collapse
Affiliation(s)
- Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sara A Helal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Heidi L Silver
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R B Dyck
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Li M, He M, Sun M, Li Y, Li M, Jiang X, Wang Y, Wang H. Oxylipins as therapeutic indicators of herbal medicines in cardiovascular diseases: a review. Front Pharmacol 2024; 15:1454348. [PMID: 39749208 PMCID: PMC11693728 DOI: 10.3389/fphar.2024.1454348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Globally, cardiovascular diseases (CVDs) remain the leading cause of death, and their prevention and treatment continue to face major challenges. Oxylipins, as novel circulating markers of cardiovascular disease, are crucial mediators linking cardiovascular risk factors such as inflammation and platelet activation, and they play an important role in unraveling cardiovascular pathogenesis and therapeutic mechanisms. Chinese herbal medicine plays an important role in the adjuvant treatment of cardiovascular diseases, which has predominantly focused on the key pathways of classic lipids, inflammation, and oxidative stress to elucidate the therapeutic mechanisms of cardiovascular diseases. However,The regulatory effect of traditional Chinese medicine on oxylipins in cardiovascular diseases remains largely unknown. With the increasing number of recent reports on the regulation of oxylipins by Chinese herbal medicine in cardiovascular diseases, it is necessary to comprehensively elucidate the regulatory role of Chinese herbal medicine in cardiovascular diseases from the perspective of oxylipins. This approach not only benefits further research on the therapeutic targets of Chinese herbal medicine, but also brings new perspectives to the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Mengqi Li
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Min He
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mengmeng Sun
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yongping Li
- Changchun Sino-Russian Science and Technology Park Co., Ltd., Changchun, Jilin, China
| | - Mengyuan Li
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiaobo Jiang
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yanxin Wang
- Department of Cardiovascular Rehabilitation, The Third Clinical Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hongfeng Wang
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
3
|
Zhang Q, Lin Y, Zhao R, Huang T, Tian Y, Zhu L, Qin J, Liu H. Structural characterization of extracellular polysaccharides from Phellinus igniarius SH-1 and their therapeutic effects on DSS induced colitis in mice. Int J Biol Macromol 2024; 275:133654. [PMID: 38972645 DOI: 10.1016/j.ijbiomac.2024.133654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/07/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Phellinus igniarius is a valuable medicinal and edible mushroom, and its polysaccharides exhibit excellent anti-inflammatory activity. During liquid fermentation to produce P. igniarius mycelia, the fermentation liquid is often discarded, but it contains extracellular polysaccharides. To better utilize these resources, P. igniarius SH-1 was fermented in a 100 L fermenter, and PIPS-2 was isolated and purified from the fermentation broth. The structural characteristics and anti-inflammatory activity of PIPS-2 were determined. PIPS-2 had a molecular weight of 22.855 kDa and was composed of galactose and mannose in a molar ratio of 0.38:0.62. Structural analysis revealed that the main chain of PIPS-2 involved →2)-α-D-Manp-(1 → 3)-β-D-Galf-(1→, and the side chains involved α-D-Manp-(1 → 6)-α-D-Manp-(1→, α-D-Manp-(1 → 3)-α-D-Manp-(1→, and α-D-Manp-(1. PIPS-2 alleviated the symptoms of dextran sodium sulfate (DSS)-induced colitis in mice, improved the imbalance of inflammatory factors and antioxidant enzymes, and increased short-chain fatty acid contents. Combining the intestinal flora and metabolite results, PIPS-2 was found to regulate the abundance of Firmicutes, Lachnospiraceae_NK4A136_group, Proteobacteria, Bacteroides, and many serum metabolites including hexadecenal, copalic acid, 8-hydroxyeicosatetraenoic acid, artepillin C, and uric acid, thereby ameliorating metabolite related disorders in mice with colitis. In summary, PIPS-2 may improve colitis in mice by regulating the gut microbiota and metabolites.
Collapse
Affiliation(s)
- Qiaoyi Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yuanshan Lin
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.
| | - Rou Zhao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Ting Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yun Tian
- Agricultural Bioengineering Institute, Changsha, China
| | - Lin Zhu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jing Qin
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Huhu Liu
- Agricultural Bioengineering Institute, Changsha, China
| |
Collapse
|
4
|
Dhulkifle H, Therachiyil L, Hasan MH, Sayed TS, Younis SM, Korashy HM, Yalcin HC, Maayah ZH. Inhibition of cytochrome P450 epoxygenase promotes endothelium-to-mesenchymal transition and exacerbates doxorubicin-induced cardiovascular toxicity. Mol Biol Rep 2024; 51:859. [PMID: 39066934 PMCID: PMC11283412 DOI: 10.1007/s11033-024-09803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Doxorubicin (DOX) is a potent chemotherapy widely used in treating various neoplastic diseases. However, the clinical use of DOX is limited due to its potential toxic effect on the cardiovascular system. Thus, identifying the pathway involved in this toxicity may help minimize chemotherapy risk and improve cancer patients' quality of life. Recent studies suggest that Endothelial-to-Mesenchymal transition (EndMT) and endothelial toxicity contribute to the pathogenesis of DOX-induced cardiovascular toxicity. However, the molecular mechanism is yet unknown. Given that arachidonic acid and associated cytochrome P450 (CYP) epoxygenase have been involved in endothelial and cardiovascular function, we aimed to examine the effect of suppressing CYP epoxygenases on DOX-induced EndMT and cardiovascular toxicity in vitro and in vivo. METHODS AND RESULTS To test this, human endothelial cells were treated with DOX, with or without CYP epoxygenase inhibitor, MSPPOH. We also investigated the effect of MSPPOH on the cardiovascular system in our zebrafish model of DOX-induced cardiotoxicity. Our results showed that MSPPOH exacerbated DOX-induced EndMT, inflammation, oxidative stress, and apoptosis in our endothelial cells. Furthermore, we also show that MSPPOH increased cardiac edema, lowered vascular blood flow velocity, and worsened the expression of EndMT and cardiac injury markers in our zebrafish model of DOX-induced cardiotoxicity. CONCLUSION Our data indicate that a selective CYP epoxygenase inhibitor, MSPPOH, induces EndMT and endothelial toxicity to contribute to DOX-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Hevna Dhulkifle
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health Sector, Qatar University, 2713, Doha, Qatar
| | - Lubna Therachiyil
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health Sector, Qatar University, 2713, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Maram H Hasan
- Biomedical Research Center, QU Health Sector, Qatar University, 2713, Doha, Qatar
| | - Tahseen S Sayed
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health Sector, Qatar University, 2713, Doha, Qatar
| | - Shahd M Younis
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health Sector, Qatar University, 2713, Doha, Qatar
| | - Huseyin C Yalcin
- Biomedical Research Center, QU Health Sector, Qatar University, 2713, Doha, Qatar
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, 2713, Doha, Qatar
| | - Zaid H Maayah
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health Sector, Qatar University, 2713, Doha, Qatar.
| |
Collapse
|
5
|
Hidayat R, Shoieb SM, Mosa FES, Barakat K, Brocks DR, Isse FA, Gerges SH, El-Kadi AOS. 16R-HETE and 16S-HETE alter human cytochrome P450 1B1 enzyme activity probably through an allosteric mechanism. Mol Cell Biochem 2024; 479:1379-1390. [PMID: 37436655 DOI: 10.1007/s11010-023-04801-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/25/2023] [Indexed: 07/13/2023]
Abstract
Cytochrome P450 1B1 (CYP1B1) has been widely associated with the development of cardiac pathologies due to its ability to produce cardiotoxic metabolites like midchain hydroxyeicosatetraenoic acids (HETEs) from arachidonic acid (AA) through an allylic oxidation reaction. 16-HETE is a subterminal HETE that is also produced by CYP-mediated AA metabolism. 19-HETE is another subterminal HETE that was found to inhibit CYP1B1 activity, lower midchain HETEs, and have cardioprotective effects. However, the effect of 16-HETE enantiomers on CYP1B1 has not yet been investigated. We hypothesized that 16(R/S)-HETE could alter the activity of CYP1B1 and other CYP enzymes. Therefore, this study was carried out to investigate the modulatory effect of 16-HETE enantiomers on CYP1B1 enzyme activity, and to examine the mechanisms by which they exert these modulatory effects. To investigate whether these effects are specific to CYP1B1, we also investigated 16-HETE modulatory effects on CYP1A2. Our results showed that 16-HETE enantiomers significantly increased CYP1B1 activity in RL-14 cells, recombinant human CYP1B1, and human liver microsomes, as seen by the significant increase in 7-ethoxyresorufin deethylation rate. On the contrary, 16-HETE enantiomers significantly inhibited CYP1A2 catalytic activity mediated by the recombinant human CYP1A2 and human liver microsomes. 16R-HETE showed stronger effects than 16S-HETE. The sigmoidal binding mode of the enzyme kinetics data demonstrated that CYP1B1 activation and CYP1A2 inhibition occurred through allosteric regulation. In conclusion, our study provides the first evidence that 16R-HETE and 16S-HETE increase CYP1B1 catalytic activity through an allosteric mechanism.
Collapse
Affiliation(s)
- Rahmat Hidayat
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Sherif M Shoieb
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Farag E S Mosa
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Khaled Barakat
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Dion R Brocks
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Fadumo A Isse
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Samar H Gerges
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada.
| |
Collapse
|
6
|
Helal SA, Gerges SH, El-Kadi AOS. Enantioselectivity in some physiological and pathophysiological roles of hydroxyeicosatetraenoic acids. Drug Metab Rev 2024; 56:31-45. [PMID: 38358327 DOI: 10.1080/03602532.2023.2284110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/12/2023] [Indexed: 02/16/2024]
Abstract
The phenomenon of chirality has been shown to greatly impact drug activities and effects. Different enantiomers may exhibit different effects in a certain biological condition or disease state. Cytochrome P450 (CYP) enzymes metabolize arachidonic acid (AA) into a large variety of metabolites with a wide range of activities. Hydroxylation of AA by CYP hydroxylases produces hydroxyeicosatetraenoic acids (HETEs), which are classified into mid-chain (5, 8, 9, 11, 12, and 15-HETE), subterminal (16-, 17-, 18- and 19-HETE) and terminal (20-HETE) HETEs. Except for 20-HETE, these metabolites exist as a racemic mixture of R and S enantiomers in the physiological system. The two enantiomers could have different degrees of activity or sometimes opposing effects. In this review article, we aimed to discuss the role of mid-chain and subterminal HETEs in different organs, importantly the heart and the kidneys. Moreover, we summarized their effects in some conditions such as neutrophil migration, inflammation, angiogenesis, and tumorigenesis, with a focus on the reported enantiospecific effects. We also reported some studies using genetically modified models to investigate the roles of HETEs in different conditions.
Collapse
Affiliation(s)
- Sara A Helal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
7
|
Maayah ZH, Ferdaoussi M, Alam A, Takahara S, Silver H, Soni S, Martens MD, Eurich DT, Dyck JRB. Cannabidiol Suppresses Cytokine Storm and Protects Against Cardiac and Renal Injury Associated with Sepsis. Cannabis Cannabinoid Res 2024; 9:160-173. [PMID: 36594988 DOI: 10.1089/can.2022.0170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background: Cytokine release syndrome, also termed "cytokine storm," is the leading cause of morbidity and mortality among patients with various conditions such as sepsis. While cytokine storm is associated with multiple organ damage, acute cardiac and renal injury represents a hallmark of cytokine storm. Since recent reports have suggested that cannabidiol (CBD) may assist in the treatment of inflammatory diseases, our objective was to examine the effect of CBD on cytokine storm-induced cardiac and renal injury using the lipopolysaccharide (LPS)-induced sepsis mouse model. Materials and Methods: At 8 weeks of age, mice were randomly assigned to receive CBD (15 mg/kg) or vehicle one hour before a single injection of either phosphate-buffered saline or LPS (10 mg/kg) for an additional 24 h. Results: Our results show that CBD improves cardiac function and reduces renal injury in a mouse model of cytokine storm. Moreover, our data indicate that CBD significantly reduces systemic and renal inflammation to contribute to the improvements observed in a cytokine storm-model of cardiac and renal injury. Conclusions: Overall, the findings of this study suggest that CBD could be repurposed to reduce morbidity in patients with cytokine storm particularly in severe infections such as sepsis.
Collapse
Affiliation(s)
- Zaid H Maayah
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Mourad Ferdaoussi
- Cardiovascular Research Centre, Departments of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Abrar Alam
- Cardiovascular Research Centre, Departments of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shingo Takahara
- Cardiovascular Research Centre, Departments of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Heidi Silver
- Cardiovascular Research Centre, Departments of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shubham Soni
- Cardiovascular Research Centre, Departments of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew D Martens
- Cardiovascular Research Centre, Departments of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Dean T Eurich
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, Departments of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Saha S, Singh P, Dutta A, Vaidya H, Negi PC, Sengupta S, Seth S, Basak T. A Comprehensive Insight and Mechanistic Understanding of the Lipidomic Alterations Associated With DCM. JACC. ASIA 2023; 3:539-555. [PMID: 37614533 PMCID: PMC10442885 DOI: 10.1016/j.jacasi.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/17/2023] [Accepted: 06/03/2023] [Indexed: 08/25/2023]
Abstract
Dilated cardiomyopathy (DCM) is one of the major causes of heart failure characterized by the enlargement of the left ventricular cavity and contractile dysfunction of the myocardium. Lipids are the major sources of energy for the myocardium. Impairment of lipid homeostasis has a potential role in the pathogenesis of DCM. In this review, we have summarized the role of different lipids in the progression of DCM that can be considered as potential biomarkers. Further, we have also explained the mechanistic pathways followed by the lipid molecules in disease progression along with the cardioprotective role of certain lipids. As the global epidemiological status of DCM is alarming, it is high time to define some disease-specific biomarkers with greater prognostic value. We are proposing an adaptation of a system lipidomics-based approach to profile DCM patients in order to achieve a better diagnosis and prognosis of the disease.
Collapse
Affiliation(s)
- Shubham Saha
- School of Biosciences and Bioengineering. IIT-Mandi, Mandi, India
- BioX Center, Indian Institute of Technology-Mandi, Mandi, India
| | - Praveen Singh
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Abhi Dutta
- School of Biosciences and Bioengineering. IIT-Mandi, Mandi, India
- BioX Center, Indian Institute of Technology-Mandi, Mandi, India
| | - Hiteshi Vaidya
- Department of Cardiology, Indira Gandhi Medical College & Hospital, Shimla, India
| | - Prakash Chand Negi
- Department of Cardiology, Indira Gandhi Medical College & Hospital, Shimla, India
| | - Shantanu Sengupta
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sandeep Seth
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering. IIT-Mandi, Mandi, India
- BioX Center, Indian Institute of Technology-Mandi, Mandi, India
| |
Collapse
|
9
|
Dhulkifle H, Sayed TS, Abunada HH, Abulola SM, Alhoshani A, Korashy HM, Maayah ZH. 6-Formylindolo(3,2-b)carbazole Dampens Inflammation and Reduces Endotoxin-Induced Kidney Injury via Nrf2 Activation. Chem Res Toxicol 2023; 36:552-560. [PMID: 36877625 DOI: 10.1021/acs.chemrestox.3c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Patients with sepsis are at a high risk of morbidity and mortality due to multiple organ injuries caused by pathological inflammation. Although sepsis is accompanied by multiple organ injuries, acute renal injury is a significant contributor to sepsis morbidity and mortality. Thus, dampening inflammation-induced renal injury may limit severe consequences of sepsis. As several studies have suggested that 6-formylindolo(3,2-b)carbazole (FICZ) is beneficial for treating various inflammatory diseases, we aimed to examine the potential protective effect of FICZ on the acute endotoxin-induced sepsis model of kidney injury. To test this, male C57Bl/6N mice were injected with FICZ (0.2 mg/kg) or vehicle 1 h prior to an injection of either lipopolysaccharides (LPS) (10 mg/kg), to induce sepsis, or phosphate-buffered saline for 24 h. Thereafter, gene expression of kidney injury and pro-inflammatory markers, circulating cytokines and chemokines, and kidney morphology were assessed. Our results show that FICZ reduced LPS-induced acute injury in kidneys from LPS-injected mice. Furthermore, we found that FICZ dampens both renal and systemic inflammation in our sepsis model. Mechanistically, our data indicated that FICZ significantly upregulates NAD(P)H quinone oxidoreductase 1 and heme oxygenase 1 via aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (Nrf2) in the kidneys to lessen inflammation and improve septic acute kidney injury. Overall, the data of our study show that FICZ possesses a beneficial reno-protective effect against sepsis-induced renal injury via dual activation of AhR/Nrf2.
Collapse
Affiliation(s)
- Hevna Dhulkifle
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Tahseen S Sayed
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Hanan H Abunada
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Sara M Abulola
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Ali Alhoshani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Zaid H Maayah
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| |
Collapse
|
10
|
ElKhatib MAW, Isse FA, El-Kadi AOS. Effect of inflammation on cytochrome P450-mediated arachidonic acid metabolism and the consequences on cardiac hypertrophy. Drug Metab Rev 2022; 55:50-74. [PMID: 36573379 DOI: 10.1080/03602532.2022.2162075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The incidence of heart failure (HF) is generally preceded by cardiac hypertrophy (CH), which is the enlargement of cardiac myocytes in response to stress. During CH, the metabolism of arachidonic acid (AA), which is present in the cell membrane phospholipids, is modulated. Metabolism of AA gives rise to hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs) via cytochrome P450 (CYP) ω-hydroxylases and CYP epoxygenases, respectively. A plethora of studies demonstrated the involvement of CYP-mediated AA metabolites in the pathogenesis of CH. Also, inflammation is known to be a characteristic hallmark of CH. In this review, our aim is to highlight the impact of inflammation on CYP-derived AA metabolites and CH. Inflammation is shown to modulate the expression of various CYP ω-hydroxylases and CYP epoxygenases and their respective metabolites in the heart. In general, HETEs such as 20-HETE and mid-chain HETEs are pro-inflammatory, while EETs are characterized by their anti-inflammatory and cardioprotective properties. Several mechanisms are implicated in inflammation-induced CH, including the modulation of NF-κB and MAPK. This review demonstrated the inflammatory modulation of cardiac CYPs and their metabolites in the context of CH and the anti-inflammatory strategies that can be employed in the treatment of CH and HF.
Collapse
Affiliation(s)
| | - Fadumo Ahmed Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
11
|
Zhou L, Jiang Y, Lin Z, Chen R, Niu Y, Kan H. Mechanistic insights into the health benefits of fish-oil supplementation against fine particulate matter air pollution: a randomized controlled trial. Environ Health 2022; 21:104. [PMID: 36309727 PMCID: PMC9617415 DOI: 10.1186/s12940-022-00908-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/03/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Dietary fish-oil supplementation might attenuate the associations between fine particulate matter (PM2.5) and subclinical biomarkers. However, the molecular mechanisms remain to be elucidated. This study aimed to explore the molecular mechanisms of fish-oil supplementation against the PM2.5-induced health effects. METHODS We conducted a randomized, double-blinded, and placebo-controlled trial among healthy college students in Shanghai, China, from September 2017 to January 2018. A total of 70 participants from the Fenglin campus of Fudan University were included. We randomly assigned participants to either supplementation of 2.5-gram fish oil (n = 35) or sunflower-seed oil (placebo) (n = 35) per day and conducted four rounds of health measurements in the last two months of the trial. As a post hoc exploratory study, the present untargeted metabolomics analysis used remaining blood samples collected in the previous trial and applied a Metabolome-Wide Association Study framework to compare the effects of PM2.5 on the metabolic profile between the sunflower-seed oil and fish oil groups. RESULTS A total of 65 participants completed the trial (34 of the fish oil group and 31 of the sunflower-seed oil group). On average, ambient PM2.5 concentration on the day of health measurements was 34.9 µg/m3 in the sunflower-seed oil group and 34.5 µg/m3 in the fish oil group, respectively. A total of 3833 metabolites were significantly associated with PM2.5 in the sunflower-seed oil group and 1757 in the fish oil group. Of these, 1752 metabolites showed significant between-group differences. The identified differential metabolites included arachidonic acid derivatives, omega-3 fatty acids, omega-6 fatty acids, and omega-9 fatty acids that were related to unsaturated fatty acid metabolism, which plays a role in the inflammatory responses. CONCLUSION This trial suggests fish-oil supplementation could mitigate the PM2.5-induced inflammatory responses via modulating fatty acid metabolism, providing biological plausibility for the health benefits of fish-oil supplementation against PM2.5 exposure. TRIAL REGISTRATION This study is registered at ClinicalTrails.gov (NCT03255187).
Collapse
Affiliation(s)
- Lu Zhou
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, 200030, Shanghai, China
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, 200030, Shanghai, China
| | - Zhijing Lin
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, 200030, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, 200030, Shanghai, China.
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Typhoon Institute/CMA, 200030, Shanghai, China.
- Department of Environmental Health, School of Public Health, Fudan University, 200032, Shanghai, China.
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, 200030, Shanghai, China.
- Department of Environmental Health, School of Public Health, Fudan University, 200032, Shanghai, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, 200030, Shanghai, China
| |
Collapse
|
12
|
Londoño-Berrío M, Pérez-Buitrago S, Ortiz-Trujillo IC, Hoyos-Palacio LM, Orozco LY, López L, Zárate-Triviño DG, Capobianco JA, Mena-Giraldo P. Cytotoxicity and Genotoxicity of Azobenzene-Based Polymeric Nanocarriers for Phototriggered Drug Release and Biomedical Applications. Polymers (Basel) 2022; 14:polym14153119. [PMID: 35956634 PMCID: PMC9370599 DOI: 10.3390/polym14153119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/18/2022] Open
Abstract
Drug nanoencapsulation increases the availability, pharmacokinetics, and concentration efficiency for therapeutic regimes. Azobenzene light-responsive molecules experience a hydrophobicity change from a polar to an apolar tendency by trans–cis photoisomerization upon UV irradiation. Polymeric photoresponse nanoparticles (PPNPs) based on azobenzene compounds and biopolymers such as chitosan derivatives show prospects of photodelivering drugs into cells with accelerated kinetics, enhancing their therapeutic effect. PPNP biocompatibility studies detect the safe concentrations for their administration and reduce the chance of side effects, improving the effectiveness of a potential treatment. Here, we report on a PPNP biocompatibility evaluation of viability and the first genotoxicity study of azobenzene-based PPNPs. Cell line models from human ventricular cardiomyocytes (RL14), as well as mouse fibroblasts (NIH3T3) as proof of concept, were exposed to different concentrations of azobenzene-based PPNPs and their precursors to evaluate the consequences on mitochondrial metabolism (MTT assay), the number of viable cells (trypan blue exclusion test), and deoxyribonucleic acid (DNA) damage (comet assay). Lethal concentrations of 50 (LC50) of the PPNPs and their precursors were higher than the required drug release and synthesis concentrations. The PPNPs affected the cell membrane at concentrations higher than 2 mg/mL, and lower concentrations exhibited lesser damage to cellular genetic material. An azobenzene derivative functionalized with a biopolymer to assemble PPNPs demonstrated biocompatibility with the evaluated cell lines. The PPNPs encapsulated Nile red and dofetilide separately as model and antiarrhythmic drugs, respectively, and delivered upon UV irradiation, proving the phototriggered drug release concept. Biocompatible PPNPs are a promising technology for fast drug release with high cell interaction opening new opportunities for azobenzene biomedical applications.
Collapse
Affiliation(s)
- Maritza Londoño-Berrío
- Grupo de Investigación Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin 050036, Colombia; (M.L.-B.); (I.C.O.-T.); (L.M.H.-P.); (L.Y.O.)
| | - Sandra Pérez-Buitrago
- Academic Department of Engineering, Pontificia Universidad Católica de Perú, San Miguel 15088, Peru;
| | - Isabel Cristina Ortiz-Trujillo
- Grupo de Investigación Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin 050036, Colombia; (M.L.-B.); (I.C.O.-T.); (L.M.H.-P.); (L.Y.O.)
| | - Lina M. Hoyos-Palacio
- Grupo de Investigación Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin 050036, Colombia; (M.L.-B.); (I.C.O.-T.); (L.M.H.-P.); (L.Y.O.)
| | - Luz Yaneth Orozco
- Grupo de Investigación Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin 050036, Colombia; (M.L.-B.); (I.C.O.-T.); (L.M.H.-P.); (L.Y.O.)
| | - Lucelly López
- Grupo de Investigación en Salud Pública, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin 050036, Colombia;
| | - Diana G. Zárate-Triviño
- Immunology and Virology Laboratory, Universidad Autónoma de Nuevo León, Monterrey 64450, Mexico;
| | - John A. Capobianco
- Department of Chemistry and Biochemistry, Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada;
| | - Pedro Mena-Giraldo
- Department of Chemistry and Biochemistry, Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada;
- Correspondence:
| |
Collapse
|
13
|
Li X, Tan W, Zheng S, Zhang J, Zhu C, Cai C, Chen H, Yang C, Kang L, Pan Z, Pyle WG, Backx PH, Zou Y, Yang FH. Cardioprotective Effects of n-3 Polyunsaturated Fatty Acids: Orchestration of mRNA Expression, Protein Phosphorylation, and Lipid Metabolism in Pressure Overload Hearts. Front Cardiovasc Med 2022; 8:788270. [PMID: 35047577 PMCID: PMC8761763 DOI: 10.3389/fcvm.2021.788270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Pressure overload can result in dilated cardiomyopathy. The beneficial effects of n-3 polyunsaturated fatty acids (n-3 PUFAs) on heart disorders have been widely recognized. However, the molecular mechanisms underlying their protective effects against cardiomyopathy remain unclear. Methods: Pressure overload in mice induced by 8 weeks of transverse aortic constriction was used to induce dilated cardiomyopathy. A transgenic fat-1 mouse model carrying the n-3 fatty acid desaturase gene fat-1 gene from Caenorhabditis elegans was used to evaluate the mechanism of n-3 PUFAs in this disease. Echocardiography, transmission electron microscopy, and histopathological analyses were used to evaluate the structural integrity and function in pressure overloaded fat-1 hearts. mRNA sequencing, label-free phosphoprotein quantification, lipidomics, Western blotting, RT-qPCR, and ATP detection were performed to examine the effects of n-3 PUFAs in the heart. Results: Compared with wild-type hearts, left ventricular ejection fraction was significantly improved (C57BL/6J [32%] vs. fat-1 [53%]), while the internal diameters of the left ventricle at systole and diastole were reduced in the fat-1 pressure overload hearts. mRNA expression, protein phosphorylation and lipid metabolism were remodeled by pressure overload in wild-type and fat-1 hearts. Specifically, elevation of endogenous n-3 PUFAs maintained the phosphorylation states of proteins in the subcellular compartments of sarcomeres, cytoplasm, membranes, sarcoplasmic reticulum, and mitochondria. Moreover, transcriptomic analysis predicted that endogenous n-3 PUFAs restored mitochondrial respiratory chain function that was lost in the dilated hearts, and this was supported by reductions in detrimental oxylipins and protection of mitochondrial structure, oxidative phosphorylation, and ATP production. Conclusions: Endogenous n-3 PUFAs prevents dilated cardiomyopathy via orchestrating gene expression, protein phosphorylation, and lipid metabolism. This is the first study provides mechanistic insights into the cardioprotective effects of n-3 PUFAs in dilated cardiomyopathy through integrated multi-omics data analysis.
Collapse
Affiliation(s)
- Xiang Li
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Weijiang Tan
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shuang Zheng
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Junjie Zhang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Caiyi Zhu
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Chun Cai
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Honghua Chen
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Chenqi Yang
- Faculty of Arts and Sciences, University of Toronto, Toronto, ON, Canada
| | - Le Kang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhanhong Pan
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - W Glen Pyle
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Peter H Backx
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Biology, York University, Toronto, ON, Canada
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Feng Hua Yang
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| |
Collapse
|
14
|
Ambaw YA, Wong T, Chong R, Ah H, Ji S, Raida M, Torta F, Wenk MR, Tong L. Change of tear lipid mediators in a post-trabeculectomy cohort. Ocul Surf 2020; 18:565-574. [PMID: 32622916 DOI: 10.1016/j.jtos.2020.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/02/2020] [Accepted: 06/06/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE Trabeculectomy surgery could affect ocular surface disease (OSD) in several ways, through cessation of long term glaucoma eyedrops, exposure to operative mitomycin C and post-operative eyedrops including corticosteroids and aminoglycosides and reduction in eyelid hygiene measures. Previously we showed the relevance of tear lipid mediators (also referred oxylipins) in OSD. Here, we aim to evaluate changes of these lipids in a post-trabeculectomy cohort. METHODS Patients undergoing trabeculectomy were prospectively evaluated and had tear collected using Schirmer's strips, preoperatively and postoperatively at 0.5, 1.0 and 3.0 years. Lipid mediators were analyzed using liquid chromatography mass spectrometry. RESULTS The normalized concentrations of 40 lipid mediators were between 0.1 and 8.0 ng/mL, whereas docosahexaenoic acid (DHA), Arachidonic acid (AA) and eicosapentaenoic acid (EPA) ranged up to a few hundred ng/mL. The concentrations of lipid mediators, except DHA, EPA, and thromboxane (TXB1), showed reduction after surgery. At the last visit, these lipids were significantly reduced by 1/3 to ½, compared to pre-operative values: 8-HETE, 15-HETE, 15-oxoETE, 11-HDoHE, 17-HDoHE, and 20-OH-LTB4. To examine collective changes of lipids, clustering analysis revealed 10 groups of lipids consistent with known metabolic pathways. RESULTS An increase in the level of 2,3-dinor-8-isoPGF2α between 0 and 0.5 year was associated with inferior corneal staining at 0.5 year. In 14 patients who required post-operative needling, six lipid mediators were found to be significantly higher at 1.0 year compared to non-needled patients. CONCLUSIONS In this 3-years study, trabeculectomy reduced the tear level of pro-inflammatory lipid mediators. Patients who required needling of the bleb to maintain surgical success may have a chronic underlying inflammatory process associated with fibrosis.
Collapse
Affiliation(s)
- Yohannes Abere Ambaw
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore; Department of Molecular Metabolism, Harvard T.H Chan School of Public Health, Harvard Univeristy, USA.
| | - Tina Wong
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Cornea and External Eye Disease, Singapore National Eye Center, Singapore; Ocular Surface Research Group, Singapore Eye Research Institute, Singapore; Eye-Academic Clinical Program, Duke-NUS Medical School, Singapore; School of Material Science and Engineering, Nanyang Technological University, Singapore.
| | - Rachel Chong
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Glaucoma, Singapore National Eye Center, Singapore
| | - Hou Ah
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Ocular Surface Research Group, Singapore Eye Research Institute, Singapore
| | - Shanshan Ji
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | - Manfred Raida
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | - Federico Torta
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Louis Tong
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Cornea and External Eye Disease, Singapore National Eye Center, Singapore; Ocular Surface Research Group, Singapore Eye Research Institute, Singapore; Eye-Academic Clinical Program, Duke-NUS Medical School, Singapore.
| |
Collapse
|
15
|
Resveratrol attenuates angiotensin II-induced cellular hypertrophy through the inhibition of CYP1B1 and the cardiotoxic mid-chain HETE metabolites. Mol Cell Biochem 2020; 471:165-176. [PMID: 32533462 PMCID: PMC7291180 DOI: 10.1007/s11010-020-03777-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023]
Abstract
Several reports demonstrated the direct contribution of cytochrome P450 1B1 (CYP1B1) enzyme and its associated cardiotoxic mid-chain, hydroxyeicosatetraenoic acid (HETEs) metabolites in the development of cardiac hypertrophy. Resveratrol is commercially available polyphenol that exerts beneficial effects in wide array of cardiovascular diseases including cardiac hypertrophy, myocardial infarction and heart failure. Nevertheless, the underlying mechanisms responsible for these effects are not fully elucidated. Since resveratrol is a well-known CYP1B1 inhibitor, the purpose of this study is to test whether resveratrol attenuates angiotensin II (Ang II)-induced cellular hypertrophy through inhibition of CYP1B1/mid-chain HETEs mechanism. RL-14 and H9c2 cells were treated with vehicle or 10 μM Ang II in the absence and presence of 2, 10 or 50 μM resveratrol for 24 h. Thereafter, the level of mid-chain HETEs was determined using liquid chromatography–mass spectrometry (LC/MS). Hypertrophic markers and CYP1B1 gene expression and protein levels were measured using real-time PCR and Western blot analysis, respectively. Our results demonstrated that resveratrol, at concentrations of 10 and 50 μM, was able to attenuate Ang-II-induced cellular hypertrophy as evidenced by substantial inhibition of hypertrophic markers, β-myosin heavy chain (MHC)/α-MHC and atrial natriuretic peptide. Ang II significantly induced the protein expression of CYP1B1 and increased the metabolite formation rate of its associated mid-chain HETEs. Interestingly, the protective effect of resveratrol was associated with a significant decrease of CYP1B1 protein expression and mid-chain HETEs. Our results provided the first evidence that resveratrol protects against Ang II-induced cellular hypertrophy, at least in part, through CYP1B1/mid-chain HETEs-dependent mechanism.
Collapse
|
16
|
Fluconazole Represses Cytochrome P450 1B1 and Its Associated Arachidonic Acid Metabolites in the Heart and Protects Against Angiotensin II-Induced Cardiac Hypertrophy. J Pharm Sci 2020; 109:2321-2335. [PMID: 32240690 DOI: 10.1016/j.xphs.2020.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022]
Abstract
Cytochrome P450 1B1 (CYP1B1) has been reported to have a major role in metabolizing arachidonic acid (AA) into cardiotoxic metabolites, mid-chain hydroxyeicosatetraenoic acids (HETEs). Recently, we have shown that fluconazole decreases the level of mid-chain HETEs in human liver microsomes. Therefore, the objectives of this study were to investigate the effect of fluconazole on CYP1B1 mediated mid-chain HETEs and to explore its potential protective effect against angiotensin II- (Ang II)-induced cellular hypertrophy. To do this, Sprague Dawley rats were injected intraperitoneally with a single dose of fluconazole (20 mg/kg) for 24 h. Also, H9c2 and RL-14 cells were treated with 10 μM Ang II in the presence and absence of 50 μM fluconazole for 24 h. Our results demonstrated that treatment of rats with fluconazole significantly decreased the expression of CYP1B1 enzyme and the level of mid-chain HETEs in the heart. Furthermore, fluconazole was able to attenuate Ang-II-induced cellular hypertrophy as evidenced by a significant down-regulation of hypertrophic markers; β-myosin heavy chain (MHC)/α-MHC and brain natriuretic peptide (BNP) as well as cell surface area. In conclusion, our findings indicate that fluconazole protects against Ang II-induced cellular hypertrophy by repressing CYP1B1 and its associated mid-chain HETEs.
Collapse
|
17
|
Orozco P, Montoya Y, Bustamante J. Development of endomyocardial fibrosis model using a cell patterning technique: In vitro interaction of cell coculture of 3T3 fibroblasts and RL-14 cardiomyocytes. PLoS One 2020; 15:e0229158. [PMID: 32092082 PMCID: PMC7039516 DOI: 10.1371/journal.pone.0229158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/30/2020] [Indexed: 01/07/2023] Open
Abstract
Cardiac functions can be altered by changes in the microstructure of the heart, i.e., remodeling of the cardiac tissue, which may activate pathologies such as hypertrophy, dilation, or cardiac fibrosis. Cardiac fibrosis can develop due to an excessive deposition of extracellular matrix proteins, which are products of the activation of fibroblasts. In this context, the anatomical-histological change may interfere with the functioning of the cardiac tissue, which requires specialized cells for its operation. The purpose of the present study was to determine the cellular interactions and morphological changes in cocultures of 3T3 fibroblasts and RL-14 cardiomyocytes via the generation of a platform an in vitro model. For this purpose, a platform emulating the biological characteristics of endomyocardial fibrosis was generated using a cell patterning technique to study morphological cellular changes in compact and irregular patterns of fibrosis. It was found that cellular patterns emulating the geometrical distributions of endomyocardial fibrosis generated morphological changes after interaction of the RL-14 cardiomyocytes with the 3T3 fibroblasts. Through this study, it was possible to evaluate biological characteristics such as cell proliferation, adhesion, and spatial distribution, which are directly related to the type of emulated endomyocardial fibrosis. This research concluded that fibroblasts inhibited the proliferation of cardiomyocytes via their interaction with specific microarchitectures. This behavior is consistent with the histopathological distribution of cardiac fibrosis; therefore, the platform developed in this research could be useful for the in vitro assessment of cellular microdomains. This would allow for the experimental determination of interactions with drugs, substrates, or biomaterials within the engineering of cardiac tissues.
Collapse
Affiliation(s)
- Paola Orozco
- Centro de Bioingeniería, Grupo de Dinámica Cardiovascular, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Yuliet Montoya
- Centro de Bioingeniería, Grupo de Dinámica Cardiovascular, Universidad Pontificia Bolivariana, Medellín, Colombia
- Comité de Trabajo de Bioingeniería Cardiovascular, Sociedad Colombiana de Cardiología y Cirugía Cardiovascular, Bogotá, Colombia
| | - John Bustamante
- Centro de Bioingeniería, Grupo de Dinámica Cardiovascular, Universidad Pontificia Bolivariana, Medellín, Colombia
- Comité de Trabajo de Bioingeniería Cardiovascular, Sociedad Colombiana de Cardiología y Cirugía Cardiovascular, Bogotá, Colombia
| |
Collapse
|
18
|
Photosensitive nanocarriers for specific delivery of cargo into cells. Sci Rep 2020; 10:2110. [PMID: 32034197 PMCID: PMC7005817 DOI: 10.1038/s41598-020-58865-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/19/2020] [Indexed: 12/11/2022] Open
Abstract
Nanoencapsulation is a rapidly expanding technology to enclose cargo into inert material at the nanoscale size, which protects cargo from degradation, improves bioavailability and allows for controlled release. Encapsulation of drugs into functional nanocarriers enhances their specificity, targeting ability, efficiency, and effectiveness. Functionality may come from cell targeting biomolecules that direct nanocarriers to a specific cell or tissue. Delivery is usually mediated by diffusion and erosion mechanisms, but in some cases, this is not sufficient to reach the expected therapeutic effects. This work reports on the development of a new photoresponsive polymeric nanocarrier (PNc)-based nanobioconjugate (NBc) for specific photo-delivery of cargo into target cells. We readily synthesized the PNcs by modification of chitosan with ultraviolet (UV)-photosensitive azobenzene molecules, with Nile red and dofetilide as cargo models to prove the encapsulation/release concept. The PNcs were further functionalized with the cardiac targeting transmembrane peptide and efficiently internalized into cardiomyocytes, as a cell line model. Intracellular cargo-release was dramatically accelerated upon a very short UV-light irradiation time. Delivering cargo in a time-space controlled fashion by means of NBcs is a promising strategy to increase the intracellular cargo concentration, to decrease dose and cargo side effects, thereby improving the effectiveness of a therapeutic regime.
Collapse
|
19
|
Role of Cytochrome p450 and Soluble Epoxide Hydrolase Enzymes and Their Associated Metabolites in the Pathogenesis of Diabetic Cardiomyopathy. J Cardiovasc Pharmacol 2019; 74:235-245. [DOI: 10.1097/fjc.0000000000000707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Martinez JA, Yang J, Wertheim BC, Roe DJ, Schriewer A, Lance P, Alberts DS, Hammock BD, Thompson PA. Celecoxib use and circulating oxylipins in a colon polyp prevention trial. PLoS One 2018; 13:e0196398. [PMID: 29698447 PMCID: PMC5919576 DOI: 10.1371/journal.pone.0196398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 04/06/2018] [Indexed: 12/25/2022] Open
Abstract
Drugs that inhibit cyclooxygenase (COX)-2 and the metabolism of arachidonic acid (ARA) to prostaglandin E2 are potent anti-inflammatory agents used widely in the treatment of joint and muscle pain. Despite their benefits, daily use of these drugs has been associated with hypertension, cardiovascular and gastrointestinal toxicities. It is now recognized that ARA is metabolized to a number of bioactive oxygenated lipids (oxylipins) by cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP450) enzymes. Currently, the contribution of individual variability in ARA metabolism in response to the COX-2 inhibitors and potential adverse effects remains poorly understood. Using patient samples from the randomized, placebo-controlled phase III selenium/celecoxib (Sel/Cel) trial for the prevention of colorectal adenomatous polyps, we analyzed plasma concentrations of 74 oxylipins in a subset of participants who received celecoxib (n = 90) or placebo (n = 95). We assessed the effect of celecoxib (with and without low dose aspirin) on circulating oxylipins and systolic blood pressure (SBP). Individual CYP450- and LOX- but not COX-derived metabolites were higher with celecoxib than placebo (P<0.05) and differences were greater among non-aspirin users. LOX derived 5- and 8-HETE were elevated with celecoxib and positively associated with systolic blood pressure (P = 0.011 and P = 0.019 respectively). 20-HETE, a prohypertensive androgen-sensitive CYP450 metabolite was higher with celecoxib absent aspirin and was positively associated with SBP in men (P = 0.040) but not women. Independent of celecoxib or aspirin, LOX derived metabolites from ARA were strongly associated with SBP including 5- and 8-HETE. These findings support oxylipins, particularly the ARA LOX-derived, in blood pressure control and indicate that pharmacologic inhibition of COX-2 has effects on LOX and CYP450 ARA metabolism that contribute to hypertension in some patients.
Collapse
Affiliation(s)
- Jessica A. Martinez
- University of Arizona Cancer Center, Tucson, Arizona, United States of America
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| | - Jun Yang
- Department of Entomology, University of California Davis, Sacramento, California, United States of America
- UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California, United States of America
| | - Betsy C. Wertheim
- University of Arizona Cancer Center, Tucson, Arizona, United States of America
| | - Denise J. Roe
- University of Arizona Cancer Center, Tucson, Arizona, United States of America
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, United States of America
| | - Alexander Schriewer
- Department of Entomology, University of California Davis, Sacramento, California, United States of America
- UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California, United States of America
| | - Peter Lance
- University of Arizona Cancer Center, Tucson, Arizona, United States of America
| | - David S. Alberts
- University of Arizona Cancer Center, Tucson, Arizona, United States of America
| | - Bruce D. Hammock
- Department of Entomology, University of California Davis, Sacramento, California, United States of America
- UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California, United States of America
| | - Patricia A. Thompson
- Department of Pathology, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
21
|
Abstract
Recent data demonstrated the role of CYP1B1 in cardiovascular disease. It was, therefore, necessary to examine whether the inhibition of CYP1B1 and hence inhibiting the formation of its metabolites, using 2,4,3',5'-tetramethoxystilbene (TMS), would have a cardioprotective effect against angiotensin II (Ang II)-induced cardiac hypertrophy. For this purpose, male Sprague Dawley rats were treated with Ang II with or without TMS (300 μg/kg every third day i.p.). Thereafter, cardiac hypertrophy and the formation of mid-chain HETEs and arachidonic acid were assessed. In vitro, RL-14 cells were treated with Ang II (10 μM) in the presence and absence of TMS (0.5 μM). Then, reactive oxygen species, mitogen-activated protein kinase phosphorylation levels, and nuclear factor-kappa B-binding activity were determined. Our results demonstrated that TMS protects against Ang II-induced cardiac hypertrophy as indicated by the improvement in cardiac functions shown by the echocardiography as well as by reversing the increase in heart weight to tibial length ratio caused by Ang II. In addition, the cardioprotective effect of TMS was associated with a significant decrease in cardiac mid-chain HETEs levels. Mechanistically, TMS inhibited reactive oxygen species formation, the phosphorylation of ERK1/2, p38 mitogen-activated protein kinase, and the binding of p65 NF-κB.
Collapse
|
22
|
Maayah ZH, Levasseur J, Siva Piragasam R, Abdelhamid G, Dyck JRB, Fahlman RP, Siraki AG, El-Kadi AOS. 2-Methoxyestradiol protects against pressure overload-induced left ventricular hypertrophy. Sci Rep 2018; 8:2780. [PMID: 29426916 PMCID: PMC5807528 DOI: 10.1038/s41598-018-20613-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/22/2018] [Indexed: 12/21/2022] Open
Abstract
Numerous experimental studies have supported the evidence that 2-methoxyestradiol (2 ME) is a biologically active metabolite that mediates multiple effects on the cardiovascular system, largely independent of the estrogen receptor. 2 ME is a major cytochrome P450 1B1 (CYP1B1) metabolite and has been reported to have vasoprotective and anti-inflammatory actions. However, whether 2 ME would prevent cardiac hypertrophy induced by abdominal aortic constriction (AAC) has not been investigated yet. Therefore, the overall objectives of the present study were to elucidate the potential antihypertrophic effect of 2 ME and explore the mechanism(s) involved. Our results showed that 2 ME significantly inhibited AAC-induced left ventricular hypertrophy using echocardiography. The antihypertrophic effect of 2 ME was associated with a significant inhibition of CYP1B1 and mid-chain hydroxyeicosatetraenoic acids. Based on proteomics data, the protective effect of 2 ME is linked to the induction of antioxidant and anti-inflammatory proteins in addition to the modulation of proteins involved in myocardial energy metabolism. In vitro, 2 ME has shown a direct antihypertrophic effect through mitogen-activated protein kinases- and nuclear factor-κB-dependent mechanisms. The present work shows a strong evidence that 2 ME protects against left ventricular hypertrophy. Our data suggest the potential of repurposing 2 ME as a selective CYP1B1 inhibitor for the treatment of heart failure.
Collapse
Affiliation(s)
- Zaid H Maayah
- Faculty of Pharmacy & Pharmaceutical Sciences, Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Jody Levasseur
- Cardiovascular Research Centre, Department of Pediatrics, Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ramanaguru Siva Piragasam
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Ghada Abdelhamid
- Faculty of Pharmacy & Pharmaceutical Sciences, Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Richard P Fahlman
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada.,Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Arno G Siraki
- Faculty of Pharmacy & Pharmaceutical Sciences, Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy & Pharmaceutical Sciences, Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, T6G 2E1, Canada.
| |
Collapse
|
23
|
Maayah ZH, Abdelhamid G, Elshenawy OH, El-Sherbeni AA, Althurwi HN, McGinn E, Dawood D, Alammari AH, El-Kadi AOS. The Role of Soluble Epoxide Hydrolase Enzyme on Daunorubicin-Mediated Cardiotoxicity. Cardiovasc Toxicol 2017; 18:268-283. [DOI: 10.1007/s12012-017-9437-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Zhang L, Wang W, Zhu B, Wang X. Regulatory Roles of Mitochondrial Ribosome in Lung Diseases and Single Cell Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1038:183-200. [PMID: 29178077 DOI: 10.1007/978-981-10-6674-0_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mitochondria have the most vital processes in eukaryotic cells to produce ATP composed of polypeptides that are produced via ribosomes, as oxidative phosphorylation. Initially, studies regarding human mitochondrial ribosomes were performed in the model system, bovine mitochondrial ribosome, to investigate how ribosomes are biosynthesized and evolved as well as what their structure and function are. Advances in X-ray crystallography have led to dramatic progresses in structural studies of the ribosome. In recent years, there has been a growing interest in the properties of the mitochondrial ribosome. Although one of its main functions is the production of ATP, it was also linked to multiple diseases. A key area that remains unexplored and requires investigation and exploration is how mitochondrial ribosomal RNA (mt-rRNA) variations can affect the mitochondrial ribosomes in developing disease. This review summarizes the structure, elements, functions, and regulatory roles in associated diseases. With the continuous development of technology, studies on the mechanism of mitochondrial ribosome related diseases are crucial, in order to identify methods of prevention and treatment of these disorders.
Collapse
Affiliation(s)
- Linlin Zhang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China
| | - William Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China
| | - Bijun Zhu
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China.
| |
Collapse
|
25
|
Hanif A, Edin ML, Zeldin DC, Morisseau C, Falck JR, Nayeem MA. Vascular endothelial overexpression of human CYP2J2 (Tie2-CYP2J2 Tr) modulates cardiac oxylipin profiles and enhances coronary reactive hyperemia in mice. PLoS One 2017; 12:e0174137. [PMID: 28328948 PMCID: PMC5362206 DOI: 10.1371/journal.pone.0174137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/03/2017] [Indexed: 01/22/2023] Open
Abstract
Arachidonic acid is metabolized to epoxyeicosatrienoic acids (EETs) by cytochrome (CYP) P450 epoxygenases, and to ω-terminal hydroxyeicosatetraenoic acids (HETEs) by ω-hydroxylases. EETs and HETEs often have opposite biologic effects; EETs are vasodilatory and protect against ischemia/reperfusion injury, while ω-terminal HETEs are vasoconstrictive and cause vascular dysfunction. Other oxylipins, such as epoxyoctadecaenoic acids (EpOMEs), hydroxyoctadecadienoic acids (HODEs), and prostanoids also have varied vascular effects. Post-ischemic vasodilation in the heart, known as coronary reactive hyperemia (CRH), protects against potential damage to the heart muscle caused by ischemia. The relationship among CRH response to ischemia, in mice with altered levels of CYP2J epoxygenases has not yet been investigated. Therefore, we evaluated the effect of endothelial overexpression of the human cytochrome P450 epoxygenase CYP2J2 in mice (Tie2-CYP2J2 Tr) on oxylipin profiles and CRH. Additionally, we evaluated the effect of pharmacologic inhibition of CYP-epoxygenases and inhibition of ω-hydroxylases on CRH. We hypothesized that CRH would be enhanced in isolated mouse hearts with vascular endothelial overexpression of human CYP2J2 through modulation of oxylipin profiles. Similarly, we expected that inhibition of CYP-epoxygenases would reduce CRH, whereas inhibition of ω-hydroxylases would enhance CRH. Compared to WT mice, Tie2-CYP2J2 Tr mice had enhanced CRH, including repayment volume, repayment duration, and repayment/debt ratio (P < 0.05). Similarly, inhibition of ω-hydroxylases increased repayment volume and repayment duration, in Tie2-CYP2J2 Tr compared to WT mice (P < 0.05). Endothelial overexpression of CYP2J2 significantly changed oxylipin profiles, including increased EETs (P < 0.05), increased EpOMEs (P < 0.05), and decreased 8-iso-PGF2α (P < 0.05). Inhibition of CYP epoxygenases with MS-PPOH attenuated CRH (P < 0.05). Ischemia caused a decrease in mid-chain HETEs (5-, 11-, 12-, 15-HETEs P < 0.05) and HODEs (P < 0.05). These data demonstrate that vascular endothelial overexpression of CYP2J2, through changing the oxylipin profiles, enhances CRH. Inhibition of CYP epoxygenases decreases CRH, whereas inhibition of ω-hydroxylases enhances CRH.
Collapse
Affiliation(s)
- Ahmad Hanif
- Basic Pharmaceutical Sciences, School of Pharmacy, Center for Basic and Translational Stroke Research. West Virginia University, Morgantown, West Virginia, United States of America
| | - Matthew L. Edin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, North Carolina, United States of America
| | - Darryl C. Zeldin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, North Carolina, United States of America
| | | | - John R. Falck
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mohammed A. Nayeem
- Basic Pharmaceutical Sciences, School of Pharmacy, Center for Basic and Translational Stroke Research. West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
26
|
The role of cytochrome P450 1B1 and its associated mid-chain hydroxyeicosatetraenoic acid metabolites in the development of cardiac hypertrophy induced by isoproterenol. Mol Cell Biochem 2017; 429:151-165. [DOI: 10.1007/s11010-017-2943-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
|
27
|
Pham PH, Vo NTK, Tan EJH, Russell S, Jones G, Lumsden JS, Bols NC. Development of an Atlantic salmon heart endothelial cell line (ASHe) that responds to lysophosphatidic acid (LPA). In Vitro Cell Dev Biol Anim 2016; 53:20-32. [PMID: 27586265 DOI: 10.1007/s11626-016-0077-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 07/22/2016] [Indexed: 12/16/2022]
Abstract
As diseases and abnormalities of the heart can interfere with the aquaculture of Atlantic salmon, the heart was investigated as a source of cell lines that could be used to study the cellular basis of these conditions. An Atlantic salmon heart endothelial cell line, ASHe, was developed and characterized for growth properties, endothelial cell characteristics, and responsiveness to lysophosphatidic acid (LPA). AHSe cells stained negative for senescence associated ß-galactosidase and grew well in 10 and 20% FBS/L15 at high cell density, but not in L15 medium supplemented with calf serum. It displayed many endothelial cell-like characteristics including a cobblestone morphology, capillary-like structures formation on Matrigel, and expression of von Willebrand factor and endothelial cell-related tight junction proteins ZO-1, claudin 3, and claudin 5. ASHe cells responded to the cardiovascular modulator, LPA, in two contrasting ways. LPA at 5 and 25 μM inhibited the ability of ASHe cells to heal a wound but stimulated their proliferation, especially as evaluated by colony formation in low-density cultures. The enhancement of proliferation by LPA parallels what has been observed previously in mammalian endothelial cell cultures exposed to LPA, whereas the LPA slowing of ASHe cell migration contrasted with the LPA-enhanced migration of some mammalian cells. Therefore, this cell line is a potentially useful model for future comparative studies on piscine and mammalian cardiovascular cell biology and for studies on diseases of Atlantic salmon in aquaculture.
Collapse
Affiliation(s)
- Phuc H Pham
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Nguyen T K Vo
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, Canada
| | | | - Spencer Russell
- Department of Fisheries and Aquaculture, Vancouver Island University, Nanaimo, BC, Canada
| | | | - John S Lumsden
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
28
|
Maayah ZH, Althurwi HN, Abdelhamid G, Lesyk G, Jurasz P, El-Kadi AO. CYP1B1 inhibition attenuates doxorubicin-induced cardiotoxicity through a mid-chain HETEs-dependent mechanism. Pharmacol Res 2016; 105:28-43. [DOI: 10.1016/j.phrs.2015.12.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/01/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022]
|