1
|
Finseth TT, Smith B, Van Steenis AL, Glahn DC, Johnson M, Ruttle P, Shirtcliff BA, Shirtcliff EA. When virtual reality becomes psychoneuroendocrine reality: A stress(or) review. Psychoneuroendocrinology 2024; 166:107061. [PMID: 38701607 DOI: 10.1016/j.psyneuen.2024.107061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
This review article was awarded the Dirk Hellhammer award from ISPNE in 2023. It explores the dynamic relationship between stressors and stress from a historical view as well as a vision towards the future of stress research via virtual reality (VR). We introduce the concept of a "syncytium," a permeable boundary that blurs the distinction between stress and stressor, in order to understand why the field of stress biology continues to inadequately measure stress alone as a proxy for the force of external stressors. Using Virtual Reality (VR) as an illustrative example to explicate the black box of stressors, we examine the distinction between 'immersion' and 'presence' as analogous terms for stressor and stress, respectively. We argue that the conventional psychological approaches to stress measurement and appraisal theory unfortunately fall short in quantifying the force of the stressor, leading to reverse causality fallacies. Further, the concept of affordances is introduced as an ecological or holistic tool to measure and design a stressor's force, bridging the gap between the external environment and an individual's physiological response to stress. Affordances also serve to ameliorate shortcomings in stress appraisal by integrating ecological interdependencies. By combining VR and psychobiological measures, this paper aims to unravel the complexity of the stressor-stress syncytium, highlighting the necessity of assessing both the internal and external facets to gain a holistic understanding of stress physiology and shift away from reverse causality reasoning. We find that the utility of VR extends beyond presence to include affordance-based measures of immersion, which can effectively model stressor force. Future research should prioritize the development of tools that can measure both immersion and presence, thereby providing a more comprehensive understanding of how external stressors interact with individual psychological states.
Collapse
Affiliation(s)
| | - Brandon Smith
- Center for Translational Neuroscience, University of Oregon, USA
| | | | - David C Glahn
- Psychiatry and Behavioral Sciences, Boston Children's Hospital and Harvard Medical School, USA
| | - Megan Johnson
- Center for Translational Neuroscience, University of Oregon, USA
| | - Paula Ruttle
- Center for Translational Neuroscience, University of Oregon, USA
| | | | | |
Collapse
|
2
|
Girão M, Stilwell G, Azevedo P, Carreira LM. The Influence of Noise Level on the Stress Response of Hospitalized Cats. Vet Sci 2024; 11:173. [PMID: 38668440 PMCID: PMC11054225 DOI: 10.3390/vetsci11040173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
The study aimed to investigate the impact of noise levels in the hospital environment on the stress experienced by hospitalized cats undergoing elective ovariohysterectomy surgery. A total of 33 domestic female cats were included in the study, divided into four groups: a control group (CG) and three experimental groups based on ward noise levels: G1 (Quiet, <60 dB), G2 (Medium, between 60 and 85 dB), and G3 (Noisy, >85 dB). Behavioral assessments, respiratory rate (RR), and plasma cortisol levels ([Cort]p) were measured as indicators of stress. A composite measure of stress, termed the final stress value (FSV), was calculated by summing scores across various behavioral categories. Data collection occurred at three time points: immediately following surgery (T1), and at 2 h (T2) and 3 h (T3) post-surgery. FSV and RR were assessed at all three time points (T1, T2, and T3), while [Cort]p levels were measured at T1 and T3. The study observed that the median values of FSV, RR, and [Cort]p tended to increase with both higher noise levels and longer exposure durations to noise. Significant differences in RR were found between group pairs G1G2 at T1 (|D| = 0.63 < cut-off = 0.98), and G2G3 at T2 (|D| = 0.69 < cut-off = 0.97). Regarding [Cort]p, significant differences were noted between the CGG1 group pair at T0 (p < 0.01), and T3 (p = 0.03). Furthermore, an excellent Spearman correlation coefficient (rho = 0.91) was found between FSV and RR, indicating that RR can serve as an effective tool for assessing stress levels in cats. The findings of this study provide valuable insights into the welfare of cats in a hospital environment and support the scientific validity of existing recommendations aimed at improving their well-being. Specifically, the study underscores the importance of minimizing noise levels in hospitals as a means to reduce stress in cats. This conclusion aligns with existing guidelines and recommendations for enhancing the welfare of hospitalized cats.
Collapse
Affiliation(s)
- Marisa Girão
- Department of Clinics—Surgery, Faculty of Veterinary Medicine, University of Lisbon (FMV-ULisboa), 1300 Lisbon, Portugal; (M.G.); (G.S.)
| | - George Stilwell
- Department of Clinics—Surgery, Faculty of Veterinary Medicine, University of Lisbon (FMV-ULisboa), 1300 Lisbon, Portugal; (M.G.); (G.S.)
- Centre for Interdisciplinary Research in Animal Health (CIISA), University of Lisbon (FMV-ULisboa), 1300 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300 Lisbon, Portugal
| | - Pedro Azevedo
- Anjos of Assis Veterinary Medicine Centre (CMVAA), 2830 Barreiro, Portugal;
- Faculty of American Laser Study Club—ALSC, Altamonte Springs, FL 32714, USA
| | - L. Miguel Carreira
- Department of Clinics—Surgery, Faculty of Veterinary Medicine, University of Lisbon (FMV-ULisboa), 1300 Lisbon, Portugal; (M.G.); (G.S.)
- Centre for Interdisciplinary Research in Animal Health (CIISA), University of Lisbon (FMV-ULisboa), 1300 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300 Lisbon, Portugal
- Anjos of Assis Veterinary Medicine Centre (CMVAA), 2830 Barreiro, Portugal;
- Faculty of American Laser Study Club—ALSC, Altamonte Springs, FL 32714, USA
- Private Human Dentistry (PHD), 1200 Lisbon, Portugal
| |
Collapse
|
3
|
Chafkin JE, O'Brien JM, Medrano FN, Lee HY, Josephs RA, Yeager DS. A dual-system, machine-learning approach reveals how daily pubertal hormones relate to psychological well-being in everyday life. Dev Cogn Neurosci 2022; 58:101158. [PMID: 36368088 PMCID: PMC9650000 DOI: 10.1016/j.dcn.2022.101158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/25/2022] [Accepted: 10/03/2022] [Indexed: 01/13/2023] Open
Abstract
The two studies presented in this paper seek to resolve mixed findings in research linking activity of pubertal hormones to daily adolescent outcomes. In study 1 we used a series of Confirmatory Factor Analyses to compare the fit of one and two-factor models of seven steroid hormones (n = 994 participants, 8084 samples) of the HPA and HPG axes, using data from a field study (https://www.icpsr.umich.edu/web/ICPSR/studies/38180) collected over ten consecutive weekdays in a representative sample of teens starting high school. In study 2, we fit a Bayesian model to our large dataset to explore how hormone activity was related to outcomes that have been demonstrated to be linked to mental health and wellbeing (self-reports of daily affect and stress coping). Results reveal, first that a two-factor solution of adolescent hormones showed good fit to our data, and second, that HPG activity, rather than the more often examined HPA activity, was associated with improved daily affect ratios and stress coping. These findings suggest that field research, when it is combined with powerful statistical techniques, may help to improve our understanding of the relationship between adolescent hormones and daily measures of well-being.
Collapse
Affiliation(s)
- Julia E Chafkin
- Department of Psychology, University of Texas at Austin, Austin, TX, USA.
| | - Joseph M O'Brien
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | | | | | - Robert A Josephs
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - David S Yeager
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
4
|
Rodrigues LE, Kishibe MM, Keller R, Caetano HRDS, Rufino MN, Sanches ODC, Giometti IC, Giuffrida R, Bremer-Neto H. Prebiotics mannan-oligosaccharides accelerate sexual maturity in rats: A randomized preclinical study. Vet World 2021; 14:1210-1219. [PMID: 34220123 PMCID: PMC8243662 DOI: 10.14202/vetworld.2021.1210-1219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/24/2021] [Indexed: 12/20/2022] Open
Abstract
Background and Aim: The prebiotics, mannan-oligosaccharides (MOS), demonstrate the ability to increase probiotic microorganisms and fixation and removal of pathogens associated with chronic systemic inflammation in the digestive system. Inflammatory processes play an important role in modulating the brain-intestinal axis, including maintaining male reproductive function and spermatogenesis and regulating stress. The aim of the present study was to evaluate the action of MOS on testosterone and corticosterone concentrations and the reproductive system development of rats in the growth phase as an animal model. Materials and Methods: In total, 128 male rats were used, randomly divided into four experimental groups (n=32): Control; MOS 1; MOS 2; and MOS 3. From each group, eight animals were sacrificed in four experimental moments (14, 28, 42, and 56 days, respectively, moments 1, 2, 3, and 4) and hormonal measurements and histological evaluations were performed. Results: The results revealed the effect of diet, MOS, and timing on testicle weight (p<0.05). At moments 3 and 4, the groups supplemented with MOS showed higher concentrations of testosterone and decreased corticosterone levels throughout the experimental period. Groups supplemented with MOS showed an increase in the frequency of relative sperm and sperm scores. The radii of the seminiferous tubules presented a significant statistical effect of the diet, moments, and diet + moment interaction. Conclusion: It was concluded that the three different MOS prebiotics brought forward sexual maturity.
Collapse
Affiliation(s)
- Luiz Eduardo Rodrigues
- Department of Functional Sciences, Laboratory of Physiology and Biophysics, Faculty of Medicine, Universidade do Oeste Paulista, Presidente Prudente, São Paulo, Brazil
| | - Milena Miyoshi Kishibe
- Department of Functional Sciences, Laboratory of Physiology and Biophysics, Faculty of Medicine, Universidade do Oeste Paulista, Presidente Prudente, São Paulo, Brazil
| | - Rogeria Keller
- Department of Functional Sciences, Laboratory of Microbiology, Faculty of Biological Sciences, Universidade do Oeste Paulista, Presidente Prudente, São Paulo, Brazil
| | - Heliard Rodrigues Dos Santos Caetano
- Department of Functional Sciences, Laboratory of Physiology, Faculty of Physiotherapy, Universidade do Oeste Paulista, Presidente Prudente, São Paulo, Brazil
| | - Marcos Natal Rufino
- Department of Functional Sciences, Laboratory of Physiology, Faculty of Medicine, Universidade do Oeste Paulista, Presidente Prudente, São Paulo, Brazil
| | | | - Ines Cristina Giometti
- Department of Reproduction, Faculty of Veterinary Medicine, Universidade do Oeste Paulista, Presidente Prudente, São Paulo, Brazil
| | - Rogério Giuffrida
- Department of Statistics, Faculty of Veterinary Medicine, Universidade do Oeste Paulista, São Paulo, Brazil
| | - Hermann Bremer-Neto
- Department of Functional Sciences, Laboratory of Physiology and Biophysics, Faculty of Medicine, Universidade do Oeste Paulista, Presidente Prudente, São Paulo, Brazil
| |
Collapse
|
5
|
Nadal R, Gabriel-Salazar M, Sanchís-Ollé M, Gagliano H, Belda X, Armario A. Individual differences in the neuroendocrine response of male rats to emotional stressors are not trait-like and strongly depend on the intensity of the stressors. Psychoneuroendocrinology 2021; 125:105127. [PMID: 33453596 DOI: 10.1016/j.psyneuen.2021.105127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/18/2020] [Accepted: 01/03/2021] [Indexed: 10/22/2022]
Abstract
Biological response to stressors is critical to understand stress-related pathologies and vulnerability to psychiatric diseases. It is assumed that we can identify trait-like characteristics in biological responsiveness by testing subjects in a particular stressful situation, but there is scarce information on this issue. We then studied, in a normal outbred population of adult male rats (n = 32), the response of well-characterized stress markers (ACTH, corticosterone and prolactin) to different types of stressors: two novel environments (open-field, OF1 and OF2), an elevated platform (EP), forced swim (SWIM) and immobilization (IMO). Based on both plasma ACTH and prolactin levels, the OF1 was the lowest intensity situation, followed by the OF2 and the EP, then SWIM and finally IMO. When correlations between the individual responses to the different stressors were studied, the magnitude of the correlations was most dependent on the similarities in intensity rather than on other characteristics of stressors, with good correlations between similar intensity stressors and no correlations at all were found between stressors markedly differing in intensity. In two additional confirmatory experiments (n = 37 and n = 20) with HPA hormones, we observed good correlation between the response to restraint and IMO, which were close in intensity, and no correlation between OF1 and SWIM. The present results suggest that individual neuroendocrine response to a particular stressor does not predict the response to another stressor greatly differing in intensity, thus precluding characterization of low or high responsive individuals to any stressor in a normal population. The present data have important implications for human studies.
Collapse
Affiliation(s)
- Roser Nadal
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Psychobiology Unit, Faculty of Psychology, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Spain
| | - Marina Gabriel-Salazar
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit (Department of Cellular Biology, Physiology and Immunology), Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - María Sanchís-Ollé
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit (Department of Cellular Biology, Physiology and Immunology), Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Humberto Gagliano
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit (Department of Cellular Biology, Physiology and Immunology), Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Xavier Belda
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit (Department of Cellular Biology, Physiology and Immunology), Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit (Department of Cellular Biology, Physiology and Immunology), Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Spain.
| |
Collapse
|
6
|
Matsuo T, Isosaka T, Tang L, Soga T, Kobayakawa R, Kobayakawa K. Artificial hibernation/life-protective state induced by thiazoline-related innate fear odors. Commun Biol 2021; 4:101. [PMID: 33483561 PMCID: PMC7822961 DOI: 10.1038/s42003-020-01629-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
Innate fear intimately connects to the life preservation in crises, although this relationships is not fully understood. Here, we report that presentation of a supernormal innate fear inducer 2-methyl-2-thiazoline (2MT), but not learned fear stimuli, induced robust systemic hypothermia/hypometabolism and suppressed aerobic metabolism via phosphorylation of pyruvate dehydrogenase, thereby enabling long-term survival in a lethal hypoxic environment. These responses exerted potent therapeutic effects in cutaneous and cerebral ischemia/reperfusion injury models. In contrast to hibernation, 2MT stimulation accelerated glucose uptake in the brain and suppressed oxygen saturation in the blood. Whole-brain mapping and chemogenetic activation revealed that the sensory representation of 2MT orchestrates physiological responses via brain stem Sp5/NST to midbrain PBN pathway. 2MT, as a supernormal stimulus of innate fear, induced exaggerated, latent life-protective effects in mice. If this system is preserved in humans, it may be utilized to give rise to a new field: "sensory medicine."
Collapse
Affiliation(s)
- Tomohiko Matsuo
- Institute of Biomedical Science, Kansai Medical University, Osaka, 573-1010, Japan
| | - Tomoko Isosaka
- Institute of Biomedical Science, Kansai Medical University, Osaka, 573-1010, Japan
| | - Lijun Tang
- Institute of Biomedical Science, Kansai Medical University, Osaka, 573-1010, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Reiko Kobayakawa
- Institute of Biomedical Science, Kansai Medical University, Osaka, 573-1010, Japan.
| | - Ko Kobayakawa
- Institute of Biomedical Science, Kansai Medical University, Osaka, 573-1010, Japan.
| |
Collapse
|
7
|
Armario A, Labad J, Nadal R. Focusing attention on biological markers of acute stressor intensity: Empirical evidence and limitations. Neurosci Biobehav Rev 2020; 111:95-103. [PMID: 31954151 DOI: 10.1016/j.neubiorev.2020.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 12/03/2019] [Accepted: 01/11/2020] [Indexed: 01/19/2023]
Abstract
ARMARIO, A, J. Labad and R. Nadal. Focusing attention on biological markers of acute stressor intensity: empirical evidence and limitations. NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS. The availability of biological markers that objectively quantify stress is a highly relevant issue. However, experimental evidence suggests that most physiological changes elicited by emotional stressors do not reflect their intensity and are not useful for this purpose. Thus, we review experimental evidence in animals and humans about the putative validity of neuroendocrine and sympathetic/parasympathetic variables to measure stress. Plasma levels of some hormones (e.g. ACTH, glucocorticoids, prolactin and catecholamines) have been found to reflect, at least under certain conditions, the intensity of emotional stressors in animals and probably in humans. However, the temporal resolution of hormone changes is insufficient to reflect the very dynamic psychological processes taking place while experiencing stressors. Cardiovascular parameters (e.g. heart rate and blood pressure) have much better temporal resolution but their validity as markers of stressor intensity either in animals or humans is problematic. Skin conductance and pupil dilation appear to be promising. Additional and more systematic studies are needed to demonstrate the actual validity of stress-induced physiological changes to quantify stress.
Collapse
Affiliation(s)
- Antonio Armario
- Institut de Neurociències, Spain; Animal Physiology Unit (Department of Cellular Biology, Physiology and Immunology), Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Spain.
| | - Javier Labad
- CIBERSAM, Spain; Department of Mental Health, Parc Taulí Hospital Universitari, I3PT, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Spain
| | - Roser Nadal
- Institut de Neurociències, Spain; CIBERSAM, Spain; Psicobiology Unit, Faculty of Psychology, Universitat Autònoma de Barcelona Spain
| |
Collapse
|
8
|
Controllability affects endocrine response of adolescent male rats to stress as well as impulsivity and behavioral flexibility during adulthood. Sci Rep 2019; 9:3180. [PMID: 30816288 PMCID: PMC6395608 DOI: 10.1038/s41598-019-40061-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 02/01/2019] [Indexed: 11/28/2022] Open
Abstract
Exposure to stress during adolescence exerts a long-term impact on behavior and might contribute to the development of several neuropsychiatric disorders. In adults, control over stress has been found to protect from the negative consequences of stress, but the influence of controllability at early ages has not been extensively studied. Here, we evaluated in a rodent model the effects of repeated exposure in adolescent male rats to controllable versus uncontrollable foot-shock stress (CST or UST, respectively). Rats were assigned to three groups: non-stress (stress-naïve), CST (exposed to 8 sessions of a two-way shuttle active avoidance task over a period of 22 days) and UST (receiving the same amount of shocks as CST, regardless of their actual behavior). During adulthood, different cohorts were tested in several tasks evaluating inhibitory control and cognitive flexibility: 5-choice serial reaction time, delay-discounting, gambling test and probabilistic reversal learning. Results showed that the hypothalamic-pituitary-adrenal response to the first shock session was similar in CST and UST animals, but the response to the 8th session was lower in CST animals. In adulthood, the UST animals presented impaired motor (but not cognitive) impulsivity and more perseverative behavior. The behavioral effects of UST were associated with increased number of D2 dopamine receptors in dorsomedial striatum, but not in other striatal regions. In summary, UST exposure during adolescence induced long-term impairments in impulsivity and compulsivity, whereas CST had only minor effects. These data support a critical role of stress uncontrollability on the long-lasting consequences of stress, as a risk factor for mental illnesses.
Collapse
|
9
|
Godoy LD, Rossignoli MT, Delfino-Pereira P, Garcia-Cairasco N, de Lima Umeoka EH. A Comprehensive Overview on Stress Neurobiology: Basic Concepts and Clinical Implications. Front Behav Neurosci 2018; 12:127. [PMID: 30034327 PMCID: PMC6043787 DOI: 10.3389/fnbeh.2018.00127] [Citation(s) in RCA: 424] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022] Open
Abstract
Stress is recognized as an important issue in basic and clinical neuroscience research, based upon the founding historical studies by Walter Canon and Hans Selye in the past century, when the concept of stress emerged in a biological and adaptive perspective. A lot of research after that period has expanded the knowledge in the stress field. Since then, it was discovered that the response to stressful stimuli is elaborated and triggered by the, now known, stress system, which integrates a wide diversity of brain structures that, collectively, are able to detect events and interpret them as real or potential threats. However, different types of stressors engage different brain networks, requiring a fine-tuned functional neuroanatomical processing. This integration of information from the stressor itself may result in a rapid activation of the Sympathetic-Adreno-Medullar (SAM) axis and the Hypothalamus-Pituitary-Adrenal (HPA) axis, the two major components involved in the stress response. The complexity of the stress response is not restricted to neuroanatomy or to SAM and HPA axes mediators, but also diverge according to timing and duration of stressor exposure, as well as its short- and/or long-term consequences. The identification of neuronal circuits of stress, as well as their interaction with mediator molecules over time is critical, not only for understanding the physiological stress responses, but also to understand their implications on mental health.
Collapse
Affiliation(s)
- Lívea Dornela Godoy
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Polianna Delfino-Pereira
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Eduardo Henrique de Lima Umeoka
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Fuentes S, Daviu N, Gagliano H, Belda X, Armario A, Nadal R. Early life stress in rats sex-dependently affects remote endocrine rather than behavioral consequences of adult exposure to contextual fear conditioning. Horm Behav 2018; 103:7-18. [PMID: 29802874 DOI: 10.1016/j.yhbeh.2018.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/09/2018] [Accepted: 05/22/2018] [Indexed: 01/07/2023]
Abstract
Exposure to electric foot-shocks can induce in rodents contextual fear conditioning, generalization of fear to other contexts and sensitization of the hypothalamic-pituitary-adrenal (HPA) axis to further stressors. All these aspects are relevant for the study of post-traumatic stress disorder. In the present work we evaluated in rats the sex differences and the role of early life stress (ELS) in fear memories, generalization and sensitization. During the first postnatal days subjects were exposed to restriction of nesting material along with exposure to a "substitute" mother. In the adulthood they were exposed to (i) a contextual fear conditioning to evaluate long-term memory and extinction and (ii) to a novel environment to study cognitive fear generalization and HPA axis heterotypic sensitization. ELS did not alter acquisition, expression or extinction of context fear conditioned behavior (freezing) in either sex, but reduced activity in novel environments only in males. Fear conditioning associated hypoactivity in novel environments (cognitive generalization) was greater in males than females but was not specifically affected by ELS. Although overall females showed greater basal and stress-induced levels of ACTH and corticosterone, an interaction between ELS, shock exposure and sex was found regarding HPA hormones. In males, ELS did not affect ACTH response in any situation, whereas in females, ELS reduced both shock-induced sensitization of ACTH and its conditioned response to the shock context. Also, shock-induced sensitization of corticosterone was only observed in males and ELS specifically reduced corticosterone response to stressors in males but not females. In conclusion, ELS seems to have only a minor impact on shock-induced behavioral conditioning, while affecting the unconditioned and conditioned responses of HPA hormones in a sex-dependent manner.
Collapse
Affiliation(s)
- Sílvia Fuentes
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Núria Daviu
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Psychobiology Unit, School of Psychology, Universitat Autònoma de Barcelona, Spain
| | - Humberto Gagliano
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Psychobiology Unit, School of Psychology, Universitat Autònoma de Barcelona, Spain
| | - Xavier Belda
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Psychobiology Unit, School of Psychology, Universitat Autònoma de Barcelona, Spain
| | - Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Psychobiology Unit, School of Psychology, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain.
| | - Roser Nadal
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
11
|
Repeated Neck Restraint Stress Bidirectionally Modulates Excitatory Transmission in the Dentate Gyrus and Performance in a Hippocampus-dependent Memory Task. Neuroscience 2018; 379:32-44. [DOI: 10.1016/j.neuroscience.2018.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/26/2018] [Accepted: 03/07/2018] [Indexed: 12/12/2022]
|
12
|
Jaglin M, Rhimi M, Philippe C, Pons N, Bruneau A, Goustard B, Daugé V, Maguin E, Naudon L, Rabot S. Indole, a Signaling Molecule Produced by the Gut Microbiota, Negatively Impacts Emotional Behaviors in Rats. Front Neurosci 2018; 12:216. [PMID: 29686603 PMCID: PMC5900047 DOI: 10.3389/fnins.2018.00216] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/19/2018] [Indexed: 12/22/2022] Open
Abstract
Gut microbiota produces a wide and diverse array of metabolites that are an integral part of the host metabolome. The emergence of the gut microbiome-brain axis concept has prompted investigations on the role of gut microbiota dysbioses in the pathophysiology of brain diseases. Specifically, the search for microbe-related metabolomic signatures in human patients and animal models of psychiatric disorders has pointed out the importance of the microbial metabolism of aromatic amino acids. Here, we investigated the effect of indole on brain and behavior in rats. Indole is produced by gut microbiota from tryptophan, through the tryptophanase enzyme encoded by the tnaA gene. First, we mimicked an acute and high overproduction of indole by injecting this compound in the cecum of conventional rats. This treatment led to a dramatic decrease of motor activity. The neurodepressant oxidized derivatives of indole, oxindole and isatin, accumulated in the brain. In addition, increase in eye blinking frequency and in c-Fos protein expression in the dorsal vagal complex denoted a vagus nerve activation. Second, we mimicked a chronic and moderate overproduction of indole by colonizing germ-free rats with the indole-producing bacterial species Escherichia coli. We compared emotional behaviors of these rats with those of germ-free rats colonized with a genetically-engineered counterpart strain unable to produce indole. Rats overproducing indole displayed higher helplessness in the tail suspension test, and enhanced anxiety-like behavior in the novelty, elevated plus maze and open-field tests. Vagus nerve activation was suggested by an increase in eye blinking frequency. However, unlike the conventional rats dosed with a high amount of indole, the motor activity was not altered and neither oxindole nor isatin could be detected in the brain. Further studies are required for a comprehensive understanding of the mechanisms supporting indole effects on emotional behaviors. As our findings suggest that people whose gut microbiota is highly prone to produce indole could be more likely to develop anxiety and mood disorders, we addressed the issue of the inter-individual variability of indole producing potential in humans. An in silico investigation of metagenomic data focused on the tnaA gene products definitively proved this inter-individual variability.
Collapse
Affiliation(s)
- Mathilde Jaglin
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Moez Rhimi
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Catherine Philippe
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nicolas Pons
- MetaGenoPolis, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Aurélia Bruneau
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Bénédicte Goustard
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Valérie Daugé
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Emmanuelle Maguin
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Laurent Naudon
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sylvie Rabot
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
13
|
Úbeda-Contreras J, Marín-Blasco I, Nadal R, Armario A. Brain c-fos expression patterns induced by emotional stressors differing in nature and intensity. Brain Struct Funct 2018; 223:2213-2227. [PMID: 29450645 DOI: 10.1007/s00429-018-1624-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 02/06/2018] [Indexed: 01/09/2023]
Abstract
Regardless of its particular nature, emotional stressors appear to elicit a widespread and roughly similar brain activation pattern as evaluated by c-fos expression. However, their behavioral and physiological consequences may strongly differ. Here we addressed in adult male rats the contribution of the intensity and the particular nature of stressors by comparing, in a set of brain areas, the number of c-fos expressing neurons in response to open-field, cat odor or immobilization on boards (IMO). These are qualitatively different stressors that are known to differ in terms of intensity, as evaluated by biological markers. In the present study, plasma levels of the adrenocorticotropic hormone (ACTH) demonstrated that intensity increases in the following order: open-field, cat odor and IMO. Four different c-fos activation patterns emerged among all areas studied: (i) positive relationship with intensity (posterior-dorsal medial amygdala, dorsomedial hypothalamus, lateral septum ventral and paraventricular nucleus of the hypothalamus), (ii) negative relationship with intensity (cingulate cortex 1, posterior insular cortex, dorsal striatum, nucleus accumbens and some subdivisions of the hippocampal formation); (iii) activation not dependent on the intensity of the stressor (prelimbic and infralimbic cortex and lateral and basolateral amygdala); and (iv) activation specifically associated with cat odor (ventromedial amygdala and ventromedial hypothalamus). Histone 3 phosphorylation at serine 10, another neuronal activation marker, corroborated c-fos results. Summarizing, deepest analysis of the brain activation pattern elicit by emotional stressor indicated that, in spite of activating similar areas, each stressor possess their own brain activation signature, mediated mainly by qualitative aspects but also by intensity.
Collapse
Affiliation(s)
- Jesús Úbeda-Contreras
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain.,CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain.,Animal Physiology Unit, School of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Ignacio Marín-Blasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain.,Animal Physiology Unit, School of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain.,Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Roser Nadal
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain.,CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain.,Psychobiology Unit, School of Psychology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain. .,CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain. .,Animal Physiology Unit, School of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain.
| |
Collapse
|
14
|
Lenaert B, Boddez Y, Vlaeyen JW, van Heugten CM. Learning to feel tired: A learning trajectory towards chronic fatigue. Behav Res Ther 2018; 100:54-66. [DOI: 10.1016/j.brat.2017.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
|
15
|
Psychostimulants and forced swim stress interaction: how activation of the hypothalamic-pituitary-adrenal axis and stress-induced hyperglycemia are affected. Psychopharmacology (Berl) 2017; 234:2859-2869. [PMID: 28710520 DOI: 10.1007/s00213-017-4675-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/21/2017] [Indexed: 12/23/2022]
Abstract
RATIONALE We recently reported that simultaneous exposure to amphetamine and various stressors resulted in reduced hypothalamic-pituitary-adrenal (HPA) and glycemic responses to the stressors. Since this is a new and relevant phenomenon, we wanted to further explore this interaction. OBJECTIVES This study aims (i) to characterize the effect of various doses of amphetamine on the physiological response to a predominantly emotional stressor (forced swim) when the drug was given immediately before stress; (ii) to study if an interaction appears when the drug was given 30 min or 7 days before swim; and (iii) to know whether cocaine causes similar effects when given just before stress. Adult male rats were used and plasma levels of ACTH, corticosterone, and glucose were the outcomes. RESULTS Amphetamine caused a dose-dependent activation of the HPA axis, but all doses reduced HPA and glycemic responses to swim when given just before the stressor. Importantly, during the post-swim period, the stressor potently inhibited the ACTH response to amphetamine, demonstrating mutual inhibition between the two stimuli. The highest dose of amphetamine also reduced the response to swim when given 30 min before stress, whereas it caused HPA sensitization when given 7 days before. Cocaine also reduced stress-induced HPA activation when given just before swim. CONCLUSIONS The present results demonstrate a negative synergy between psychostimulants (amphetamine and cocaine) and stress regarding HPA and glucose responses when rats were exposed simultaneously to both stimuli. The inhibitory effect of amphetamine is also observed when given shortly before stress, but not some days before.
Collapse
|
16
|
Machado TR, Alves GJ, Quinteiro-Filho WM, Palermo-Neto J. Cohabitation with an Ehrlich tumor-bearing cagemate induces immune but not behavioral changes in male mice. Physiol Behav 2017; 169:82-89. [DOI: 10.1016/j.physbeh.2016.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 10/05/2016] [Accepted: 11/19/2016] [Indexed: 01/11/2023]
|
17
|
Abstract
In this review, nonassociative learning is advanced as an organizing principle to draw together findings from both sympathetic-adrenal medullary and hypothalamic-pituitary-adrenocortical (HPA) axis responses to chronic intermittent exposure to a variety of stressors. Studies of habituation, facilitation and sensitization of stress effector systems are reviewed and linked to an animal's prior experience with a given stressor, the intensity of the stressor and the appraisal by the animal of its ability to mobilize physiological systems to adapt to the stressor. Brain pathways that regulate physiological and behavioral responses to stress are discussed, especially in light of their regulation of nonassociative processes in chronic intermittent stress. These findings may have special relevance to various psychiatric diseases, including depression and post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Richard McCarty
- a Department of Psychology , Vanderbilt University , Nashville , TN , USA
| |
Collapse
|
18
|
Critical features of acute stress-induced cross-sensitization identified through the hypothalamic-pituitary-adrenal axis output. Sci Rep 2016; 6:31244. [PMID: 27511270 PMCID: PMC4980629 DOI: 10.1038/srep31244] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/15/2016] [Indexed: 11/08/2022] Open
Abstract
Stress-induced sensitization represents a process whereby prior exposure to severe stressors leaves animals or humans in a hyper-responsive state to further stressors. Indeed, this phenomenon is assumed to be the basis of certain stress-associated pathologies, including post-traumatic stress disorder and psychosis. One biological system particularly prone to sensitization is the hypothalamic-pituitary-adrenal (HPA) axis, the prototypic stress system. It is well established that under certain conditions, prior exposure of animals to acute and chronic (triggering) stressors enhances HPA responses to novel (heterotypic) stressors on subsequent days (e.g. raised plasma ACTH and corticosterone levels). However, such changes remain somewhat controversial and thus, the present study aimed to identify the critical characteristics of the triggering and challenging stressors that affect acute stress-induced HPA cross-sensitization in adult rats. We found that HPA cross-sensitization is markedly influenced by the intensity of the triggering stressor, whereas the length of exposure mainly affects its persistence. Importantly, HPA sensitization is more evident with mild than strong challenging stressors, and it may remain unnoticed if exposure to the challenging stressor is prolonged beyond 15 min. We speculate that heterotypic HPA sensitization might have developed to optimize biologically adaptive responses to further brief stressors.
Collapse
|
19
|
Tarvin KA, Wong LJ, Lumpkin DC, Schroeder GM, D'Andrea D, Meade S, Rivers P, Murphy TG. Dynamic Status Signal Reflects Outcome of Social Interactions, but Not Energetic Stress. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Myers B, Scheimann JR, Franco-Villanueva A, Herman JP. Ascending mechanisms of stress integration: Implications for brainstem regulation of neuroendocrine and behavioral stress responses. Neurosci Biobehav Rev 2016; 74:366-375. [PMID: 27208411 DOI: 10.1016/j.neubiorev.2016.05.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022]
Abstract
In response to stress, defined as a real or perceived threat to homeostasis or well-being, brain systems initiate divergent physiological and behavioral processes that mobilize energy and promote adaptation. The brainstem contains multiple nuclei that engage in autonomic control and reflexive responses to systemic stressors. However, brainstem nuclei also play an important role in neuroendocrine responses to psychogenic stressors mediated by the hypothalamic-pituitary-adrenocortical axis. Further, these nuclei integrate neuroendocrine responses with stress-related behaviors, significantly impacting mood and anxiety. The current review focuses on the prominent brainstem monosynaptic inputs to the endocrine paraventricular hypothalamic nucleus (PVN), including the periaqueductal gray, raphe nuclei, parabrachial nuclei, locus coeruleus, and nucleus of the solitary tract (NTS). The NTS is a particularly intriguing area, as the region contains multiple cell groups that provide neurochemically-distinct inputs to the PVN. Furthermore, the NTS, under regulatory control by glucocorticoid-mediated feedback, integrates affective processes with physiological status to regulate stress responding. Collectively, these brainstem circuits represent an important avenue for delineating interactions between stress and health.
Collapse
Affiliation(s)
- Brent Myers
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati OH, USA.
| | - Jessie R Scheimann
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati OH, USA
| | - Ana Franco-Villanueva
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati OH, USA
| | - James P Herman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati OH, USA
| |
Collapse
|
21
|
O'Neill CE, Newsom RJ, Stafford J, Scott T, Archuleta S, Levis SC, Spencer RL, Campeau S, Bachtell RK. Adolescent caffeine consumption increases adulthood anxiety-related behavior and modifies neuroendocrine signaling. Psychoneuroendocrinology 2016; 67:40-50. [PMID: 26874560 PMCID: PMC4808446 DOI: 10.1016/j.psyneuen.2016.01.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/26/2022]
Abstract
Caffeine is a commonly used psychoactive substance and consumption by children and adolescents continues to rise. Here, we examine the lasting effects of adolescent caffeine consumption on anxiety-related behaviors and several neuroendocrine measures in adulthood. Adolescent male Sprague-Dawley rats consumed caffeine (0.3g/L) for 28 consecutive days from postnatal day 28 (P28) to P55. Age-matched control rats consumed water. Behavioral testing for anxiety-related behavior began in adulthood (P62) 7 days after removal of caffeine. Adolescent caffeine consumption enhanced anxiety-related behavior in an open field, social interaction test, and elevated plus maze. Similar caffeine consumption in adult rats did not alter anxiety-related behavior after caffeine removal. Characterization of neuroendocrine measures was next assessed to determine whether the changes in anxiety were associated with modifications in the HPA axis. Blood plasma levels of corticosterone (CORT) were assessed throughout the caffeine consumption procedure in adolescent rats. Adolescent caffeine consumption elevated plasma CORT 24h after initiation of caffeine consumption that normalized over the course of the 28-day consumption procedure. CORT levels were also elevated 24h after caffeine removal and remained elevated for 7 days. Despite elevated basal CORT in adult rats that consumed caffeine during adolescence, the adrenocorticotropic hormone (ACTH) and CORT response to placement on an elevated pedestal (a mild stressor) was significantly blunted. Lastly, we assessed changes in basal and stress-induced c-fos and corticotropin-releasing factor (Crf) mRNA expression in brain tissue collected at 7 days withdrawal from adolescent caffeine. Adolescent caffeine consumption increased basal c-fos mRNA in the paraventricular nucleus of the hypothalamus. Adolescent caffeine consumption had no other effects on the basal or stress-induced c-fos mRNA changes. Caffeine consumption during adolescence increased basal Crf mRNA in the central nucleus of the amygdala, but no additional effects of stress or caffeine consumption were observed in other brain regions. Together these findings suggest that adolescent caffeine consumption may increase vulnerability to psychiatric disorders including anxiety-related disorders, and this vulnerability may result from dysregulation of the neuroendocrine stress response system.
Collapse
Affiliation(s)
- Casey E O'Neill
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Ryan J Newsom
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Jacob Stafford
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Talia Scott
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Solana Archuleta
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Sophia C Levis
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Robert L Spencer
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Serge Campeau
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Ryan K Bachtell
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
22
|
Sanz-García A, Knafo S, Pereda-Pérez I, Esteban JA, Venero C, Armario A. Administration of the TrkB receptor agonist 7,8-dihydroxyflavone prevents traumatic stress-induced spatial memory deficits and changes in synaptic plasticity. Hippocampus 2016; 26:1179-88. [PMID: 27068341 DOI: 10.1002/hipo.22599] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 01/18/2023]
Abstract
Post-traumatic stress disorder (PTSD) occurs after exposure to traumatic situations and it is characterized by cognitive deficits that include impaired explicit memory. The neurobiological bases of such PTSD-associated memory alterations are yet to be elucidated and no satisfactory treatment for them exists. To address this issue, we first studied whether a single exposure of young adult rats (60 days) to immobilization on boards (IMO), a putative model of PTSD, produces long-term behavioral effects (2-8 days) similar to those found in PTSD patients. Subsequently, we investigated whether the administration of the TrkB agonist 7,8-dihydroxyflavone (DHF) 8 h after stress (therapeutic window) ameliorated the PTSD-like effect of IMO and the associated changes in synaptic plasticity. A single IMO exposure induced a spatial memory impairment similar to that found in other animal models of PTSD or in PTSD patients. IMO also increased spine density and long-term potentiation (LTP) in the CA3-CA1 pathway. Significantly, DHF reverted both spatial memory impairment and the increase in LTP, while it produced no effect in the controls. These data provide novel insights into the possible neurobiological substrate for explicit memory impairment in PTSD patients, supporting the idea that the activation of the BDNF/TrkB pathway fulfils a protective role after severe stress. Administration of DHF in the aftermath of a traumatic experience might be relevant to prevent its long-term consequences. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ancor Sanz-García
- Unitat De Fisiologia Animal (Facultat De Biociències), Universitat Autònoma De Barcelona, 08193 Bellaterra, Barcelona, Spain.,Institut De Neurociències, Universitat Autonòma De Barcelona, 08193 Bellaterra, Barcelona, Spain.,Red De Trastornos Adictivos (RTA), Instituto De Salud Carlos III, Madrid, Spain
| | - Shira Knafo
- IkerBasque Research Professor, Biophysics Unit (Unidad De Biofísica CSIC-UPV/EHU), Leioa, Bizkaia, Spain
| | | | - José A Esteban
- Deparment of Molecular Neurobiology, Centro De Biología Molecular "Severo Ochoa," Consejo Superior De Investigaciones Científicas (CSIC)/Universidad Autónoma De Madrid, Madrid, Spain
| | - César Venero
- Department of Psychobiology, Universidad Nacional De Educación a Distancia, Juan Del Rosal 10, Madrid, 28040, Spain
| | - Antonio Armario
- Unitat De Fisiologia Animal (Facultat De Biociències), Universitat Autònoma De Barcelona, 08193 Bellaterra, Barcelona, Spain.,Institut De Neurociències, Universitat Autonòma De Barcelona, 08193 Bellaterra, Barcelona, Spain.,Red De Trastornos Adictivos (RTA), Instituto De Salud Carlos III, Madrid, Spain
| |
Collapse
|
23
|
Gómez-Román A, Ortega-Sánchez JA, Rotllant D, Gagliano H, Belda X, Delgado-Morales R, Marín-Blasco I, Nadal R, Armario A. The neuroendocrine response to stress under the effect of drugs: Negative synergy between amphetamine and stressors. Psychoneuroendocrinology 2016; 63:94-101. [PMID: 26433325 DOI: 10.1016/j.psyneuen.2015.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/07/2015] [Accepted: 09/07/2015] [Indexed: 01/27/2023]
Abstract
There have been numerous studies into the interaction between stress and addictive drugs, yet few have specifically addressed how the organism responds to stress when under the influence of psychostimulants. Thus, we studied the effects of different acute stressors (immobilization, interleukin-1β and forced swimming) in young adult male rats simultaneously exposed to amphetamine (AMPH, 4 mg/kg SC), evaluating classic biological markers. AMPH administration itself augmented the plasma hypothalamic-pituitary-adrenal (HPA) hormones, adrenocorticotropin (ACTH) and corticosterone, without affecting plasma glucose levels. By contrast, this drug dampened the peripheral HPA axis, as well as the response of glucose to the three stressors. We also found that AMPH administration completely blocked the forced swim-induced expression of the corticotropin-releasing hormone (hnCRH) and it partially reduced c-fos expression in the paraventricular nucleus of the hypothalamus (PVN). Indeed, this negative synergy in the forced swim test could even be observed with a lower dose of AMPH (1mg/kg, SC), a dose that is usually received in self-administration experiments. In conclusion, when rats that receive AMPH are subjected to stress, a negative synergy occurs that dampens the prototypic peripheral physiological response to stress and activation of the PVN.
Collapse
Affiliation(s)
- Almudena Gómez-Román
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology Unit (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Juan A Ortega-Sánchez
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology Unit (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - David Rotllant
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology Unit (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Humberto Gagliano
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology Unit (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Xavier Belda
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology Unit (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Raúl Delgado-Morales
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology Unit (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Ignacio Marín-Blasco
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology Unit (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Roser Nadal
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Psychobiology Unit (School of Psychology), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Antonio Armario
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology Unit (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain.
| |
Collapse
|
24
|
Htr2a-Expressing Cells in the Central Amygdala Control the Hierarchy between Innate and Learned Fear. Cell 2015; 163:1153-1164. [DOI: 10.1016/j.cell.2015.10.047] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/03/2015] [Accepted: 10/09/2015] [Indexed: 01/26/2023]
|
25
|
Evidence against a critical role of CB1 receptors in adaptation of the hypothalamic-pituitary-adrenal axis and other consequences of daily repeated stress. Eur Neuropsychopharmacol 2015; 25:1248-59. [PMID: 26092203 DOI: 10.1016/j.euroneuro.2015.04.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 03/24/2015] [Accepted: 04/26/2015] [Indexed: 02/01/2023]
Abstract
There is evidence that endogenous cannabinoids (eCBs) play a role in the control of the hypothalamic-pituitary-adrenal (HPA) axis, although they appear to have dual, stimulatory and inhibitory, effects. Recent data in rats suggest that eCBs, acting through CB1 receptors (CB1R), may be involved in adaptation of the HPA axis to daily repeated stress. In the present study we analyze this issue in male mice and rats. Using a knock-out mice for the CB1 receptor (CB1-/-) we showed that mutant mice presented similar adrenocorticotropic hormone (ACTH) response to the first IMO as wild-type mice. Daily repeated exposure to 1h of immobilization reduced the ACTH response to the stressor, regardless of the genotype, demonstrating that adaptation occurred to the same extent in absence of CB1R. Prototypical changes observed after repeated stress such as enhanced corticotropin releasing factor (CRH) gene expression in the paraventricular nucleus of the hypothalamus, impaired body weight gain and reduced thymus weight were similarly observed in both genotypes. The lack of effect of CB1R in the expression of HPA adaptation to another similar stressor (restraint) was confirmed in wild-type CD1 mice by the lack of effect of the CB1R antagonist AM251 just before the last exposure to stress. Finally, the latter drug did not blunt the HPA, glucose and behavioral adaptation to daily repeated forced swim in rats. Thus, the present results indicate that CB1R is not critical for overall effects of daily repeated stress or proper adaptation of the HPA axis in mice and rats.
Collapse
|
26
|
Erasmus MA, Lee HC, Kang I, Swanson JC. Fear responses and postmortem muscle characteristics of turkeys of two genetic lines. Poult Sci 2015. [PMID: 26195807 DOI: 10.3382/ps/pev208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Commercial turkey production has increased greatly in recent decades. Along with increased production, problems with turkey meat quality have also increased. Research with other species has demonstrated that differences in meat quality exist among pigs and cattle differing in characteristics such as fearfulness. However, associations between fear responses and postmortem (PM) muscle characteristics related to the meat quality of turkeys have not been examined. This study evaluated the test-retest repeatability of responses of male commercial (COMM) and randombred (RB) turkeys in an open field (OF) test, which is used to assess fear and activity levels of poultry. Another objective of this study was to evaluate the relationship between behavioral OF responses and PM breast muscle characteristics (pH and R-value) that are related to meat quality. Thirdly, this study evaluated differences in pH and R-value between the turkey lines. Male COMM and RB turkeys were each housed in groups in 4 pens. Turkeys were individually tested in an OF (2.74×2.74 m, divided into 81 squares) at 1, 4, and 11 wk (COMM N=27; RB N=33). Turkeys were then grouped into clusters based on a cluster analysis of OF behavior. Turkeys were processed and meat quality characteristics were evaluated at 15-17 wk for COMM and 20-21 wk for RB turkeys. Results were analyzed using a mixed model (SAS 9.4). Breast muscle pH and R-value did not differ between genetic lines, and there were no differences in pH and R-value among clusters within genetic lines. These findings suggest that OF responses measured during rearing are not related to PM breast muscle pH and R-value, which ultimately affect meat quality. Further research is needed to assess whether other types of fear responses are associated with meat quality and whether differences in R-value between genetic lines are associated with differences in other meat quality characteristics.
Collapse
Affiliation(s)
- M A Erasmus
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - H C Lee
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - I Kang
- Department of Animal Science, Michigan State University, East Lansing, MI 48824 Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824
| | - J C Swanson
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
27
|
Rabasa C, Gagliano H, Pastor-Ciurana J, Fuentes S, Belda X, Nadal R, Armario A. Adaptation of the hypothalamus-pituitary-adrenal axis to daily repeated stress does not follow the rules of habituation: A new perspective. Neurosci Biobehav Rev 2015; 56:35-49. [PMID: 26112129 DOI: 10.1016/j.neubiorev.2015.06.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/15/2015] [Accepted: 06/09/2015] [Indexed: 01/21/2023]
Abstract
Repeated exposure to a wide range of stressors differing in nature and intensity results in a reduced response of prototypical stress markers (i.e. plasma levels of ACTH and adrenaline) after an acute challenge with the same (homotypic) stressor. This reduction has been considered to be a habituation-like phenomenon. However, direct experimental evidence for this assumption is scarce. In the present work we demonstrate in adult male rats that adaptation of the hypothalamus-pituitary-adrenal (HPA) axis to repeated stress does not follow some of the critical rules of habituation. Briefly, adaptation was stronger and faster with more severe stressors, maximally observed even with a single exposure to severe stressors, extremely long-lasting, negatively related to the interval between the exposures and positively related to the length of daily exposure. We offer a new theoretical view to explain adaptation to daily repeated stress.
Collapse
Affiliation(s)
- Cristina Rabasa
- Institut de Neurociències and Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain
| | - Humberto Gagliano
- Institut de Neurociències and Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain
| | - Jordi Pastor-Ciurana
- Institut de Neurociències and Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain
| | - Silvia Fuentes
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain; Institut de Neurociències and Unitat Psicobiologia (Facultat de Psicologia), Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Xavier Belda
- Institut de Neurociències and Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain
| | - Roser Nadal
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain; Institut de Neurociències and Unitat Psicobiologia (Facultat de Psicologia), Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Antonio Armario
- Institut de Neurociències and Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Madrid, Spain.
| |
Collapse
|
28
|
Mejia-Carmona GE, Gosselink KL, Pérez-Ishiwara G, Martínez-Martínez A. Oxidant/antioxidant effects of chronic exposure to predator odor in prefrontal cortex, amygdala, and hypothalamus. Mol Cell Biochem 2015; 406:121-9. [PMID: 25981530 PMCID: PMC4502319 DOI: 10.1007/s11010-015-2430-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/05/2015] [Indexed: 01/18/2023]
Abstract
The incidence of anxiety-related diseases is increasing these days, hence there is a need to understand the mechanisms that underlie its nature and consequences. It is known that limbic structures, mainly the prefrontal cortex and amygdala, are involved in the processing of anxiety, and that projections from prefrontal cortex and amygdala can induce activity of the hypothalamic–pituitary–adrenal axis with consequent cardiovascular changes, increase in oxygen consumption, and ROS production. The compensatory reaction can include increased antioxidant enzymes activities, overexpression of antioxidant enzymes, and genetic shifts that could include the activation of antioxidant genes. The main objective of this study was to evaluate the oxidant/antioxidant effect that chronic anxiogenic stress exposure can have in prefrontal cortex, amygdala, and hypothalamus by exposition to predator odor. Results showed (a) sensitization of the HPA axis response, (b) an enzymatic phase 1 and 2 antioxidant response to oxidative stress in amygdala, (c) an antioxidant stability without elevation of oxidative markers in prefrontal cortex, (d) an elevation in phase 1 antioxidant response in hypothalamus. Chronic exposure to predator odor has an impact in the metabolic REDOX state in amygdala, prefrontal cortex, and hypothalamus, with oxidative stress being prevalent in amygdala as this is the principal structure responsible for the management of anxiety.
Collapse
Affiliation(s)
- G E Mejia-Carmona
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del Pronaf y Estocolmo S/N, Zona Pronaf, C.P. 32315, Ciudad Juárez, Chihuahua, Mexico
| | | | | | | |
Collapse
|
29
|
Ventral hippocampal nicotinic acetylcholine receptors mediate stress-induced analgesia in mice. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:235-42. [PMID: 25281932 DOI: 10.1016/j.pnpbp.2014.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/10/2014] [Accepted: 09/10/2014] [Indexed: 12/21/2022]
Abstract
Evidence suggests that various stressful procedures induce an analgesic effect in laboratory animals commonly referred to as stress-induced analgesia (SIA). The aim of the present study was to assess the role of ventral hippocampal (VH) nicotinic acetylcholine receptors (nAChRs) in SIA in adult male NMRI mice. The VHs of animals were bilaterally cannulated and nociceptive threshold was measured using infrared source in a tail-flick apparatus. Acute stress was evoked by placing the animals on an elevated platform for 10, 20 and 30 min. The results showed that exposure to 20 and 30 min acute stress produced analgesia, while exposure to 10 min stress had no effect on the pain response. Intra-VH microinjection of nicotine (0.001-0.1 μg/mouse), 5 min before an ineffective stress (10 min stress), induced analgesia, suggesting the potentiative effect of nicotine on SIA. It is important to note that bilateral intra-VH microinjections of the same doses of nicotine without stress had no effect on the tail-flick test. On the other hand, intra-VH microinjection of mecamylamine (0.5-1 μg/mouse) 5 min before 20-min stress inhibited SIA. However, bilateral intra-VH microinjections of the same doses of mecamylamine without stress had no effect on the tail-flick response. In addition, the microinjection of mecamylamine into the VH reversed the potentiative effect of nicotine on SIA. Taken together, it can be concluded that exposure to acute stress induces SIA in a time-dependent manner and the ventral hippocampal cholinergic system may be involved in SIA via nAChRs.
Collapse
|
30
|
Belda X, Fuentes S, Daviu N, Nadal R, Armario A. Stress-induced sensitization: the hypothalamic-pituitary-adrenal axis and beyond. Stress 2015; 18:269-79. [PMID: 26300109 DOI: 10.3109/10253890.2015.1067678] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Exposure to certain acute and chronic stressors results in an immediate behavioral and physiological response to the situation followed by a period of days when cross-sensitization to further novel stressors is observed. Cross-sensitization affects to different behavioral and physiological systems, more particularly to the hypothalamus-pituitary-adrenal (HPA) axis. It appears that the nature of the initial (triggering) stressor plays a major role, HPA cross-sensitization being more widely observed with systemic or high-intensity emotional stressors. Less important appears to be the nature of the novel (challenging) stressor, although HPA cross-sensitization is better observed with short duration (5-15 min) challenging stressors. In some studies with acute immune stressors, HPA sensitization appears to develop over time (incubation), but most results indicate a strong initial sensitization that progressively declines over the days. Sensitization can affect other physiological system (i.e. plasma catecholamines, brain monoamines), but it is not a general phenomenon. When studied concurrently, behavioral sensitization appears to persist longer than that of the HPA axis, a finding of interest regarding long-term consequences of traumatic stress. In many cases, behavioral and physiological consequences of prior stress can only be observed following imposition of a new stressor, suggesting long-term latent effects of the initial exposure.
Collapse
Affiliation(s)
- Xavier Belda
- a Institut de Neurociències, Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
- b Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
- c Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III , Bellaterra , Barcelona , Spain , and
| | - Silvia Fuentes
- a Institut de Neurociències, Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
- c Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III , Bellaterra , Barcelona , Spain , and
- d Unitat de Psicobiologia (Facultat de Psicologia), Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
| | - Nuria Daviu
- a Institut de Neurociències, Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
- b Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
- c Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III , Bellaterra , Barcelona , Spain , and
| | - Roser Nadal
- a Institut de Neurociències, Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
- c Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III , Bellaterra , Barcelona , Spain , and
- d Unitat de Psicobiologia (Facultat de Psicologia), Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
| | - Antonio Armario
- a Institut de Neurociències, Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
- b Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
- c Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III , Bellaterra , Barcelona , Spain , and
| |
Collapse
|
31
|
Alves GJ, Palermo-Neto J. Odor cues released by Ehrlich tumor-bearing mice are aversive and induce psychological stress. Neuroimmunomodulation 2015; 22:121-9. [PMID: 24714518 DOI: 10.1159/000358253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/29/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS This study aimed to verify if odor cues released by Ehrlich tumor-bearing mice are aversive and stressful. METHODS Female mice were divided into a control group and an experimental group. One animal of each experimental pair of mice was inoculated with 5 × 10(6) Ehrlich tumor cells intraperitoneally; the other animal was kept undisturbed and was referred to as a CSP (companion of sick partner). One mouse of each control pair was treated intraperitoneally with 0.9% NaCl (1 mg/kg); the other animal (CHP, companion of healthy partner) was kept undisturbed. RESULTS It was shown that, in relation to CHP, CSP mice (1) spent less time within the companion zone in a T-maze place preference test, (2) had increased levels of social interaction, (3) had increased levels of plasmatic adrenaline and noradrenaline and (4) displayed no changes in serum corticosterone levels before and after an immobilization stress challenge. It was also shown that (5) cohabitation with 2 tumor-bearing mice was more effective in decreasing neutrophil oxidative burst than cohabitation with 1 sick partner and (6) the presence of a healthy conspecific within the cage of the tumor-injected/CSP pair abrogated the effects of cohabitation on neutrophil activity. These results show that odor cues released by Ehrlich tumor-injected mice are aversive and induce psychological stress. CONCLUSION We postulate that the aversive response induced by the chemosignals released by Ehrlich tumor-injected animals activates the sympathetic nervous system and causes the neuroimmunal changes that occur in the mice cohabiting with the sick mice.
Collapse
Affiliation(s)
- Glaucie Jussilane Alves
- Laboratory of Applied Pharmacology and Toxicology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
32
|
Oliveira CD, Oliveira CMD, de Macedo IC, Quevedo AS, Filho PRM, Silva FRD, Vercelino R, de Souza ICC, Caumo W, Torres ILS. Hypercaloric diet modulates effects of chronic stress: a behavioral and biometric study on rats. Stress 2015; 18:514-23. [PMID: 26364693 DOI: 10.3109/10253890.2015.1079616] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Obesity is a chronic disease that has been associated with chronic stress and hypercaloric diet (HD) consumption. Increased ingestion of food containing sugar and fat ingredients (comfort food) is proposed to "compensate" chronic stress effects. However, this eating habit may increase body fat depositions leading to obesity. This study evaluated behavioral/physiological parameters seeking to establish whether there is an association between the effects of HD intake and stress, and to test the hypothesis that the development of anxious behavior and obesity during chronic stress periods depends on the type of diet. Sixty-day-old male Wistar rats (n = 100) were divided into four groups: standard chow, hypercaloric diet, chronic stress/standard chow and chronic stress/hypercaloric diet. Chronic stress was induced by restraint stress exposure for 1 h/day, for 80 d. At the end of this period, rat behavior was evaluated using open-field and plus-maze tests. The results showed that HD alone increased weight gain and adipose deposition in subcutaneous and mesenteric areas. However, stress reduced weight gain and adipose tissue in these areas. HD also increased naso-anal length and concurrent stress prevented this. Behavioral data indicated that stress increased anxiety-like behaviors and comfort food reduced these anxiogenic effects; locomotor activity increased in rats fed with HD. Furthermore, HD decreased corticosterone levels and stress increased adrenal weight. The data indicate that when rats are given HD and experience chronic stress this association reduces the pro-obesogenic effects of HD, and decreases adrenocortical activity.
Collapse
Affiliation(s)
- Carla de Oliveira
- a Pharmacology of Pain and Neuromodulation Laboratory: Animal Models, Department of Pharmacology , Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul , ICBS , Porto Alegre , RS , Brazil
- b Medicine School, Federal University of Rio Grande do Sul , Porto Alegre , RS , Brazil
- c Animal Experimentation Unit and Graduate Research Group, Hospital de Clinicas de Porto Alegre , Porto Alegre , RS , Brazil , and
| | - Cleverson Moraes de Oliveira
- a Pharmacology of Pain and Neuromodulation Laboratory: Animal Models, Department of Pharmacology , Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul , ICBS , Porto Alegre , RS , Brazil
- b Medicine School, Federal University of Rio Grande do Sul , Porto Alegre , RS , Brazil
- c Animal Experimentation Unit and Graduate Research Group, Hospital de Clinicas de Porto Alegre , Porto Alegre , RS , Brazil , and
| | - Isabel Cristina de Macedo
- a Pharmacology of Pain and Neuromodulation Laboratory: Animal Models, Department of Pharmacology , Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul , ICBS , Porto Alegre , RS , Brazil
- c Animal Experimentation Unit and Graduate Research Group, Hospital de Clinicas de Porto Alegre , Porto Alegre , RS , Brazil , and
- d Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Alexandre S Quevedo
- a Pharmacology of Pain and Neuromodulation Laboratory: Animal Models, Department of Pharmacology , Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul , ICBS , Porto Alegre , RS , Brazil
- b Medicine School, Federal University of Rio Grande do Sul , Porto Alegre , RS , Brazil
- c Animal Experimentation Unit and Graduate Research Group, Hospital de Clinicas de Porto Alegre , Porto Alegre , RS , Brazil , and
| | - Paulo Ricardo Marques Filho
- a Pharmacology of Pain and Neuromodulation Laboratory: Animal Models, Department of Pharmacology , Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul , ICBS , Porto Alegre , RS , Brazil
- b Medicine School, Federal University of Rio Grande do Sul , Porto Alegre , RS , Brazil
- c Animal Experimentation Unit and Graduate Research Group, Hospital de Clinicas de Porto Alegre , Porto Alegre , RS , Brazil , and
| | - Fernanda Ribeiro da Silva
- a Pharmacology of Pain and Neuromodulation Laboratory: Animal Models, Department of Pharmacology , Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul , ICBS , Porto Alegre , RS , Brazil
- b Medicine School, Federal University of Rio Grande do Sul , Porto Alegre , RS , Brazil
- c Animal Experimentation Unit and Graduate Research Group, Hospital de Clinicas de Porto Alegre , Porto Alegre , RS , Brazil , and
| | - Rafael Vercelino
- a Pharmacology of Pain and Neuromodulation Laboratory: Animal Models, Department of Pharmacology , Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul , ICBS , Porto Alegre , RS , Brazil
- d Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Izabel C Custodio de Souza
- a Pharmacology of Pain and Neuromodulation Laboratory: Animal Models, Department of Pharmacology , Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul , ICBS , Porto Alegre , RS , Brazil
- b Medicine School, Federal University of Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Wolnei Caumo
- a Pharmacology of Pain and Neuromodulation Laboratory: Animal Models, Department of Pharmacology , Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul , ICBS , Porto Alegre , RS , Brazil
- b Medicine School, Federal University of Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Iraci L S Torres
- a Pharmacology of Pain and Neuromodulation Laboratory: Animal Models, Department of Pharmacology , Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul , ICBS , Porto Alegre , RS , Brazil
- b Medicine School, Federal University of Rio Grande do Sul , Porto Alegre , RS , Brazil
- c Animal Experimentation Unit and Graduate Research Group, Hospital de Clinicas de Porto Alegre , Porto Alegre , RS , Brazil , and
- d Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul , Porto Alegre , RS , Brazil
| |
Collapse
|
33
|
Hubens CJ, Kaptein PS, ter Horst JP, Voskuyl RA, Schenk GJ. Kainate-induced epileptogenesis alters circular hole board learning strategy but not the performance of C57BL/6J mice. Epilepsy Behav 2014; 41:127-35. [PMID: 25461204 DOI: 10.1016/j.yebeh.2014.09.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 09/12/2014] [Indexed: 01/12/2023]
Abstract
Patients with mesial temporal lobe epilepsy (mTLE) frequently show cognitive deficits. However, the relation between mTLE and cognitive impairment is poorly understood. To gain more insight into epilepsy-associated alterations in cognitive performance, we studied the spatial learning of C57BL/6J mice five weeks after kainate-induced status epilepticus (SE). Typically, structural hippocampal rearrangements take place within five weeks after SE. Mice were monitored by exposing them to four tasks with a focus on spatial memory and anxiety: the circular hole board, modified hole board, novel object-placement task, and elevated plus maze. On the circular hole board, animals showed a higher preference for hippocampus-independent strategies after SE. In contrast, no change in strategy was seen on the modified hole board, but animals with SE were able to finish the task more often. Animals did not have an increased preference for a relocated object in the novel object-placement task but showed an increased locomotion after SE. No indications for altered anxiety were found when tested on the elevated plus maze following SE. These data suggest that the circular hole board is a well-suited paradigm to detect subtle SE-induced hippocampal deficits.
Collapse
Affiliation(s)
- Chantal J Hubens
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands; Department of Pharmacology, Leiden Academic Center for Drug Research (LACDR), Leiden, The Netherlands.
| | - Pascale S Kaptein
- Department of Pharmacology, Leiden Academic Center for Drug Research (LACDR), Leiden, The Netherlands
| | - Judith P ter Horst
- Department of Medical Pharmacology, Leiden University Medical Center (LUMC) & LACDR, Leiden, The Netherlands
| | - Rob A Voskuyl
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands; Department of Pharmacology, Leiden Academic Center for Drug Research (LACDR), Leiden, The Netherlands
| | - Geert J Schenk
- Department of Medical Pharmacology, Leiden University Medical Center (LUMC) & LACDR, Leiden, The Netherlands
| |
Collapse
|
34
|
Giordana L, Bozzo A, Cots D, Monedero Cobeta I, Rolando A, Borghi D, Diaz T, Gauna H, Romanini M. The effect of chronic stress on prenatal development of the central nervous system. Biotech Histochem 2014; 90:146-51. [DOI: 10.3109/10520295.2014.976269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
35
|
Scorrano F, Carrasco J, Pastor‐Ciurana J, Belda X, Rami‐Bastante A, Bacci ML, Armario A. Validation of the long‐term assessment of hypothalamic‐pituitary‐adrenal activity in rats using hair corticosterone as a biomarker. FASEB J 2014; 29:859-67. [DOI: 10.1096/fj.14-254474] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Fabrizio Scorrano
- Department of Veterinary Medical Sciences, Animal Physiology UnitFaculty of Veterinary MedicineUniversity of Bologna40064Ozzano dell'EmiliaBolognaItaly
- Unitat de Fisiologia Animal (Facultat de Veterinaria)Universitat Autònoma de Barcelona08193BellaterraBarcelonaSpain
| | - Javier Carrasco
- Unitat de Fisiologia Animal (Facultat de Biociències)Universitat Autònoma de Barcelona08193BellaterraBarcelonaSpain
- Institut de NeurociènciesUniversitat Autonòma de Barcelona08193BellaterraBarcelonaSpain
- Red de trastornos adictivos (RTA)Instituto de Salud Carlos IIIMadridSpain
| | - Jordi Pastor‐Ciurana
- Unitat de Fisiologia Animal (Facultat de Biociències)Universitat Autònoma de Barcelona08193BellaterraBarcelonaSpain
- Institut de NeurociènciesUniversitat Autonòma de Barcelona08193BellaterraBarcelonaSpain
- Red de trastornos adictivos (RTA)Instituto de Salud Carlos IIIMadridSpain
| | - Xavier Belda
- Unitat de Fisiologia Animal (Facultat de Biociències)Universitat Autònoma de Barcelona08193BellaterraBarcelonaSpain
- Institut de NeurociènciesUniversitat Autonòma de Barcelona08193BellaterraBarcelonaSpain
- Red de trastornos adictivos (RTA)Instituto de Salud Carlos IIIMadridSpain
| | - Alicia Rami‐Bastante
- Unitat de Fisiologia Animal (Facultat de Biociències)Universitat Autònoma de Barcelona08193BellaterraBarcelonaSpain
- Institut de NeurociènciesUniversitat Autonòma de Barcelona08193BellaterraBarcelonaSpain
- Red de trastornos adictivos (RTA)Instituto de Salud Carlos IIIMadridSpain
| | - Maria Laura Bacci
- Department of Veterinary Medical Sciences, Animal Physiology UnitFaculty of Veterinary MedicineUniversity of Bologna40064Ozzano dell'EmiliaBolognaItaly
| | - Antonio Armario
- Unitat de Fisiologia Animal (Facultat de Biociències)Universitat Autònoma de Barcelona08193BellaterraBarcelonaSpain
- Institut de NeurociènciesUniversitat Autonòma de Barcelona08193BellaterraBarcelonaSpain
- Red de trastornos adictivos (RTA)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
36
|
Gagliano H, Nadal R, Armario A. Sex differences in the long-lasting effects of a single exposure to immobilization stress in rats. Horm Behav 2014; 66:793-801. [PMID: 25461973 DOI: 10.1016/j.yhbeh.2014.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 10/21/2014] [Accepted: 11/08/2014] [Indexed: 12/28/2022]
Abstract
In male rats, a single exposure to a severe stressor such as immobilization (IMO) results in marked activation of the HPA axis and reduction of body weight gain. In addition, the HPA response to the same (homotypic) stressor is reduced, whereas the response to a different (heterotypic) stressor is enhanced for days. Although sex differences in the responsiveness of the HPA axis have been described, there are few studies about the influence of sex on long-lasting effects of stress. Thus, we have compared the consequences of a single exposure to IMO in male and female rats. Females showed a similar ACTH response to the first IMO associated with higher corticosterone, but they were more resistant than males to stress-induced loss of body weight. Unstressed females showed higher resting levels of ACTH and corticosterone, but they did not show the increase in the resting levels of HPA hormones observed in males on the day after IMO. During exposure to a different stressor (open-field) two days after IMO, enhanced corticosterone response and hypoactivity was observed in males, but not in females. Finally, a second exposure to IMO 8 days after the first one resulted in a reduction of the HPA response and of the negative impact on body weight as compared to the first exposure, and this protective effect was greater in females. In sum, IMO-exposed females showed a greater reduction of the response to a second IMO and appear to be more resistant than males to some of the negative impacts of IMO.
Collapse
Affiliation(s)
- Humberto Gagliano
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit (Faculty of Biosciences), Universitat Autònoma de Barcelona, Spain
| | - Roser Nadal
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Psychobiology Unit (Faculty of Psychology), Universitat Autònoma de Barcelona, Spain.
| | - Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit (Faculty of Biosciences), Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
37
|
Daviu N, Andero R, Armario A, Nadal R. Sex differences in the behavioural and hypothalamic-pituitary-adrenal response to contextual fear conditioning in rats. Horm Behav 2014; 66:713-23. [PMID: 25311689 DOI: 10.1016/j.yhbeh.2014.09.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 08/02/2014] [Accepted: 09/30/2014] [Indexed: 12/17/2022]
Abstract
In recent years, special attention is being paid to sex differences in susceptibility to disease. In this regard, there is evidence that male rats present higher levels of both cued and contextual fear conditioning than females. However, little is known about the concomitant hypothalamic-pituitary-adrenal (HPA) axis response to those situations which are critical in emotional memories. Here, we studied the behavioural and HPA responses of male and female Wistar rats to context fear conditioning using electric footshock as the aversive stimulus. Fear-conditioned rats showed a much greater ACTH and corticosterone response than those merely exposed to the fear conditioning chamber without receiving shocks. Moreover, males presented higher levels of freezing whereas HPA axis response was greater in females. Accordingly, during the fear extinction tests, female rats consistently showed less freezing and higher extinction rate, but greater HPA activation than males. Exposure to an open-field resulted in lower activity/exploration in fear-conditioned males, but not in females, suggesting greater conditioned cognitive generalization in males than females. It can be concluded that important sex differences in fear conditioning are observed in both freezing and HPA activation, but the two sets of variables are affected in the opposite direction: enhanced behavioural impact in males, but enhanced HPA responsiveness in females. Thus, the role of sex differences on fear-related stimuli may depend on the variables chosen to evaluate it, the greater responsiveness of the HPA axis in females perhaps being an important factor to be further explored.
Collapse
Affiliation(s)
- Núria Daviu
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Raül Andero
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Antonio Armario
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain.
| | - Roser Nadal
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Psychobiology (School of Psychology), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain.
| |
Collapse
|
38
|
Schulte PM. What is environmental stress? Insights from fish living in a variable environment. ACTA ACUST UNITED AC 2014; 217:23-34. [PMID: 24353201 DOI: 10.1242/jeb.089722] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Although the term environmental stress is used across multiple fields in biology, the inherent ambiguity associated with its definition has caused confusion when attempting to understand organismal responses to environmental change. Here I provide a brief summary of existing definitions of the term stress, and the related concepts of homeostasis and allostasis, and attempt to unify them to develop a general framework for understanding how organisms respond to environmental stressors. I suggest that viewing stressors as environmental changes that cause reductions in performance or fitness provides the broadest and most useful conception of the phenomenon of stress. I examine this framework in the context of animals that have evolved in highly variable environments, using the Atlantic killifish, Fundulus heteroclitus, as a case study. Consistent with the extreme environmental variation that they experience in their salt marsh habitats, killifish have substantial capacity for both short-term resistance and long-term plasticity in the face of changing temperature, salinity and oxygenation. There is inter-population variation in the sensitivity of killifish to environmental stressors, and in their ability to acclimate, suggesting that local adaptation can shape the stress response even in organisms that are broadly tolerant and highly plastic. Whole-organism differences between populations in stressor sensitivity and phenotypic plasticity are reflected at the biochemical and molecular levels in killifish, emphasizing the integrative nature of the response to environmental stressors. Examination of this empirical example highlights the utility of using an evolutionary perspective on stressors, stress and stress responses.
Collapse
Affiliation(s)
- Patricia M Schulte
- Department of Zoology, 6270 University Blvd, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| |
Collapse
|
39
|
Jenkins FJ, Van Houten B, Bovbjerg DH. Effects on DNA Damage and/or Repair Processes as Biological Mechanisms Linking Psychological Stress to Cancer Risk. ACTA ACUST UNITED AC 2014; 19:3-23. [PMID: 24891812 DOI: 10.1111/jabr.12019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Considerable research effort in the past several decades has focused on the impact of psychological stress, and stress hormones, on cancer progression. Numerous studies have reported that stress hormone treatment or in vivo stress exposure can enhance the growth of tumor cell lines in vitro, as well as tumors in animal models, and have begun to explore molecular mechanisms. Comparatively little research has focused on the impact of psychological stress and stress hormones on cancer initiation, in part due to inherent methodological challenges, but also because potential underlying biological mechanisms have remained obscure. In this review, we present a testable theoretical model of pathways by which stress may result in cellular transformation and tumorigenesis. This model supports our overarching hypothesis that psychological stress, acting through increased levels of catecholamines and/or cortisol, can increase DNA damage and/or reduce repair mechanisms, resulting in increased risk of DNA mutations leading to carcinogenesis. A better understanding of molecular pathways by which psychological stress can increase the risk of cancer initiation would open new avenues of translational research, bringing together psychologists, neuroscientists, and molecular biologists, potentially resulting in the development of novel approaches for cancer risk reduction at the population level.
Collapse
Affiliation(s)
- Frank J Jenkins
- Department of Pathology, Infectious Diseases and Microbiology, University of Pittsburgh and Biobehavioral Medicine in Oncology Program, University of Pittsburgh Cancer Institute
| | - Bennett Van Houten
- Department of Chemical Biology and Pharmacology, University of Pittsburgh and Molecular and Cellular Cancer Biology Program, University of Pittsburgh Cancer Institute
| | - Dana H Bovbjerg
- Department of Psychiatry, Psychology, and Behavioral and Community Health Sciences, University of Pittsburgh and Biobehavioral Medicine in Oncology Program, University of Pittsburgh Cancer Institute
| |
Collapse
|
40
|
Hadad-Ophir O, Albrecht A, Stork O, Richter-Levin G. Amygdala activation and GABAergic gene expression in hippocampal sub-regions at the interplay of stress and spatial learning. Front Behav Neurosci 2014; 8:3. [PMID: 24478650 PMCID: PMC3896990 DOI: 10.3389/fnbeh.2014.00003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/03/2014] [Indexed: 12/14/2022] Open
Abstract
Molecular processes in GABAergic local circuit neurons critically contribute to information processing in the hippocampus and to stress-induced activation of the amygdala. In the current study, we determined expression changes in GABA-related factors induced in subregions of the dorsal hippocampus as well as in the BLA of rats 5 h after spatial learning in a Morris water maze (MWM), using laser microdissection and quantitative real-time PCR. Spatial learning resulted in highly selective pattern of changes in hippocampal subregions: gene expression levels of neuropeptide Y (NPY) were reduced in the hilus of the dentate gyrus (DG), whereas somatostatin (SST) was increased in the stratum oriens (SO) of CA3. The GABA-synthesizing enzymes GAD65 and GAD67 as well as the neuropeptide cholecystokinin (CCK) were reduced in SO of CA1. In the BLA, expression of GAD65 and GAD67 were reduced compared to a handled Control group. These expression patterns were further compared to alterations in a group of rats that have been exposed to the water maze but were not provided with an invisible escape platform. In this Water Exposure group, no expression changes were observed in any of the hippocampal subregions, but a differential regulation of all selected target genes was evident in the BLA. These findings suggest that expression changes of GABAergic factors in the hippocampus are associated with spatial learning, while additional stress effects modulate expression alterations in the BLA. Indeed, while in both experimental groups plasma corticosterone (CORT) levels were enhanced, only Water Exposure stress activated the basolateral amygdala (BLA), as indicated by increased levels of phosphorylated ERK 1/2. Altered GABAergic function in the BLA may thus contribute to memory consolidation in the hippocampus, in relation to levels of stress and emotionality associated with the experience.
Collapse
Affiliation(s)
- Osnat Hadad-Ophir
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel ; The Brain and Behavior Research Center, University of Haifa Haifa, Israel ; The Institute for the Study of Affective Neuroscience, University of Haifa Haifa, Israel
| | - Anne Albrecht
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel ; The Institute for the Study of Affective Neuroscience, University of Haifa Haifa, Israel ; Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel ; The Brain and Behavior Research Center, University of Haifa Haifa, Israel ; The Institute for the Study of Affective Neuroscience, University of Haifa Haifa, Israel
| |
Collapse
|
41
|
Armario A, Nadal R. Individual differences and the characterization of animal models of psychopathology: a strong challenge and a good opportunity. Front Pharmacol 2013; 4:137. [PMID: 24265618 PMCID: PMC3821037 DOI: 10.3389/fphar.2013.00137] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 10/16/2013] [Indexed: 02/06/2023] Open
Abstract
Despite the development of valuable new techniques (i.e., genetics, neuroimage) for the study of the neurobiological substrate of psychiatric diseases, there are strong limitations in the information that can be gathered from human studies. It is thus critical to develop appropriate animal models of psychiatric diseases to characterize their putative biological bases and the development of new therapeutic strategies. The present review tries to offer a general perspective and several examples of how individual differences in animals can contribute to explain differential susceptibility to develop behavioral alterations, but also emphasizes methodological problems that can lead to inappropriate or over-simplistic interpretations. A critical analysis of the approaches currently used could contribute to obtain more reliable data and allow taking full advantage of new and sophisticated technologies. The discussion is mainly focused on anxiety-like and to a lower extent on depression-like behavior in rodents.
Collapse
Affiliation(s)
- Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona Bellaterra, Barcelona, Spain ; Unitat de Fisiologia Animal, Facultat de Biociències, Universitat Autònoma de Barcelona Bellaterra, Barcelona, Spain
| | | |
Collapse
|
42
|
Holtzman CW, Trotman HD, Goulding SM, Ryan AT, Macdonald AN, Shapiro DI, Brasfield JL, Walker EF. Stress and neurodevelopmental processes in the emergence of psychosis. Neuroscience 2013; 249:172-91. [PMID: 23298853 PMCID: PMC4140178 DOI: 10.1016/j.neuroscience.2012.12.017] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/24/2012] [Accepted: 12/02/2012] [Indexed: 11/28/2022]
Abstract
The notion that stress plays a role in the etiology of psychotic disorders, especially schizophrenia, is longstanding. However, it is only in recent years that the potential neural mechanisms mediating this effect have come into sharper focus. The introduction of more sophisticated models of the interplay between psychosocial factors and brain function has expanded our opportunities for conceptualizing more detailed psychobiological models of stress in psychosis. Further, scientific advances in our understanding of adolescent brain development have shed light on a pivotal question that has challenged researchers; namely, why the first episode of psychosis typically occurs in late adolescence/young adulthood. In this paper, we begin by reviewing the evidence supporting associations between psychosocial stress and psychosis in diagnosed patients as well as individuals at clinical high risk for psychosis. We then discuss biological stress systems and examine changes that precede and follow psychosis onset. Next, research findings on structural and functional brain characteristics associated with psychosis are presented; these findings suggest that normal adolescent neuromaturational processes may go awry, thereby setting the stage for the emergence of psychotic syndromes. Finally, a model of neural mechanisms underlying the pathogenesis of psychosis is presented and directions for future research strategies are explored.
Collapse
Affiliation(s)
- C. W. Holtzman
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States
| | - H. D. Trotman
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States
| | - S. M. Goulding
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States
| | - A. T. Ryan
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States
| | - A. N. Macdonald
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States
| | - D. I. Shapiro
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States
| | - J. L. Brasfield
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States
| | - E. F. Walker
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States
| |
Collapse
|
43
|
Benes J, Tomankova H, Novakova M, Rohan Z, Kvetnansky R, Myslivecek J. Corticotropin-releasing hormone affects short immobilization stress-induced changes in lung cytosolic and membrane glucocorticoid binding sites. Cell Mol Neurobiol 2013; 33:503-11. [PMID: 23430272 PMCID: PMC11497924 DOI: 10.1007/s10571-013-9916-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/06/2013] [Indexed: 12/22/2022]
Abstract
Glucocorticoids act via glucocorticoid receptors (GR), typically localized in the cytosol (cGR). Rapid action is probably mediated via membrane receptors (mGR). In corticotropin-releasing hormone knockouts (CRH-KO), basal plasma glucocorticoid levels do differ from wild type levels (WT), but are approximately ten times lower during exposure to immobilization stress (IMMO) in comparison to WT. We tested the following hypotheses: (1) the mice lung tissue GR basal numbers would not be changed in CRH-KO (because of similar glucocorticoid levels), (2) the number of GR would be changed in WT but not in KO during short (30, 90, and 120 min) IMMO (because of higher increase of glucocorticoid levels in WT). The basal levels of cGR were not changed in CRH-KO (compared to WT), while mGR were significantly lower (62 %) in CRH-KO. In WT, there was the only decrease (to 32 %) in cGR after 120 min when we also found an increase in mGR in WT (to 201 %). In CRH-KO, IMMO caused gradual decrease in cGR (to 52 % after 30 min, to 46 % after 90 min, and to 32 % after 120 min). In CRH-KO, the only increase in mGR appeared already at 30 min of IMMO. These data suggest, on the contrary to our hypotheses, that CRH-KO are more susceptible to GR changes in early phases of stress.
Collapse
Affiliation(s)
- Jan Benes
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 5, 12800 Prague, Czech Republic
| | - Hana Tomankova
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 5, 12800 Prague, Czech Republic
| | - Martina Novakova
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 5, 12800 Prague, Czech Republic
| | - Zdeněk Rohan
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 5, 12800 Prague, Czech Republic
| | - Richard Kvetnansky
- Institute of Experimental Endocrinology, Centre of Excellence for Cardiovascular Research and CENDO, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, Slovakia
| | - Jaromir Myslivecek
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 5, 12800 Prague, Czech Republic
| |
Collapse
|
44
|
Souza Queiroz J, Barbosa CMV, da Rocha MC, Bincoletto C, Paredes-Gamero EJ, de Souza Queiroz ML, Palermo Neto J. Chlorella vulgaris treatment ameliorates the suppressive effects of single and repeated stressors on hematopoiesis. Brain Behav Immun 2013; 29:39-50. [PMID: 23246529 DOI: 10.1016/j.bbi.2012.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 11/25/2012] [Accepted: 12/03/2012] [Indexed: 12/18/2022] Open
Abstract
The reports regarding the mutual influence between the central nervous system and the immune system constitute a vast and somewhat controversial body of literature. Stress is known to disturb homeostasis, impairing immunological functions. In this study, we investigated the hematopoietic response of Chlorella vulgaris (CV)-treated mice exposed to single (SST) and repeated stress (RST). We observed a reduction in the numbers of hematopoietic progenitors (HP) in the bone marrow and long-term bone marrow cultures (LTBMC) using flow cytometry and a coinciding decrease in the number of granulocyte-macrophage colonies (CFU-GM) after treatment with both stressors, but SST caused a more profound suppression. We observed a proportional increase in the colony-stimulating activity (CSA) of the serum of animals subjected to SST or RST. In the bone marrow, SST and RST induced a decrease in both mature myeloid and lymphoid populations but did not affect pluripotent hematopoietic progenitors (Lin(-)Sca-1(+)c-kit(+), LSK), and again, a more profound suppression was observed after SST. We further quantified the levels of interleukin-1α (IL-1α) and interleukin-6 (IL-6) and the number of myeloid cells in LTBMC. Both SST and RST reduced the levels of these cytokines to similar degrees. The myeloid population was also reduced in LTBMC, and SST induced a more intense suppression. Importantly, CV treatment prevented the changes produced by SST and RST in all of the parameters evaluated. Together, our results suggest that CV treatment is an effective tool for the prophylaxis of myelosuppression caused by single or repeated stressors.
Collapse
Affiliation(s)
- Julia Souza Queiroz
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Brazil; Grupo de pesquisa em Neuroimunomodulação, Faculdade de Medicina Veterinária, Universidade de São Paulo, São Paulo/SP, Brazil
| | - Christiano M V Barbosa
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo/SP, Brazil
| | - Michelle C da Rocha
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Brazil
| | - Claudia Bincoletto
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo/SP, Brazil
| | - Edgar J Paredes-Gamero
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo/SP, Brazil
| | - Mary L de Souza Queiroz
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Brazil
| | - João Palermo Neto
- Grupo de pesquisa em Neuroimunomodulação, Faculdade de Medicina Veterinária, Universidade de São Paulo, São Paulo/SP, Brazil.
| |
Collapse
|
45
|
Daviu N, Delgado-Morales R, Nadal R, Armario A. Not all stressors are equal: behavioral and endocrine evidence for development of contextual fear conditioning after a single session of footshocks but not of immobilization. Front Behav Neurosci 2012; 6:69. [PMID: 23112767 PMCID: PMC3483012 DOI: 10.3389/fnbeh.2012.00069] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 10/09/2012] [Indexed: 12/22/2022] Open
Abstract
Exposure of animals to footshocks (FS) in absence of any specific cue results in the development of fear to the compartment where shocks were given (contextual fear conditioning), and this is usually evaluated by time spent freezing. However, the extent to which contextual fear conditioning always develops when animals are exposed to other stressors is not known. In the present work we firstly demonstrated, using freezing, that exposure of adult rats to a single session of FS resulted in short-term and long-term contextual fear conditioning (freezing) that was paralleled by increased hypothalamic-pituitary-adrenal (HPA) activation. In contrast, using a similar design, no HPA or behavioral evidence for such conditioning was found after exposure to immobilization on boards (IMO), despite this stressor being of similar severity as FS on the basis of standard physiological measures of stress, including HPA activation. In a final experiment we directly compared the exposure to the two stressors in the same type of context and tested for the development of conditioning to the context and to a specific cue for IMO (the board). We observed the expected high levels of freezing and the conditioned HPA activation after FS, but not after IMO, regardless of the presence of the board during testing. Therefore, it can be concluded that development of fear conditioning to context or particular cues, as evaluated by either behavioral or endocrine measures, appears to be dependent on the nature of the aversive stimuli, likely to be related to biologically preparedness to establish specific associations.
Collapse
Affiliation(s)
- Núria Daviu
- Institut de Neurociències, Universitat Autònoma de BarcelonaBellaterra, Barcelona, Spain
- Red de trastornos adictivos (RTA), Instituto de Salud Carlos IIIMadrid, Spain
- Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de BarcelonaBellaterra, Barcelona, Spain
| | - Raúl Delgado-Morales
- Institut de Neurociències, Universitat Autònoma de BarcelonaBellaterra, Barcelona, Spain
- Red de trastornos adictivos (RTA), Instituto de Salud Carlos IIIMadrid, Spain
- Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de BarcelonaBellaterra, Barcelona, Spain
| | - Roser Nadal
- Institut de Neurociències, Universitat Autònoma de BarcelonaBellaterra, Barcelona, Spain
- Red de trastornos adictivos (RTA), Instituto de Salud Carlos IIIMadrid, Spain
- Unitat de Psicobiologia (Facultat de Psicologia), Universitat Autònoma de BarcelonaBellaterra, Barcelona, Spain
| | - Antonio Armario
- Institut de Neurociències, Universitat Autònoma de BarcelonaBellaterra, Barcelona, Spain
- Red de trastornos adictivos (RTA), Instituto de Salud Carlos IIIMadrid, Spain
- Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de BarcelonaBellaterra, Barcelona, Spain
| |
Collapse
|