1
|
Adiyeke E, Bakan N, Uvez A, Arslan DO, Kilic S, Koc B, Ozer S, Saatci O, Armutak Eİ. The effect of N-acetylcysteine on the neurotoxicity of sevoflurane in developing hippocampus cells. Neurotoxicology 2024; 103:96-104. [PMID: 38843996 DOI: 10.1016/j.neuro.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/03/2024] [Accepted: 05/26/2024] [Indexed: 06/18/2024]
Abstract
Sevoflurane, a common pediatric anesthetic, has been linked to neurodegeneration, raising safety concerns. This study explored N-acetylcysteine's protective potential against sevoflurane-induced neurotoxicity in rat hippocampi. Four groups were examined: Control: Received 6 hours of 3 l/min gas (air and 30 % O2) and intraperitoneal saline. NAC: Received 6 hours of 3 l/min gas and 150 mg/kg NAC intraperitoneally. Sev: Exposed to 6 hours of 3 l/min gas and 3 % sevoflurane. Sev+NAC: Received 6 hours of 3 l/min gas, 3 % sevoflurane, and 150 mg/kg NAC. Protein levels of NRF-2, NLRP3, IL-1β, caspase-1, Beclin 1, p62, LC3A, and apoptosis markers were assessed. Sevoflurane and NAC alone reduced autophagy, while Sev+NAC group maintained autophagy levels. Sev group had elevated NRF-2, NLRP3, pNRF2, Caspase-1, and IL-1β, which were reduced in Sev+NAC. Apoptosis was higher in Sev, but Sev+NAC showed reduced apoptosis compared to the control. In summary, sevoflurane induced neurotoxicity in developing hippocampus, which was mitigated by N-acetylcysteine administration.
Collapse
Affiliation(s)
- Esra Adiyeke
- Sancaktepe Training and Research Hospital, Anesthesiology and Reanimation Department, Emek Mahallesi Namık Kemal Caddesi No:54 Sancaktepe, Istanbul, Turkey.
| | - Nurten Bakan
- Sancaktepe Training and Research Hospital, Anesthesiology and Reanimation Department, Emek Mahallesi Namık Kemal Caddesi No:54 Sancaktepe, Istanbul, Turkey
| | - Ayca Uvez
- Istanbul University-Cerrahpaşa Faculty of Veterinary Medicine Department of Histology and Embryology, Turkey
| | - Devrim Oz Arslan
- Acibadem Mehmet Ali Aydinlar University Institute of Health Science Department of Biophysics, Turkey
| | - Sima Kilic
- Istanbul University-Cerrahpasa, Institude of Nanotechnology and Biotechnology Department of Biotechnology, Turkey
| | - Berkcan Koc
- Acibadem Mehmet Ali Aydinlar University Institute of Health Science Department of Biophysics, Turkey
| | - Samed Ozer
- Acibadem Mehmet Ali Aydinlar University Institute of Health Science Department of Physiology, Turkey
| | - Ozlem Saatci
- Sancaktepe Training and Research Hospital Department of Otolaryngology/Head and Neck Surgery, Turkey
| | - Elif İlkay Armutak
- Istanbul University-Cerrahpaşa Faculty of Veterinary Medicine Department of Histology and Embryology, Turkey
| |
Collapse
|
2
|
Kim RJ, Park HB. Protective and Regenerative Effects of Reconstituted HDL on Human Rotator Cuff Fibroblasts under Hypoxia: An In Vitro Study. Antioxidants (Basel) 2024; 13:497. [PMID: 38671944 PMCID: PMC11047627 DOI: 10.3390/antiox13040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Hypoxia and hypo-high-density lipoproteinemia (hypo-HDLemia) are proposed risk factors for rotator cuff tear. HDL is recognized for its potential benefits in ischemia-driven angiogenesis and wound healing. Nevertheless, research on the potential benefits of reconstituted HDL (rHDL) on human rotator cuff fibroblasts (RCFs) under hypoxia is limited. This study investigates the cytoprotective and regenerative effects of rHDL, as well as N-acetylcysteine (NAC), vitamin C (Vit C), and HDL on human RCFs under hypoxic conditions. Sixth-passage human RCFs were divided into normoxia, hypoxia, and hypoxia groups pretreated with antioxidants (NAC, Vit C, rHDL, HDL). Hypoxia was induced by 1000 µM CoCl2. In the hypoxia group compared to the normoxia group, there were significant increases in hypoxia-inducible factor-1α (HIF-1α), heme oxygenase-1 (HO-1), and Bcl-2/E1B-19kDa interacting protein 3 (BNIP3) expressions, along with reduced cell viability, elevated reactive oxygen species (ROS) production, apoptosis rate, expressions of cleaved caspase-3, cleaved poly ADP-ribose polymerase-1 (PARP-1), vascular endothelial growth factors (VEGF), and matrix metalloproteinase-2 (MMP-2), as well as decreased collagen I and III production, and markedly lower cell proliferative activity (p ≤ 0.039). These responses were significantly mitigated by pretreatment with rHDL (p ≤ 0.046). This study suggests that rHDL can enhance cell proliferation and collagen I and III production while reducing apoptosis in human RCFs under hypoxic conditions.
Collapse
Affiliation(s)
- Ra Jeong Kim
- Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea;
| | - Hyung Bin Park
- Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea;
- Department of Orthopaedic Surgery, School of Medicine, Gyengsang National University, Jinju 52727, Republic of Korea
- Department of Orthopaedic Surgery, Gyengsang National University Changwon Hospital, Changwon 51472, Republic of Korea
| |
Collapse
|
3
|
Lin X, Li L, Luo J, Chen D, Tan J, Li P. Cobalt-induced apoptosis of cochlear organotypic cultures and HEI-OC1 cells is mediated by Dicer. Neurotoxicology 2024; 100:85-99. [PMID: 38101458 DOI: 10.1016/j.neuro.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Cobalt is widely used in the medical industry, mainly including cobalt alloy joint implants and cobalt-chromium porcelain crowns. However, unexplained ototoxicity and neurotoxicity often occur in the clinical use of cobalt agents at present, which limits the development of the cobalt industry. In this study, based on the clinical problem of cobalt ototoxicity, we first conducted an extensive search and collation of related theories, and on this basis, prepared an HEI-OC1 cell model and basilar membrane organotypic cultures after cobalt treatment. We used immunofluorescence staining, western blot, CCK8, and si-RNA to investigate the mechanism of cobalt ototoxicity, to discover its potential therapeutic targets. After comparing the reactive oxygen species, mitochondrial transmembrane potential, apoptosis-related protein expression, and cell viability of different treatment groups, the following conclusions were drawn: cobalt causes oxidative stress in the inner ear, which leads to apoptosis of inner ear cells; inhibition of oxidative stress and apoptosis can alleviate the damage of cobalt on inner ear cells; and the Dicer protein plays a role in the mechanism of inner ear damage and is a potential target for the treatment of cobalt-induced inner ear damage. Taken together, these results suggest that cobalt-induced ototoxicity triggered by oxidative stress activates a cascade of apoptotic events where cCaspase-3 decreases Dicer levels and amplifies this apoptotic pathway. It may be possible to prevent and treat cobalt ototoxicity by targeting this mechanism.
Collapse
Affiliation(s)
- Xuexin Lin
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Liling Li
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jia Luo
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Dan Chen
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jingqian Tan
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Peng Li
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
4
|
Buonfiglio F, Pfeiffer N, Gericke A. Immunomodulatory and Antioxidant Drugs in Glaucoma Treatment. Pharmaceuticals (Basel) 2023; 16:1193. [PMID: 37765001 PMCID: PMC10535738 DOI: 10.3390/ph16091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/02/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Glaucoma, a group of diseases characterized by progressive retinal ganglion cell loss, cupping of the optic disc, and a typical pattern of visual field defects, is a leading cause of severe visual impairment and blindness worldwide. Elevated intraocular pressure (IOP) is the leading risk factor for glaucoma development. However, glaucoma can also develop at normal pressure levels. An increased susceptibility of retinal ganglion cells to IOP, systemic vascular dysregulation, endothelial dysfunction, and autoimmune imbalances have been suggested as playing a role in the pathophysiology of normal-tension glaucoma. Since inflammation and oxidative stress play a role in all forms of glaucoma, the goal of this review article is to present an overview of the inflammatory and pro-oxidant mechanisms in the pathophysiology of glaucoma and to discuss immunomodulatory and antioxidant treatment approaches.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
| | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
| |
Collapse
|
5
|
Buonfiglio F, Böhm EW, Pfeiffer N, Gericke A. Oxidative Stress: A Suitable Therapeutic Target for Optic Nerve Diseases? Antioxidants (Basel) 2023; 12:1465. [PMID: 37508003 PMCID: PMC10376185 DOI: 10.3390/antiox12071465] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Optic nerve disorders encompass a wide spectrum of conditions characterized by the loss of retinal ganglion cells (RGCs) and subsequent degeneration of the optic nerve. The etiology of these disorders can vary significantly, but emerging research highlights the crucial role of oxidative stress, an imbalance in the redox status characterized by an excess of reactive oxygen species (ROS), in driving cell death through apoptosis, autophagy, and inflammation. This review provides an overview of ROS-related processes underlying four extensively studied optic nerve diseases: glaucoma, Leber's hereditary optic neuropathy (LHON), anterior ischemic optic neuropathy (AION), and optic neuritis (ON). Furthermore, we present preclinical findings on antioxidants, with the objective of evaluating the potential therapeutic benefits of targeting oxidative stress in the treatment of optic neuropathies.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| |
Collapse
|
6
|
Sex Differences in X-ray-Induced Endothelial Damage: Effect of Taurine and N-Acetylcysteine. Antioxidants (Basel) 2022; 12:antiox12010077. [PMID: 36670939 PMCID: PMC9854489 DOI: 10.3390/antiox12010077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023] Open
Abstract
Ionizing radiation (IR) can induce some associated pathological conditions due to numerous cell damages. The influence of sex is scarcely known, and even less known is whether the effect of antioxidants is sex-dependent. Given the increased use of IR, we investigated whether male human umbilical vein endothelial cells (MHUVECs) and female human umbilical vein endothelial cells (FHUVECs) respond differently to IR exposure and whether the antioxidants 10 mM taurine (TAU) and 5 mM N-acetylcysteine (NAC) can prevent IR-induced damage in a sex-dependent way. In untreated cells, sex differences were observed only during autophagy, which was higher in FHUVECs. In non-irradiated cells, preincubation with TAU and NAC did not modify viability, lactate dehydrogenase (LDH) release, migration, or autophagy, whereas only NAC increased malondialdehyde (MDA) levels in FHUVECs. X-ray irradiation increased LDH release and reduced viability and migration in a sex-independent manner. TAU and NAC did not affect viability while reduced LDH release in irradiated cells: they have the same protective effect in FHUVECs, while, TAU was more protective than NAC in male cells.. Moreover, TAU and NAC significantly promoted the closure of wounds in both sexes in irradiated cells, but NAC was more effective at doing this in FHUVECs. In irradiated cells, TAU did not change autophagy, while NAC attenuated the differences between the sexes. Finally, NAC significantly decreased MDA in MHUVECs and increased MDA in FHUVECs. In conclusion, FHUVECs appear to be more susceptible to IR damage, and the effects of the two antioxidants present some sex differences, suggesting the need to study the influence of sex in radiation mitigators.
Collapse
|
7
|
Mechanisms of Qing-Gan Li-Shui Formulation in Ameliorating Primary Open Angle Glaucoma: An Analysis Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8336131. [PMID: 35911154 PMCID: PMC9328959 DOI: 10.1155/2022/8336131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/07/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022]
Abstract
Objective In this study, we investigated the mechanism of Qing-Gan Li-Shui formulation (QGLSF) in treating primary open glaucoma (POAG) by network pharmacology and in vitro experiments. Methods The active pharmaceutical ingredients (APIs) of GLQSF (prepared with Prunella vulgaris, Kudzu root, Plantago asiatica, and Lycium barbarum) were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and Yet Another Traditional Chinese Medicine database (YATCM). The targets of POAG were screened out with GeneCards, OMIM, PharmGKB, Therapeutic Target Database (TTD), and DrugBank databases. The Venny platform was used to summarize the core targets. Topological analysis was performed using Cytoscape3.8.0. A protein-protein interaction network was plotted by STRING online. The key targets were subjected to GO and KEGG enrichment analyses. Finally, the effects of APIs were verified by a model of chloride hexahydrate (CoCl2)-induced retinal ganglion cells-5 (RGC-5). Results The main APIs were selected as quercetin (Que) by network pharmacology. Nine clusters of QGLSF targets were obtained by the PPI network analysis, including AKT-1, TP53, and JUN. KEGG enrichment analysis showed that these targets were mainly involved in the AGE-RAGE signaling pathway. By in vitro experiments, Que promoted cell proliferation. The secretion of AKT-1, TP53, JUN, AGE, and RAGE in the cell culture supernatant decreased, as shown by ELISA. The mRNA levels of AKT-1, TP53, JUN, and RAGE decreased, as shown by RT-PCR. QGLSF may employ the AGE-RAGE signaling pathway to counter POAG. Conclusion This study preliminarily elucidates the efficacy and mechanism of QGLSF in the treatment of POAG.
Collapse
|
8
|
Baj J, Forma A, Kobak J, Tyczyńska M, Dudek I, Maani A, Teresiński G, Buszewicz G, Januszewski J, Flieger J. Toxic and Nutritional Optic Neuropathies—An Updated Mini-Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053092. [PMID: 35270784 PMCID: PMC8910489 DOI: 10.3390/ijerph19053092] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 12/20/2022]
Abstract
Optic neuropathies constitute a group of conditions with various etiologies and might be caused by different factors; we can distinguish the genetic and acquired causes of optic neuropathies. Even though the symptoms are not highly specific, this condition is primarily characterized by unilateral or bilateral vision loss with worsening color detection. The loss may be acute or gradual depending on the causation. In this article, we included a specification of toxic optic neuropathy (TON) mainly triggered by alcohol abuse and also the usage of other substances, including drugs or methanol, as well as intoxication by metals, organic solvents, or carbon dioxide. Nutritional deficiencies, vitamin absorption disorder, and anemia, which usually appear during excessive alcohol intake, and their effect on the etiology of the optic neuropathy have been likewise discussed.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.B.); (A.M.)
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (J.K.); (M.T.); (I.D.); (G.T.); (G.B.); (J.J.)
- Correspondence:
| | - Joanna Kobak
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (J.K.); (M.T.); (I.D.); (G.T.); (G.B.); (J.J.)
| | - Magdalena Tyczyńska
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (J.K.); (M.T.); (I.D.); (G.T.); (G.B.); (J.J.)
| | - Iga Dudek
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (J.K.); (M.T.); (I.D.); (G.T.); (G.B.); (J.J.)
| | - Amr Maani
- Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.B.); (A.M.)
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (J.K.); (M.T.); (I.D.); (G.T.); (G.B.); (J.J.)
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (J.K.); (M.T.); (I.D.); (G.T.); (G.B.); (J.J.)
| | - Jacek Januszewski
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (J.K.); (M.T.); (I.D.); (G.T.); (G.B.); (J.J.)
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| |
Collapse
|
9
|
Liu J, Kong L, Chen D, Tang H, Lu Y, Yuan Y, Qian F, Hou S, Zhao W, Zhang M. Bilirubin oxidation end product B prevents CoCl 2-induced primary cortical neuron apoptosis by promoting cell survival Akt/mTOR/p70S6K signaling pathway. Biochem Biophys Res Commun 2022; 602:27-34. [PMID: 35247701 DOI: 10.1016/j.bbrc.2022.02.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/12/2023]
Abstract
Bilirubin oxidation end products (BOXes) are associated with the late-developing neurological deficits after subarachnoid hemorrhage (SAH) possibly by direct constricting the cerebral arteries, but their specific impacts on neurons especially in the state of hypoxia, a prominent feature during the late stage of SAH, remain unclear. Here, we explored the effects of BOXes on the primary cortical neurons subjected to CoCl2-induced hypoxia by evaluating the morphological and apoptotic changes of neurons. The present study showed that Z-BOX B but not Z-BOX A greatly alleviated CoCl2-induced neuronal cell deterioration and apoptosis. Immunocytochemical staining assay showed Z-BOX B significantly increased neurite length, the numbers of both secondary and tertiary branches, and the protein level of Synaptophysin. Caspase 3/7 apoptosis assay and DAPI staining showed that Z-BOX B markedly reduced primary cortical neurons apoptosis. The expression of cleaved Caspase-3 was suppressed by Z-BOX B treatment, while the expression of Bcl-xL was upregulated. To further discover the mechanism of the neuroprotective effect observed in Z-BOX B, we found Z-BOX B increased the expression of p-mTOR, p-Akt, and p-p70S6K. In general, our results implicated Z-BOX B may prevent CoCl2-induced primary cortical neurons apoptosis by activating sAkt/mTOR/p70S6K signaling pathway. Hence, the present data may provide new insights into the pathophysiological mechanism of delayed neurological dysfunction after SAH and novel targets for treating SAH.
Collapse
Affiliation(s)
- Jingting Liu
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lingxuan Kong
- Department of Physical Education, Shanghai Jiao Tong University, Shanghai, PR China
| | - Dongxin Chen
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Huirong Tang
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yinzhong Lu
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, PR China
| | - Yao Yuan
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Feng Qian
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Shangwei Hou
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Wenjuan Zhao
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Man Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
10
|
N-acetylcysteine aggravates seizures while improving depressive-like and cognitive impairment comorbidities in the WAG/Rij rat model of absence epilepsy. Mol Neurobiol 2022; 59:2702-2714. [PMID: 35167014 DOI: 10.1007/s12035-021-02720-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
N-acetylcysteine (NAC) is an antioxidant with some demonstrated efficacy in a range of neuropsychiatric disorders. NAC has shown anticonvulsant effects in animal models. NAC effects on absence seizures are still not uncovered, and considering its clinical use as a mucolytic in patients with lung diseases, people with epilepsy are also likely to be exposed to the drug. Therefore, we aimed to study the effects of NAC on absence seizures in the WAG/Rij rat model of absence epilepsy with neuropsychiatric comorbidities. The effects of NAC chronic treatment in WAG/Rij rats were evaluated on: absence seizures at 15 and 30 days by EEG recordings and animal behaviour at 30 days on neuropsychiatric comorbidities. Furthermore, the mechanism of action of NAC was evaluated by analysing brain expression levels of some possible key targets: the excitatory amino acid transporter 2, cystine-glutamate antiporter, metabotropic glutamate receptor 2, the mechanistic target of rapamycin and p70S6K as well as levels of total glutathione. Our results demonstrate that in WAG/Rij rats, NAC treatment significantly increased the number and duration of SWDs, aggravating absence epilepsy while ameliorating neuropsychiatric comorbidities. NAC treatment was linked to an increase in brain mGlu2 receptor expression with this being likely responsible for the observed absence seizure-promoting effects. In conclusion, while confirming the positive effects on animal behaviour induced by NAC also in epileptic animals, we report the aggravating effects of NAC on absence seizures which could have some serious consequences for epilepsy patients with the possible wider use of NAC in clinical therapeutics.
Collapse
|
11
|
Batman A, Ciftciler R. The effect of hypervitaminosis D and intoxication on haematological parameters. Minerva Endocrinol (Torino) 2021; 47:279-285. [PMID: 34825557 DOI: 10.23736/s2724-6507.21.03614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND This study aims to compare the haematological parameters of patients with very high and normal 25-hydroxyvitamin-D3 (25(OH)D3) levels. METHODS This study was designed as a retrospective cross-sectional study. The patients were divided into three groups according to their 25(OH)D3 levels: groups 1, 2 and 3 are patients with normal 25(OH)D3 levels (30-88 ng/mL), hypervitaminosis D (89-149 ng/mL) and vitamin D intoxication (>150 ng/mL), respectively. According to vitamin D levels, statistical analysis was performed by comparing the biochemical and haematological data between the groups. RESULTS This study evaluated 120 patients (40 patients) in three equal groups. A statistically significant difference was found between the three groups in haemoglobin (p = 0.03), haematocrit (p = 0.01), red blood cell levels (p = 0.03), leukocyte count (p < 0.001), neutrophil count (p < 0.001), lymphocyte count (p = 0.006), mean platelet volume (p = 0.04), and neutrophil/lymphocyte ratio (p = 0.03). In post hoc analysis, haemoglobin, haematocrit and RBC were significantly higher in group 1 than in group 3 (post hoc Tukey, p < 0.05). A statistically significant negative correlation was noted between 25(OH)D3 level and haemoglobin (r = -0.236), haemotocrit (r = -0.230), and red blood cell (r = -0.265) levels. CONCLUSIONS Vitamin D intoxication has been observed to affect haemoglobin, haematocrit, and RBC levels negatively. However, more studies are needed to clarify the effects and mechanisms of high vitamin D levels on the haematopoietic system.
Collapse
Affiliation(s)
- Adnan Batman
- Department of Endocrinology and Metabolism, School of Medicine, Koc University, İstanbul, Turkey -
| | - Rafiye Ciftciler
- Department of Haematology, Aksaray University Training and Research Hospital, Aksaray, Turkey
| |
Collapse
|
12
|
Tang LHC, Fung FKC, Lai AKW, Wong IYH, Shih KC, Lo ACY. Autophagic Upregulation Is Cytoprotective in Ischemia/Reperfusion-Injured Retina and Retinal Progenitor Cells. Int J Mol Sci 2021; 22:8446. [PMID: 34445152 PMCID: PMC8395130 DOI: 10.3390/ijms22168446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
The cytoprotective versus cytotoxic role of macroautophagy in ocular ischemia/reperfusion injuries remains controversial and its effects under hyperglycemia are unclear. We investigated the involvement of autophagy in in vitro and in vivo normoglycemic and hyperglycemic models of retinal ischemia/reperfusion injury. Retinal ischemia (2 h) and reperfusion (2 or 22 h) was induced in wild-type and type I diabetic Ins2Akita/+ mice using a middle cerebral artery occlusion model. R28 retinal precursor cells were subjected to CoCl2-induced hypoxia with or without autophagic inhibitor NH4Cl. Autophagic regulation during ischemia/reperfusion was assessed through immunohistochemical detection and Western blotting of microtubule-associated protein 1A/1B-light chain 3 (LC3) and lysosomal associated membrane protein 1 (LAMP1). Effect of autophagic inhibition on cell viability and morphology under hypoxic conditions was also evaluated. Upregulation of autophagic markers in the inner retinae was seen after two hours reperfusion, with tapering of the response following 22 h of reperfusion in vivo. LC3-II turnover assays confirmed an increase in autophagic flux in our hypoxic in vitro model. Pharmacological autophagic inhibition under hypoxic conditions decreased cell survival and induced structural changes not demonstrated with autophagic inhibition alone. Yet no statistically significant different autophagic responses in ischemia/reperfusion injuries were seen between the two glycemic states.
Collapse
Affiliation(s)
| | | | | | | | | | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; (L.H.C.T.); (F.K.C.F.); (A.K.W.L.); (I.Y.H.W.); (K.C.S.)
| |
Collapse
|
13
|
Ma M, Wu CJ, Zhang P, Li T, Wei SZ, Yu BT, Qin F, Yuan JH. N-acetylcysteine maintains penile length and erectile function in bilateral cavernous nerve crush rat model by reducing penile fibrosis. Asian J Androl 2021; 23:215-221. [PMID: 32394901 PMCID: PMC7991820 DOI: 10.4103/aja.aja_17_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Penile length shortening and erectile dysfunction are common complications after radical prostatectomy. Various methods have been used to maintain erectile function, but less attention has been paid to preserving penis length. N-acetylcysteine (NAC) has the effect of antioxidation and antifibrotic, which may be beneficial to improve those postoperative complications. This study investigated the effect of NAC on maintaining the penile length and the erectile function after bilateral cavernous nerve crush (BCNC) and its underlying mechanism. Twenty-four male rats were randomly divided into three groups: control group, BCNC group, and BCNC + NAC group. NAC or equal volume of saline was daily administrated by intragastric gavage for 4 weeks. The initial and end penile lengths were measured. Intracavernosal pressure/mean arterial pressure (ICP/MAP) ratio was calculated to assess erectile function. Hematoxylin–eosin staining, Masson's trichrome staining, immunohistochemistry, and Western blot were performed to explore cellular and molecular changes of the penis. Compared to the BCNC group, the penile length, ICP/MAP ratio and smooth muscle/collagen ratio in the BCNC + NAC group were improved significantly (all P < 0.05), and the expressions of endothelial nitric oxide synthase, α-smooth muscle actin, glutathione, and glutathione peroxidase 1 were significantly increased after NAC treated (all P < 0.05), along with the decreased expressions of hypoxia-inducible factor-1α, transforming growth factor-β1, collagen I, collagen III, collagen IV, malonaldehyde, and lysine oxidase (all P < 0.05). This study demonstrated that NAC could maintain penile length and partly improve erectile function. Possible mechanism is directly and/or indirectly related to antihypoxic and antifibrosis.
Collapse
Affiliation(s)
- Ming Ma
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chang-Jing Wu
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peng Zhang
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Li
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shan-Zun Wei
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo-Tao Yu
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Qin
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiu-Hong Yuan
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Shi C, Wang P, Airen S, Brown C, Liu Z, Townsend JH, Wang J, Jiang H. Nutritional and medical food therapies for diabetic retinopathy. EYE AND VISION (LONDON, ENGLAND) 2020; 7:33. [PMID: 32582807 PMCID: PMC7310218 DOI: 10.1186/s40662-020-00199-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is a form of microangiopathy. Reducing oxidative stress in the mitochondria and cell membranes decreases ischemic injury and end-organ damage to the retina. New approaches are needed, which reduce the risk and improve the outcomes of DR while complementing current therapeutic approaches. Homocysteine (Hcy) elevation and oxidative stress are potential therapeutic targets in DR. Common genetic polymorphisms such as those of methylenetetrahydrofolate reductase (MTHFR), increase Hcy and DR risk and severity. Patients with DR have high incidences of deficiencies of crucial vitamins, minerals, and related compounds, which also lead to elevation of Hcy and oxidative stress. Addressing the effects of the MTHFR polymorphism and addressing comorbid deficiencies and insufficiencies reduce the impact and severity of the disease. This approach provides safe and simple strategies that support conventional care and improve outcomes. Suboptimal vitamin co-factor availability also impairs the release of neurotrophic and neuroprotective growth factors. Collectively, this accounts for variability in presentation and response of DR to conventional therapy. Fortunately, there are straightforward recommendations for addressing these issues and supporting traditional treatment plans. We have reviewed the literature for nutritional interventions that support conventional therapies to reduce disease risk and severity. Optimal combinations of vitamins B1, B2, B6, L-methylfolate, methylcobalamin (B12), C, D, natural vitamin E complex, lutein, zeaxanthin, alpha-lipoic acid, and n-acetylcysteine are identified for protecting the retina and choroid. Certain medical foods have been successfully used as therapy for retinopathy. Recommendations based on this review and our clinical experience are developed for clinicians to use to support conventional therapy for DR. DR from both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) have similar retinal findings and responses to nutritional therapies.
Collapse
Affiliation(s)
- Ce Shi
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peng Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shriya Airen
- College of Arts and Sciences, University of Miami, Miami, FL USA
| | - Craig Brown
- Department of Ophthalmology, College of Medicine, the University of Arkansas for Medical Sciences, Fayetteville, AR USA
| | - Zhiping Liu
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
- Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong China
| | - Justin H. Townsend
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
| | - Jianhua Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
| | - Hong Jiang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL USA
| |
Collapse
|
15
|
Garcia MD, Hur M, Chen JJ, Bhatti MT. Cobalt toxic optic neuropathy and retinopathy: Case report and review of the literature. Am J Ophthalmol Case Rep 2020; 17:100606. [PMID: 32025592 PMCID: PMC6997813 DOI: 10.1016/j.ajoc.2020.100606] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/29/2019] [Accepted: 01/03/2020] [Indexed: 01/19/2023] Open
Abstract
Purpose We detail a case of cobalt toxicity with visual and systemic complications, review the pathogenic process for the optic neuropathy and retinopathy, and discuss the controversy of metallic hip prosthesis. Observations A 59-year-old female with a history of multiple left hip arthroplasties presented to our clinic with bilateral visual loss. The year prior, she had failure of the hip implant necessitating revision surgery with placement of a chrome-cobalt head. A few months after surgery, she began experiencing blurred and “white, spotty” vision in both eyes in addition to hypothyroidism, cardiomyopathy and neuropathy. The possibility of the patient's symptoms being due to cobalt toxicity from her hip prosthesis was proposed and she was found to have a serum cobalt level >1000 μg/L (normal 0–0.9 ng/mL). Visual acuity was 20/600 in the right and 20/800 in the left eye. There was bilateral temporal optic disc pallor. Goldmann visual field testing demonstrated bilateral central scotomas, optical coherence tomography (OCT) showed severe ganglion cell layer-inner plexiform layer (GCLIPL) thinning and multifocal electroretinography (mfERG) demonstrated decreased amplitudes in both eyes. She underwent a total hip revision arthroplasty with extensive debridement of “black sludge” found within a pseudocapsule. Four days after surgery, cobalt serum levels had significantly decreased to 378 ng/mL. One month after surgery, she had significant improvement in visual acuity (20/150 right eye, 20/250 left eye), Goldmann visual field testing, and mfERG. OCT showed retinal nerve fiber thinning and persistent GCLIPL thinning in both eyes. Conclusions and Importance Excessive cobalt levels can result in systemic toxicity leading to visual changes, peripheral neuropathy, hearing loss, cognitive deficits, cardiomyopathy and hypothyroidism. In recent years it has become apparent that cobalt toxicity can be associated with metal-on-metal total hip arthroplasty, or the grinding effects of retained ceramic particles from a fractured ceramic head on a cobalt-chromium femoral head prosthesis.
Collapse
Affiliation(s)
- Maria D Garcia
- Department of Ophthalmology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Minjun Hur
- Department of Ophthalmology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - John J Chen
- Department of Ophthalmology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - M Tariq Bhatti
- Department of Ophthalmology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
16
|
Lee YH, Lee SR. Neuroprotective effects of N-acetylcysteine via inhibition of matrix metalloproteinase in a mouse model of transient global cerebral ischemia. Brain Res Bull 2019; 154:142-150. [PMID: 31722253 DOI: 10.1016/j.brainresbull.2019.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/06/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
Abstract
N-acetylcysteine (NAC) is known to serve many biological functions including acting as an antioxidant, and electing antiinflammatory effects. Previous reports have revealed that NAC may have neuroprotective effects against the deleterious effects of brain ischemia. Despite of this, the mechanism by which NAC prevents neuronal damage after brain ischemia remains unclear. The current study aimed to investigate this mechanism in a mouse model of transient global brain ischemia. In the present study, mice were subjected to 20 min of transient global brain ischemia, proceeded by intraperitoneal administration of NAC (150 mg/kg) in one group. The mice were then euthanized 72 h after this ischemic insult for collection of experimental tissues. The effect of NAC on neuronal damage and matrix metalloproteinase (MMP)-9 activity were assessed and immunofluorescence, and hippocampal terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay experiments were conducted and results compared between NAC- and vehicle-treated groups. Neuronal damage was primarily observed in the hippocampal CA1 and CA2 regions. In NAC-treated mice, neuronal damage was significantly reduced after ischemia when compared to vehicle-treated animals. NAC also inhibited increased MMP-9 activity after global brain ischemia. NAC increased laminin and NeuN expression and inhibited increases in TUNEL-positive cells, all in the hippocampus. These results suggest that NAC reduces hippocampal neuronal damage following transient global ischemia, potentially via reductions in MMP-9 activity.
Collapse
Affiliation(s)
- Yoon-Hyung Lee
- Department of Pharmacology and ODR center, Brain Research Institute, School of Medicine, Keimyung University, Daegu, 42601, South Korea; Department of Urology, Fatima Hospital, Daegu, 42601, South Korea
| | - Seong-Ryong Lee
- Department of Pharmacology and ODR center, Brain Research Institute, School of Medicine, Keimyung University, Daegu, 42601, South Korea.
| |
Collapse
|
17
|
Zeng J, Zhao H, Chen B. DJ-1/PARK7 inhibits high glucose-induced oxidative stress to prevent retinal pericyte apoptosis via the PI3K/AKT/mTOR signaling pathway. Exp Eye Res 2019; 189:107830. [PMID: 31593688 DOI: 10.1016/j.exer.2019.107830] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/29/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) act through multiple pathways to induce apoptosis of retinal capillary pericytes, which is an early marker and the primary cause of the progression of diabetic retinopathy. However, the specific molecular mechanisms behind ROS-induced retinal capillary pericyte loss in diabetic retinopathy remains elusive. In this study, we investigated the molecular regulation and effects of DJ-1/PARK7 on oxidative stress and injury of rat retinal pericytes (RRPs). To perform the research, RRPs were isolated from rat retina and cultured in medium with for 2 days: control group (5.6 mM glucose), high glucose group (30 mM glucose), hypertonic group (5.6 mM glucose + 24.4 mM mannitol). We found decreased expression of DJ-1 and increased apoptosis of RRPs in high glucose group. To further study the role of DJ-1, four groups were divided as follows: normal control group (5.6 mM glucose), high glucose (30 mM glucose), empty vector control group (pcDNA3.1,30 mM glucose), DJ-1 overexpression group (pcDNA3.1-myc-DJ-1,30 mM glucose). DJ-1, P53, p-P53, cleaved caspase-3, manganese superoxide dismutase (MnSOD), catalase (CAT) and PI3K/Akt/mTOR signaling pathway in each group was detected by Western Blot. RRPs apoptosis was detected by Terminal-deoxynucleoitidyl Transferase mediated Nick End Labeling (TUNEL) and 4'6- diamidino-2-phenylindole (DAPI). Mitochondrial function was detected by jc-1 and fluorescent probes DCFH-DA was used to determine reactive oxygen species (ROS). We found that high glucose (30 mM) lasting two days can induce significant apoptosis of RRPs, increase ROS production and expressions of p-p53 and active caspase-3, impair mitochondrial function, decrease the activities of MnSOD and CAT, and decrease expression of DJ-1, p-AKT and p-mTOR. In contrast, DJ-1/PARK7 overexpression significantly increases expression of DJ-1, p-AKT and p-mTOR, increases expression and activities of MnSOD and CAT, improves mitochondrial function, decreases expression of apoptotic gene protein p-p53 and active caspase-3, reduces ROS production and reduces the apoptotic rate of RRPs induced by high glucose. These results suggest that DJ-1 may play a role in protecting RRPs from high glucose induced-oxidative injury. DJ-1 might improve mitochondrial function, inhibit ROS production and enhance antioxidant capacity to reduce apoptosis of retinal pericytes through the PI3K/AKT/mTOR signaling pathway which may be related to early pathogenesis of diabetic retinopathy.
Collapse
Affiliation(s)
- Jun Zeng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China; The First People's Hospital of Foshan, Foshan, Guangdong, 528000, China
| | - Han Zhao
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
18
|
Chen R, Lee C, Lin X, Zhao C, Li X. Novel function of VEGF-B as an antioxidant and therapeutic implications. Pharmacol Res 2019; 143:33-39. [PMID: 30851357 DOI: 10.1016/j.phrs.2019.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
Oxidative stress, due to insufficiency of antioxidants or over-production of oxidants, can lead to severe cell and tissue damage. Oxidative stress occurs constantly and has been shown to be involved in innumerable diseases, such as degenerative, cardiovascular, neurological, and metabolic disorders, cancer, and aging, thus highlighting the vital need of antioxidant defense mechanisms. Vascular endothelial growth factor B (VEGF-B) was discovered a long time ago, and is abundantly expressed in most types of cells and tissues. VEGF-B remained functionally mysterious for many years and later on has been shown to be minimally angiogenic. Recently, VEGF-B is reported to be a potent antioxidant by boosting the expression of key antioxidant enzymes. Thus, one major role of VEGF-B lies in safeguarding tissues and cells from oxidative stress-induced damage. VEGF-B may therefore have promising therapeutic utilities in treating oxidative stress-related diseases. In this review, we discuss the current knowledge on the newly discovered antioxidant function of VEGF-B and the related molecular mechanisms, particularly, in relationship to some oxidative stress-related diseases, such as retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy, glaucoma, amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease.
Collapse
Affiliation(s)
- Rongyuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chunsik Lee
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chen Zhao
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, China; Key Laboratory of Myopia of State Health Ministry (Fudan University) and Shanghai Key Laboratory of Visual Impairment and Restoration, 200023, Shanghai, China.
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
19
|
Lee MK, Han KD, Lee JH, Sohn SY, Jeong JS, Kim MK, Baek KH, Song KH, Kwon HS. High hemoglobin levels are associated with decreased risk of diabetic retinopathy in Korean type 2 diabetes. Sci Rep 2018; 8:5538. [PMID: 29615813 PMCID: PMC5882879 DOI: 10.1038/s41598-018-23905-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/02/2018] [Indexed: 02/07/2023] Open
Abstract
Anemia is an independent risk factor for the development of diabetic retinopathy (DR) in patients with type 2 diabetes mellitus (DM). Hemoglobin levels may also be associated with DR. We investigated the association between hemoglobin levels and DR risk. This cross-sectional, population-based study utilized data from 2,123 type 2 DM patients aged ≥30 years who participated in the Korea National Health and Nutrition Examination Survey from 2008 to 2012. Participants underwent an ophthalmic examination, including fundus photographs. A multiple logistic regression analysis was performed to evaluate the relationship between hemoglobin levels and DR risk. The mean hemoglobin levels in patients with and without DR were 13.76 ± 0.12 and 14.33 ± 0.05 g/dL, respectively, with anemia observed in 16.2 (2.4)% and 7.8 (0.8)%, respectively. A 19% decrease in DR risk was found with a 1.0-g/dL increase in hemoglobin level. DR risk exhibited a decreasing trend with increasing hemoglobin levels (P for trend <0.0001). The adjusted odds ratio of DR was significantly lower in the highest hemoglobin quartile. Our findings indicate that high hemoglobin levels are significantly related to a decreased DR risk in Korean type 2 diabetes.
Collapse
Affiliation(s)
- Min-Kyung Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Myongji hospital, Gyeonggi-do, Republic of Korea
| | - Kyung-Do Han
- Department of Medical Statistics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae-Hyuk Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Myongji hospital, Gyeonggi-do, Republic of Korea
| | - Seo-Young Sohn
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Myongji hospital, Gyeonggi-do, Republic of Korea
| | - Jee-Sun Jeong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mee-Kyoung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki-Hyun Baek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki-Ho Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyuk-Sang Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Sahni S, Bae DH, Jansson PJ, Richardson DR. The mechanistic role of chemically diverse metal ions in the induction of autophagy. Pharmacol Res 2017; 119:118-127. [DOI: 10.1016/j.phrs.2017.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/12/2022]
|
21
|
Fung FKC, Law BYK, Lo ACY. Lutein Attenuates Both Apoptosis and Autophagy upon Cobalt (II) Chloride-Induced Hypoxia in Rat Műller Cells. PLoS One 2016; 11:e0167828. [PMID: 27936094 PMCID: PMC5148028 DOI: 10.1371/journal.pone.0167828] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 11/21/2016] [Indexed: 12/17/2022] Open
Abstract
Retinal ischemia/reperfusion injury is a common feature of various retinal diseases such as glaucoma and diabetic retinopathy. Lutein, a potent anti-oxidant, is used to improve visual function in patients with age-related macular degeneration (AMD). Lutein attenuates apoptosis, oxidative stress and inflammation in animal models of acute retinal ischemia/hypoxia. Here, we further show that lutein improved Műller cell viability and enhanced cell survival upon hypoxia-induced cell death through regulation of intrinsic apoptotic pathway. Moreover, autophagy was activated upon treatment of cobalt (II) chloride, indicating that hypoxic injury not only triggered apoptosis but also autophagy in our in vitro model. Most importantly, we report for the first time that lutein treatment suppressed autophagosome formation after hypoxic insult and lutein administration could inhibit autophagic event after activation of autophagy by a pharmacological approach (rapamycin). Taken together, lutein may have a beneficial role in enhancing glial cell survival after hypoxic injury through regulating both apoptosis and autophagy.
Collapse
Affiliation(s)
- Frederic K. C. Fung
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
| | - Betty Y. K. Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Amy C. Y. Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
- Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
- * E-mail:
| |
Collapse
|
22
|
N-acetylcysteine attenuates intrauterine growth retardation-induced hepatic damage in suckling piglets by improving glutathione synthesis and cellular homeostasis. Eur J Nutr 2016; 57:327-338. [DOI: 10.1007/s00394-016-1322-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/29/2016] [Indexed: 01/05/2023]
|
23
|
Zuo X, Hou Q, Jin J, Zhan L, Li X, Sun W, Lin K, Xu E. Inhibition of Cathepsin B Alleviates Secondary Degeneration in Ipsilateral Thalamus After Focal Cerebral Infarction in Adult Rats. J Neuropathol Exp Neurol 2016; 75:816-26. [PMID: 27371711 DOI: 10.1093/jnen/nlw054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Secondary degeneration in areas beyond ischemic foci can inhibit poststroke recovery. The cysteine protease Cathepsin B (CathB) regulates cell death and intracellular protein catabolism. To investigate the roles of CathB in the development of secondary degeneration in the ventroposterior nucleus (VPN) of the ipsilateral thalamus after focal cerebral infarction, infarct volumes, immunohistochemistry and immunofluorescence, and Western blotting analyses were conducted in a distal middle cerebral artery occlusion (dMCAO) stroke model in adult rats. We observed marked neuron loss and gliosis in the ipsilateral thalamus after dMCAO, and the expression of CathB and cleaved caspase-3 in the VPN was significantly upregulated; glial cells were the major source of CathB. Although it had no effect on infarct volume, delayed intracerebroventricular treatment with the membrane-permeable CathB inhibitor CA-074Me suppressed the expression of CathB and cleaved caspase-3 in ipsilateral VPN and accordingly alleviated the secondary degeneration. These data indicate that CathB mediates a novel mechanism of secondary degeneration in the VPN of the ipsilateral thalamus after focal cortical infarction and suggest that CathB might be a therapeutic target for the prevention of secondary degeneration in patients after stroke.
Collapse
Affiliation(s)
- Xialin Zuo
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (XZ, QH, JJ, LZ, XL, WS, KL, EX); and Department of Neurology, Provincial People's Hospital, Guangdong No.2, Guangzhou, China (QH)
| | - Qinghua Hou
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (XZ, QH, JJ, LZ, XL, WS, KL, EX); and Department of Neurology, Provincial People's Hospital, Guangdong No.2, Guangzhou, China (QH)
| | - Jizi Jin
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (XZ, QH, JJ, LZ, XL, WS, KL, EX); and Department of Neurology, Provincial People's Hospital, Guangdong No.2, Guangzhou, China (QH)
| | - Lixuan Zhan
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (XZ, QH, JJ, LZ, XL, WS, KL, EX); and Department of Neurology, Provincial People's Hospital, Guangdong No.2, Guangzhou, China (QH)
| | - Xinyu Li
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (XZ, QH, JJ, LZ, XL, WS, KL, EX); and Department of Neurology, Provincial People's Hospital, Guangdong No.2, Guangzhou, China (QH)
| | - Weiwen Sun
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (XZ, QH, JJ, LZ, XL, WS, KL, EX); and Department of Neurology, Provincial People's Hospital, Guangdong No.2, Guangzhou, China (QH)
| | - Kunqin Lin
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (XZ, QH, JJ, LZ, XL, WS, KL, EX); and Department of Neurology, Provincial People's Hospital, Guangdong No.2, Guangzhou, China (QH)
| | - En Xu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (XZ, QH, JJ, LZ, XL, WS, KL, EX); and Department of Neurology, Provincial People's Hospital, Guangdong No.2, Guangzhou, China (QH).
| |
Collapse
|
24
|
Brown CJ. Preservation of retinal structure and function after cilioretinal artery occlusion: a case report. Int Med Case Rep J 2016; 9:29-34. [PMID: 26929671 PMCID: PMC4755464 DOI: 10.2147/imcrj.s96858] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cilioretinal artery occlusion is a cause of sudden, often catastrophic loss of central vision. There are no established effective treatments. Recently, a patient presented 24 hours after a cilioretinal artery occlusion, following a cardiac catheterization prior to which her blood thinners had been discontinued. Lacking an effective way to address the severe retinal ischemic oxidative stress, she was offered, under compassionate use, a multivitamin complex designed to address retinal ischemia and oxidative stress. Significant components of this product are L-methylfolate and n-acetyl cysteine. The patient experienced a rapid unexpected improvement in vision and preservation of retinal structure, suggesting that marked improvement in retinal artery occlusions outcomes may be possible as late as 24 hours postocclusion. This is the third reported case of cilioretinal artery occlusion associated with cardiac catheterization.
Collapse
|
25
|
N-acetylcysteine stimulates protein synthesis in enterocytes independently of glutathione synthesis. Amino Acids 2015; 48:523-33. [DOI: 10.1007/s00726-015-2105-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 09/22/2015] [Indexed: 12/22/2022]
|
26
|
Pinazo-Durán MD, Zanón-Moreno V, Gallego-Pinazo R, García-Medina JJ. Oxidative stress and mitochondrial failure in the pathogenesis of glaucoma neurodegeneration. PROGRESS IN BRAIN RESEARCH 2015; 220:127-53. [PMID: 26497788 DOI: 10.1016/bs.pbr.2015.06.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review focuses on oxidative stress and mitochondrial failure for understanding mechanisms of optic nerve damage in primary open-angle glaucoma. The chapter shows scientific evidence for the role of mitochondrial disbalance and reactive oxygen species in glaucoma neurodegeneration. Mitochondria regulate important cellular functions including reactive oxygen species generation and apoptosis. Mitochondrial alterations result from a wide variety of damaging sources. Reactive oxygen species formed by the mitochondria can act as signaling molecules, inducing lipid peroxidation and/or excitotoxicity with the result of cell lesion and death. Antioxidants may help to counteract oxidative stress and to promote neuroprotection. We provide information that may lead to a new way for diagnosing and treating glaucoma patients.
Collapse
Affiliation(s)
- Maria D Pinazo-Durán
- Ophthalmic Research Unit "Santiago Grisolía", University Hospital Dr. Peset, Valencia, Spain; Department of Surgery/Ophthalmology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain.
| | - Vicente Zanón-Moreno
- Ophthalmic Research Unit "Santiago Grisolía", University Hospital Dr. Peset, Valencia, Spain; Department of Surgery/Ophthalmology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Roberto Gallego-Pinazo
- Ophthalmic Research Unit "Santiago Grisolía", University Hospital Dr. Peset, Valencia, Spain; Department of Ophthalmology, University and Polytechnic Hospital la Fe, Valencia, Spain
| | - José J García-Medina
- Ophthalmic Research Unit "Santiago Grisolía", University Hospital Dr. Peset, Valencia, Spain; Department of Ophthalmology, University Hospital Reina Sofia, Murcia, Spain; Department of Ophthalmology and Optometry, University of Murcia, Murcia, Spain
| |
Collapse
|
27
|
Zhang Z, Guo M, Zhao S, Xu W, Shao J, Zhang F, Wu L, Lu Y, Zheng S. The update on transcriptional regulation of autophagy in normal and pathologic cells: A novel therapeutic target. Biomed Pharmacother 2015; 74:17-29. [DOI: 10.1016/j.biopha.2015.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/15/2015] [Indexed: 02/08/2023] Open
|
28
|
Lin WJ, Kuang HY. Oxidative stress induces autophagy in response to multiple noxious stimuli in retinal ganglion cells. Autophagy 2015; 10:1692-701. [PMID: 25207555 PMCID: PMC4198355 DOI: 10.4161/auto.36076] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Retinal ganglion cells (RGCs) are the only afferent neurons that can transmit visual information to the brain. The death of RGCs occurs in the early stages of glaucoma, diabetic retinopathy, and many other retinal diseases. Autophagy is a highly conserved lysosomal pathway, which is crucial for maintaining cellular homeostasis and cell survival under stressful conditions. Research has established that autophagy exists in RGCs after increasing intraocular pressure (IOP), retinal ischemia, optic nerve transection (ONT), axotomy, or optic nerve crush. However, the mechanism responsible for defining how autophagy is induced in RGCs has not been elucidated. Accumulating data has pointed to an essential role of reactive oxygen species (ROS) in the activation of autophagy. RGCs have long axons with comparatively high densities of mitochondria. This makes them more sensitive to energy deficiency and vulnerable to oxidative stress. In this review, we explore the role of oxidative stress in the activation of autophagy in RGCs, and discuss the possible mechanisms that are involved in this process. We aim to provide a more theoretical basis of oxidative stress-induced autophagy, and provide innovative targets for therapeutic intervention in retinopathy.
Collapse
|
29
|
Liu BN, Han BX, Liu F. Neuroprotective effect of pAkt and HIF-1 α on ischemia rats. ASIAN PAC J TROP MED 2014; 7:221-5. [PMID: 24507644 DOI: 10.1016/s1995-7645(14)60025-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/15/2013] [Accepted: 12/15/2013] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE To explore the neuroprotective effect of pAkt and HIF-1 α on ischemia rats. METHODS The rat model of cerebral ischemia which induced by permanent middle cerebral artery occlusion was established, Silybin were given respectively. The behavior was measured by modified Longa method, brain water content were measured by the dry-wet method. Infarct volume was measured by image analysis method, Akt, HIF-1 α, Bcl-2, Bax, NF-κ B protein expressions were detected by Western blotting. The Akt, HIF-1 α, Bcl-2, Bax, NF-κ B mRNA expression were detected by RT-PCR. RESULTS The control group, low-dose silibinin group and high-dose silibinin group showed paralytic of the left body of rats in various degrees, the brain water content increased and different infarction size. There was no abnormal of the neurobehavioral assessment and no cerebral infarction in the blank group. Compared with the control group, there was no significant improvement of neurological function (t=1.341, P=0.188) or significant changes of the infarct volume (t=1.737, P=0.091) in the low-dose silibinin group, while there was significantly improvement of the neurological function in the high dose silibinin group (t=12.979, P<0.001), and the infarct volume was significantly reduced (t=23.503, P<0.001), the difference had statistically significant. The brain water content of lesion side of the control group increased (t=43.536, P<0.001), while the brain water content of lesion side of the low-dose silibinin group and the high-dose silybin group were significantly reduced (t=25.571, P<0.001; t= 42.426, P<0.001). The differences were statistical significance. The p-Akt 473, p-Akt 308, HIF-1 α, Bax, NF-κ B protein and the Akt, Bax, NF-κ B mRNA expression were increased of the control group, while the Bcl-2 protein and mRNA expression were decreased, the differences were statistically significant (P<0.05), there was no significant change of the Akt protein expression and HIF-1 α mRNA in the control group (P>0.05). In the high dose silybin group, the p-Akt 473, p-Akt 308, HIF-1α, Bcl-2 protein and Akt, Bcl-2 mRNA expression were increased, while the Bax, NF-κ B protein and Bax, NF-κ B mRNA expression were decreased, the differences were statistically significant (P<0.05), there was no significant change of the Akt protein expression and HIF-1 α mRNA in the high dose silybin group (P>0.05). CONCLUSIONS pAkt, HIF-1 α have neuroprotective effect on ischemia rats.
Collapse
Affiliation(s)
- Bao-Nan Liu
- Department of Neurosurgery, People's Hospital of Zhangqiu, Jinan 250200, Shandong Province, China; People's Hospital of Zhangqiu, No. 1920, Huiquan Road, Zhangqiu City, Jinan, Shandong Province, China
| | - Bo-Xiang Han
- Department of Neurosurgery, People's Hospital of Zhangqiu, Jinan 250200, Shandong Province, China; People's Hospital of Zhangqiu, No. 1920, Huiquan Road, Zhangqiu City, Jinan, Shandong Province, China
| | - Feng Liu
- Department of Neurosurgery, People's Hospital of Zhangqiu, Jinan 250200, Shandong Province, China; People's Hospital of Zhangqiu, No. 1920, Huiquan Road, Zhangqiu City, Jinan, Shandong Province, China
| |
Collapse
|
30
|
Cuenca N, Fernández-Sánchez L, Campello L, Maneu V, De la Villa P, Lax P, Pinilla I. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res 2014; 43:17-75. [PMID: 25038518 DOI: 10.1016/j.preteyeres.2014.07.001] [Citation(s) in RCA: 313] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 01/17/2023]
Abstract
Retinal neurodegenerative diseases like age-related macular degeneration, glaucoma, diabetic retinopathy and retinitis pigmentosa each have a different etiology and pathogenesis. However, at the cellular and molecular level, the response to retinal injury is similar in all of them, and results in morphological and functional impairment of retinal cells. This retinal degeneration may be triggered by gene defects, increased intraocular pressure, high levels of blood glucose, other types of stress or aging, but they all frequently induce a set of cell signals that lead to well-established and similar morphological and functional changes, including controlled cell death and retinal remodeling. Interestingly, an inflammatory response, oxidative stress and activation of apoptotic pathways are common features in all these diseases. Furthermore, it is important to note the relevant role of glial cells, including astrocytes, Müller cells and microglia, because their response to injury is decisive for maintaining the health of the retina or its degeneration. Several therapeutic approaches have been developed to preserve retinal function or restore eyesight in pathological conditions. In this context, neuroprotective compounds, gene therapy, cell transplantation or artificial devices should be applied at the appropriate stage of retinal degeneration to obtain successful results. This review provides an overview of the common and distinctive features of retinal neurodegenerative diseases, including the molecular, anatomical and functional changes caused by the cellular response to damage, in order to establish appropriate treatments for these pathologies.
Collapse
Affiliation(s)
- Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain; Multidisciplinary Institute for Environmental Studies "Ramon Margalef", University of Alicante, Alicante, Spain.
| | - Laura Fernández-Sánchez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Pedro De la Villa
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Isabel Pinilla
- Department of Ophthalmology, Lozano Blesa University Hospital, Aragon Institute of Health Sciences, Zaragoza, Spain
| |
Collapse
|
31
|
Park E, Yu KH, Kim DK, Kim S, Sapkota K, Kim SJ, Kim CS, Chun HS. Protective effects of N-acetylcysteine against monosodium glutamate-induced astrocytic cell death. Food Chem Toxicol 2014; 67:1-9. [PMID: 24556569 DOI: 10.1016/j.fct.2014.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 01/25/2014] [Accepted: 02/12/2014] [Indexed: 02/03/2023]
Abstract
Monosodium glutamate (MSG) is a flavor enhancer, largely used in the food industry and it was reported to have excitotoxic effects. Higher amounts of MSG consumption have been related with increased risk of many diseases, including Chinese restaurant syndrome and metabolic syndromes in human. This study investigated the protective effects of N-acetylcysteine (NAC) on MSG-induced cytotoxicity in C6 astrocytic cells. MSG (20 mM)-induced reactive oxygen species (ROS) generation and apoptotic cell death were significantly attenuated by NAC (500 μM) pretreatment. NAC effectively inhibited the MSG-induced mitochondrial membrane potential (MMP) loss and intracellular reduced glutathione (GSH) depletion. In addition, NAC significantly attenuated MSG-induced endoplasmic reticulum (ER) stress markers, such as XBP1 splicing and CHOP, PERK, and GRP78 up-regulation. Furthermore, NAC prevented the changes of MSG-induced Bcl-2 expression level. These results suggest that NAC can protect C6 astrocytic cells against MSG-induced oxidative stress, mitochondrial dysfunction, and ER stress.
Collapse
Affiliation(s)
- Euteum Park
- Department of Biotechnology, Chosun University, Gwangju 501-759, Republic of Korea
| | - Kyoung Hwan Yu
- Department of Life Science, Graduate School, Chosun University, Gwangju 501-759, Republic of Korea
| | - Do Kyung Kim
- Oral Biology Research Institute, Chosun University School of Dentistry, Gwangju 501-759, Republic of Korea
| | - Seung Kim
- Department of Alternative Medicine, Gwangju University, Gwangju 503-703, Republic of Korea
| | - Kumar Sapkota
- Department of Biotechnology, Chosun University, Gwangju 501-759, Republic of Korea; Central Department of Zoology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Sung-Jun Kim
- Department of Biotechnology, Chosun University, Gwangju 501-759, Republic of Korea; Department of Biomedical Science, Chosun University, Gwangju 501-759, Republic of Korea; Department of Life Science, Graduate School, Chosun University, Gwangju 501-759, Republic of Korea
| | - Chun Sung Kim
- Oral Biology Research Institute, Chosun University School of Dentistry, Gwangju 501-759, Republic of Korea
| | - Hong Sung Chun
- Department of Biotechnology, Chosun University, Gwangju 501-759, Republic of Korea; Department of Biomedical Science, Chosun University, Gwangju 501-759, Republic of Korea; Department of Life Science, Graduate School, Chosun University, Gwangju 501-759, Republic of Korea.
| |
Collapse
|
32
|
Cervellati F, Cervellati C, Romani A, Cremonini E, Sticozzi C, Belmonte G, Pessina F, Valacchi G. Hypoxia induces cell damage via oxidative stress in retinal epithelial cells. Free Radic Res 2014; 48:303-12. [PMID: 24286355 DOI: 10.3109/10715762.2013.867484] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Retinal diseases (RD), including diabetic retinopathy, are among the most important eye diseases in industrialized countries. RD is characterized by abnormal angiogenesis associated with an increase in cell proliferation and apoptosis. Hypoxia could be one of the triggers of the pathogenic mechanism of this disease. A key regulatory component of the cell's hypoxia response system is hypoxia-inducible factor 1 alpha (HIF-1α). It has been demonstrated that the induction of HIF-1α expression can be also achieved in vitro by exposure with cobalt chloride (CoCl2), leading to an intracellular hypoxia-like state. In this study we have investigated the effects of CoCl2 on human retinal epithelium cells (hRPE), which are an integral part of the blood-retinal barrier, with the aim to determine the possible role of oxidative stress in chemical hypoxia-induced damage in retinal epithelial cells. Our data showed that CoCl2 treatment is able to induce HIF-1α expression, that parallels with the formation of reactive oxygen species (ROS) and the increase of lipid 8-isoprostanes and 4-hydroxynonenal (4-HNE) protein adducts levels. In addition we observed the activation of the redox-sensitive transcription factor nuclear factor-kappaB (NFkB) by CoCl2 which can explain the increased levels of vascular endothelial growth factor (VEGF). The increased number of dead cells seems to be related to an apoptotic process. Taken together these evidences suggest that oxidative stress induced by hypoxia might be involved in RD development through the stimulation of two key-events of RD such as neo-angiogenesis and apoptosis.
Collapse
Affiliation(s)
- F Cervellati
- Department of Life Sciences and Biotechnology, University of Ferrara , Ferrara , Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Xu C, Liu G, Liu X, Wang F. O-GlcNAcylation under hypoxic conditions and its effects on the blood-retinal barrier in diabetic retinopathy. Int J Mol Med 2013; 33:624-32. [PMID: 24366041 DOI: 10.3892/ijmm.2013.1597] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 12/12/2013] [Indexed: 11/06/2022] Open
Abstract
An increase in O-linked N-acetylglucosamine (O-GlcNAc) protein modifications has been observerd in db/db mouse retinas. O-GlcNAc-modified proteins in the db/db mouse retina have been shown to be localized in the ganglion cell layer, the inner nuclear layer, the retina pigment epithelium (RPE) layer and the inner plexiform layer, in which hypoxia-inducible factor 1α (HIF1α) has also been shown to be localized. In the current study, we examined whether hypoxia increases O-GlcNAcylation in retinal vascular cells under high glucose conditions and whether HIF1α activation is consistent with the response to and activation of O-GlcNAcylation in retinal lesions in diabetic retinopathy. In addition, the effects of O-GlcNAcylation on the blood-retinal barrier were verified in vitro by the inhibition of O-GlcNAcylation. A time-dependent increase in the O-GlcNAcylation in bovine retinal vascular endothelial cells (BRVECs) was observed following incubation of the cells with high glucose medium (glucose 4.5 g/l) under hypoxic (1-3% O2) conditions. Hypoxia-induced BRVEC O-GlcNAcylation was not observed when the BRVECs were transfected with siRNA targeting O-GlcNAc transferase (OGT) or treated with alloxan (an OGT inhibitor) prior to exposure to high glucose. The increase in BRVEC O-GlcNAcylation induced by high glucose, as well as by thiamet G [an O-GlcNAcase (OGA) inhibitor] led to a reduction in occludin expression levels in vitro, which was prevented by treatment with OGT siRNA and alloxan. In conclusion, the current study demonstrates the relationship between O-GlcNAc glycosylation and hypoxia during diabetic retinopathy and that hyperglycemia induced O2 consumption activates HIF1α and O-GlcNAc modification protein in the same retinal layer. The reduced protein BRVEC O-GlcNAcylation levels exert protective effects on the blood-retinal barrier and thus represent a potential therapeutic target for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Chong Xu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Guodong Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xiaoqiao Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Fang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
34
|
Dodson M, Darley-Usmar V, Zhang J. Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radic Biol Med 2013; 63:207-21. [PMID: 23702245 PMCID: PMC3729625 DOI: 10.1016/j.freeradbiomed.2013.05.014] [Citation(s) in RCA: 450] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 11/16/2022]
Abstract
It has been established that the key metabolic pathways of glycolysis and oxidative phosphorylation are intimately related to redox biology through control of cell signaling. Under physiological conditions glucose metabolism is linked to control of the NADH/NAD redox couple, as well as providing the major reductant, NADPH, for thiol-dependent antioxidant defenses. Retrograde signaling from the mitochondrion to the nucleus or cytosol controls cell growth and differentiation. Under pathological conditions mitochondria are targets for reactive oxygen and nitrogen species and are critical in controlling apoptotic cell death. At the interface of these metabolic pathways, the autophagy-lysosomal pathway functions to maintain mitochondrial quality and generally serves an important cytoprotective function. In this review we will discuss the autophagic response to reactive oxygen and nitrogen species that are generated from perturbations of cellular glucose metabolism and bioenergetic function.
Collapse
Affiliation(s)
- Matthew Dodson
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Jianhua Zhang
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
- Department of Veterans Affairs, Birmingham VA Medical Center
| |
Collapse
|
35
|
Kim SJ, Ko JH, Yun JH, Kim JA, Kim TE, Lee HJ, Kim SH, Park KH, Oh JY. Stanniocalcin-1 protects retinal ganglion cells by inhibiting apoptosis and oxidative damage. PLoS One 2013; 8:e63749. [PMID: 23667669 PMCID: PMC3646795 DOI: 10.1371/journal.pone.0063749] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/05/2013] [Indexed: 11/18/2022] Open
Abstract
Optic neuropathy including glaucoma is one of the leading causes of irreversible vision loss, and there are currently no effective therapies. The hallmark of pathophysiology of optic neuropathy is oxidative stress and apoptotic death of retinal ganglion cells (RGCs), a population of neurons in the central nervous system with their soma in the inner retina and axons in the optic nerve. We here tested that an anti-apoptotic protein stanniocalcin-1 (STC-1) can prevent loss of RGCs in the rat retina with optic nerve transection (ONT) and in cultures of RGC-5 cells with CoCl2 injury. We found that intravitreal injection of STC-1 increased the number of RGCs in the retina at days 7 and 14 after ONT, and decreased apoptosis and oxidative damage. In cultures, treatment with STC-1 dose-dependently increased cell viability, and decreased apoptosis and levels of reactive oxygen species in RGC-5 cells that were exposed to CoCl2. The expression of HIF-1α that was up-regulated by injury was significantly suppressed in the retina and in RGC-5 cells by STC-1 treatment. The results suggested that intravitreal injection of STC-1 might be a useful therapy for optic nerve diseases in which RGCs undergo apoptosis through oxidative stress.
Collapse
Affiliation(s)
- Sang Jin Kim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Korea
- Clinical Research Center, Samsung Biomedical Research Institute, Gangnam-gu, Seoul, Korea
| | - Jung Hwa Ko
- Department of Ophthalmology, Seoul National University Hospital, Jongno-gu, Seoul, Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Jongno-gu, Seoul, Korea
| | - Ji-Hyun Yun
- Clinical Research Center, Samsung Biomedical Research Institute, Gangnam-gu, Seoul, Korea
| | - Ju-A Kim
- Clinical Research Center, Samsung Biomedical Research Institute, Gangnam-gu, Seoul, Korea
| | - Tae Eun Kim
- Clinical Research Center, Samsung Biomedical Research Institute, Gangnam-gu, Seoul, Korea
| | - Hyun Ju Lee
- Department of Ophthalmology, Seoul National University Hospital, Jongno-gu, Seoul, Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Jongno-gu, Seoul, Korea
| | - Seok Hwan Kim
- Department of Ophthalmology, Seoul National University Boramae Hospital, Dongjak-gu, Seoul, Korea
| | - Ki Ho Park
- Department of Ophthalmology, Seoul National University Hospital, Jongno-gu, Seoul, Korea
| | - Joo Youn Oh
- Department of Ophthalmology, Seoul National University Hospital, Jongno-gu, Seoul, Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Jongno-gu, Seoul, Korea
- * E-mail:
| |
Collapse
|