1
|
Lin Y, Pang Q, Shi Y, Chen X, Tu F. Long noncoding RNA MALAT1 promotes angiogenesis through the caveolin-1/VEGF pathway after cerebral ischemic injury. Neuroreport 2025; 36:350-363. [PMID: 40203233 DOI: 10.1097/wnr.0000000000002157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) might protect against cerebral ischemic injury. This study explored MALAT1's function in ischemic stroke and whether it acts through the caveolin-1/vascular endothelial growth factor (VEGF) pathway. A mouse model of middle cerebral artery occlusion/reperfusion (MCAO/R) and a human brain microvascular endothelial cell (HBMEC) model of oxygen-glucose deprivation/reoxygenation (OGD/R) were established. Lentiviral vectors for MALAT1 knockdown, caveolin-1 knockdown, and MALAT1 overexpression were used for gene regulation studies. Neurological deficits, endothelial cell proliferation, cell apoptosis, cell viability, in vitro angiogenesis, cell migration, and the expression of related gene and protein were evaluated using the Zea Longa five-point scale, VEGF receptor 2/CD34 double immunofluorescence, TdT-mediated dUTP nick end labeling staining, cell counting kit-8 assay, tube formation assay, transwell assay, quantitative real time PCR, and western blot. In mouse MCAO/R model and HBMEC OGD/R model, the expression levels of MALAT1, caveolin-1, and VEGF were significantly upregulated compared to the control group. In vivo, downregulation of MALAT1 expression exacerbated cerebral ischemic injury as manifested by severe neurological deficits, larger infarct volume, increased apoptosis, decreased numbers of VEGF receptor 2+/CD34+ endothelial progenitor cells, increased cell apoptosis, and the downregulation of caveolin-1 and VEGF. Conversely, overexpression of MALAT1 partially reversed the inhibition of cell migration and tubule formation by caveolin-1 gene downregulation, and restored in the expression of caveolin-1 and VEGF. MALAT1 promotes angiogenesis after cerebral ischemic injury, likely in part via the caveolin-1/VEGF pathway. Thus, MALAT1 may serve as a potential therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Yao Lin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | | | | | | |
Collapse
|
2
|
Zhang H, Xu X, Li X, Zeng C, Peng Y. Electroacupuncture Serum Alleviates Ogd/R-Induced Astrocyte Damage by Regulating the AQP4 Via m6A Methylation of lncRNA MALAT1. Neurochem Res 2025; 50:139. [PMID: 40208368 DOI: 10.1007/s11064-025-04391-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Electroacupuncture (EA) might exert endogenous protective effects on astrocytes in ischemic stroke. Nevertheless, the biological regulatory processes involved have not been identified. The astrocytes were randomly divided into six groups: the control, oxygen-glucose deprivation/reoxygenation (OGD/R), EA serum, METTL3, lncRNA MALAT1 (MALAT1) and AQP4 groups. OGD/R was performed to establish in vitro models of ischemic stroke. EA serum was obtained from rats that were received EA treatment 3 times at "Renzhong" (GV26) and "Baihui" (GV20) acupoints. The morphological characteristics of astrocytes were identified by microscopy and immunohistochemistry. Mitochondrial ultrastructure was observed using transmission electron microscopy. Cell viability and apoptosis rate were measured with cell counting kit-8 and flow cytometry, respectively. RNA m6A levels were detected by colorimetry, and the expression levels of METTL3, MALAT1 and AQP4 were tested with Western blot and quantitative real-time PCR. 10% EA serum was found to be more effective in improving astrocyte morphology and cell viability. EA serum improved mitochondrial ultrastructure, the viability and apoptosis of astrocytes in OGD/R condition, whereas overexpression of METTL3, MALAT1 and AQP4 inhibited the protective effect of EA serum on astrocytes. Furthermore, EA serum down-regulated the level of RNA m6A and the expression levels of METTL3, MALAT1 and AQP4 in OGD/R condition, while overexpression of METTL3, MALAT1 and AQP4 reversed the down-regulatory effects of EA serum. EA serum attenuates OGD/R-induced astrocyte damage in vitro, and this protective role might be achieved by down-regulating the AQP4 via m6A methylation of MALAT1.
Collapse
Affiliation(s)
- Hanrui Zhang
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Xiyang Xu
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Xinying Li
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Chunli Zeng
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yongjun Peng
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
3
|
Zhong Z, Li X, Gao L, Wu X, Ye Y, Zhang X, Zeng Q, Zhou C, Lu X, Wei Y, Ding Y, Chen S, Zhou G, Xu J, Liu S. Long Non-coding RNA Involved in the Pathophysiology of Atrial Fibrillation. Cardiovasc Drugs Ther 2025; 39:435-458. [PMID: 37702834 PMCID: PMC11954709 DOI: 10.1007/s10557-023-07491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is a prevalent and chronic cardiovascular disorder associated with various pathophysiological alterations, including atrial electrical and structural remodeling, disrupted calcium handling, autonomic nervous system dysfunction, aberrant energy metabolism, and immune dysregulation. Emerging evidence suggests that long non-coding RNAs (lncRNAs) play a significant role in the pathogenesis of AF. OBJECTIVE This discussion aims to elucidate the involvement of AF-related lncRNAs, with a specific focus on their role as miRNA sponges that modulate crucial signaling pathways, contributing to the progression of AF. We also address current limitations in AF-related lncRNA research and explore potential future directions in this field. Additionally, we summarize feasible strategies and promising delivery systems for targeting lncRNAs in AF therapy. CONCLUSION In conclusion, targeting AF-related lncRNAs holds substantial promise for future investigations and represents a potential therapeutic avenue for managing AF.
Collapse
Affiliation(s)
- Zikan Zhong
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xintao Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Longzhe Gao
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Wu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Ye
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Zhang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingye Zeng
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changzuan Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Lu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Wei
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Ding
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songwen Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Genqing Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Juan Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shaowen Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Kocsis AE, Kucsápszky N, Santa-Maria AR, Hunyadi A, Deli MA, Walter FR. Much More than Nutrients: The Protective Effects of Nutraceuticals on the Blood-Brain Barrier in Diseases. Nutrients 2025; 17:766. [PMID: 40077636 PMCID: PMC11901837 DOI: 10.3390/nu17050766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
The dysfunction of the blood-brain barrier (BBB) is well described in several diseases, and is considered a pathological factor in many neurological disorders. This review summarizes the most important groups of natural compounds, including alkaloids, flavonoids, anthocyanidines, carotenoids, lipids, and vitamins that were investigated for their potential protective effects on brain endothelium. The brain penetration of these compounds and their interaction with BBB efflux transporters and solute carriers are discussed. The cerebrovascular endothelium is considered a therapeutic target for natural compounds in diseases. In preclinical studies modeling systemic and central nervous system diseases, nutraceuticals exerted beneficial effects on the BBB. In vivo, they decreased BBB permeability, brain edema, astrocyte swelling, and morphological changes in the vessel structure and basal lamina. At the level of brain endothelial cells, nutraceuticals increased cell survival and decreased apoptosis. From the general endothelial functions, decreased angiogenesis and increased levels of vasodilating agents were demonstrated. From the BBB functions, elevated barrier integrity by tightened intercellular junctions, and increased expression and activity of BBB transporters, such as efflux pumps, solute carriers, and metabolic enzymes, were shown. Nutraceuticals enhanced the antioxidative defense and exerted anti-inflammatory effects at the BBB. The most important signaling changes mediating the increased cell survival and BBB stability were the activation of the WNT, PI3K-AKT, and NRF2 pathways, and inhibition of the MAPK, JNK, ERK, and NF-κB pathways. Nutraceuticals represent a valuable source of new potentially therapeutic molecules to treat brain diseases by protecting the BBB.
Collapse
Affiliation(s)
- Anna E. Kocsis
- Biological Barriers Research Group, Institute of Biophysics, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (A.E.K.); (N.K.)
| | - Nóra Kucsápszky
- Biological Barriers Research Group, Institute of Biophysics, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (A.E.K.); (N.K.)
| | - Ana Raquel Santa-Maria
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Attila Hunyadi
- Institute of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
- Interdisciplinary Centre of Natural Products, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- HUN-REN-SZTE Biologically Active Natural Products Research Group, Eötvös u. 6, H-6720 Szeged, Hungary
- Graduate Institute of Natural Products, Kaohsiung Medical University, Shih-Chuan 1st Rd. 100, Kaohsiung 807, Taiwan
| | - Mária A. Deli
- Biological Barriers Research Group, Institute of Biophysics, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (A.E.K.); (N.K.)
| | - Fruzsina R. Walter
- Biological Barriers Research Group, Institute of Biophysics, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (A.E.K.); (N.K.)
| |
Collapse
|
5
|
Li S, Xu Z, Zhang S, Sun H, Qin X, Zhu L, Jiang T, Zhou J, Yan F, Deng Q. Non-coding RNAs in acute ischemic stroke: from brain to periphery. Neural Regen Res 2025; 20:116-129. [PMID: 38767481 PMCID: PMC11246127 DOI: 10.4103/nrr.nrr-d-23-01292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/09/2023] [Accepted: 12/18/2023] [Indexed: 05/22/2024] Open
Abstract
Acute ischemic stroke is a clinical emergency and a condition with high morbidity, mortality, and disability. Accurate predictive, diagnostic, and prognostic biomarkers and effective therapeutic targets for acute ischemic stroke remain undetermined. With innovations in high-throughput gene sequencing analysis, many aberrantly expressed non-coding RNAs (ncRNAs) in the brain and peripheral blood after acute ischemic stroke have been found in clinical samples and experimental models. Differentially expressed ncRNAs in the post-stroke brain were demonstrated to play vital roles in pathological processes, leading to neuroprotection or deterioration, thus ncRNAs can serve as therapeutic targets in acute ischemic stroke. Moreover, distinctly expressed ncRNAs in the peripheral blood can be used as biomarkers for acute ischemic stroke prediction, diagnosis, and prognosis. In particular, ncRNAs in peripheral immune cells were recently shown to be involved in the peripheral and brain immune response after acute ischemic stroke. In this review, we consolidate the latest progress of research into the roles of ncRNAs (microRNAs, long ncRNAs, and circular RNAs) in the pathological processes of acute ischemic stroke-induced brain damage, as well as the potential of these ncRNAs to act as biomarkers for acute ischemic stroke prediction, diagnosis, and prognosis. Findings from this review will provide novel ideas for the clinical application of ncRNAs in acute ischemic stroke.
Collapse
Affiliation(s)
- Shuo Li
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhaohan Xu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shiyao Zhang
- Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaodan Qin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lin Zhu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Junshan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fuling Yan
- Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Qiwen Deng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
6
|
Khoshnam SE, Moalemnia A, Anbiyaee O, Farzaneh M, Ghaderi S. LncRNA MALAT1 and Ischemic Stroke: Pathogenesis and Opportunities. Mol Neurobiol 2024; 61:4369-4380. [PMID: 38087169 DOI: 10.1007/s12035-023-03853-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/21/2023] [Indexed: 07/11/2024]
Abstract
Ischemic stroke (IS) stands as a prominent cause of mortality and long-term disability around the world. It arises primarily from a disruption in cerebral blood flow, inflicting severe neural injuries. Hence, there is a pressing need to comprehensively understand the intricate mechanisms underlying IS and identify novel therapeutic targets. Recently, long noncoding RNAs (lncRNAs) have emerged as a novel class of regulatory molecules with the potential to attenuate pathogenic mechanisms following IS. Among these lncRNAs, MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) has been extensively studied due to its involvement in the pathophysiological processes of IS. In this review, we provide an in-depth analysis of the essential role of MALAT1 in the development and progression of both pathogenic and protective mechanisms following IS. These mechanisms include oxidative stress, neuroinflammation, cell death signaling, blood brain barrier dysfunction, and angiogenesis. Furthermore, we summarize the impact of MALAT1 on the susceptibility and severity of IS. This review highlights the potential risks associated with the therapeutic use of MALAT1 for IS, which are attributable to the stimulatory action of MALAT1 on ischemia/reperfusion injury. Ultimately, this review sheds light on the potential molecular mechanisms and associated signaling pathways underlying MALAT1 expression post-IS, with the aim of uncovering potential therapeutic targets.
Collapse
Affiliation(s)
- Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Arash Moalemnia
- Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Omid Anbiyaee
- School of Medicine, Cardiovascular Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
7
|
Zhao Y, Li Q, Niu J, Guo E, Zhao C, Zhang J, Liu X, Wang L, Rao L, Chen X, Yang K. Neutrophil Membrane-Camouflaged Polyprodrug Nanomedicine for Inflammation Suppression in Ischemic Stroke Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311803. [PMID: 38519052 DOI: 10.1002/adma.202311803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/17/2024] [Indexed: 03/24/2024]
Abstract
Neuroinflammation has emerged as a major concern in ischemic stroke therapy because it exacebates neurological dysfunction and suppresses neurological recovery after ischemia/reperfusion. Fingolimod hydrochloride (FTY720) is an FDA-approved anti-inflammatory drug which exhibits potential neuroprotective effects in ischemic brain parenchyma. However, delivering a sufficient amount of FTY720 through the blood-brain barrier into brain lesions without inducing severe cardiovascular side effects remains challenging. Here, a neutrophil membrane-camouflaged polyprodrug nanomedicine that can migrate into ischemic brain tissues and in situ release FTY720 in response to elevated levels of reactive oxygen species. This nanomedicine delivers 15.2-fold more FTY720 into the ischemic brain and significantly reduces the risk of cardiotoxicity and infection compared with intravenously administered free drug. In addition, single-cell RNA-sequencing analysis identifies that the nanomedicine attenuates poststroke inflammation by reprogramming microglia toward anti-inflammatory phenotypes, which is realized via modulating Cebpb-regulated activation of NLRP3 inflammasomes and secretion of CXCL2 chemokine. This study offers new insights into the design and fabrication of polyprodrug nanomedicines for effective suppression of inflammation in ischemic stroke therapy.
Collapse
Affiliation(s)
- Ya Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, P. R. China
| | - Qian Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Jingyan Niu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Erliang Guo
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, P. R. China
| | - Chenchen Zhao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, P. R. China
| | - Jian Zhang
- Biofunctional Experiment Teaching Center, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Xue Liu
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Kuikun Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, P. R. China
| |
Collapse
|
8
|
Li J, Shen S, Shen H. Heat-shock protein A12A attenuates oxygen-glucose deprivation/reoxygenation-induced human brain microvascular endothelial cell dysfunction via PGC-1α/SIRT3 pathway. Drug Dev Res 2024; 85:e22130. [PMID: 37942840 DOI: 10.1002/ddr.22130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/07/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
Ischemic stroke is a life-threatening brain disease with the leading cause of disability and mortality worldwide. Heat-shock protein A12A (HSPA12A) is recognized as a neuroprotective target for treating ischemic stroke; however, its regulatory mechanism has been not fully elucidated yet. Human brain microvascular endothelial cells (hBMECs) were induced by oxygen-glucose deprivation/reoxygenation (OGD/R) to mimic ischemic stroke. Gain- and loss-of-function experiments were conducted to explore the regulation of HSAPA12 and PGC-1α. Cell viability, apoptosis, and permeability were assessed by CCK-8, TUNEL, and transendothelial electrical resistance (TEER) assays, respectively. The expression of HSPA12A and corresponding proteins was measured by western blot. Cell immunofluorescence was adopted to evaluate ZO-1 expression. THP-1 cells were applied to adhere hBMECs in vitro to simulate leukocyte adhesion in the brain. HSPA12A was downregulated in OGD/R-treated hBMECs. HSPA12A overexpression significantly suppressed OGD/R-induced cell viability loss and apoptosis in hBMECs. Meanwhile, HSPA12A overexpression attenuated blood-brain barrier (BBB) integrity in OGD/R-induced hBMECs, evidenced by the restored TEER value and the upregulated ZO-1, occludin, and claudin-5. HSPA12A also restricted OGD/R-induced attachment of THP-1 cells to hBMECs, accompanied with downregulating ICAM-1 and VCAM-1. Additionally, OGD/R-caused downregulation of PGC-1α/SIRT3 in hBMECs was partly restored by HSPA12A overexpression. Furthermore, the above effects of HSPA12A on OGD/R-induced hBMECs injury were partly reversed by PGC-1α knockdown. HSPA12A plays a protective role against OGD/R-induced hBMECs injury by upregulating PGC-1α, providing a potential neuroprotective role of HSPA12A in ischemic stroke.
Collapse
Affiliation(s)
- Jun Li
- General Department, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Shouyin Shen
- General Department, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Haiyan Shen
- General Department, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
9
|
Li MT, Ke J, Guo SF, Shan LL, Gong JH, Qiao TC, Tian HY, Wu Y, Peng ZY, Zeng XQ, Han Y. Huzhangqingmaiyin protected vascular endothelial cells against cerebral small vessel disease through inhibiting inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116905. [PMID: 37442491 DOI: 10.1016/j.jep.2023.116905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huzhangqingmaiyin (HZQMY) is a Chinese medicine formula used to treat small vessel disease, but the mechanism is unclear. AIM OF THE STUDY This study aimed to reveal the protective effects of HZQMY on human brain microvascular endothelial cells (HBMECs) and explore the potential targets and mechanistic pathways using network pharmacology on treating cerebral small vessel disease (CSVD). MATERIALS AND METHODS HBMECs were cultured in vitro and an endothelial cell injury model was constructed by hypoxia for 12 h followed by reoxygenation for 8 h (H/R). Cell viability was measured by CCK-8 assay, migration ability of cells was detected by scratch assay, angiogenesis ability of endothelial cells was detected by tubulogenesis assay. Meanwhile, JC-1 staining was employed to determine the alteration of mitochondrial membrane potential, and finally, cell apoptosis was assessed by flow cytometry. To further explore the mechanism of action of HZQMY, the target proteins of a candidate active compound was first collected from the traditional Chinese medicine systems pharmacology database with analytical platform and Swiss target prediction database (www.swisstargetprediction.ch) by HPLC/MS determination of its main active components. CSVD associated targets were retrieved from four disease associated targets databases, OMIM, DisGenNET, GeneCards and GeneCLip, respectively. Using the website String, the genes overlapped between HZQMY and CSVD were imported into the database, PPI network plots were drawn using Cytoscape software. GO and KEGG analyses were performed to explore the possible pathways and targets of HZQMY. Its most probable targets were further explored with molecular docking and verified. RESULTS HZQMY at 0.5-2 μg/mL concentration range could promote cell proliferation, cell migration, angiogenesis, reduce mitochondrial membrane potential damage as well as inhibit apoptosis. Besides that, 29 active compounds were detected from HZQMY, including key components such as quercetin, polydatin, kaempferol, isorhamnetin and resveratrol. Core targets that might include IL-1β、ICAM-1、VCAM-1 and VEGF and so on. CONCLUSIONS HZQMY could regulate the levels of key targets such as IL-1β、ICAM-1、VCAM-1 and VEGF, so as to achieve the purpose of treating CSVD.
Collapse
Affiliation(s)
- Meng-Ting Li
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jia Ke
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Shu-Fen Guo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Li-Li Shan
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jia-Hao Gong
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tian-Ci Qiao
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Hao-Yu Tian
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yang Wu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Zheng-Yu Peng
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xue-Qian Zeng
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
10
|
Alkan AH, Ensoy M, Cansaran-Duman D. Strategic and Innovative Roles of lncRNAs Regulated by Naturally-derived Small Molecules in Cancer Therapy. Curr Med Chem 2024; 31:6672-6691. [PMID: 37921177 DOI: 10.2174/0109298673264372230919102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/22/2023] [Accepted: 08/17/2023] [Indexed: 11/04/2023]
Abstract
In the field of precision and personalized medicine, the next generation sequencing method has begun to take an active place as genome-wide screening applications in the diagnosis and treatment of diseases. Studies based on the determination of the therapeutic efficacy of personalized drug use in cancer treatment in the size of the transcriptome and its extension, lncRNA, have been increasing rapidly in recent years. Targeting and/or regulating noncoding RNAs (ncRNAs) consisting of long noncoding RNAs (lncRNAs) are promising strategies for cancer treatment. Within the scope of rapidly increasing studies in recent years, it has been shown that many natural agents obtained from biological organisms can potentially alter the expression of many lncRNAs associated with oncogenic functions. Natural agents include effective small molecules that provide anti-cancer effects and have been used as chemotherapy drugs or in combination with standard anti-cancer drugs used in routine treatment. In this review, it was aimed to provide detailed information about the potential of natural agents to regulate and/or target non-coding RNAs and their mechanisms of action to provide an approach for cancer therapy. The discovery of novel anti-cancer targets and subsequent development of effective drugs or combination strategies that are still needed for most cancers will be promising for cancer treatment.
Collapse
Affiliation(s)
- Ayşe Hale Alkan
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, Bartın, Turkey
| | - Mine Ensoy
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
| | | |
Collapse
|
11
|
Qin Z, Xu Y. Dexmedetomidine Alleviates Brain Ischemia/Reperfusion Injury by Regulating Metastasis-associated Lung Adenocarcinoma Transcript 1/MicroRNA-140-5p/ Nuclear Factor Erythroid-derived 2-like 2 Axis. Protein Pept Lett 2024; 31:116-127. [PMID: 38083898 DOI: 10.2174/0109298665254683231122065717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 05/30/2024]
Abstract
BACKGROUND Dexmedetomidine (Dex) is widely used in perioperative anesthesia, and recent studies have reported that it protects organs from ischemia/reperfusion (I/R) injury. OBJECTIVES This study was performed to investigate the role of Dex in alleviating cerebral I/R injury and its regulatory effects on metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/microRNA-140-5p (miR-140-5p)/nuclear factor erythroid-derived 2-like 2 (Nrf2) axis. METHODS In vivo rat middle cerebral artery occlusion (MCAO) model and in vitro oxygen-glucose deprivation/re-oxygenation (OGD/R)-induced neuronal injury model were constructed. Dex was injected into the animals or used to culture HT22 cells to observe the pharmacological effects. The neurological defect, brain water content, infarct volume of the rats, and neuron viability were evaluated. The levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) were detected. Besides, the regulatory effects of Dex on MALAT1, miR-140-5p, and Nrf2 expression levels and regulatory relationships among them were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, and dual- luciferase reporter assay. RESULTS Dex significantly alleviated the neurological injury of rats with MCAO and promoted the viability of neurons. Dex treatment suppressed miR-140-5p expression, but elevated MALAT1 and Nrf2 expressions. MALAT1 knockdown down-regulated Nrf2 expression and promoted oxidative stress in neurons. Additionally, miR-140-5p directly targeted Nrf2, and it also functioned as a downstream target miRNA of MALAT1. CONCLUSION Dex, via regulating MALAT1/miR-140-5p/Nrf2 axis, plays a neuroprotective role against I/R-induced brain injury.
Collapse
Affiliation(s)
- Zhigang Qin
- Department of Anesthesiology, TaiKang Tongji (Wuhan) Hospital, Wuhan430000, Hubei Province, China
| | - Younian Xu
- Department of Anesthesiology, Hanyang Hospital, Wuhan 430000, Hubei Province, China
| |
Collapse
|
12
|
Shehata AH, Anter AF, Ahmed ASF. Role of SIRT1 in sepsis-induced encephalopathy: Molecular targets for future therapies. Eur J Neurosci 2023; 58:4211-4235. [PMID: 37840012 DOI: 10.1111/ejn.16167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Sepsis induces neuroinflammation, BBB disruption, cerebral hypoxia, neuronal mitochondrial dysfunction, and cell death causing sepsis-associated encephalopathy (SAE). These pathological consequences lead to short- and long-term neurobehavioural deficits. Till now there is no specific treatment that directly improves SAE and its associated behavioural impairments. In this review, we discuss the underlying mechanisms of sepsis-induced brain injury with a focus on the latest progress regarding neuroprotective effects of SIRT1 (silent mating type information regulation-2 homologue-1). SIRT1 is an NAD+ -dependent class III protein deacetylase. It is able to modulate multiple downstream signals (including NF-κB, HMGB, AMPK, PGC1α and FoxO), which are involved in the development of SAE by its deacetylation activity. There are multiple recent studies showing the neuroprotective effects of SIRT1 in neuroinflammation related diseases. The proposed neuroprotective action of SIRT1 is meant to bring a promising therapeutic strategy for managing SAE and ameliorating its related behavioural deficits.
Collapse
Affiliation(s)
- Alaa H Shehata
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Aliaa F Anter
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
13
|
Guo P, Lu Q, Hu S, Yang Y, Wang X, Yang X, Wang X. Daucosterol confers protection against T-2 toxin induced blood-brain barrier toxicity through the PGC-1α-mediated defensive response in vitro and in vivo. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132262. [PMID: 37604032 DOI: 10.1016/j.jhazmat.2023.132262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023]
Abstract
T-2 toxin is a common environmental pollutant and contaminant in food and animal feed that represents a great challenge to human and animal' health throughout the world. Using natural compounds to prevent the detrimental effects of T-2 toxin represents an attractive strategy. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is a critical regulator in various cellular processes. Recently, PGC-1α activation has been reported to confer protection against neurological injuries. We aimed to identify a potent PGC-1α activator from plants as a chemopreventive compound and to demonstrate the efficacy of the compound in attenuating T-2 toxin-induced blood-brain barrier (BBB) toxicity. We identified daucosterol, which binds directly to the 71-74 (-1100 to -1000 bp) position of the second promoter of human PGC-1α by hydrogen bonding. An in vitro and in vivo T-2 toxin induced BBB injury model revealed that this compound can protect against this injury by increasing transepithelial/transendothelial electrical resistance, reducing sodium fluorescein (NaF) infiltration and increasing the expression of tight junction-related proteins (zonula occludens-1 (ZO-1), occludin (OCLN), claudin-5 (CLDN5)) expression. In conclusion, we identified daucosterol as representing a novel of PGC-1α activators and illustrated the mechanism of specific binding site. Furthermore, we have demonstrated the feasibility of using natural compounds targeting PGC-1α as a therapeutic approach to protect humans from environmental insults that may occur daily such as lipopolysaccharide.
Collapse
Affiliation(s)
- Pu Guo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qirong Lu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Siyi Hu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yaqin Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xinru Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei 430070, China.
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
14
|
Zhao H, Tan Z, Zhou J, Wu Y, Hu Q, Ling Q, Ling J, Liu M, Ma J, Zhang D, Wang Y, Zhang J, Yu P, Jiang Y, Liu X. The regulation of circRNA and lncRNAprotein binding in cardiovascular diseases: Emerging therapeutic targets. Biomed Pharmacother 2023; 165:115067. [PMID: 37392655 DOI: 10.1016/j.biopha.2023.115067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023] Open
Abstract
Noncoding ribonucleic acids (ncRNAs) are a class of ribonucleic acids (RNAs) that carry cellular information and perform essential functions. This class encompasses various RNAs, such as small nuclear ribonucleic acids (snRNA), small interfering ribonucleic acids (siRNA) and many other kinds of RNA. Of these, circular ribonucleic acids (circRNAs) and long noncoding ribonucleic acids (lncRNAs) are two types of ncRNAs that regulate crucial physiological and pathological processes, including binding, in several organs through interactions with other RNAs or proteins. Recent studies indicate that these RNAs interact with various proteins, including protein 53, nuclear factor-kappa B, vascular endothelial growth factor, and fused in sarcoma/translocated in liposarcoma, to regulate both the histological and electrophysiological aspects of cardiac development as well as cardiovascular pathogenesis, ultimately leading to a variety of genetic heart diseases, coronary heart disease, myocardial infarction, rheumatic heart disease and cardiomyopathies. This paper presents a thorough review of recent studies on circRNA and lncRNAprotein binding within cardiac and vascular cells. It offers insight into the molecular mechanisms involved and emphasizes potential implications for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Huilei Zhao
- Department of Anesthesiology, The Third Hospital of Nanchang, Nanchang, Jiangxi, China
| | - Ziqi Tan
- Department of Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jin Zhou
- Department of Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yifan Wu
- Department of Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qingwen Hu
- Department of Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qing Ling
- Department of Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jitao Ling
- Department of Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Menglu Liu
- Department of Cardiology, Seventh People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Yue Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Yu
- Department of Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Yuan Jiang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangzhou, China.
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangzhou, China.
| |
Collapse
|
15
|
Zhao H, Wang L, Zhang L, Zhao H. Phytochemicals targeting lncRNAs: A novel direction for neuroprotection in neurological disorders. Biomed Pharmacother 2023; 162:114692. [PMID: 37058817 DOI: 10.1016/j.biopha.2023.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
Neurological disorders with various etiologies impacting the nervous system are prevalent in clinical practice. Long non-coding RNA (lncRNA) molecules are functional RNA molecules exceeding 200 nucleotides in length that do not encode proteins, but participate in essential activities. Research indicates that lncRNAs may contribute to the pathogenesis of neurological disorders, and may be potential targets for their treatment. Phytochemicals in traditional Chinese herbal medicine (CHM) have been found to exert neuroprotective effects by targeting lncRNAs and regulating gene expression and various signaling pathways. We aim to establish the development status and neuroprotective mechanism of phytochemicals that target lncRNAs through a thorough literature review. A total of 369 articles were retrieved through manual and electronic searches of PubMed, Web of Science, Scopus and CNKI databases from inception to September 2022. The search utilized combinations of natural products, lncRNAs, neurological disorders, and neuroprotective effects as keywords. The included studies, a total of 31 preclinical trials, were critically reviewed to present the current situation and the progress in phytochemical-targeted lncRNAs in neuroprotection. Phytochemicals have demonstrated neuroprotective effects in preclinical studies of various neurological disorders by regulating lncRNAs. These disorders include arteriosclerotic ischemia-reperfusion injury, ischemic/hemorrhagic stroke, Alzheimer's disease, Parkinson's disease, glioma, peripheral nerve injury, post-stroke depression, and depression. Several phytochemicals exert neuroprotective roles through mechanisms such as anti-inflammatory, antioxidant, anti-apoptosis, autophagy regulation, and antagonism of Aβ-induced neurotoxicity. Some phytochemicals targeted lncRNAs and served a neuroprotective role by regulating microRNA and mRNA expression. The emergence of lncRNAs as pathological regulators provides a novel direction for the study of phytochemicals in CHM. Elucidating the mechanism of phytochemicals regulating lncRNAs will help to identify new therapeutic targets and promote their application in precision medicine.
Collapse
Affiliation(s)
- Hang Zhao
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Lin Wang
- Department of Emergency medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Lijuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Hongyu Zhao
- Department of Emergency medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
16
|
Zeng M, Zhang T, Lin Y, Lin Y, Wu Z. The Common LncRNAs of Neuroinflammation-Related Diseases. Mol Pharmacol 2023; 103:113-131. [PMID: 36456192 DOI: 10.1124/molpharm.122.000530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022] Open
Abstract
Spatio-temporal specific long noncoding RNAs (lncRNAs) play important regulatory roles not only in the growth and development of the brain but also in the occurrence and development of neurologic diseases. Generally, the occurrence of neurologic diseases is accompanied by neuroinflammation. Elucidation of the regulatory mechanisms of lncRNAs on neuroinflammation is helpful for the clinical treatment of neurologic diseases. This paper focuses on recent findings on the regulatory effect of lncRNAs on neuroinflammatory diseases and selects 10 lncRNAs that have been intensively studied to analyze their mechanism action. The clinical treatment status of lncRNAs as drug targets is also reviewed. SIGNIFICANCE STATEMENT: Gene therapies such as clustered regularly interspaced short palindrome repeats technology, antisense RNA technology, and RNAi technology are gradually applied in clinical treatment, and the development of technology is based on a large number of basic research investigations. This paper focuses on the mechanisms of lncRNAs regulation of neuroinflammation, elucidates the beneficial or harmful effects of lncRNAs in neurosystemic diseases, and provides theoretical bases for lncRNAs as drug targets.
Collapse
Affiliation(s)
- Meixing Zeng
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Ting Zhang
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Yan Lin
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Yongluan Lin
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Zhuomin Wu
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| |
Collapse
|
17
|
Hao L, Wu W, Xu Y, Chen Y, Meng C, Yun J, Wang X. LncRNA-MALAT1: A Key Participant in the Occurrence and Development of Cancer. Molecules 2023; 28:molecules28052126. [PMID: 36903369 PMCID: PMC10004581 DOI: 10.3390/molecules28052126] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
LncRNAs are a group of non-coding RNA transcripts with lengths of over 200 nucleotides and can interact with DNA, RNA, and proteins to regulate gene expression of malignant tumors in human tissues. LncRNAs participate in vital processes, such as chromosomal nuclear transport in the cancerous site of human tissue, activation, and the regulation of proto-oncogenes, the differentiation of immune cells, and the regulation of the cellular immune system. The lncRNA metastasis-associated lung cancer transcript 1 (MALAT1) is reportedly involved in the occurrence and development of many cancers and serves as a biomarker and therapeutic target. These findings highlight its promising role in cancer treatment. In this article, we comprehensively summarized the structure and functions of lncRNA, notably the discoveries of lncRNA-MALAT1 in different cancers, the action mechanisms, and the ongoing research on new drug development. We believe our review would serve as a basis for further research on the pathological mechanism of lncRNA-MALAT1 in cancer and provide evidence and novel insights into its application in clinical diagnoses and treatments.
Collapse
Affiliation(s)
- Longhui Hao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wenzheng Wu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yankun Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yufan Chen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chengzhen Meng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jingyi Yun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaoyu Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence:
| |
Collapse
|
18
|
Targeting Non-Coding RNA for CNS Injuries: Regulation of Blood-Brain Barrier Functions. Neurochem Res 2023; 48:1997-2016. [PMID: 36786944 DOI: 10.1007/s11064-023-03892-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Central nervous system (CNS) injuries are the most common cause of death and disability around the world. The blood-brain barrier (BBB) is located at the interface between the CNS and the surrounding environment, which protects the CNS from exogenous molecules, harmful agents or microorganisms in the blood. The disruption of BBB is a common feature of CNS injuries and participates in the pathological processes of secondary brain damage. Recently, a growing number of studies have indicated that non-coding RNAs (ncRNAs) play an important role in brain development and are involved in CNS injuries. In this review, we summarize the mechanisms of BBB breakdown after CNS injuries. We also discuss the effects of ncRNAs including long noncoding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs) on BBB damage in CNS injuries such as ischemic stroke, traumatic brain injury (TBI), intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH). In addition, we clarify the pharmacotherapies that could regulate BBB function via ncRNAs in CNS injuries, as well as the challenges and perspectives of ncRNAs on modulation of BBB function. Hence, on the basis of these effects, ncRNAs may be developed as therapeutic agents to protect the BBB for CNS injury patients.
Collapse
|
19
|
Karami A, Fakhri S, Kooshki L, Khan H. Polydatin: Pharmacological Mechanisms, Therapeutic Targets, Biological Activities, and Health Benefits. Molecules 2022; 27:6474. [PMID: 36235012 PMCID: PMC9572446 DOI: 10.3390/molecules27196474] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Polydatin is a natural potent stilbenoid polyphenol and a resveratrol derivative with improved bioavailability. Polydatin possesses potential biological activities predominantly through the modulation of pivotal signaling pathways involved in inflammation, oxidative stress, and apoptosis. Various imperative biological activities have been suggested for polydatin towards promising therapeutic effects, including anticancer, cardioprotective, anti-diabetic, gastroprotective, hepatoprotective, neuroprotective, anti-microbial, as well as health-promoting roles on the renal system, the respiratory system, rheumatoid diseases, the skeletal system, and women's health. In the present study, the therapeutic targets, biological activities, pharmacological mechanisms, and health benefits of polydatin are reviewed to provide new insights to researchers. The need to develop further clinical trials and novel delivery systems of polydatin is also considered to reveal new insights to researchers.
Collapse
Affiliation(s)
- Ahmad Karami
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Leila Kooshki
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
20
|
Enayati A, Ghojoghnejad M, Roufogalis BD, Maollem SA, Sahebkar A. Impact of Phytochemicals on PPAR Receptors: Implications for Disease Treatments. PPAR Res 2022; 2022:4714914. [PMID: 36092543 PMCID: PMC9453090 DOI: 10.1155/2022/4714914] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the ligand-dependent nuclear receptor family. PPARs have attracted wide attention as pharmacologic mediators to manage multiple diseases and their underlying signaling targets. They mediate a broad range of specific biological activities and multiple organ toxicity, including cellular differentiation, metabolic syndrome, cancer, atherosclerosis, neurodegeneration, cardiovascular diseases, and inflammation related to their up/downstream signaling pathways. Consequently, several types of selective PPAR ligands, such as fibrates and thiazolidinediones (TZDs), have been approved as their pharmacological agonists. Despite these advances, the use of PPAR agonists is known to cause adverse effects in various systems. Conversely, some naturally occurring PPAR agonists, including polyunsaturated fatty acids and natural endogenous PPAR agonists curcumin and resveratrol, have been introduced as safe agonists as a result of their clinical evidence or preclinical experiments. This review focuses on research on plant-derived active ingredients (natural phytochemicals) as potential safe and promising PPAR agonists. Moreover, it provides a comprehensive review and critique of the role of phytochemicals in PPARs-related diseases and provides an understanding of phytochemical-mediated PPAR-dependent and -independent cascades. The findings of this research will help to define the functions of phytochemicals as potent PPAR pharmacological agonists in underlying disease mechanisms and their related complications.
Collapse
Affiliation(s)
- Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mobina Ghojoghnejad
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Basil D. Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Seyed Adel Maollem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Ye YC, Chang ZH, Wang P, Wang YW, Liang J, Chen C, Wang JJ, Sun HT, Wang Y, Li XH. Infarct-preconditioning exosomes of umbilical cord mesenchymal stem cells promoted vascular remodeling and neurological recovery after stroke in rats. Stem Cell Res Ther 2022; 13:378. [PMID: 35902882 PMCID: PMC9330700 DOI: 10.1186/s13287-022-03083-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/21/2022] [Indexed: 12/30/2022] Open
Abstract
Background Stroke is the leading cause of disability worldwide, resulting in severe damage to the central nervous system and disrupting neurological functions. There is no effective therapy for promoting neurological recovery. Growing evidence suggests that the composition of exosomes from different microenvironments may benefit stroke. Therefore, it is reasonable to assume that exosomes secreted in response to infarction microenvironment could have further therapeutic effects. Methods In our study, cerebral infarct tissue extracts were used to pretreat umbilical cord mesenchymal stem cells (UCMSC). Infarct-preconditioned exosomes were injected into rats via tail vein after middle cerebral artery occlusion (MCAO). The effect of infarct-preconditioned exosomes on the neurological recovery of rats was examined using Tunel assay, 2,3,5-triphenyltetrazolium chloride (TTC) assay, magnetic resonance imaging (MRI) analyses, modified Neurological Severity Score (mNSS), Morris water maze (MWM), and vascular remodeling analysis. Mi-RNA sequencing and functional enrichment analysis were used to validate the signal pathway involved in the effect of infarct-preconditioned exosomes. Human umbilical vein endothelial cells (HUVECs) were co-cultured with the isolated exosomes. Cell Counting Kit-8 (CCK-8) assay, scratch healing, and Western blot analysis were used to detect the biological behavior of HUVECs. Results The results showed that compared with normal exosomes, infarct-preconditioned exosomes further promoted vascular remodeling and recovery of neurological function after stroke. The function of upregulated miRNAs and their target genes which is beneficial to vascular smooth muscle cells verified the importance of vascular remodeling in improving stroke. Better resistance to oxygen–glucose deprivation/reoxygenation (OGD/R), reduced apoptosis, and enhanced migration were observed in infarct-preconditioned exosomes-treated umbilical vein endothelial cells. Conclusions Our results demonstrated that infarct-preconditioned exosomes promoted neurological recovery after stroke by enhancing vascular endothelial remodeling, suggested that infarct-preconditioned exosomes could be a novel way to alleviate brain damage following a stroke. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03083-9.
Collapse
Affiliation(s)
- Yi-Chao Ye
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.,Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, 300162, China
| | - Zhe-Han Chang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Peng Wang
- Health Management Department, Tianjin Hospital, Tianjin University, Tianjin, 300299, China
| | - You-Wei Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jun Liang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Chong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.,Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, 300162, China
| | - Jing-Jing Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, 300162, China
| | - Hong-Tao Sun
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, 300162, China
| | - Yi Wang
- Neurology Department, Tianjin Hospital, Tianjin University, Tianjin, 300299, China.
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
22
|
Polyphenols for the Treatment of Ischemic Stroke: New Applications and Insights. Molecules 2022; 27:molecules27134181. [PMID: 35807426 PMCID: PMC9268254 DOI: 10.3390/molecules27134181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Ischemic stroke (IS) is a leading cause of death and disability worldwide. Currently, the main therapeutic strategy involves the use of intravenous thrombolysis to restore cerebral blood flow to prevent the transition of the penumbra to the infarct core. However, due to various limitations and complications, including the narrow time window in which this approach is effective, less than 10% of patients benefit from such therapy. Thus, there is an urgent need for alternative therapeutic strategies, with neuroprotection against the ischemic cascade response after IS being one of the most promising options. In the past few decades, polyphenolic compounds have shown great potential in animal models of IS because of their high biocompatibility and ability to target multiple ischemic cascade signaling pathways, although low bioavailability is an issue that limits the applications of several polyphenols. Here, we review the pathophysiological changes following cerebral ischemia and summarize the research progress regarding the applications of polyphenolic compounds in the treatment of IS over the past 5 years. Furthermore, we discuss several potential strategies for improving the bioavailability of polyphenolic compounds as well as some essential issues that remain to be addressed for the translation of the related therapies to the clinic.
Collapse
|
23
|
Schimith LE, Dos Santos MG, Arbo BD, André-Miral C, Muccillo-Baisch AL, Hort MA. Polydatin as a therapeutic alternative for central nervous system disorders: A systematic review of animal studies. Phytother Res 2022; 36:2852-2877. [PMID: 35614539 DOI: 10.1002/ptr.7497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/25/2022] [Accepted: 05/08/2022] [Indexed: 12/25/2022]
Abstract
Polydatin, or piceid, is a natural stilbene found in grapes, peanuts, and wines. Polydatin presents pharmacological activities, including neuroprotective properties, exerting preventive and/or therapeutic effects in central nervous system (CNS) disorders. In the present study, we summarize and discuss the neuroprotective effects of polydatin in CNS disorders and related pathological conditions in preclinical animal studies. A systematic review was performed by searching online databases, returning a total of 110 records, where 27 articles were selected and discussed here. The included studies showed neuroprotective effects of polydatin in experimental models of neurological disorders, including cerebrovascular disorders, Parkinson's disease, traumatic brain injuries, diabetic neuropathy, glioblastoma, and neurotoxicity induced by chemical agents. Most studies were focused on stroke (22.2%) and conducted in male rodents. The intervention protocol with polydatin was mainly acute (66.7%), with postdamage induction treatment being the most commonly used regimen (55.2%). Overall, polydatin ameliorated behavioral dysfunctions and/or promoted neurological function by virtue of its antioxidant and antiinflammatory properties. In summary, this review offers important scientific evidence for the neuroprotective effects and distinct pharmacological mechanisms of polydatin that not only enhances the present understanding but is also useful for the development of future preclinical and clinical investigations.
Collapse
Affiliation(s)
- Lucia E Schimith
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - Michele G Dos Santos
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - Bruno D Arbo
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil.,Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Corinne André-Miral
- Unité en Sciences Biologiques et Biotechnologies (US2B), Nantes Université, CNRS, Nantes, France
| | - Ana L Muccillo-Baisch
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - Mariana A Hort
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil.,Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
24
|
Cao Y, Liu J, Lu Q, Huang K, Yang B, Reilly J, Jiang N, Shu X, Shang L. An update on the functional roles of long non‑coding RNAs in ischemic injury (Review). Int J Mol Med 2022; 50:91. [PMID: 35593308 PMCID: PMC9170192 DOI: 10.3892/ijmm.2022.5147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022] Open
Abstract
Ischemic injuries result from ischemia and hypoxia in cells. Tissues and organs receive an insufficient supply of nutrients and accumulate metabolic waste, which leads to the development of inflammation, fibrosis and a series of other issues. Ischemic injuries in the brain, heart, kidneys, lungs and other organs can cause severe adverse effects. Acute renal ischemia induces acute renal failure, heart ischemia induces myocardial infarction and cerebral ischemia induces cerebrovascular accidents, leading to loss of movement, consciousness and possibly, life-threatening disabilities. Existing evidence suggests that long non-coding RNAs (lncRNAs) are regulatory sequences involved in transcription, post-transcription, epigenetic regulation and multiple physiological processes. lncRNAs have been shown to be differentially expressed following ischemic injury, with the severity of the ischemic injury being affected by the upregulation or downregulation of certain types of lncRNA. The present review article provides an extensive summary of the functional roles of lncRNAs in ischemic injury, with a focus on the brain, heart, kidneys and lungs. The present review mainly summarizes the functional roles of lncRNA MALAT1, lncRNA MEG3, lncRNA H19, lncRNA TUG1, lncRNA NEAT1, lncRNA AK139328 and lncRNA CAREL, among which lncRNA MALAT1, in particular, plays a crucial role in ischemic injury and is currently a hot research topic.
Collapse
Affiliation(s)
- Yanqun Cao
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Jia Liu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Quzhe Lu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Kai Huang
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Baolin Yang
- Department of Human Anatomy, School of Basic Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Na Jiang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi 330006, P.R. China
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Lei Shang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
25
|
Andrographolide in Atherosclerosis: Integrating Network Pharmacology and In Vitro Pharmacological Evaluation. Biosci Rep 2022; 42:231291. [PMID: 35543243 PMCID: PMC9251584 DOI: 10.1042/bsr20212812] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: Andrographis paniculata (Burm.f.) Nees is a medicinal plant that has been traditionally used as an anti-inflammatory and antibacterial remedy for several conditions. Andrographolide (AG), the active constituent of A. paniculata (Burm.f.) Nees, has anti-lipidic and anti-inflammatory properties as well as cardiovascular protective effects. The present study aimed to explore the effects of AG on the progression of atherosclerosis and to investigate related mechanisms via network pharmacology. Materials and methods: Compound-related information was obtained from the PubChem database. Potential target genes were identified using STITCH, SwissTargetPrediction, Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine, and Comparative Toxicogenomics Database. Genes involved in atherosclerosis were obtained from DisGeNet and compared with AG target genes to obtain an overlapping set. Protein–protein interactions were determined by STRING. Gene ontology (GO) analysis was performed at WebGestalt, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment was analyzed using Metascape. The final network showing the relationship between compounds, targets, and pathways was constructed using Cytoscape. After that, oxLDL-induced RAW264.7 cells were used to further validate a part of the network pharmacology results. Result: Eighty-one potential AG target genes were identified. PPI, GO, and KEGG enrichment revealed genes closely related to tumor progression, lipid transport, inflammation, and related pathways. AG improves the reverse cholesterol transport (RCT) through NF-κB/CEBPB/PPARG signaling in oxLDL-induced RAW264.7 cells. Conclusion: We successfully predict AG’s potential targets and pathways in atherosclerosis and illustrate the mechanism of action. AG may regulate NF-κB/CEBPB/PPARG signaling to alleviate atherosclerosis.
Collapse
|
26
|
Sun P, Hamblin MH, Yin KJ. Non-coding RNAs in the regulation of blood–brain barrier functions in central nervous system disorders. Fluids Barriers CNS 2022; 19:27. [PMID: 35346266 PMCID: PMC8959280 DOI: 10.1186/s12987-022-00317-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/17/2022] [Indexed: 12/26/2022] Open
Abstract
The blood–brain barrier (BBB) is an essential component of the neurovascular unit that controls the exchanges of various biological substances between the blood and the brain. BBB damage is a common feature of different central nervous systems (CNS) disorders and plays a vital role in the pathogenesis of the diseases. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNAs (circRNAs), are important regulatory RNA molecules that are involved in almost all cellular processes in normal development and various diseases, including CNS diseases. Cumulative evidences have demonstrated ncRNA regulation of BBB functions in different CNS diseases. In this review, we have summarized the miRNAs, lncRNAs, and circRNAs that can be served as diagnostic and prognostic biomarkers for BBB injuries, and demonstrated the involvement and underlying mechanisms of ncRNAs in modulating BBB structure and function in various CNS diseases, including ischemic stroke, hemorrhagic stroke, traumatic brain injury (TBI), spinal cord injury (SCI), multiple sclerosis (MS), Alzheimer's disease (AD), vascular cognitive impairment and dementia (VCID), brain tumors, brain infections, diabetes, sepsis-associated encephalopathy (SAE), and others. We have also discussed the pharmaceutical drugs that can regulate BBB functions via ncRNAs-related signaling cascades in CNS disorders, along with the challenges, perspective, and therapeutic potential of ncRNA regulation of BBB functions in CNS diseases.
Collapse
|
27
|
Stroke Genomics: Current Knowledge, Clinical Applications and Future Possibilities. Brain Sci 2022; 12:brainsci12030302. [PMID: 35326259 PMCID: PMC8946102 DOI: 10.3390/brainsci12030302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 12/01/2022] Open
Abstract
The pathophysiology of stoke involves many complex pathways and risk factors. Though there are several ongoing studies on stroke, treatment options are limited, and the prevalence of stroke is continuing to increase. Understanding the genomic variants and biological pathways associated with stroke could offer novel therapeutic alternatives in terms of drug targets and receptor modulations for newer treatment methods. It is challenging to identify individual causative mutations in a single gene because many alleles are responsible for minor effects. Therefore, multiple factorial analyses using single nucleotide polymorphisms (SNPs) could be used to gain new insight by identifying potential genetic risk factors. There are many studies, such as Genome-Wide Association Studies (GWAS) and Phenome-Wide Association Studies (PheWAS) which have identified numerous independent loci associated with stroke, which could be instrumental in developing newer drug targets and novel therapies. Additionally, using analytical techniques, such as meta-analysis and Mendelian randomization could help in evaluating stroke risk factors and determining treatment priorities. Combining SNPs into polygenic risk scores and lifestyle risk factors could detect stroke risk at a very young age and help in administering preventive interventions.
Collapse
|
28
|
Wang L, Li S, Stone SS, Liu N, Gong K, Ren C, Sun K, Zhang C, Shao G. The Role of the lncRNA MALAT1 in Neuroprotection against Hypoxic/Ischemic Injury. Biomolecules 2022; 12:146. [PMID: 35053294 PMCID: PMC8773505 DOI: 10.3390/biom12010146] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Hypoxic and ischemic brain injury can cause neurological disability and mortality, and has become a serious public health problem worldwide. Long-chain non-coding RNAs are involved in the regulation of many diseases. Metastasis-related lung adenocarcinoma transcript 1 (MALAT1) is a type of long non-coding RNA (lncRNA), known as long intergenic non-coding RNA (lincRNA), and is highly abundant in the nervous system. The enrichment of MALAT1 in the brain indicates that it may be associated with important functions in pathophysiological processes. Accordingly, the role of MALAT1 in neuronal cell hypoxic/ischemic injury has been gradually discovered over recent years. In this article, we summarize recent research regarding the neuroprotective molecular mechanism of MALAT1 and its regulation of pathophysiological processes of brain hypoxic/ischemic injury. MALAT1 may function as a regulator through interaction with proteins or RNAs to perform its role, and may therefore serve as a therapeutic target in cerebral hypoxia/ischemia.
Collapse
Affiliation(s)
- Liping Wang
- Center for Translational Medicine, The Third People’s Hospital of Longgang District, Shenzhen 518112, China; (L.W.); (N.L.)
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014060, China
- Institute for Neuroscience, Baotou Medical College, Baotou 014060, China
| | - Sijie Li
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing 100053, China;
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Sara Saymuah Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48021, USA;
| | - Na Liu
- Center for Translational Medicine, The Third People’s Hospital of Longgang District, Shenzhen 518112, China; (L.W.); (N.L.)
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014060, China
- Institute for Neuroscience, Baotou Medical College, Baotou 014060, China
| | - Kerui Gong
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China;
| | - Kai Sun
- Center for Translational Medicine, The Third People’s Hospital of Longgang District, Shenzhen 518112, China; (L.W.); (N.L.)
| | - Chunyang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Baotou 014010, China
| | - Guo Shao
- Center for Translational Medicine, The Third People’s Hospital of Longgang District, Shenzhen 518112, China; (L.W.); (N.L.)
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014060, China
- Institute for Neuroscience, Baotou Medical College, Baotou 014060, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China;
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Baotou 014010, China
| |
Collapse
|
29
|
Ruan W, Wu J, Su J, Jiang Y, Pang T, Li J. Altered lncRNAs Transcriptomic Profiles in Atherosclerosis-Induced Ischemic Stroke. Cell Mol Neurobiol 2022; 42:265-278. [PMID: 32653974 PMCID: PMC11441192 DOI: 10.1007/s10571-020-00918-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/05/2020] [Indexed: 12/22/2022]
Abstract
Long non-coding RNAs (lncRNAs) can not only regulate gene transcription and translation, but also participate in the development of central nervous system diseases as epigenetic modification factors. However, their functional significance in atherosclerosis-induced ischemic stroke (AIIS) is unclear. The study aimed to screen out differentially expressed lncRNAs (delncRNAs), and to elucidate their potential regulatory mechanisms in the pathophysiology of AIIS. Based on the clinicopathological features and clinical images, we screened out 10 patients with AIIS and recruited 10 healthy volunteers. Then we used microarray to detect the whole blood RNA of subjects, and explored the biological functions of delncRNAs by GO and KEGG analysis. After further analyzing the delncRNAs of THP-1 stimulated with ox-LDL, selective lncRNAs were screened and a corresponding lncRNA-mRNA interaction network was constructed through co-expression analysis. We yielded 180 delncRNAs (44 up-regulated and 136 down-regulated) and 218 demRNAs (45 up-regulated and 173 down-regulated). Lnc-SCARNA8 and lnc-SNRPN-2 are the most significant elevated and decreased lncRNA in AIIS, respectively. The delncRNAs may play a significant role in ubiquitination-mediated protein degradation signaling pathways. According to lncRNA-mRNA network, the expression of vacuolar protein sorting 13 homolog B (VPS13B) and biliverdin reductase B (BLVRB) were significantly regulated. Our findings suggest that the ubiquitinated proteasome pathway, VPS13B and BLVRB may play a fundamental role in the pathological process of AIIS.
Collapse
Affiliation(s)
- Wenchen Ruan
- Department of Neurology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Jiayang Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Jingjing Su
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, People's Republic of China
| | - Yongcheng Jiang
- Department of Neurology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China.
| | - Jingwei Li
- Department of Neurology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
30
|
Ye P, Wu H, Jiang Y, Xiao X, Song D, Xu N, Ma X, Zeng J, Guo Y. Old dog, new tricks: Polydatin as a multitarget agent for current diseases. Phytother Res 2021; 36:214-230. [PMID: 34936712 DOI: 10.1002/ptr.7306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
Polydatin (PD) is a natural single-crystal product that is primarily extracted from the traditional plant Polygonum cuspidatum Sieb. et Zucc. Early research showed that PD exhibited a variety of biological activities. PD has attracted increasing research interest since 2014, but no review comprehensively summarized the new findings. A great gap between its biological activities and drug development remains. It is necessary to summarize new findings on the pharmacological effects of PD on current diseases. We propose that PD will most likely be used in cardiac and cerebral ischaemia/reperfusion-related diseases and atherosclerosis in the future. The present work classified these new findings according to diseases and summarized the main effects of PD via specific mechanisms of action. In summary, we found that PD played a therapeutic role in a variety of diseases, primarily via five mechanisms: antioxidative effects, antiinflammatory effects, regulation of autophagy and apoptosis, maintenance of mitochondrial function, and lipid regulation.
Collapse
Affiliation(s)
- Penghui Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hefei Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinxiao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nuo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaoguang Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
31
|
Pan J, Ma N, Zhong J, Yu B, Wan J, Zhang W. Age-associated changes in microglia and astrocytes ameliorate blood-brain barrier dysfunction. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:970-986. [PMID: 34760339 PMCID: PMC8561003 DOI: 10.1016/j.omtn.2021.08.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023]
Abstract
Blood-brain barrier (BBB) dysfunction is associated with an accumulation of neurotoxic molecules and increased infiltration of peripheral cells within the brain parenchyma. Accruing evidence suggests that microglia and astrocytes play a crucial role in the recovery of BBB integrity and the corralling of infiltrating cells into clusters after brain damage, but the mechanisms involved remain unclear. Intriguingly, the results of flow cytometry and immunofluorescence analyses have shown that BBB permeability to peripheral cells is substantially enhanced during normal aging at 12 months in mice. Thus, we used the SMART-seq2 method to perform RNA sequencing of microglia and astrocytes at five time points before and immediately after the BBB permeability change. Our comprehensive analyses revealed that microglia are characterized by marked alterations in the negative regulation of protein phosphorylation and phagocytic vesicles, whereas astrocytes show elevated enzyme or peptidase-inhibitor activity in the recovery of BBB function. Moreover, we identified a cassette of key genes that might ameliorate the insults of pathophysiological events in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Jie Pan
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China.,Department of Pathology and Neuropathology, Stanford University School of Medicine, CA 94305, USA
| | - Nana Ma
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China
| | - Jie Zhong
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, China
| | - Bo Yu
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, China.,Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Jun Wan
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong Province, PRC
| | - Wei Zhang
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China
| |
Collapse
|
32
|
Emerging role of long non-coding RNAs in endothelial dysfunction and their molecular mechanisms. Biomed Pharmacother 2021; 145:112421. [PMID: 34798473 DOI: 10.1016/j.biopha.2021.112421] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are the novel class of transcripts involved in transcriptional, post-transcriptional, translational, and post-translational regulation of physiology and the pathology of diseases. Studies have evidenced that the impairment of endothelium is a critical event in the pathogenesis of atherosclerosis and its complications. Endothelial dysfunction is characterized by an imbalance in vasodilation and vasoconstriction, oxidative stress, proinflammatory factors, and nitric oxide bioavailability. Disruption of the endothelial barrier permeability, the first step in developing atherosclerotic lesions is a consequence of endothelial dysfunction. Though several factors interfere with the normal functioning of the endothelium, intrinsic epigenetic mechanisms governing endothelial function are regulated by lncRNAs and perturbations contribute to the pathogenesis of the disease. This review comprehensively addresses the biogenesis of lncRNA and molecular mechanisms underlying and regulation in endothelial function. An insight correlating lncRNAs and endothelial dysfunction-associated diseases can positively impact the development of novel biomarkers and therapeutic targets in endothelial dysfunction-associated diseases and treatment strategies.
Collapse
|
33
|
The Neuroprotective Role of Polydatin: Neuropharmacological Mechanisms, Molecular Targets, Therapeutic Potentials, and Clinical Perspective. Molecules 2021; 26:molecules26195985. [PMID: 34641529 PMCID: PMC8513080 DOI: 10.3390/molecules26195985] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/09/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are one of the leading causes of death and disability in humans. From a mechanistic perspective, the complexity of pathophysiological mechanisms contributes to NDDs. Therefore, there is an urgency to provide novel multi-target agents towards the simultaneous modulation of dysregulated pathways against NDDs. Besides, their lack of effectiveness and associated side effects have contributed to the lack of conventional therapies as suitable therapeutic agents. Prevailing reports have introduced plant secondary metabolites as promising multi-target agents in combating NDDs. Polydatin is a natural phenolic compound, employing potential mechanisms in fighting NDDs. It is considered an auspicious phytochemical in modulating neuroinflammatory/apoptotic/autophagy/oxidative stress signaling mediators such as nuclear factor-κB (NF-κB), NF-E2–related factor 2 (Nrf2)/antioxidant response elements (ARE), matrix metalloproteinase (MMPs), interleukins (ILs), phosphoinositide 3-kinases (PI3K)/protein kinase B (Akt), and the extracellular regulated kinase (ERK)/mitogen-activated protein kinase (MAPK). Accordingly, polydatin potentially counteracts Alzheimer’s disease, cognition/memory dysfunction, Parkinson’s disease, brain/spinal cord injuries, ischemic stroke, and miscellaneous neuronal dysfunctionalities. The present study provides all of the neuroprotective mechanisms of polydatin in various NDDs. Additionally, the novel delivery systems of polydatin are provided regarding increasing its safety, solubility, bioavailability, and efficacy, as well as developing a long-lasting therapeutic concentration of polydatin in the central nervous system, possessing fewer side effects.
Collapse
|
34
|
Pan Y, Jiao Q, Wei W, Zheng T, Yang X, Xin W. Emerging Role of LncRNAs in Ischemic Stroke-Novel Insights into the Regulation of Inflammation. J Inflamm Res 2021; 14:4467-4483. [PMID: 34522116 PMCID: PMC8434908 DOI: 10.2147/jir.s327291] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022] Open
Abstract
As a crucial kind of pervasive gene, long noncoding RNAs (lncRNAs) are abundant and key players in brain function as well as numerous neurological disorders, especially ischemic stroke. The mechanisms underlying ischemic stroke include angiogenesis, autophagy, apoptosis, cell death, and neuroinflammation. Inflammation plays a vital role in the pathological process of ischemic stroke, and systemic inflammation affects the patient’s prognosis. Although a great deal of research has illustrated that various lncRNAs are closely relevant to regulate neuroinflammation and microglial activation in ischemic stroke, the specific interactional relationships and mechanisms between lncRNAs and neuroinflammation have not been described clearly. This review aimed to summarize the therapeutic effects and action mechanisms of lncRNAs on ischemia by regulating inflammation and microglial activation. In addition, we emphasize that lncRNAs have the potential to modulate inflammation by inhibiting and activating various signaling pathways, such as microRNAs, NF‐κB and ERK.
Collapse
Affiliation(s)
- Yongli Pan
- Department of Neurology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Qingzheng Jiao
- Second Department of Internal Medicine, Gucheng County Hospital, Gucheng, Hebei, People's Republic of China
| | - Wei Wei
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People's Republic of China
| | - Tianyang Zheng
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Wenqiang Xin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| |
Collapse
|
35
|
Wang Y, Guan X, Gao CL, Ruan W, Zhao S, Kai G, Li F, Pang T. Medioresinol as a novel PGC-1α activator prevents pyroptosis of endothelial cells in ischemic stroke through PPARα-GOT1 axis. Pharmacol Res 2021; 169:105640. [PMID: 33915296 DOI: 10.1016/j.phrs.2021.105640] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
AIM Brain microvascular endothelial cells (BMVECs), as the important structure of blood-brain barrier (BBB), play a vital role in ischemic stroke. Pyroptosis of different cells in the brain may aggravate cerebral ischemic injury, and PGC-1α plays a major role in pyroptosis. However, it is not known whether BMVECs undergo pyroptosis after ischemic stroke and whether PGC-1α activator Medioresinol (MDN) we discovered may be useful against pyroptosis of endothelial cells and ischemic brain injury. METHODS For in vitro experiments, the bEnd.3 cells and BMVECs under oxygen and glucose-deprivation (OGD) were treated with or without MDN, and the LDH release, tight junction protein degradation, GSDMD-NT membrane location and pyroptosis-associated proteins were evaluated. For in vivo experiments, mice underwent transient middle cerebral artery occlusion (tMCAO) for ischemia model, and the neuroprotective effects of MDN were measured by infarct volume, the permeability of BBB and pyroptosis of BMVECs. For mechanistic study, effects of MDN on the accumulation of phenylalanine, mitochondrial reactive oxygen species (mtROS) were tested by untargeted metabolomics and MitoSOX Red probe, respectively. RESULTS BMVECs underwent pyroptosis after ischemia. MDN dose-dependently activated PGC-1α, significantly reduced pyroptosis, mtROS and the expressions of pyroptosis-associated proteins (NLRP3, ASC, cleaved caspase-1, IL-1β, GSDMD-NT), and increased ZO-1 and Occludin protein expressions in BMVECs. In tMCAO mice, MDN remarkably reduced brain infarct volume and the permeability of BBB, inhibited pyroptosis of BMVECs, and promoted long-term neurobehavioral functional recovery. Mechanistically, MDN promoted the interaction of PGC-1α with PPARα to increase PPARα nuclear translocation and transcription activity, further increased the expression of GOT1 and PAH, resulting in enhanced phenylalanine metabolism to reduce the ischemia-caused phenylalanine accumulation and mtROS and further ameliorate pyroptosis of BMVECs. CONCLUSION In this study, we for the first time discovered that pyroptosis of BMVECs was involved in the pathogenesis of ischemic stroke and MDN as a novel PGC-1α activator could ameliorate the pyroptosis of endothelial cells and ischemic brain injury, which might attribute to reduction of mtROS through PPARα/GOT1 axis in BMVECs. Taken together, targeting endothelial pyroptosis by MDN may provide alternative therapeutics for brain ischemic stroke.
Collapse
Affiliation(s)
- Yunjie Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing 210009, PR China; College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, PR China; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, PR China
| | - Xin Guan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing 210009, PR China
| | - Cheng-Long Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenchen Ruan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing 210009, PR China
| | - Shunyi Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing 210009, PR China
| | - Guoyin Kai
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Fei Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing 210009, PR China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, PR China.
| |
Collapse
|
36
|
Chen Z, Wu H, Zhang M. Long non-coding RNA: An underlying bridge linking neuroinflammation and central nervous system diseases. Neurochem Int 2021; 148:105101. [PMID: 34139298 DOI: 10.1016/j.neuint.2021.105101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 02/08/2023]
Abstract
Central nervous system (CNS) diseases are responsible for a large proportion of morbidity and mortality worldwide. CNS diseases caused by intrinsic and extrinsic stimuli stimulate the resident immune cells including microglia and astrocyte, resulting in neuroinflammation that exacerbates the progression of diseases. Recent evidence reveals the aberrant expression patterns of long non-coding RNAs (lncRNAs) in the damaged tissues following CNS diseases. It was also proposed that lncRNAs possessed immune-modulatory activities by directly or indirectly affecting various effector proteins including transcriptional factor, acetylase, protein kinase, phosphatase, etc. In addition, lncRNAs can form a sophisticated network by interacting with other molecules to regulate the expression or activation of downstream immune response pathways. However, the major roles of lncRNAs in CNS pathophysiologies are still elusive, especially in neuroinflammation. Herein, we tend to review some potential roles of lncRNAs in modulating neuroinflammation based on current evidence in various CNS diseases, in order to provide novel explanations for the initiation and progression of CNS diseases and help to establish therapeutic strategies targeting neuroinflammation.
Collapse
Affiliation(s)
- Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Haiyue Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
37
|
Xu B, Yang R, Fu J, Yang B, Chen J, Tan C, Chen H, Wang X. LncRSPH9-4 Facilitates Meningitic Escherichia coli-Caused Blood-Brain Barrier Disruption via miR-17-5p/MMP3 Axis. Int J Mol Sci 2021; 22:ijms22126343. [PMID: 34198485 PMCID: PMC8231991 DOI: 10.3390/ijms22126343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/20/2023] Open
Abstract
Brain microvascular endothelial cells (BMECs) constitute the structural and functional basis for the blood–brain barrier (BBB) and play essential roles in bacterial meningitis. Although the BBB integrity regulation has been under extensive investigation, there is little knowledge regarding the roles of long non-coding RNAs (lncRNAs) in this event. The present study aimed to investigate the roles of one potential lncRNA, lncRSPH9-4, in meningitic E. coli infection of BMECs. LncRSPH9-4 was cytoplasm located and significantly up-regulated in meningitic E. coli-infected hBMECs. Electrical cell-substrate impedance sensing (ECIS) measurement and Western blot assay demonstrated lncRSPH9-4 overexpression in hBMECs mediated the BBB integrity disruption. By RNA-sequencing analysis, 639 mRNAs and 299 miRNAs were significantly differentiated in response to lncRSPH9-4 overexpression. We further found lncRSPH9-4 regulated the permeability in hBMECs by competitively sponging miR-17-5p, thereby increasing MMP3 expression, which targeted the intercellular tight junctions. Here we reported the infection-induced lncRSPH9-4 aggravated disruption of the tight junctions in hBMECs, probably through the miR-17-5p/MMP3 axis. This finding provides new insights into the function of lncRNAs in BBB integrity during meningitic E. coli infection and provides the novel nucleic acid targets for future treatment of bacterial meningitis.
Collapse
Affiliation(s)
- Bojie Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (B.X.); (R.Y.); (J.F.); (B.Y.); (J.C.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ruicheng Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (B.X.); (R.Y.); (J.F.); (B.Y.); (J.C.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jiyang Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (B.X.); (R.Y.); (J.F.); (B.Y.); (J.C.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Bo Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (B.X.); (R.Y.); (J.F.); (B.Y.); (J.C.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jiaqi Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (B.X.); (R.Y.); (J.F.); (B.Y.); (J.C.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (B.X.); (R.Y.); (J.F.); (B.Y.); (J.C.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (B.X.); (R.Y.); (J.F.); (B.Y.); (J.C.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (B.X.); (R.Y.); (J.F.); (B.Y.); (J.C.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
38
|
Vijayan M, Reddy PH. Non-Coding RNAs Based Molecular Links in Type 2 Diabetes, Ischemic Stroke, and Vascular Dementia. J Alzheimers Dis 2021; 75:353-383. [PMID: 32310177 DOI: 10.3233/jad-200070] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article reviews recent advances in the study of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and their functions in type 2 diabetes mellitus (T2DM), ischemic stroke (IS), and vascular dementia (VaD). miRNAs and lncRNAs are gene regulation markers that both regulate translational aspects of a wide range of proteins and biological processes in healthy and disease states. Recent studies from our laboratory and others have revealed that miRNAs and lncRNAs expressed differently are potential therapeutic targets for neurological diseases, especially T2DM, IS, VaD, and Alzheimer's disease (AD). Currently, the effect of aging in T2DM, IS, and VaD and the cellular and molecular pathways are largely unknown. In this article, we highlight results from the works on the molecular connections between T2DM and IS, and IS and VaD. In each disease, we also summarize the pathophysiology and the differential expressions of miRNAs and lncRNAs. Based on current research findings, we hypothesize that 1) T2DM bi-directionally and age-dependently induces IS and VaD, and 2) these changes are precursors to the onset of dementia in elderly people. Research into these hypotheses is required to examine further whether research efforts on reducing T2DM, IS, and VaD may affect dementia and/or delay the AD disease process in the aged population.
Collapse
Affiliation(s)
- Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
39
|
Chen J, Liu P, Dong X, Jin J, Xu Y. The role of lncRNAs in ischemic stroke. Neurochem Int 2021; 147:105019. [PMID: 33905763 DOI: 10.1016/j.neuint.2021.105019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is a leading cause of disability and mortality worldwide due to the narrow therapeutic time window of the only two approved therapies, intravenous thrombolysis and thrombectomy. The pathophysiological processes of ischemic stroke are driven by multiple complex molecular and cellular interactions that ultimately induce brain damage and neurobehavioral impairment. Long non-coding RNAs (LncRNAs) are significantly altered in the blood and brains of ischemic stroke patients and play a critical role in the pathogenesis of stroke, which serve as potential targets for stroke interventions. In this review, we provide an overview of the roles of lncRNAs in the pathophysiology of ischemic stroke and discuss the opportunities and challenges for the clinical application of lncRNAs in the diagnosis and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Pinyi Liu
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Xiaohong Dong
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Jiali Jin
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.
| |
Collapse
|
40
|
Inhibition of AKT/GSK3β/CREB Pathway Improves the Responsiveness to AMPA Receptor Antagonists by Regulating GRIA1 Surface Expression in Chronic Epilepsy Rats. Biomedicines 2021; 9:biomedicines9040425. [PMID: 33919872 PMCID: PMC8103519 DOI: 10.3390/biomedicines9040425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
α-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) has been reported as one of the targets for treatment of epilepsy. Although maladaptive regulation of surface expression of glutamate ionotropic receptor AMPA type subunit 1 (GRIA1) subunit is relevant to the responsiveness to AMPAR antagonists (perampanel and GYKI 52466) in LiCl-pilocarpine-induced chronic epilepsy rats, the underlying mechanisms of refractory seizures to AMPAR antagonists have yet been unclear. In the present study, we found that both AMPAR antagonists restored the up-regulations of GRIA1 surface expression and Src family-mediated glycogen synthase kinase 3β (GSK3β)-Ca2+/cAMP response element-binding protein (CREB) phosphorylations to control levels in responders (whose seizure activities were responsive to AMPAR) but not non-responders (whose seizure activities were uncontrolled by AMPAR antagonists). In addition, 3-chloroacetyl indole (3CAI, an AKT inhibitor) co-treatment attenuated spontaneous seizure activities in non-responders, accompanied by reductions in AKT/GSK3β/CREB phosphorylations and GRIA1 surface expression. Although AMPAR antagonists reduced GRIA2 tyrosine (Y) phosphorylations in responders, they did not affect GRIA2 surface expression and protein interacting with C kinase 1 (PICK1) protein level in both responders and non-responders. Therefore, our findings suggest that dysregulation of AKT/GSK3β/CREB-mediated GRIA1 surface expression may be responsible for refractory seizures in non-responders, and that this pathway may be a potential target to improve the responsiveness to AMPAR antagonists.
Collapse
|
41
|
Hu Y, Lv J, Fang Y, Luo Q, He Y, Li L, Fan M, Wang Z. Crtc1 Deficiency Causes Obesity Potentially via Regulating PPARγ Pathway in White Adipose. Front Cell Dev Biol 2021; 9:602529. [PMID: 33912553 PMCID: PMC8075410 DOI: 10.3389/fcell.2021.602529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Obesity is characterized by excessive fat accumulation and associated with glucose and lipid metabolism disorders. Crtc1, a transcription cofactor regulating CREB activity, has been involved in the pathogenesis of metabolic syndrome; however, the underlying mechanism remains under debate. Here we generated a Crtc1-/- mouse line using the CRISPR/Cas9 system. Under normal feeding conditions, Crtc1-/- mice exhibited an obese phenotype resultant from the abnormal expansion of the white adipocytes. The development of obesity in Crtc1-/- mice is independent of alterations in food intake or energy expenditure. Moreover, Crtc1-/- mice were more prone to insulin resistance and dyslipidemia, as evidenced by higher levels of plasma glucose, insulin and FABP4 than wildtype mice. Transcriptome analysis in liver and epididymal white adipose tissue (eWAT) showed that the fat accumulation caused by Crtc1 deletion was mainly related to lipid metabolism in adipose tissue, but not in liver. GSEA and KEGG analysis identified PPAR pathway to be of the highest impact on lipid metabolism in eWAT. This regulation was independent of a direct interaction between CRTC1 and PPARγ. Our findings demonstrate a crucial role of Crtc1 in regulating lipid metabolism in adipose during development, and provide novel insights into obesity prevention and therapeutics.
Collapse
Affiliation(s)
- Yimeng Hu
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Lv
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiang Luo
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan He
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingxia Fan
- Animal Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihua Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| |
Collapse
|
42
|
Gan L, Liao S, Xing Y, Deng S. The Regulatory Functions of lncRNAs on Angiogenesis Following Ischemic Stroke. Front Mol Neurosci 2021; 13:613976. [PMID: 33613191 PMCID: PMC7890233 DOI: 10.3389/fnmol.2020.613976] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is one of the leading causes of global mortality and disability. It is a multi-factorial disease involving multiple factors, and gene dysregulation is considered as the major molecular mechanisms underlying disease progression. Angiogenesis can promote collateral circulation, which helps the restoration of blood supply in the ischemic area and reduces ischemic necrosis following ischemic injury. Aberrant expression of long non-coding RNAs (lncRNAs) in ischemic stroke is associated with various biological functions of endothelial cells and serves essential roles on the angiogenesis of ischemic stroke. The key roles of lncRNAs on angiogenesis suggest their potential as novel therapeutic targets for future diagnosis and treatment. This review elucidates the detailed regulatory functions of lncRNAs on angiogenesis following ischemic stroke through numerous mechanisms, such as interaction with target microRNAs, downstream signaling pathways and target molecules.
Collapse
Affiliation(s)
- Li Gan
- Laboratory of Forensic and Biomedical Information, Chongqing Medical University, Chongqing, China
| | - Shengtao Liao
- Department of Gastroenterology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Xing
- Laboratory of Forensic and Biomedical Information, Chongqing Medical University, Chongqing, China
| | - Shixiong Deng
- Laboratory of Forensic and Biomedical Information, Chongqing Medical University, Chongqing, China
| |
Collapse
|
43
|
Xu W, Yan J, Ocak U, Lenahan C, Shao A, Tang J, Zhang J, Zhang JH. Melanocortin 1 receptor attenuates early brain injury following subarachnoid hemorrhage by controlling mitochondrial metabolism via AMPK/SIRT1/PGC-1α pathway in rats. Am J Cancer Res 2021; 11:522-539. [PMID: 33391490 PMCID: PMC7738864 DOI: 10.7150/thno.49426] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria-mediated oxidative stress and apoptosis contribute greatly to early brain injury (EBI) following subarachnoid hemorrhage (SAH). This study hypothesized that activation of melanocortin 1 receptor (MC1R), using BMS-470539, attenuates EBI by controlling mitochondrial metabolism after SAH. Methods: We utilized BMS-470539, MSG-606, selisistat, and PGC-1α to verify the neuroprotective effects of MC1R. We evaluated short- and long-term neurobehavior after SAH. Western blotting, immunofluorescence, and Golgi staining techniques were performed to assess changes in protein levels. Results: The results of western blotting suggested that the expression of SIRT1 and PGC-1α were increased, reaching their peaks at 24 h following SAH. Moreover, BMS-470539 treatment notably attenuated neurological deficits, and also reduced long-term spatial learning and memory impairments caused by SAH. The underlying neuroprotective mechanisms of the BMS-470539/MC1R system were mediated through the suppression of oxidative stress, apoptosis, and mitochondrial fission by increasing the levels of SIRT1, PGC-1α, UCP2, SOD, GPx, Bcl-2, cyto-Drp1, and ATP, while decreasing the levels of cleaved caspase-3, Bax, mito-Drp1, ROS, GSH/GSSG, and NADPH/NADP+ ratios. The neuroprotective effects of the BMS-470539/MC1R system were significantly abolished by MSG-606, selisistat, and PGC-1α siRNA. Conclusions: The activation of MC1R with BMS-470539 significantly attenuated EBI after SAH by suppressing the oxidative stress, apoptosis, and mitochondrial fission through the AMPK/SIRT1/PGC-1α signaling pathway.
Collapse
|
44
|
Ding Y, Kang J, Liu S, Xu Y, Shao B. The Protective Effects of Peroxisome Proliferator-Activated Receptor Gamma in Cerebral Ischemia-Reperfusion Injury. Front Neurol 2020; 11:588516. [PMID: 33281727 PMCID: PMC7705069 DOI: 10.3389/fneur.2020.588516] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/16/2020] [Indexed: 12/16/2022] Open
Abstract
Cerebral ischemia-reperfusion injury (CI/RI) is a complex pathological process that often occurs secondary to trauma, surgery, and shock. Peroxisome proliferator activated receptor gamma (PPARγ) is a subunit of the PPAR and is a ligand-activated nuclear transcription factor. After being activated by its ligand, PPARγ can combine with specific DNA response elements to regulate the transcription and expression of genes. It has a wide range of biological functions, such as regulating lipid metabolism, improving insulin sensitivity, modulating anti-tumor mechanisms, and inhibiting inflammation. In recent years, some studies have shown that PPARγ exerts a protective effect during CI/RI. This article aims to summarize the research progress of studies that have investigated the protective effects of PPARγ in CI/RI and the cellular and molecular mechanisms through which these effects are modulated, including inhibition of excitatory amino acid toxicity, reduced Ca2+ overload, anti-oxidative stress, anti-inflammation, inhibition of microglial activation, maintain the BBB, promotion of angiogenesis, and neurogenesis and anti-apoptotic processes.
Collapse
Affiliation(s)
- Yanping Ding
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Jie Kang
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Shuning Liu
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Yuqin Xu
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Baoping Shao
- College of Life Science, Lanzhou University, Lanzhou, China
| |
Collapse
|
45
|
Li J, Lv H, Che Y. microRNA-381-3p Confers Protection Against Ischemic Stroke Through Promoting Angiogenesis and Inhibiting Inflammation by Suppressing Cebpb and Map3k8. Cell Mol Neurobiol 2020; 40:1307-1319. [PMID: 32297103 PMCID: PMC11448786 DOI: 10.1007/s10571-020-00815-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/16/2020] [Indexed: 11/27/2022]
Abstract
Ischemic stroke is a serious disease with limited prevention methods, and various genes and microRNAs (miRNAs) have been found to be dysregulated in the pathogenesis of this disease. This study aims to explore the potential role of miR-381-3p in ischemic stroke, along with its underlying mechanism. A mouse model of ischemic stroke was developed using middle cerebral artery occlusion. Next, the expression of mitogen-activated protein kinase kinase kinase 8 (Map3k8) and CCAAT enhancer binding protein beta (Cebpb) was determined by RT-qPCR. Gain- and loss-of-function approaches were applied to analyze the effects of miR-381-3p, Cebpb and Map3k8 on the biological functions of endothelial progenitor cells (EPCs) with the involvement of the tumor necrosis factor-α (TNF-α) signaling pathway. In addition, dual luciferase reporter gene assay was performed for the analysis of the relationship among miR-381-3p, Map3k8 and Cebpb. Further, rescue experiment was performed with the help of JNK/p38 specific agonist, Anisomycin. Map3k8 and Cebpb were highly expressed in ischemic stroke. Loss-of-function of Map3k8 or Cebpb in EPCs contributed to accelerated proliferation, migration and angiogenesis of EPCs. Next, miR-381-3p downregulated the expression of its two target genes, Map3k8 and Cebpb. miR-381-3p overexpression promoted angiogenesis of EPCs, and inhibited inflammation, which could be reversed by restoration of Map3k8 or Cebpb. Additionally, silencing Map3k8 or Cebpb inhibited the activation of TNF-α signaling pathway. Furthermore, Anisomycin treatment could enhance inflammation and inhibit angiogenesis. Taken together, miR-381-3p downregulates Map3k8 and Cebpb to protect against ischemic stroke, broadening our understanding of the pathogenesis of ischemic stroke.
Collapse
Affiliation(s)
- Jie Li
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, People's Republic of China
| | - Hui Lv
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, People's Republic of China
| | - Yuqin Che
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, People's Republic of China.
| |
Collapse
|
46
|
Protective Effect of Polydatin on Jejunal Mucosal Integrity, Redox Status, Inflammatory Response, and Mitochondrial Function in Intrauterine Growth-Retarded Weanling Piglets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7178123. [PMID: 33101591 PMCID: PMC7576365 DOI: 10.1155/2020/7178123] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/23/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
Intrauterine growth retardation (IUGR) delays the gut development of neonates, but effective treatment strategies are still limited. This study used newborn piglets as a model to evaluate the protective effect of polydatin (PD) against IUGR-induced intestinal injury. In total, 36 IUGR piglets and an equal number of normal birth weight (NBW) littermates were fed either a basal diet or a PD-supplemented diet from 21 to 35 days of age. Compared with NBW, IUGR induced jejunal damage and barrier dysfunction of piglets, as indicated by observable bacterial translocation, enhanced apoptosis, oxidative and immunological damage, and mitochondrial dysfunction. PD treatment decreased bacterial translocation and inhibited the IUGR-induced increases in circulating diamine oxidase activity (P = 0.039) and D-lactate content (P = 0.004). The apoptotic rate (P = 0.024) was reduced by 35.2% in the PD-treated piglets, along with increases in villus height (P = 0.033) and in ratio of villus height to crypt depth (P = 0.049). PD treatment promoted superoxide dismutase (P = 0.026) and glutathione S-transferase activities (P = 0.006) and reduced malondialdehyde (P = 0.015) and 8-hydroxy-2′-deoxyguanosine accumulation (P = 0.034) in the jejunum. The PD-treated IUGR piglets showed decreased jejunal myeloperoxidase activity (P = 0.029) and tumor necrosis factor alpha content (P = 0.035) than those received a basal diet. PD stimulated nuclear sirtuin 1 (P = 0.028) and mitochondrial citrate synthase activities (P = 0.020) and facilitated adenosine triphosphate production (P = 0.009) in the jejunum of piglets. Furthermore, PD reversed the IUGR-induced declines in mitochondrial DNA content (P = 0.048), the phosphorylation of adenosine monophosphate-activated protein kinase alpha (P = 0.027), and proliferation-activated receptor gamma coactivator 1 alpha expression (P = 0.033). Altogether, the results indicate that PD may improve jejunal integrity, mitigate mucosal oxidative and immunological damage, and facilitate mitochondrial function in IUGR piglets.
Collapse
|
47
|
Born LJ, Harmon JW, Jay SM. Therapeutic potential of extracellular vesicle-associated long noncoding RNA. Bioeng Transl Med 2020; 5:e10172. [PMID: 33005738 PMCID: PMC7510462 DOI: 10.1002/btm2.10172] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Both extracellular vesicles (EVs) and long noncoding RNAs (lncRNAs) have been increasingly investigated as biomarkers, pathophysiological mediators, and potential therapeutics. While these two entities have often been studied separately, there are increasing reports of EV-associated lncRNA activity in processes such as oncogenesis as well as tissue repair and regeneration. Given the powerful nature and emerging translational impact of other noncoding RNAs such as microRNA (miRNA) and small interfering RNA, lncRNA therapeutics may represent a new frontier. While EVs are natural vehicles that transport and protect lncRNAs physiologically, they can also be engineered for enhanced cargo loading and therapeutic properties. In this review, we will summarize the activity of lncRNAs relevant to both tissue repair and cancer treatment and discuss the role of EVs in enabling the potential of lncRNA therapeutics.
Collapse
Affiliation(s)
- Louis J. Born
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMarylandUSA
| | - John W. Harmon
- Department of Surgery and Hendrix Burn/Wound LaboratoryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Steven M. Jay
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMarylandUSA
- Program in Molecular and Cell BiologyUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
48
|
Lo YL, Wang CS, Chen YC, Wang TY, Chang YH, Chen CJ, Yang CP. Mitochondrion-Directed Nanoparticles Loaded with a Natural Compound and a microRNA for Promoting Cancer Cell Death via the Modulation of Tumor Metabolism and Mitochondrial Dynamics. Pharmaceutics 2020; 12:756. [PMID: 32796618 PMCID: PMC7464316 DOI: 10.3390/pharmaceutics12080756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial dysfunction may cause cancer and metabolic syndrome. Ellagic acid (abbreviated as E), a phytochemical, possesses anticancer activity. MicroRNA 125 (miR-125) may regulate metabolism. However, E has low aqueous solubility, and miR-125 is unstable in a biological fluid. Hence, this study aimed to develop nanoparticle formulations for the co-treatment of miR-125 and E. These nanoparticles were modified with one mitochondrion-directed peptide and a tumor-targeted ligand, and their modulating effects on mitochondrial dysfunction, antitumor efficacy, and safety in head and neck cancer (HNC) were evaluated. Results revealed that miR-125- and E-loaded nanoparticles effectively targeted cancer cells and intracellular mitochondria. The co-treatment significantly altered cellular bioenergetics, lipid, and glucose metabolism in human tongue squamous carcinoma SAS cells. This combination therapy also regulated protein expression associated with bioenergenesis and mitochondrial dynamics. These formulations also modulated multiple pathways of tumor metabolism, apoptosis, resistance, and metastasis in SAS cells. In vivo mouse experiments showed that the combined treatment of miR-125 and E nanoparticles exhibited significant hypoglycemic and hypolipidemic effects. The combinatorial therapy of E and miR-125 nanoparticles effectively reduced SAS tumor growth. To our best knowledge, this prospective study provided a basis for combining miRNA with a natural compound in nanoformulations to regulate mitochondrial dysfunction and energy metabolism associated with cancer.
Collapse
Affiliation(s)
- Yu-Li Lo
- Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan; (C.-S.W.); (Y.-C.C.); (T.-Y.W.)
- Center for Advanced Pharmaceutics and Drug Delivery Research, National Yang-Ming University, Taipei 112, Taiwan
| | - Chen-Shen Wang
- Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan; (C.-S.W.); (Y.-C.C.); (T.-Y.W.)
| | - Yen-Chun Chen
- Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan; (C.-S.W.); (Y.-C.C.); (T.-Y.W.)
| | - Tse-Yuan Wang
- Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan; (C.-S.W.); (Y.-C.C.); (T.-Y.W.)
| | - Yih-Hsin Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan; (C.-J.C.); (C.-P.Y.)
| | - Ching-Ping Yang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan; (C.-J.C.); (C.-P.Y.)
| |
Collapse
|
49
|
Liu X, Wu P, Su R, Xue Y, Yang C, Wang D, Ruan X, Zheng J, Yang Y, Li Z, Liu Y. IGF2BP2 stabilized FBXL19-AS1 regulates the blood-tumour barrier permeability by negatively regulating ZNF765 by STAU1-mediated mRNA decay. RNA Biol 2020; 17:1777-1788. [PMID: 32713259 DOI: 10.1080/15476286.2020.1795583] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Blood-tumour barrier (BTB) has been known to significantly attenuate the efficacy of chemotherapy for glioma. In this report, we identified that insulin-like grown factor 2 mRNA-binding protein 2 (IGF2BP2) was over-expressed in glioma microvessel and glioma endothelial cells (GECs). Knockdown of IGF2BP2 decreased the expression of lncRNA FBXL19-AS1 and tight junction-related proteins, thereby promoting BTB permeability. FBXL19-AS1 was over-expressed and more enriched in the cytoplasm of GECs. In addition, FBXL19-AS1 could bind to 3'-UTR of ZNF765 mRNA and down-regulate ZNF765 mRNA expression through STAU1-mediated mRNA decay (SMD). The low expression of ZNF765 was discovered in GECs and verified to increase BTB permeability by inhibiting the promoter activities of tight junction-related proteins. Meanwhile, ZNF765 also inhibited the transcriptional activity of IGF2BP2, thereby forming a feedback loop in regulating the BTB permeability. Single or combined application of silenced IGF2BP2 and FBXL19-AS1 improved the delivery and antitumor efficiency of doxorubicin (DOX). In general, our study revealed the regulation mechanism of IGF2BP2/FBXL19-AS1/ZNF765 axis on BTB permeability, which may provide valuable insight into treatment strategy for glioma.
Collapse
Affiliation(s)
- Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, China
| | - Peiqi Wu
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, China
| | - Rui Su
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, China
| | - Yang Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, China
| |
Collapse
|
50
|
Yang F, Zhang Y, Zhu J, Wang J, Jiang Z, Zhao C, Yang Q, Huang Y, Yao W, Pang W, Han L, Zhou J. Laminar Flow Protects Vascular Endothelial Tight Junctions and Barrier Function via Maintaining the Expression of Long Non-coding RNA MALAT1. Front Bioeng Biotechnol 2020; 8:647. [PMID: 32671044 PMCID: PMC7330101 DOI: 10.3389/fbioe.2020.00647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 01/05/2023] Open
Abstract
Atherosclerotic plaque preferentially develops in arterial curvatures and branching regions, where endothelial cells constantly experience disturbed blood flow. By contrast, the straight arteries are generally protected from plaque formation due to exposure of endothelial cells to vaso-protective laminar blood flow. However, the role of flow patterns on endothelial barrier function remains largely unclear. This study aimed to investigate new mechanisms underlying the blood flow pattern-regulated endothelial integrity. Exposure of human endothelial cells to pulsatile shear (PS, mimicking the laminar flow) compared to oscillatory shear (OS, mimicking the disturbed flow) increased the expressions of long non-coding RNA MALAT1 and tight junction proteins ZO1 and Occludin. This increase was abolished by knocking down MALAT1 or Nesprin1 and 2. PS promoted the association between Nesprin1 and SUN2 at the nuclear envelopes, and induced a nuclear translocation of β-catenin, likely through enhancing the interaction between β-catenin and Nesprin1. In the in vivo study, mice were treated via intraperitoneal injection with β-catenin agonist SKL2001 or its inhibitor XAV939, and they were then subjected to Evans blue injection to assess aortic endothelial permeability. The aortas exhibited a reduced wall permeability to Evans blue in SKL2001-treated mice whereas an enhanced permeability in XAV939-treated mice. We concluded that laminar flow promotes nuclear localization of Nesprins, which facilitates the nuclear access of β-catenin to stimulate MALAT1 transcription, resulting in increased expressions of ZO1 and Occludin to protect endothelial barrier function.
Collapse
Affiliation(s)
- Fangfang Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China
| | - Yunpeng Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China
| | - Juanjuan Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China
| | - Jin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China
| | - Zhitong Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China
| | - Chuanrong Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China
| | - Qianru Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China
| | - Yu Huang
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Weijuan Yao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China
| | - Wei Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China
| | - Lili Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China
| |
Collapse
|