1
|
Genomic Organization of Microsatellites and LINE-1-like Retrotransposons: Evolutionary Implications for Ctenomys minutus (Rodentia: Ctenomyidae) Cytotypes. Animals (Basel) 2022; 12:ani12162091. [PMID: 36009681 PMCID: PMC9405301 DOI: 10.3390/ani12162091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/28/2022] [Accepted: 08/13/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary In animals, several species contain substantial chromosomal and genomic variation among their populations, but as to what could have driven such diversification is still a puzzle for most cases. Here, we used molecular cytogenetic analysis to expose the main genomic elements involved in the population variation observed in the Neotropical underground rodents of the genus Ctenomys (Rodentia: Ctenomyidae), which harbor the most significant chromosomal variation among mammals (2n = 10 to 2n = 70). These data provide evidence for a correlation between repetitive genomic content and localization of evolutionary breakpoint regions (EBRs) and highlight their direct impact in promoting chromosomal rearrangements. Abstract The Neotropical underground rodents of the genus Ctenomys (Rodentia: Ctenomyidae) comprise about 65 species, which harbor the most significant chromosomal variation among mammals (2n = 10 to 2n = 70). Among them, C. minutus stands out with 45 different cytotypes already identified, among which, seven parental ones, named A to G, are parapatrically distributed in the coastal plains of Southern Brazil. Looking for possible causes that led to such extensive karyotype diversification, we performed chromosomal mapping of different repetitive DNAs, including microsatellites and long interspersed element-1 (LINE-1) retrotransposons in the seven parental cytotypes. Although microsatellites were found mainly in the centromeric and telomeric regions of the chromosomes, different patterns occur for each cytotype, thus revealing specific features. Likewise, the LINE-1-like retrotransposons also showed a differential distribution for each cytotype, which may be linked to stochastic loss of LINE-1 in some populations. Here, microsatellite motifs (A)30, (C)30, (CA)15, (CAC)10, (CAG)10, (CGG)10, (GA)15, and (GAG)10 could be mapped to fusion of chromosomes 20/17, fission and inversion in the short arm of chromosome 2, fusion of chromosomes 23/19, and different combinations of centric and tandem fusions of chromosomes 22/24/16. These data provide evidence for a correlation between repetitive genomic content and localization of evolutionary breakpoints and highlight their direct impact in promoting chromosomal rearrangements.
Collapse
|
2
|
Soares SC, Eler ES, E Silva CEF, da Silva MNF, Araújo NP, Svartman M, Feldberg E. LINE-1 and SINE-B1 mapping and genome diversification in Proechimys species (Rodentia: Echimyidae). Life Sci Alliance 2022; 5:5/6/e202101104. [PMID: 35304430 PMCID: PMC8932440 DOI: 10.26508/lsa.202101104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
This study aimed to understand the impact of LINE-1 and SINE-B1 retroelements on the architecture and karyotypic diversification of five rodent species of the genus Proechimys from different regions of the Amazon. Karyotype comparisons were performed using fluorescent interspecific in situ hybridization. The L1 and B1 retroelements showed a non-random arrangement and a conserved pattern when the genomes of the five species of Proechimys were compared, including the two cytotypes of Proechimys guyannensis The signal homeology among the chromosomes and the degree of similarity among the formed clusters indicate rearrangements such as fusion/fission, and demonstrates that these retroelements can behave as derived characters shared in Proechimys The differentiated distribution and organization of these retroelements in the karyotypes and in the chromosomal fiber, respectively, may represent a strong indication of their role as generating sources of karyotypic diversity in the genus Proechimys and provide insights into the evolutionary relationships between taxa.
Collapse
Affiliation(s)
- Simone Cardoso Soares
- Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil .,Laboratório de Genética Animal (LGA), Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil.,Universidade do Estado do Amazonas, Manaus, Brazil
| | - Eduardo Schmidt Eler
- Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Carlos Eduardo Faresin E Silva
- Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil.,Laboratório de Genética Animal (LGA), Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | | | - Naiara Pereira Araújo
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia de Rondônia campus Jaru, Jaru, Brazil
| | - Marta Svartman
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eliana Feldberg
- Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil.,Laboratório de Genética Animal (LGA), Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| |
Collapse
|
3
|
Ceraulo S, Perelman PL, Dumas F. Massive LINE‐1 retrotransposon enrichment in tamarins of the Cebidae family (Platyrrhini, Primates) and its significance for genome evolution. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Simona Ceraulo
- Department of “Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)” University of Palermo Palermo Italy
| | | | - Francesca Dumas
- Department of “Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)” University of Palermo Palermo Italy
| |
Collapse
|
4
|
Ahmad SF, Singchat W, Jehangir M, Panthum T, Srikulnath K. Consequence of Paradigm Shift with Repeat Landscapes in Reptiles: Powerful Facilitators of Chromosomal Rearrangements for Diversity and Evolution. Genes (Basel) 2020; 11:E827. [PMID: 32708239 PMCID: PMC7397244 DOI: 10.3390/genes11070827] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
Reptiles are notable for the extensive genomic diversity and species richness among amniote classes, but there is nevertheless a need for detailed genome-scale studies. Although the monophyletic amniotes have recently been a focus of attention through an increasing number of genome sequencing projects, the abundant repetitive portion of the genome, termed the "repeatome", remains poorly understood across different lineages. Consisting predominantly of transposable elements or mobile and satellite sequences, these repeat elements are considered crucial in causing chromosomal rearrangements that lead to genomic diversity and evolution. Here, we propose major repeat landscapes in representative reptilian species, highlighting their evolutionary dynamics and role in mediating chromosomal rearrangements. Distinct karyotype variability, which is typically a conspicuous feature of reptile genomes, is discussed, with a particular focus on rearrangements correlated with evolutionary reorganization of micro- and macrochromosomes and sex chromosomes. The exceptional karyotype variation and extreme genomic diversity of reptiles are used to test several hypotheses concerning genomic structure, function, and evolution.
Collapse
Affiliation(s)
- Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Maryam Jehangir
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Integrative Genomics Lab-LGI, Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | - Thitipong Panthum
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok 10900, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan
| |
Collapse
|
5
|
Sookdeo A, Hepp CM, Boissinot S. Contrasted patterns of evolution of the LINE-1 retrotransposon in perissodactyls: the history of a LINE-1 extinction. Mob DNA 2018; 9:12. [PMID: 29610583 PMCID: PMC5872511 DOI: 10.1186/s13100-018-0117-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/22/2018] [Indexed: 12/30/2022] Open
Abstract
Background LINE-1 (L1) is the dominant autonomously replicating non-LTR retrotransposon in mammals. Although our knowledge of L1 evolution across the tree of life has considerably improved in recent years, what we know of L1 evolution in mammals is biased and comes mostly from studies in primates (mostly human) and rodents (mostly mouse). It is unclear if patterns of evolution that are shared between those two groups apply to other mammalian orders. Here we performed a detailed study on the evolution of L1 in perissodactyls by making use of the complete genome of the domestic horse and of the white rhinoceros. This mammalian order offers an excellent model to study the extinction of L1 since the rhinoceros is one of the few mammalian species to have lost active L1. Results We found that multiple L1 lineages, carrying different 5’UTRs, have been simultaneously active during the evolution of perissodactyls. We also found that L1 has continuously amplified and diversified in horse. In rhinoceros, L1 was very prolific early on. Two successful families were simultaneously active until ~20my ago but became extinct suddenly at exactly the same time. Conclusions The general pattern of L1 evolution in perissodactyls is very similar to what was previously described in mouse and human, suggesting some commonalities in the way mammalian genomes interact with L1. We confirmed the extinction of L1 in rhinoceros and we discuss several possible mechanisms. Electronic supplementary material The online version of this article (10.1186/s13100-018-0117-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akash Sookdeo
- 1Department of Biology, New York University, New York, NY USA
| | - Crystal M Hepp
- 2School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ USA
| | - Stéphane Boissinot
- 3New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Getlekha N, Cioffi MDB, Maneechot N, Bertollo LAC, Supiwong W, Tanomtong A, Molina WF. Contrasting Evolutionary Paths Among Indo-Pacific Pomacentrus Species Promoted by Extensive Pericentric Inversions and Genome Organization of Repetitive Sequences. Zebrafish 2017; 15:45-54. [PMID: 29023226 DOI: 10.1089/zeb.2017.1484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pomacentrus (damselfishes) is one of the most characteristic groups of fishes in the Indo-Pacific coral reef. Its 77 described species exhibit a complex taxonomy with cryptic lineages across their extensive distribution. Periods of evolutionary divergences between them are very variable, and the cytogenetic events that followed their evolutionary diversification are largely unknown. In this respect, analyses of chromosomal divergence, within a phylogenetic perspective, are particularly informative regarding karyoevolutionary trends. As such, we conducted conventional cytogenetic and cytogenomic analyses in four Pomacentrus species (Pomacentrus similis, Pomacentrus auriventris, Pomacentrus moluccensis, and Pomacentrus cuneatus), through the mapping of repetitive DNA classes and transposable elements, including 18S rDNA, 5S rDNA, (CA)15, (GA)15, (CAA)10, Rex6, and U2 snDNA as markers. P. auriventris and P. similis, belonging to the Pomacentrus coelestis complex, have indistinguishable karyotypes (2n = 48; NF = 48), with a peculiar syntenic organization of ribosomal genes. On the other hand, P. moluccensis and P. cuneatus, belonging to another clade, exhibit very different karyotypes (2n = 48, NF = 86 and 92, respectively), with a large number of bi-armed chromosomes, where multiple pericentric inversions played a significant role in their karyotype organization. In this sense, different chromosomal pathways followed the phyletic diversification in the Pomacentrus genus, making possible the characterization of two well-contrasting species groups regarding their karyotype features. Despite this, pericentric inversions act as an effective postzygotic barrier in many organisms, which appear to be also the case for P. moluccensis and P. cuneatus; the extensive chromosomal similarities in the two species of P. coelestis complex suggest minor participation of chromosomal postzygotic barriers in the phyletic diversification of these species.
Collapse
Affiliation(s)
- Nuntaporn Getlekha
- 1 Department of Biology, Faculty of Science, Khon Kaen University , Khon Kaen, Thailand
| | - Marcelo de Bello Cioffi
- 2 Departamento de Genética e Evolução, Universidade Federal de São Carlos , São Paulo, Brazil
| | - Nuntiya Maneechot
- 1 Department of Biology, Faculty of Science, Khon Kaen University , Khon Kaen, Thailand
| | | | - Weerayuth Supiwong
- 3 Department of Fisheries, Faculty of Applied Science and Engineering, Khon Kaen University , Khon Kaen, Thailand
| | - Alongklod Tanomtong
- 1 Department of Biology, Faculty of Science, Khon Kaen University , Khon Kaen, Thailand .,4 Toxic Substances in Livestock and Aquatic Animals Research Group, KhonKaen University , Khon Kaen, Thailand
| | - Wagner Franco Molina
- 5 Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte , Natal, Brazil
| |
Collapse
|
7
|
de Sotero-Caio CG, Cabral-de-Mello DC, Calixto MDS, Valente GT, Martins C, Loreto V, de Souza MJ, Santos N. Centromeric enrichment of LINE-1 retrotransposons and its significance for the chromosome evolution of Phyllostomid bats. Chromosome Res 2017; 25:313-325. [PMID: 28916913 DOI: 10.1007/s10577-017-9565-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
Abstract
Despite their ubiquitous incidence, little is known about the chromosomal distribution of long interspersed elements (LINEs) in mammalian genomes. Phyllostomid bats, characterized by lineages with distinct trends of chromosomal evolution coupled with remarkable ecological and taxonomic diversity, represent good models to understand how these repetitive sequences contribute to the evolution of genome architecture and its link to lineage diversification. To test the hypothesis that LINE-1 sequences were important modifiers of bat genome architecture, we characterized the distribution of LINE-1-derived sequences on genomes of 13 phyllostomid species within a phylogenetic framework. We found massive accumulation of LINE-1 elements in the centromeres of most species: a rare phenomenon on mammalian genomes. We hypothesize that expansion of these elements has occurred early in the radiation of phyllostomids and recurred episodically. LINE-1 expansions on centromeric heterochromatin probably spurred chromosomal change before the radiation of phyllostomids into the extant 11 subfamilies and contributed to the high degree of karyotypic variation observed among different lineages. Understanding centromere architecture in a variety of taxa promises to explain how lineage-specific changes on centromere structure can contribute to karyotypic diversity while not disrupting functional constraints for proper cell division.
Collapse
Affiliation(s)
- Cibele Gomes de Sotero-Caio
- Departamento de Genética, Laboratório de Genética e Citogenética Animal e Humana, UFPE-Universidade Federal de Pernambuco, Av. da Engenharia s/n; Cidade Universitária, Recife, PE, CEP:50740-600, Brazil. .,Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.
| | - Diogo Cavalcanti Cabral-de-Mello
- Departamento de Biologia, Grupo de Estudos em Citogenômica e Evolução Animal, UNESP-Universidade Estadual Paulista, Instituto de Biociências, Rio Claro, SP, Brazil
| | - Merilane da Silva Calixto
- Departamento de Genética, Laboratório de Genética e Citogenética Animal e Humana, UFPE-Universidade Federal de Pernambuco, Av. da Engenharia s/n; Cidade Universitária, Recife, PE, CEP:50740-600, Brazil.,Centro de Saúde e Tecnologia, Unidade Acadêmica de Ciências Biológicas, UFCG-Universidade Federal de Campina Grande, Patos, PB, Brazil
| | - Guilherme Targino Valente
- Departamento de Bioprocessos e Biotecnologia da Faculdade de Ciências Agronômicas, UNESP-Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Cesar Martins
- Departamento de Morfologia, Laboratório Genômica Integrativa, UNESP-Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Vilma Loreto
- Departamento de Genética, Laboratório de Genética e Citogenética Animal e Humana, UFPE-Universidade Federal de Pernambuco, Av. da Engenharia s/n; Cidade Universitária, Recife, PE, CEP:50740-600, Brazil
| | - Maria José de Souza
- Departamento de Genética, Laboratório de Genética e Citogenética Animal e Humana, UFPE-Universidade Federal de Pernambuco, Av. da Engenharia s/n; Cidade Universitária, Recife, PE, CEP:50740-600, Brazil
| | - Neide Santos
- Departamento de Genética, Laboratório de Genética e Citogenética Animal e Humana, UFPE-Universidade Federal de Pernambuco, Av. da Engenharia s/n; Cidade Universitária, Recife, PE, CEP:50740-600, Brazil
| |
Collapse
|
8
|
de Souza ÉMS, Gross MC, Silva CEFE, Sotero-Caio CG, Feldberg E. Heterochromatin variation and LINE-1 distribution in Artibeus (Chiroptera, Phyllostomidae) from Central Amazon, Brazil. COMPARATIVE CYTOGENETICS 2017; 11:613-626. [PMID: 29114357 PMCID: PMC5672158 DOI: 10.3897/compcytogen.v11i4.14562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
Species in the subgenus Artibeus Leach, 1821 are widely distributed in Brazil. Conserved karyotypes characterize the group with identical diploid number and chromosome morphology. Recent studies suggested that the heterochromatin distribution and accumulation patterns can vary among species. In order to assess whether variation can also occur within species, we have analyzed the chromosomal distribution of constitutive heterochromatin in A. planirostris (Spix, 1823) and A. lituratus (Olfers, 1818) from Central Amazon (North Brazil) and contrasted our findings with those reported for other localities in Brazil. In addition, Ag-NOR staining and FISH with 18S rDNA, telomeric, and LINE-1 probes were performed to assess the potential role that these different repetitive markers had in shaping the current architecture of heterochromatic regions. Both species presented interindividual variation of constitutive heterochromatin. In addition, in A. planirostris the centromeres of most chromosomes are enriched with LINE-1, colocated with pericentromeric heterochromatin blocks. Overall, our data indicate that amplification and differential distribution of the investigated repetitive DNAs might have played a significant role in shaping the chromosome architecture of the subgenus Artibeus.
Collapse
Affiliation(s)
- Érica Martinha Silva de Souza
- Programa de Pós-graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Aleixo, 69.060-001 Manaus, AM, Brazil
- Laboratório de Genética Animal, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Aleixo, 69.060-001 Manaus, AM, Brazil
| | - Maria Claudia Gross
- Universidade Federal da Integração Latino Americana, Laboratório de Genética, Av. Tarquínio Joslin dos Santos, 1000, Jardim Universitário, 85857-190, Foz do Iguaçu, PR, Brazil
| | - Carlos Eduardo Faresin e Silva
- Programa de Pós-graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Aleixo, 69.060-001 Manaus, AM, Brazil
- Laboratório de Genética Animal, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Aleixo, 69.060-001 Manaus, AM, Brazil
| | - Cibele Gomes Sotero-Caio
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA 79409
- Laboratório de Genética e Citogenética Animal e Humana, Departamento de Genética, Universidade Federal de Pernambuco, Av. da Engenharia s/n; Cidade Universitária; CEP:50740-600; Recife-PE, Brazil
| | - Eliana Feldberg
- Laboratório de Genética Animal, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Aleixo, 69.060-001 Manaus, AM, Brazil
| |
Collapse
|
9
|
Comparative Genomic In Situ Hybridization and the Possible Role of Retroelements in the Karyotypic Evolution of Three Akodontini Species. Int J Genomics 2017; 2017:5935380. [PMID: 28900618 PMCID: PMC5576401 DOI: 10.1155/2017/5935380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/14/2017] [Accepted: 05/03/2017] [Indexed: 01/21/2023] Open
Abstract
South American Akodontini rodents are characterized by a large number of chromosome rearrangements. Among them, the genus Akodon has been extensively analyzed with classical and molecular cytogenetics, which allowed the identification of a large number of intra- and interspecific chromosomal variation due to Robertsonian rearrangements, pericentric inversions, and heterochromatin additions/deletions. In order to shed some light on the cause of these rearrangements, we comparatively analyzed the karyotypes of three Akodontini species, Akodon cursor (2n = 14, FN = 19), A. montensis (2n = 24, FN = 42), and Necromys lasiurus (2n = 34, FN = 34), after GTG- and CBG-banding. The karyotypes differed by Robertsonian rearrangements, pericentric inversions, centromere repositioning, and heterochromatin variation. Genome comparisons were performed through interspecific fluorescent in situ hybridization (FISH) with total genomic DNAs of each species as probes (GISH). Our results revealed considerable conservation of the euchromatic portions among the three karyotypes suggesting that they mostly differ in their heterochromatic regions. FISH was also performed to assess the distribution of telomeric sequences, long and short interspersed repetitive elements (LINE-1 and B1 SINE) and of the endogenous retrovirus mysTR in the genomes of the three species. The results led us to infer that transposable elements have played an important role in the enormous chromosome variation found in Akodontini.
Collapse
|
10
|
Vieira-da-Silva A, Adega F, Guedes-Pinto H, Chaves R. LINE-1 distribution in six rodent genomes follow a species-specific pattern. J Genet 2016; 95:21-33. [PMID: 27019429 DOI: 10.1007/s12041-015-0595-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
L1 distribution in mammal's genomes is yet a huge riddle. However, these repetitive sequences were already found in all chromosomic regions, and in general, they seem to be nonrandomly distributed in the genome. It also seems that after insertion and when they are not deleterious, they are always involved in dynamic processes occurring on that particular chromosomic region. Furthermore, it seems that large-scale genome rearrangements and L1 activity and accumulation are somehow interconnected. In the present study, we analysed L1 genomic distribution in Tatera gambiana (Muridae, Gerbillinae), Acomys sp. (Muridae, Deomyinae), Cricetomys sp. (Nesomyidae, Cricetomyinae), Microtus arvalis (Cricetidae, Arvicolinae), Phodopus roborovskii and P. sungorus (Cricetidae, Cricetinae). All the species studied here seems to exhibit a species-specific pattern.Possible mechanisms, and processes involved in L1 distribution and preferential accumulation in certain regions are di scussed.
Collapse
Affiliation(s)
- A Vieira-da-Silva
- Department of Genetics and Biotechnology (DGB), Laboratory of Cytogenomics and Animal Genomics (CAG), University of Trάs-os-Montes and Alto Douro (UTAD), 5001, 801 Vila Real,
| | | | | | | |
Collapse
|
11
|
Warren IA, Naville M, Chalopin D, Levin P, Berger CS, Galiana D, Volff JN. Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates. Chromosome Res 2016; 23:505-31. [PMID: 26395902 DOI: 10.1007/s10577-015-9493-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Since their discovery, a growing body of evidence has emerged demonstrating that transposable elements are important drivers of species diversity. These mobile elements exhibit a great variety in structure, size and mechanisms of transposition, making them important putative actors in organism evolution. The vertebrates represent a highly diverse and successful lineage that has adapted to a wide range of different environments. These animals also possess a rich repertoire of transposable elements, with highly diverse content between lineages and even between species. Here, we review how transposable elements are driving genomic diversity and lineage-specific innovation within vertebrates. We discuss the large differences in TE content between different vertebrate groups and then go on to look at how they affect organisms at a variety of levels: from the structure of chromosomes to their involvement in the regulation of gene expression, as well as in the formation and evolution of non-coding RNAs and protein-coding genes. In the process of doing this, we highlight how transposable elements have been involved in the evolution of some of the key innovations observed within the vertebrate lineage, driving the group's diversity and success.
Collapse
Affiliation(s)
- Ian A Warren
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.,Department of Genetics, University of Georgia, Athens, Georgia, 30602, USA
| | - Perrine Levin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Chloé Suzanne Berger
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Delphine Galiana
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
12
|
Mukherjee S, Sharma D, Upadhyaya KC. L1 Retrotransposons Are Transcriptionally Active in Hippocampus of Rat Brain. Prague Med Rep 2016; 117:42-53. [DOI: 10.14712/23362936.2016.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
LINE1 (L1) is an autonomous, non-LTR retrotransposon and the L1 family of retrotransposons constitute around 17%, 20% and 23% in the human, mouse and rat genomes respectively. Under normal physiological conditions, the retroelements remain by and large transcriptionally silent but are activated in response to biotic and abiotic stress conditions and during perturbation in cellular metabolism. They have also been shown to be transiently activated under certain developmental programs. Using RT-PCR, we show that the L1 elements are transcriptionally active in the hippocampus region of the brain of four-month-old rat under normal conditions without any apparent stress. Twenty non-redundant LINE1-specific reverse transcriptase (RTase) sequences form ORF2 region were isolated, cloned and sequenced. Full length L1 element sequences complementary to the isolated sequences were retrieved from the L1 database. In silico analysis was used to determine the presence of these retroelements proximal (up to 10 kb) to the genes transcriptionally active in the hippocampus. Many important genes were found to be in close proximity of the transcriptionally active L1 elements. Transcriptional activation of the elements possibly affects the expression of the neighbouring genes.
Collapse
|
13
|
Staton SE, Burke JM. Evolutionary transitions in the Asteraceae coincide with marked shifts in transposable element abundance. BMC Genomics 2015; 16:623. [PMID: 26290182 PMCID: PMC4546089 DOI: 10.1186/s12864-015-1830-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/07/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The transposable element (TE) content of the genomes of plant species varies from near zero in the genome of Utricularia gibba to more than 80% in many species. It is not well understood whether this variation in genome composition results from common mechanisms or stochastic variation. The major obstacles to investigating mechanisms of TE evolution have been a lack of comparative genomic data sets and efficient computational methods for measuring differences in TE composition between species. In this study, we describe patterns of TE evolution in 14 species in the flowering plant family Asteraceae and 1 outgroup species in the Calyceraceae to investigate phylogenetic patterns of TE dynamics in this important group of plants. RESULTS Our findings indicate that TE families in the Asteraceae exhibit distinct patterns of non-neutral evolution, and that there has been a directional increase in copy number of Gypsy retrotransposons since the origin of the Asteraceae. Specifically, there is marked increase in Gypsy abundance at the origin of the Asteraceae and at the base of the tribe Heliantheae. This latter shift in genome composition has had a significant impact on the diversity and abundance distribution of TEs in a lineage-specific manner. CONCLUSIONS We show that the TE-driven expansion of plant genomes can be facilitated by just a few TE families, and is likely accompanied by the modification and/or replacement of the TE community. Importantly, large shifts in TE composition may be correlated with major of phylogenetic transitions.
Collapse
Affiliation(s)
- S Evan Staton
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA.
- Current address: Beaty Biodiversity Research Centre and Department of Botany, 3529-6270 University Blvd, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - John M Burke
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
14
|
|
15
|
Metzner M, Jäck HM, Wabl M. LINE-1 retroelements complexed and inhibited by activation induced cytidine deaminase. PLoS One 2012; 7:e49358. [PMID: 23133680 PMCID: PMC3487726 DOI: 10.1371/journal.pone.0049358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/08/2012] [Indexed: 12/31/2022] Open
Abstract
LINE-1 (abbreviated L1) is a major class of retroelements in humans and mice. If unrestricted, retroelements accumulate in the cytoplasm and insert their DNA into the host genome, with the potential to cause autoimmune disease and cancer. Retroviruses and other retroelements are inhibited by proteins of the APOBEC family, of which activation-induced cytidine deaminase (AID) is a member. Although AID is mainly known for being a DNA mutator shaping the antibody repertoire in B lymphocytes, we found that AID also restricts de novo L1 integrations in B- and non-B-cell lines. It does so by decreasing the protein level of open reading frame 1 (ORF1) of both exogenous and endogenous L1. In activated B lymphocytes, AID deficiency increased L1 mRNA 1.6-fold and murine leukemia virus (MLV) mRNA 2.7-fold. In cell lines and activated B lymphocytes, AID forms cytoplasmic high-molecular-mass complexes with L1 mRNA, which may contribute to L1 restriction. Because AID-deficient activated B lymphocytes do not express ORF1 protein, we suggest that ORF1 protein expression is inhibited by additional restriction factors in these cells. The greater increase in MLV compared to L1 mRNA in AID-deficient activated B lymphocytes may indicate less strict surveillance of retrovirus.
Collapse
Affiliation(s)
- Mirjam Metzner
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America.
| | | | | |
Collapse
|
16
|
|
17
|
Rebollo R, Horard B, Hubert B, Vieira C. Jumping genes and epigenetics: Towards new species. Gene 2010; 454:1-7. [DOI: 10.1016/j.gene.2010.01.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/06/2010] [Accepted: 01/19/2010] [Indexed: 01/13/2023]
|
18
|
Mlynarski EE, Obergfell C, Dewey MJ, O'Neill RJ. A unique late-replicating XY to autosome translocation in Peromyscus melanophrys. Chromosome Res 2010; 18:179-89. [PMID: 20177772 DOI: 10.1007/s10577-010-9113-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 01/15/2010] [Indexed: 11/25/2022]
Abstract
We report on the characterization of the Peromyscus melanophrys karyotype and sex chromosome system. Classic studies reported the sex chromosome system of this species may be as complex as an X(1)X(1)X(2)X(2)/X(1)X(2)Y(1)Y(2) and provided conflicting identification of the X chromosome. Using Peromyscus maniculatus chromosome paints, we have positively identified the sex chromosomes and clarified the sex determining system that once perplexed Peromyscus researchers. The sex chromosomes are characterized by a unique autosomal translocation of DNA shared between both the X and Y chromosomes. The translocated material is late replicating and heterochromatic yet retains the active chromatin conformation. Thus, autosomal regions derived from translocations involving repeat-rich material may retain some epigenetic marks specific to the sex chromosomes despite loss of epigenetic silencing activity.
Collapse
Affiliation(s)
- Elisabeth E Mlynarski
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, 06269, USA
| | | | | | | |
Collapse
|
19
|
Rebuzzini P, Castiglia R, Nergadze SG, Mitsainas G, Munclinger P, Zuccotti M, Capanna E, Redi CA, Garagna S. Quantitative variation of LINE-1 sequences in five species and three subspecies of the subgenus Mus and in five Robertsonian races of Mus musculus domesticus. Chromosome Res 2009; 17:65-76. [PMID: 19184476 DOI: 10.1007/s10577-008-9004-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/24/2008] [Accepted: 10/24/2008] [Indexed: 10/21/2022]
Abstract
The quantitative variation of a conserved region of the LINE-1 ORF2 sequence was determined in eight species and subspecies of the subgenus Mus (M. m. domesticus, M. m. musculus, M. m. castaneus, M. spicilegus, M. spretus, M. cervicolor, M. cookii, M. caroli) and five Robertsonian races of M. m. domesticus. No differences in LINE-1 ORF2 content were found between all acrocentric or Robertsonian chromosome races, whereas the quantitative variation of the LINE-1 ORF2 sequences detected among the eight taxa partly matches with the clades into which the subgenus is divided. An accumulation of LINE-1 ORF2 elements likely occurred during the evolution of the subgenus. Within the Asiatic clade, M. cervicolor, cookii, and caroli show a low quantity of LINE-1 sequences, also detected within the Palearctic clade in M. m. castaneus and M. spretus, representing perhaps the ancestral condition within the subgenus. On the other hand, M. m. domesticus, M. m. musculus and M. spicilegus showed a high content of LINE-1 ORF2 sequences. Comparison between the chromosomal hybridization pattern of M. m. domesticus, which possesses the highest content, and M. spicilegus did not show any difference in the LINE-1 ORF2 distribution, suggesting that the quantitative variation of this sequence family did not involve chromosome restructuring or a preferential chromosome accumulation, during the evolution of M. m. domesticus.
Collapse
Affiliation(s)
- Paola Rebuzzini
- Dipartimento di Biologia Animale, Università degli Studi di Pavia, Piazza Botta, 9-10, 27100, Pavia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Retroelements (LINEs and SINEs) in vole genomes: differential distribution in the constitutive heterochromatin. Chromosome Res 2008; 16:949-59. [PMID: 18836842 DOI: 10.1007/s10577-008-1253-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/15/2008] [Accepted: 07/15/2008] [Indexed: 10/21/2022]
Abstract
The chromosomal distribution of mobile genetic elements is scarcely known in Arvicolinae species, but could be of relevance to understand the origin and complex evolution of the sex chromosome heterochromatin. In this work we cloned two retrotransposon sequences, L1 and SINE-B1, from the genome of Chionomys nivalis and investigated their chromosomal distribution on several arvicoline species. Our results demonstrate first that both retroelements are the most abundant repeated DNA sequences in the genome of these species. L1 elements, in most species, are highly accumulated in the sex chromosomes compared to the autosomes. This favoured L1 insertion could have played an important role in the origin of the enlarged heterochromatic blocks existing in the sex chromosomes of some Microtus species. Also, we propose that L1 accumulation on the X heterochromatin could have been the consequence of different, independent and rapid amplification processes acting in each species. SINE elements, however, were completely lacking from the constitutive heterochromatin, either in autosomes or in the heterochromatic blocks of sex chromosomes. These data could indicate that some SINE elements are incompatible with the formation of heterochromatic complexes and hence are necessarily missing from the constitutive heterochromatin.
Collapse
|
21
|
Abstract
Several lines of evidence suggest that, within a lineage, particular genomic regions are subject to instability that can lead to specific types of chromosome rearrangements important in species incompatibility. Within family Macropodidae (kangaroos, wallabies, bettongs, and potoroos), which exhibit recent and extensive karyotypic evolution, rearrangements involve chiefly the centromere. We propose that centromeres are the primary target for destabilization in cases of genomic instability, such as interspecific hybridization, and participate in the formation of novel chromosome rearrangements. Here we use standard cytological staining, cross-species chromosome painting, DNA probe analyses, and scanning electron microscopy to examine four interspecific macropodid hybrids (Macropus rufogriseus x Macropus agilis). The parental complements share the same centric fusions relative to the presumed macropodid ancestral karyotype, but can be differentiated on the basis of heterochromatic content, M. rufogriseus having larger centromeres with large C-banding positive regions. All hybrids exhibited the same pattern of chromosomal instability and remodeling specifically within the centromeres derived from the maternal (M. rufogriseus) complement. This instability included amplification of a satellite repeat and a transposable element, changes in chromatin structure, and de novo whole-arm rearrangements. We discuss possible reasons and mechanisms for the centromeric instability and remodeling observed in all four macropodid hybrids.
Collapse
|
22
|
Meles S, Adega F, Guedes-Pinto H, Chaves R. The karyotype and sex chromosomes of Praomys tullbergi (Muridae, Rodentia): a detailed characterization. Micron 2007; 39:559-68. [PMID: 17714950 DOI: 10.1016/j.micron.2007.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 07/13/2007] [Accepted: 07/15/2007] [Indexed: 10/23/2022]
Abstract
Here we present the first detailed characterization of Praomys tullbergi karyotype, enlightening several chromosome features such as constitutive heterochromatin, telomeric and LINE-1 sequences. The combination of these approaches provided some interesting insights about the genome organization of this African species, which is one of the tullbergi complex elements, a group of species belonging to Murinae (Rodentia, Muridae). Evolutionary considerations on Praomys chromosomes were also achieved, namely, the autosomal complement and the X chromosome from P. tullbergi seem to be derivative chromosomes, most probably resulting from extensive reshufflings during the course of evolution. This conclusion came from the fact that the majority of the chromosomes telomeric sequences are located interstitially, seeming footprints of evolutionary chromosome rearrangements. The detailed analysis of Praomys tullbergi X chromosome suggests that chromosome rearrangements and/or centromere transpositions and addition/elimination of heterochromatin must have been the main evolutionary events that shaped this chromosome.
Collapse
Affiliation(s)
- Susana Meles
- Institute for Biotechnology and Bioengineering, Centre of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (CGB-UTAD/IBB), Vila Real, Portugal
| | | | | | | |
Collapse
|
23
|
Deuve JL, Bennett NC, O'Brien PCM, Ferguson-Smith MA, Faulkes CG, Britton-Davidian J, Robinson TJ. Complex evolution of X and Y autosomal translocations in the giant mole-rat, Cryptomys mechowi (Bathyergidae). Chromosome Res 2006; 14:681-91. [PMID: 16964575 DOI: 10.1007/s10577-006-1080-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 06/25/2006] [Accepted: 06/25/2006] [Indexed: 10/24/2022]
Abstract
Cross-species chromosome painting was used to determine homologous chromosomal regions between two species of mole-rat, the naked mole-rat, Heterocephalus glaber (2n = 60), and the giant mole-rat, Cryptomys mechowi (2n = 40), using flow-sorted painting probes representative of all but two of the H. glaber chromosomal complement. In total 43 homologous regions were identified in the C. mechowi genome. Eight H. glaber chromosomes are retained in toto in C. mechowi, and 13 produce two or more signals in this species. The most striking difference in the karyotypes of the two taxa concerns their sex chromosomes. The H. glaber painting probes identified a complex series of translocations that involved the fractionation of four autosomes and the subsequent translocation of segments to the sex chromosomes and to autosomal partners in the C. mechowi genome. An intercalary heterochromatic block (IHB) was detected in sex chromosomes of C. mechowi at the boundary with the translocated autosomal segment. We discuss the likely sequence of evolutionary events that has led to the contemporary composition of the C. mechowi sex chromosomes, and consider these in the light of prevailing views on the genesis of sex chromosomes in mammals.
Collapse
Affiliation(s)
- J L Deuve
- Evolutionary Genetics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | | | | | | | | | | | | |
Collapse
|
24
|
Schibler L, Roig A, Mahe MF, Laurent P, Hayes H, Rodolphe F, Cribiu EP. High-resolution comparative mapping among man, cattle and mouse suggests a role for repeat sequences in mammalian genome evolution. BMC Genomics 2006; 7:194. [PMID: 16882342 PMCID: PMC3225868 DOI: 10.1186/1471-2164-7-194] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 08/01/2006] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Comparative mapping provides new insights into the evolutionary history of genomes. In particular, recent studies in mammals have suggested a role for segmental duplication in genome evolution. In some species such as Drosophila or maize, transposable elements (TEs) have been shown to be involved in chromosomal rearrangements. In this work, we have explored the presence of interspersed repeats in regions of chromosomal rearrangements, using an updated high-resolution integrated comparative map among cattle, man and mouse. RESULTS The bovine, human and mouse comparative autosomal map has been constructed using data from bovine genetic and physical maps and from FISH-mapping studies. We confirm most previous results but also reveal some discrepancies. A total of 211 conserved segments have been identified between cattle and man, of which 33 are new segments and 72 correspond to extended, previously known segments. The resulting map covers 91% and 90% of the human and bovine genomes, respectively. Analysis of breakpoint regions revealed a high density of species-specific interspersed repeats in the human and mouse genomes. CONCLUSION Analysis of the breakpoint regions has revealed specific repeat density patterns, suggesting that TEs may have played a significant role in chromosome evolution and genome plasticity. However, we cannot rule out that repeats and breakpoints accumulate independently in the few same regions where modifications are better tolerated. Likewise, we cannot ascertain whether increased TE density is the cause or the consequence of chromosome rearrangements. Nevertheless, the identification of high density repeat clusters combined with a well-documented repeat phylogeny should highlight probable breakpoints, and permit their precise dating. Combining new statistical models taking the present information into account should help reconstruct ancestral karyotypes.
Collapse
Affiliation(s)
- Laurent Schibler
- Laboratoire de Génétique biochimique et de Cytogénétique, Département de Génétique Animale, Institut National de la Recherche Agronomique (INRA), Centre de Recherche de Jouy, 78352 Jouy-en-Josas, Cedex, France
| | - Anne Roig
- Laboratoire de Génétique biochimique et de Cytogénétique, Département de Génétique Animale, Institut National de la Recherche Agronomique (INRA), Centre de Recherche de Jouy, 78352 Jouy-en-Josas, Cedex, France
| | - Marie-Françoise Mahe
- Laboratoire de Génétique biochimique et de Cytogénétique, Département de Génétique Animale, Institut National de la Recherche Agronomique (INRA), Centre de Recherche de Jouy, 78352 Jouy-en-Josas, Cedex, France
| | - Pascal Laurent
- Laboratoire de Génétique biochimique et de Cytogénétique, Département de Génétique Animale, Institut National de la Recherche Agronomique (INRA), Centre de Recherche de Jouy, 78352 Jouy-en-Josas, Cedex, France
| | - Hélène Hayes
- Laboratoire de Génétique biochimique et de Cytogénétique, Département de Génétique Animale, Institut National de la Recherche Agronomique (INRA), Centre de Recherche de Jouy, 78352 Jouy-en-Josas, Cedex, France
| | - François Rodolphe
- Mathématique, informatique et génome, Institut National de la Recherche Agronomique (INRA), Centre de Recherche de Jouy, 78352 Jouy-en-Josas Cedex, France
| | - Edmond P Cribiu
- Laboratoire de Génétique biochimique et de Cytogénétique, Département de Génétique Animale, Institut National de la Recherche Agronomique (INRA), Centre de Recherche de Jouy, 78352 Jouy-en-Josas, Cedex, France
| |
Collapse
|
25
|
Marchal JA, Acosta MJ, Bullejos M, Puerma E, Díaz de la Guardia R, Sánchez A. Distribution of L1-retroposons on the giant sex chromosomes of Microtus cabrerae (Arvicolidae, Rodentia): functional and evolutionary implications. Chromosome Res 2006; 14:177-86. [PMID: 16544191 DOI: 10.1007/s10577-006-1034-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 01/06/2006] [Indexed: 11/28/2022]
Abstract
Long interspersed nuclear elements (L1 or LINE-1) are the most abundant and active retroposons in the mammalian genome. Traditionally, the bulk of L1 sequences have been explained by the 'selfish DNA' hypothesis; however, recently it has been also argued that L1s could play an important role in genome and gene organizations. The non-random chromosomal distribution of these retroelements is a striking feature considered to reflect this functionality. In the present study we have cloned and analyzed three different L1 fragments from the genome of the rodent Microtus cabrerae. In addition, we have examined the chromosomal distribution of this L1 in several species of Microtus, a very interesting group owing to the presence in some species of enlarged ('giant') sex chromosomes. Interestingly, in all species analyzed, L1-retroposons have preferentially accumulated on both the giant- and the normal-sized sex chromosomes compared with the autosomes. Also we have demonstrated that L1-retroposons are not similarly distributed among the heterochromatic blocks of the giant sex chromosomes in M. cabrerae and M. agrestis, which suggest that L1 retroposition and amplification over the sex heterochromatin have been different and independent processes in each species. Finally, we proposed that the main factors responsible for the L1 distribution on the mammalian sex chromosomes are the heterochromatic nature of the Y chromosome and the possible role of L1 sequences during the X-inactivation process.
Collapse
Affiliation(s)
- J A Marchal
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus Las Lagunillas s/n, E-23071, Jaén, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Dobigny G, Aniskin V, Granjon L, Cornette R, Volobouev V. Recent radiation in West African Taterillus (Rodentia, Gerbillinae): the concerted role of chromosome and climatic changes. Heredity (Edinb) 2006; 95:358-68. [PMID: 16106262 DOI: 10.1038/sj.hdy.6800730] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
West African gerbils of the genus Taterillus constitute a complex of seven sibling species distributed from sudano-guinean to saharo-sahelian regions. They display radically rearranged karyotypes despite low genic divergence and a very recent differentiation, that is, within the last 0.4 Myr for the six most derived species. We here provide a comparison of the seven specific karyotypes and perform a cladistic analysis using chromosomal rearrangements character states. When a posteriori polarized mutations were mapped onto the phylogenetic tree, 38 rearrangements were identified as fixed during the evolution of these rodents. This makes Taterillus one of the most striking examples of accelerated chromosomal evolution within placental mammals. Taking into account the types of chromosomal changes involved, divergence times between lineages, genetic distances, as well as reassessed geographic distributions, we suggest that (1) speciation in West African Taterillus was driven by chromosomal changes, and (2) the paleoclimatic oscillations of the Sahara desert have played a major role in their evolution. In particular, elevated plasticity of the Taterillus genome, as suggested by the patterns observed for some repetitive elements, would have led to a higher probability of mutation. We hypothesize that the process underpinning cladogenesis most probably involved highly underdominant genomic rearrangements that were fixed following pronounced populational bottlenecks resulting from drastic climatic and subsequent environmental changes. Major African rivers formed significant barriers to dispersal, limiting expansion during the more moist and so favorable periods. This scenario would explain the current parapatric species distributions and their relationship to the West African hydrographic features.
Collapse
Affiliation(s)
- G Dobigny
- Muséum National d'Histoire Naturelle, Laboratoire Origine, Structure et Evolution de la Biodiversité, FRE CNRS 2695, 55, rue Buffon, Paris F75005, France.
| | | | | | | | | |
Collapse
|
27
|
Olmo E. Rate of Chromosome changes and Speciation in Reptiles. Genetica 2005; 125:185-203. [PMID: 16247691 DOI: 10.1007/s10709-005-8008-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Accepted: 05/26/2005] [Indexed: 10/25/2022]
Abstract
The chromosome changing rate (i.e. the number of chromosome rearrangements per million years) was studied in 1,329 reptile species in order to evaluate the karyological evolutionary trend and the existence of possible correlations between chromosome mutations and some aspects of the evolution of this class. The results obtained highlight the existence of a general direct correlation between chromosome changing rate and number of living species, although different trends can be observed in the different orders and suborders. In turtles, the separation of pleurodires from cryptodires was accompanied by a considerable karyological diversification. Among pleurodires, the evolution of the Chelidae and Pelomedusidae was also characterised by chromosome variation, while in cryptodires a marked karyological homogeneity is observed between and within infra-orders. Similarly there is no correlation between changing rate and species number in crocodiles, where the evolution of the families and genera has entailed few chromosome mutations. Chromosome variability was greater in lizards and snakes. In the formers variations in chromosome changing rate accompanied the separation of the infra-orders and the evolution of most of the families and of some genera. The origin of snakes has also been accompanied by a marked karyological diversification, while the subsequent evolution of the infra-orders and families has entailed a high level of chromosome variability only in colubroids. The karyological evolution in reptiles generally entailed a progressive reduction in chromosome changing rate, albeit with differences in the diverse orders and suborders. This trend seems to be consistent with the "canalization model" as originally proposed by Bickham and Baker in [Bickham, J.W. & R J. Baker, 1979. Bull. Carnegie Mus. Nat. Hist. 13: 70-84.] However, several inconsistencies have been found excluding that in this class the ultimate goal of chromosome variations was the achievement of a so-called "optimum karyotype'' as suggested by the above-mentioned theory. Other mechanisms could underpin chromosome variability in Reptiles. Among them a genomic composition more or less favourable to promoting chromosome rearrangements and factors favouring the fixation of a mutant karyotype in condition of homozygosis. Turtles and crocodiles would have a genome characterised by large chromosomes and a low level of chromosome compartmentalisation limiting the recombination and the frequency of rearrangements. A low rate of chromosome variability modifying little if at all the gene linkage groups would have favoured a conservative evolutionary strategy. In the course of evolution, lizards and snakes could have achieved a genome characterised by smaller chromosomes and a higher level of compartmentalisation. This would have raised the frequency of recombination and consequently an evolutionary strategy promoting a higher degree of variability and a greater level of speciation.
Collapse
Affiliation(s)
- Ettore Olmo
- Istituto di Biologia e Genetica, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|