1
|
Dobry J, Zhu Z, Zhou Q, Wapstra E, Deakin JE, Ezaz T. The role of unbalanced segmental duplication in sex chromosome evolution in Australian ridge-tailed goannas. Sci Rep 2025; 15:8545. [PMID: 40074818 PMCID: PMC11903900 DOI: 10.1038/s41598-025-93574-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/07/2025] [Indexed: 03/14/2025] Open
Abstract
Varanids are known for conserved sex chromosomes, but there are differences in the size of the W chromosome but not in morphology among species representing varying stages of sex chromosome evolution. We tested for homology of the ZW sex chromosome system with size differences in varanids among four species from two lineages in Australia, the Odatria and the Gouldii. We found that while DNA sequences of the sex chromosomes are conserved in the species we tested, we also identified a homologous region on an enlarged autosomal microchromosome that shares sequences with the W chromosome in some isolated populations of V. acanthurus and V. citrinus from the Odatria lineage. The enlarged microchromosome was unpaired in all individuals tested and is likely an unbalanced segmental duplication translocated between chromosome 1, the W, and another microchromosome. This suggests an ancient balanced duplication homologous to the W and the terminal region of the long arm of chromosome 1. The most parsimonious explanation is that the duplicated region likely originated on chromosome 1. We hypothesised in our reconstruction that genes and related DNA sequences associated with the sex-linkage group have likely originated on an autosome. Subsequently, the sequences may have undergone duplication and translocation to the W chromosome, followed by the accumulation of lineage specific repeat elements and amplifications on the W at different rates in various lineages. Lastly, these sequences are likely to have undergone duplication and translocation to another autosomal microchromosome. Given the role of segmental duplications and translocations as important evolutionary drivers of speciation in other taxa, together with the rapid speciation that has occurred in Australian varanids, our findings provide broader insight into the evolutionary pathway leading to rapid chromosomal and genic divergence of species.
Collapse
Affiliation(s)
- Jason Dobry
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, ACT, 2601, Australia
| | - Zexian Zhu
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Erik Wapstra
- School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Janine E Deakin
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, ACT, 2601, Australia
| | - Tariq Ezaz
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, ACT, 2601, Australia.
| |
Collapse
|
2
|
Griffin DK, Kretschmer R, Srikulnath K, Singchat W, O'Connor RE, Romanov MN. Insights into avian molecular cytogenetics-with reptilian comparisons. Mol Cytogenet 2024; 17:24. [PMID: 39482771 PMCID: PMC11526677 DOI: 10.1186/s13039-024-00696-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
In last 100 years or so, much information has been accumulated on avian karyology, genetics, physiology, biochemistry and evolution. The chicken genome project generated genomic resources used in comparative studies, elucidating fundamental evolutionary processes, much of it funded by the economic importance of domestic fowl (which are also excellent model species in many areas). Studying karyotypes and whole genome sequences revealed population processes, evolutionary biology, and genome function, uncovering the role of repetitive sequences, transposable elements and gene family expansion. Knowledge of the function of many genes and non-expressed or identified regulatory components is however still lacking. Birds (Aves) are diverse, have striking adaptations for flight, migration and survival and inhabit all continents most islands. They also have a unique karyotype with ~ 10 macrochromosomes and ~ 30 microchromosomes that are smaller than other reptiles. Classified into Palaeognathae and Neognathae they are evolutionarily close, and a subset of reptiles. Here we overview avian molecular cytogenetics with reptilian comparisons, shedding light on their karyotypes and genome structure features. We consider avian evolution, then avian (followed by reptilian) karyotypes and genomic features. We consider synteny disruptions, centromere repositioning, and repetitive elements before turning to comparative avian and reptilian genomics. In this context, we review comparative cytogenetics and genome mapping in birds as well as Z- and W-chromosomes and sex determination. Finally, we give examples of pivotal research areas in avian and reptilian cytogenomics, particularly physical mapping and map integration of sex chromosomal genes, comparative genomics of chicken, turkey and zebra finch, California condor cytogenomics as well as some peculiar cytogenetic and evolutionary examples. We conclude that comparative molecular studies and improving resources continually contribute to new approaches in population biology, developmental biology, physiology, disease ecology, systematics, evolution and phylogenetic systematics orientation. This also produces genetic mapping information for chromosomes active in rearrangements during the course of evolution. Further insights into mutation, selection and adaptation of vertebrate genomes will benefit from these studies including physical and online resources for the further elaboration of comparative genomics approaches for many fundamental biological questions.
Collapse
Affiliation(s)
- Darren K Griffin
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, Pelotas, 96010-900, RS, Brazil
| | - Kornsorn Srikulnath
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Worapong Singchat
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | | | - Michael N Romanov
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk, 142132, Moscow Oblast, Russia.
| |
Collapse
|
3
|
Rasoarahona R, Wattanadilokchatkun P, Panthum T, Jaisamut K, Lisachov A, Thong T, Singchat W, Ahmad SF, Han K, Kraichak E, Muangmai N, Koga A, Duengkae P, Antunes A, Srikulnath K. MicrosatNavigator: exploring nonrandom distribution and lineage-specificity of microsatellite repeat motifs on vertebrate sex chromosomes across 186 whole genomes. Chromosome Res 2023; 31:29. [PMID: 37775555 DOI: 10.1007/s10577-023-09738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/11/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
Microsatellites are short tandem DNA repeats, ubiquitous in genomes. They are believed to be under selection pressure, considering their high distribution and abundance beyond chance or random accumulation. However, limited analysis of microsatellites in single taxonomic groups makes it challenging to understand their evolutionary significance across taxonomic boundaries. Despite abundant genomic information, microsatellites have been studied in limited contexts and within a few species, warranting an unbiased examination of their genome-wide distribution in distinct versus closely related-clades. Large-scale comparisons have revealed relevant trends, especially in vertebrates. Here, "MicrosatNavigator", a new tool that allows quick and reliable investigation of perfect microsatellites in DNA sequences, was developed. This tool can identify microsatellites across the entire genome sequences. Using this tool, microsatellite repeat motifs were identified in the genome sequences of 186 vertebrates. A significant positive correlation was noted between the abundance, density, length, and GC bias of microsatellites and specific lineages. The (AC)n motif is the most prevalent in vertebrate genomes, showing distinct patterns in closely related species. Longer microsatellites were observed on sex chromosomes in birds and mammals but not on autosomes. Microsatellites on sex chromosomes of non-fish vertebrates have the lowest GC content, whereas high-GC microsatellites (≥ 50 M% GC) are preferred in bony and cartilaginous fishes. Thus, similar selective forces and mutational processes may constrain GC-rich microsatellites to different clades. These findings should facilitate investigations into the roles of microsatellites in sex chromosome differentiation and provide candidate microsatellites for functional analysis across the vertebrate evolutionary spectrum.
Collapse
Affiliation(s)
- Ryan Rasoarahona
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Sciences for Industry, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Pish Wattanadilokchatkun
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Kitipong Jaisamut
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Artem Lisachov
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Thanyapat Thong
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Kyudong Han
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea
| | - Ekaphan Kraichak
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Narongrit Muangmai
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Akihiko Koga
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Prateep Duengkae
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixes, Av. General Norton de Matos, S/N, 4450-208, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, S/N, 4169-007, Porto, Portugal
| | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Sciences for Industry, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, (CASTNAR, NRU-KU, Thailand), Bangkok, 10900, Thailand.
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, 10900, Thailand.
| |
Collapse
|
4
|
Kępa M, Tomańska A, Staszewska J, Tarnowska M, Klećkowska-Nawrot J, Goździewska-Harłajczuk K, Kuźniarski A, Gębarowski T, Janeczek M. Functional Anatomy of the Thoracic Limb of the Komodo Dragon ( Varanus komodoensis). Animals (Basel) 2023; 13:2895. [PMID: 37760295 PMCID: PMC10525242 DOI: 10.3390/ani13182895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Since the Komodo dragon has been included on The International Union for Conservation of Nature (IUCN) Red List of Threatened Species, it is crucial to know in detail its biology as there is a limited availability of research material on these animals-mainly those who died in zoos or whose remains were found in the wild. Anatomy is essential for understanding physiology, identification of diseases, adaptations in the environment, and behavior. In this dissection study, the relationship of individual anatomical structures was analyzed, the anatomy of the active and passive movement system of the thoracic limb was described, photographs were taken, and a radiographic examination was conducted. This species has its own differences, even within closely related lizard species. Varanus komodoensis possesses triceps muscles with three heads, and the wrist is extended with additional bones for greater flexibility of the hand. The muscles of the forelimb are analogous to the hind limb; however, they differ in the mass of individual muscles, especially those predisposed to perform the most important antigravity and locomotive functions.
Collapse
Affiliation(s)
- Michał Kępa
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 1, 51-631 Wrocław, Poland; (M.K.); (J.S.); (J.K.-N.); (K.G.-H.); (M.J.)
| | - Anna Tomańska
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 1, 51-631 Wrocław, Poland; (M.K.); (J.S.); (J.K.-N.); (K.G.-H.); (M.J.)
| | - Joanna Staszewska
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 1, 51-631 Wrocław, Poland; (M.K.); (J.S.); (J.K.-N.); (K.G.-H.); (M.J.)
| | - Małgorzata Tarnowska
- Division of Histology and Embryology, Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida St. 25, 50-375 Wrocław, Poland;
| | - Joanna Klećkowska-Nawrot
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 1, 51-631 Wrocław, Poland; (M.K.); (J.S.); (J.K.-N.); (K.G.-H.); (M.J.)
| | - Karolina Goździewska-Harłajczuk
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 1, 51-631 Wrocław, Poland; (M.K.); (J.S.); (J.K.-N.); (K.G.-H.); (M.J.)
| | - Amadeusz Kuźniarski
- Department of Prosthetic Dentistry, Faculty of Dentistry, Wrocław Medical University, Krakowska St. 26, 50-425 Wrocław, Poland;
| | - Tomasz Gębarowski
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 1, 51-631 Wrocław, Poland; (M.K.); (J.S.); (J.K.-N.); (K.G.-H.); (M.J.)
| | - Maciej Janeczek
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 1, 51-631 Wrocław, Poland; (M.K.); (J.S.); (J.K.-N.); (K.G.-H.); (M.J.)
| |
Collapse
|
5
|
Mezzasalma M, Brunelli E, Odierna G, Guarino FM. Comparative cytogenetics of Hemorrhois hippocrepis and Malpolon monspessulanus highlights divergent karyotypes in Colubridae and Psammophiidae (Squamata: Serpentes). THE EUROPEAN ZOOLOGICAL JOURNAL 2023. [DOI: 10.1080/24750263.2023.2180547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Affiliation(s)
- M. Mezzasalma
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - E. Brunelli
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - G. Odierna
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - F. M. Guarino
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Almeida B, Malcher S, Costa M, Martins J, Procópio R, Noronha R, Nagamachi C, Pieczarka J. High Chromosomal Reorganization and Presence of Microchromosomes in Chactidae Scorpions from the Brazilian Amazon. BIOLOGY 2023; 12:biology12040563. [PMID: 37106763 PMCID: PMC10135684 DOI: 10.3390/biology12040563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 04/29/2023]
Abstract
Scorpions are of particular interest in cytogenomic studies, as they can present a high incidence of chromosomal rearrangements heterozygous in natural populations. In this study, we cytogenetically analyzed four species of Chactidae. In Brotheas, 2n = 40 was observed in Brotheas silvestris, 2n = 48 in Brotheas paraensis, and 2n = 50 (cytotype A) or 2n = 52 (cytotype B) among populations of Brotheas amazonicus. Our results showed a bimodal karyotype in Neochactas parvulus, 2n = 54, with microchromosomes and a concentration of constitutive heterochromatin in macrochromosomes. The 45S rDNA is located in only one pair of the karyotype, with different heteromorphisms of clusters of this rDNA in the cytotype B of B. amazonicus, with NOR-bearing chromosomes involved in multi-chromosomal associations during meiosis I. The U2 snDNA was mapped in the interstitial region of distinct karyotype pairs of three Chactidae species. Our results indicate the possible formation of cryptic species in B. amazonicus; the different 45S rDNA configurations in the genome of this species may result from amplification and degeneration. We suggest that the bimodal karyotype in N. parvulus results from fusion/fission events and that the unequal distribution of repetitive DNAs between macro and microchromosomes contributes to the maintenance of its asymmetry.
Collapse
Affiliation(s)
- Bruno Almeida
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Av. Perimetral da Ciência, km 01, Guamá, Belém 66075-750, PA, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Pará-Campus Itaituba, R. Universitário, s/n, Maria Magdalena, Itaituba 68183-300, PA, Brazil
| | - Stella Malcher
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Av. Perimetral da Ciência, km 01, Guamá, Belém 66075-750, PA, Brazil
| | - Marlyson Costa
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Av. Perimetral da Ciência, km 01, Guamá, Belém 66075-750, PA, Brazil
| | - Jonas Martins
- Instituto Nacional de Pesquisas da Amazonia, Av. André Araújo, 2936, Petrópolis, Manaus 69067-375, AM, Brazil
| | - Rudi Procópio
- Medical School, Universidade do Estado do Amazonas, Av. Carvalho Leal, 1777, Cachoeirinha, Manaus 69065-170, AM, Brazil
| | - Renata Noronha
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Av. Perimetral da Ciência, km 01, Guamá, Belém 66075-750, PA, Brazil
| | - Cleusa Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Av. Perimetral da Ciência, km 01, Guamá, Belém 66075-750, PA, Brazil
| | - Julio Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Av. Perimetral da Ciência, km 01, Guamá, Belém 66075-750, PA, Brazil
| |
Collapse
|
7
|
Widespread chromosomal rearrangements preceded genetic divergence in a monitor lizard, Varanus acanthurus (Varanidae). Chromosome Res 2023; 31:9. [PMID: 36745262 PMCID: PMC9902428 DOI: 10.1007/s10577-023-09715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/12/2022] [Accepted: 11/28/2022] [Indexed: 02/07/2023]
Abstract
Chromosomal rearrangements are often associated with local adaptation and speciation because they suppress recombination, and as a result, rearrangements have been implicated in disrupting gene flow. Although there is strong evidence to suggest that chromosome rearrangements are a factor in genetic isolation of divergent populations, the underlying mechanism remains elusive. Here, we applied an integrative cytogenetics and genomics approach testing whether chromosomal rearrangements are the initial process, or a consequence, of population divergence in the dwarf goanna, Varanus acanthurus. Specifically, we tested whether chromosome rearrangements are indicators of genetic barriers that can be used to identify divergent populations by looking at gene flow within and between populations with rearrangements. We found that gene flow was present between individuals with chromosome rearrangements within populations, but there was no gene flow between populations that had similar chromosome rearrangements. Moreover, we identified a correlation between reduced genetic variation in populations with a higher frequency of homozygous submetacentric individuals. These findings suggest that chromosomal rearrangements were widespread prior to divergence, and because we found populations with higher frequencies of submetacentric chromosomes were associated with lower genetic diversity, this could indicate that polymorphisms within populations are early indicators of genetic drift.
Collapse
|
8
|
Briggs-Gonzalez V, Evans P, Klovanish C, Mazzotti FJ. A Species Bioprofile for the Asian Water Monitor (Varanus salvator). SOUTHEAST NAT 2022. [DOI: 10.1656/058.021.0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Venetia Briggs-Gonzalez
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, FL 33314
| | - Paul Evans
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, FL 33314
| | - Cassidy Klovanish
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, FL 33314
| | - Frank J. Mazzotti
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, FL 33314
| |
Collapse
|
9
|
Chetruengchai W, Singchat W, Srichomthong C, Assawapitaksakul A, Srikulnath K, Ahmad SF, Phokaew C, Shotelersuk V. Genome of Varanus salvator macromaculatus (Asian Water Monitor) Reveals Adaptations in the Blood Coagulation and Innate Immune System. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.850817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Singchat W, Panthum T, Ahmad SF, Baicharoen S, Muangmai N, Duengkae P, Griffin DK, Srikulnath K. Remnant of Unrelated Amniote Sex Chromosomal Linkage Sharing on the Same Chromosome in House Gecko Lizards, Providing a Better Understanding of the Ancestral Super-Sex Chromosome. Cells 2021; 10:cells10112969. [PMID: 34831192 PMCID: PMC8616239 DOI: 10.3390/cells10112969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022] Open
Abstract
Comparative chromosome maps investigating sex chromosomal linkage groups in amniotes and microsatellite repeat motifs of a male house gecko lizard (Hemidactylus frenatus, HFR) and a flat-tailed house gecko lizard (H. platyurus, HPL) of unknown sex were examined using 75 bacterial artificial chromosomes (BACs) from chicken and zebra finch genomes. No massive accumulations of microsatellite repeat motifs were found in either of the gecko lizards, but 10 out of 13 BACs mapped on HPL chromosomes were associated with other amniote sex chromosomes. Hybridization of the same BACs onto multiple different chromosome pairs suggested transitions to sex chromosomes across amniotes. No BAC hybridization signals were found on HFR chromosomes. However, HFR diverged from HPL about 30 million years ago, possibly due to intrachromosomal rearrangements occurring in the HFR lineage. By contrast, heterochromatin likely reshuffled patterns between HPL and HFR, as observed from C-positive heterochromatin distribution. Six out of ten BACs showed partial homology with squamate reptile chromosome 2 (SR2) and snake Z and/or W sex chromosomes. The gecko lizard showed shared unrelated sex chromosomal linkages-the remnants of a super-sex chromosome. A large ancestral super-sex chromosome showed a correlation between SR2 and snake W sex chromosomes.
Collapse
Affiliation(s)
- Worapong Singchat
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (T.P.); (S.F.A.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand;
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (T.P.); (S.F.A.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand;
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (T.P.); (S.F.A.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand;
| | - Sudarath Baicharoen
- Bureau of Conservation and Research, Zoological Park Organization of Thailand, Bangkok 10300, Thailand;
| | - Narongrit Muangmai
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand;
| | - Prateep Duengkae
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand;
| | | | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (T.P.); (S.F.A.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand;
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima 739-8526, Japan
- Correspondence:
| |
Collapse
|
11
|
The Snakeskin Gourami (Trichopodus pectoralis) Tends to Exhibit XX/XY Sex Determination. FISHES 2021. [DOI: 10.3390/fishes6040043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The snakeskin gourami (Trichopodus pectoralis) has a high meat yield and is one of the top five aquaculture freshwater fishes in Thailand. The species is not externally sexually dimorphic, and its sex determination system is unknown. Understanding the sex determination system of this species will contribute to its full-scale commercialization. In this study, a cytogenetic analysis did not reveal any between-sex differences in chromosomal patterns. However, we used genotyping-by-sequencing to identify 4 male-linked loci and 1 female-linked locus, indicating that the snakeskin gourami tends to exhibit an XX/XY sex determination system. However, we did not find any male-specific loci after filtering the loci for a ratio of 100:0 ratio of males:females. This suggests that the putative Y chromosome is young and that the sex determination region is cryptic. This approach provides solid information that can help identify the sex determination mechanism and potential sex determination regions in the snakeskin gourami, allowing further investigation of genetic improvements in the species.
Collapse
|
12
|
Mezzasalma M, Guarino FM, Odierna G. Lizards as Model Organisms of Sex Chromosome Evolution: What We Really Know from a Systematic Distribution of Available Data? Genes (Basel) 2021; 12:1341. [PMID: 34573323 PMCID: PMC8468487 DOI: 10.3390/genes12091341] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 01/19/2023] Open
Abstract
Lizards represent unique model organisms in the study of sex determination and sex chromosome evolution. Among tetrapods, they are characterized by an unparalleled diversity of sex determination systems, including temperature-dependent sex determination (TSD) and genetic sex determination (GSD) under either male or female heterogamety. Sex chromosome systems are also extremely variable in lizards. They include simple (XY and ZW) and multiple (X1X2Y and Z1Z2W) sex chromosome systems and encompass all the different hypothesized stages of diversification of heterogametic chromosomes, from homomorphic to heteromorphic and completely heterochromatic sex chromosomes. The co-occurrence of TSD, GSD and different sex chromosome systems also characterizes different lizard taxa, which represent ideal models to study the emergence and the evolutionary drivers of sex reversal and sex chromosome turnover. In this review, we present a synthesis of general genome and karyotype features of non-snakes squamates and discuss the main theories and evidences on the evolution and diversification of their different sex determination and sex chromosome systems. We here provide a systematic assessment of the available data on lizard sex chromosome systems and an overview of the main cytogenetic and molecular methods used for their identification, using a qualitative and quantitative approach.
Collapse
Affiliation(s)
- Marcello Mezzasalma
- Department of Biology, University of Naples Federico II, I-80126 Naples, Italy; (F.M.G.); (G.O.)
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Rua Padre Armando Quintas 7, 4485-661 Vairaõ, Portugal
| | - Fabio M. Guarino
- Department of Biology, University of Naples Federico II, I-80126 Naples, Italy; (F.M.G.); (G.O.)
| | - Gaetano Odierna
- Department of Biology, University of Naples Federico II, I-80126 Naples, Italy; (F.M.G.); (G.O.)
| |
Collapse
|
13
|
Srikulnath K, Ahmad SF, Singchat W, Panthum T. Why Do Some Vertebrates Have Microchromosomes? Cells 2021; 10:2182. [PMID: 34571831 PMCID: PMC8466491 DOI: 10.3390/cells10092182] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022] Open
Abstract
With more than 70,000 living species, vertebrates have a huge impact on the field of biology and research, including karyotype evolution. One prominent aspect of many vertebrate karyotypes is the enigmatic occurrence of tiny and often cytogenetically indistinguishable microchromosomes, which possess distinctive features compared to macrochromosomes. Why certain vertebrate species carry these microchromosomes in some lineages while others do not, and how they evolve remain open questions. New studies have shown that microchromosomes exhibit certain unique characteristics of genome structure and organization, such as high gene densities, low heterochromatin levels, and high rates of recombination. Our review focuses on recent concepts to expand current knowledge on the dynamic nature of karyotype evolution in vertebrates, raising important questions regarding the evolutionary origins and ramifications of microchromosomes. We introduce the basic karyotypic features to clarify the size, shape, and morphology of macro- and microchromosomes and report their distribution across different lineages. Finally, we characterize the mechanisms of different evolutionary forces underlying the origin and evolution of microchromosomes.
Collapse
Affiliation(s)
- Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
14
|
Impact of Repetitive DNA Elements on Snake Genome Biology and Evolution. Cells 2021; 10:cells10071707. [PMID: 34359877 PMCID: PMC8303610 DOI: 10.3390/cells10071707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
The distinctive biology and unique evolutionary features of snakes make them fascinating model systems to elucidate how genomes evolve and how variation at the genomic level is interlinked with phenotypic-level evolution. Similar to other eukaryotic genomes, large proportions of snake genomes contain repetitive DNA, including transposable elements (TEs) and satellite repeats. The importance of repetitive DNA and its structural and functional role in the snake genome, remain unclear. This review highlights the major types of repeats and their proportions in snake genomes, reflecting the high diversity and composition of snake repeats. We present snakes as an emerging and important model system for the study of repetitive DNA under the impact of sex and microchromosome evolution. We assemble evidence to show that certain repetitive elements in snakes are transcriptionally active and demonstrate highly dynamic lineage-specific patterns as repeat sequences. We hypothesize that particular TEs can trigger different genomic mechanisms that might contribute to driving adaptive evolution in snakes. Finally, we review emerging approaches that may be used to study the expression of repetitive elements in complex genomes, such as snakes. The specific aspects presented here will stimulate further discussion on the role of genomic repeats in shaping snake evolution.
Collapse
|
15
|
Augstenová B, Pensabene E, Kratochvíl L, Rovatsos M. Cytogenetic Evidence for Sex Chromosomes and Karyotype Evolution in Anguimorphan Lizards. Cells 2021; 10:cells10071612. [PMID: 34203198 PMCID: PMC8304200 DOI: 10.3390/cells10071612] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
Anguimorphan lizards are a morphologically variable group of squamate reptiles with a wide geographical distribution. In spite of their importance, they have been cytogenetically understudied. Here, we present the results of the cytogenetic examination of 23 species from five anguimorphan families (Anguidae, Helodermatidae, Shinisauridae, Varanidae and Xenosauridae). We applied both conventional (Giemsa staining and C-banding) and molecular cytogenetic methods (fluorescence in situ hybridization with probes for the telomeric motifs and rDNA loci, comparative genome hybridization), intending to describe the karyotypes of previously unstudied species, to uncover the sex determination mode, and to reveal the distribution of variability in cytogenetic characteristics among anguimorphan lizards. We documented that karyotypes are generally quite variable across anguimorphan lineages, with anguids being the most varying. However, the derived chromosome number of 2n = 40 exhibits a notable long-term evolutionary stasis in monitors. Differentiated ZZ/ZW sex chromosomes were documented in monitors and helodermatids, as well as in the anguids Abronia lythrochila, and preliminary also in Celestus warreni and Gerrhonotus liocephalus. Several other anguimorphan species have likely poorly differentiated sex chromosomes, which cannot be detected by the applied cytogenetic methods, although the presence of environmental sex determination cannot be excluded. In addition, we uncovered a rare case of spontaneous triploidy in a fully grown Varanus primordius.
Collapse
|
16
|
Ingles ED, Deakin JE. Telomeres, species differences, and unusual telomeres in vertebrates: presenting challenges and opportunities to understanding telomere dynamics. AIMS GENETICS 2021. [DOI: 10.3934/genet.2016.1.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractThere has been increasing interest in the use of telomeres as biomarkers of stress, cellular ageing and life-histories. However, the telomere landscape is a diverse feature, with noticeable differences between species, a fact which is highlighted by the unusual telomeres of various vertebrate organisms. We broadly review differences in telomere dynamics among vertebrates, and emphasize the need to understand more about telomere processes and trends across species. As part of these species differences, we review unusual telomeres in vertebrates. This includes mega-telomeres, which are present across a diverse set of organisms, but also focusing on the unusual telomeres traits of marsupials and monotremes, which have seen little to no prior discussion, yet uniquely stand out from other unusual telomere features discovered thus far. Due to the presence of at least two unique telomere features in the marsupial family Dasyuridae, as well as to the presence of physiological strategies semelparity and torpor, which have implications for telomere life-histories in these species, we suggest that this family has a very large potential to uncover novel information on telomere evolution and dynamics.
Collapse
Affiliation(s)
- Emory D. Ingles
- Institute of Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Janine E. Deakin
- Institute of Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| |
Collapse
|
17
|
Singchat W, Ahmad SF, Laopichienpong N, Suntronpong A, Panthum T, Griffin DK, Srikulnath K. Snake W Sex Chromosome: The Shadow of Ancestral Amniote Super-Sex Chromosome. Cells 2020; 9:cells9112386. [PMID: 33142713 PMCID: PMC7692289 DOI: 10.3390/cells9112386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
: Heteromorphic sex chromosomes, particularly the ZZ/ZW sex chromosome system of birds and some reptiles, undergo evolutionary dynamics distinct from those of autosomes. The W sex chromosome is a unique karyological member of this heteromorphic pair, which has been extensively studied in snakes to explore the origin, evolution, and genetic diversity of amniote sex chromosomes. The snake W sex chromosome offers a fascinating model system to elucidate ancestral trajectories that have resulted in genetic divergence of amniote sex chromosomes. Although the principal mechanism driving evolution of the amniote sex chromosome remains obscure, an emerging hypothesis, supported by studies of W sex chromosomes of squamate reptiles and snakes, suggests that sex chromosomes share varied genomic blocks across several amniote lineages. This implies the possible split of an ancestral super-sex chromosome via chromosomal rearrangements. We review the major findings pertaining to sex chromosomal profiles in amniotes and discuss the evolution of an ancestral super-sex chromosome by collating recent evidence sourced mainly from the snake W sex chromosome analysis. We highlight the role of repeat-mediated sex chromosome conformation and present a genomic landscape of snake Z and W chromosomes, which reveals the relative abundance of major repeats, and identifies the expansion of certain transposable elements. The latest revolution in chromosomics, i.e., complete telomere-to-telomere assembly, offers mechanistic insights into the evolutionary origin of sex chromosomes.
Collapse
Affiliation(s)
- Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Nararat Laopichienpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Aorarat Suntronpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | | | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, (CASTNAR, NRU-KU, Thailand), Bangkok 10900, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan
- Correspondence: ; Tel.: +66-2562-5644
| |
Collapse
|
18
|
Koomgun T, Laopichienpong N, Singchat W, Panthum T, Phatcharakullawarawat R, Kraichak E, Sillapaprayoon S, Ahmad SF, Muangmai N, Peyachoknagul S, Duengkae P, Ezaz T, Srikulnath K. Genome Complexity Reduction High-Throughput Genome Sequencing of Green Iguana ( Iguana iguana) Reveal a Paradigm Shift in Understanding Sex-Chromosomal Linkages on Homomorphic X and Y Sex Chromosomes. Front Genet 2020; 11:556267. [PMID: 33193634 PMCID: PMC7606854 DOI: 10.3389/fgene.2020.556267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/24/2020] [Indexed: 12/27/2022] Open
Abstract
The majority of lizards classified in the superfamily Iguanoidea have an XX/XY sex-determination system in which sex-chromosomal linkage shows homology with chicken (Gallus gallus) chromosome 15 (GGA15). However, the genomics of sex chromosomes remain largely unexplored owing to the presence of homomorphic sex chromosomes in majority of the species. Recent advances in high-throughput genome complexity reduction sequencing provide an effective approach to the identification of sex-specific loci with both single-nucleotide polymorphisms (SNPs) and restriction fragment presence/absence (PA), and a better understanding of sex chromosome dynamics in Iguanoidea. In this study, we applied Diversity Arrays Technology (DArTseqTM) in 29 phenotypic sex assignments (14 males and 15 females) of green iguana (Iguana iguana). We confirmed a male heterogametic (XX/XY) sex determination mode in this species, identifying 29 perfectly sex-linked SNP/PA loci and 164 moderately sex-linked SNP/PA loci, providing evidence probably indicative of XY recombination. Three loci from among the perfectly sex-linked SNP/PA loci showed partial homology with several amniote sex chromosomal linkages. The results support the hypothesis of an ancestral super-sex chromosome with overlaps of partial sex-chromosomal linkages. However, only one locus among the moderately sex-linked loci showed homology with GGA15, which suggests that the specific region homologous to GGA15 was located outside the non-recombination region but in close proximity to this region of the sex chromosome in green iguana. Therefore, the location of GGA15 might be further from the putative sex-determination locus in green iguana. This is a paradigm shift in understanding linkages on homomorphic X and Y sex chromosomes. The DArTseq platform provides an easy-to-use strategy for future research on the evolution of sex chromosomes in Iguanoidea, particularly for non-model species with homomorphic or highly cryptic sex chromosomes.
Collapse
Affiliation(s)
- Tassika Koomgun
- Laboratory of Animal Cytogenetics and Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Nararat Laopichienpong
- Laboratory of Animal Cytogenetics and Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Thitipong Panthum
- Laboratory of Animal Cytogenetics and Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | | | | | - Siwapech Sillapaprayoon
- Laboratory of Animal Cytogenetics and Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Narongrit Muangmai
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Surin Peyachoknagul
- Laboratory of Animal Cytogenetics and Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Prateep Duengkae
- Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand.,Center for Advanced Studies in Tropical Natural Resources, National Research University, Kasetsart University, Bangkok, Thailand.,Center of Excellence on Agricultural Biotechnology, Bangkok, Thailand.,Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan.,Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
19
|
Singchat W, Ahmad SF, Sillapaprayoon S, Muangmai N, Duengkae P, Peyachoknagul S, O’Connor RE, Griffin DK, Srikulnath K. Partial Amniote Sex Chromosomal Linkage Homologies Shared on Snake W Sex Chromosomes Support the Ancestral Super-Sex Chromosome Evolution in Amniotes. Front Genet 2020; 11:948. [PMID: 33014016 PMCID: PMC7461878 DOI: 10.3389/fgene.2020.00948] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Squamate reptile chromosome 2 (SR2) is thought to be an important remnant of an ancestral amniote super-sex chromosome, but a recent study showed that the Siamese cobra W sex chromosome is also a part of this larger ancestral chromosome. To confirm the existence of an ancestral amniote super-sex chromosome and understand the mechanisms of amniote sex chromosome evolution, chromosome maps of two snake species [Russell's viper: Daboia russelii (DRU) and the common tiger snake: Notechis scutatus (NSC)] were constructed using bacterial artificial chromosomes (BACs) derived from chicken and zebra finch libraries containing amniote sex chromosomal linkages. Sixteen BACs were mapped on the W sex chromosome of DRU and/or NSC, suggesting that these BACs contained a common genomic region shared with the W sex chromosome of these snakes. Two of the sixteen BACs were co-localized to DRU2 and NSC2, corresponding to SR2. Prediction of genomic content from all BACs mapped on snake W sex chromosomes revealed a large proportion of long interspersed nuclear element (LINE) and short interspersed nuclear element (SINE) retrotransposons. These results led us to predict that amplification of LINE and SINE may have occurred on snake W chromosomes during evolution. Genome compartmentalization, such as transposon amplification, might be the key factor influencing chromosome structure and differentiation. Multiple sequence alignments of all BACs mapped on snake W sex chromosomes did not reveal common sequences. Our findings indicate that the SR2 and snake W sex chromosomes may have been part of a larger ancestral amniote super-sex chromosome, and support the view of sex chromosome evolution as a colorful myriad of situations and trajectories in which many diverse processes are in action.
Collapse
Affiliation(s)
- Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Siwapech Sillapaprayoon
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Narongrit Muangmai
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Prateep Duengkae
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Surin Peyachoknagul
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
- Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
20
|
Ahmad SF, Singchat W, Jehangir M, Panthum T, Srikulnath K. Consequence of Paradigm Shift with Repeat Landscapes in Reptiles: Powerful Facilitators of Chromosomal Rearrangements for Diversity and Evolution. Genes (Basel) 2020; 11:E827. [PMID: 32708239 PMCID: PMC7397244 DOI: 10.3390/genes11070827] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
Reptiles are notable for the extensive genomic diversity and species richness among amniote classes, but there is nevertheless a need for detailed genome-scale studies. Although the monophyletic amniotes have recently been a focus of attention through an increasing number of genome sequencing projects, the abundant repetitive portion of the genome, termed the "repeatome", remains poorly understood across different lineages. Consisting predominantly of transposable elements or mobile and satellite sequences, these repeat elements are considered crucial in causing chromosomal rearrangements that lead to genomic diversity and evolution. Here, we propose major repeat landscapes in representative reptilian species, highlighting their evolutionary dynamics and role in mediating chromosomal rearrangements. Distinct karyotype variability, which is typically a conspicuous feature of reptile genomes, is discussed, with a particular focus on rearrangements correlated with evolutionary reorganization of micro- and macrochromosomes and sex chromosomes. The exceptional karyotype variation and extreme genomic diversity of reptiles are used to test several hypotheses concerning genomic structure, function, and evolution.
Collapse
Affiliation(s)
- Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Maryam Jehangir
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Integrative Genomics Lab-LGI, Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | - Thitipong Panthum
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok 10900, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan
| |
Collapse
|
21
|
Cross-Species BAC Mapping Highlights Conservation of Chromosome Synteny across Dragon Lizards (Squamata: Agamidae). Genes (Basel) 2020; 11:genes11060698. [PMID: 32630412 PMCID: PMC7348930 DOI: 10.3390/genes11060698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/23/2023] Open
Abstract
Dragon lizards (Squamata: Agamidae) comprise about 520 species in six subfamilies distributed across Asia, Australasia and Africa. Only five species are known to have sex chromosomes. All of them possess ZZ/ZW sex chromosomes, which are microchromosomes in four species from the subfamily Amphibolurinae, but much larger in Phrynocephalus vlangalii from the subfamily Agaminae. In most previous studies of these sex chromosomes, the focus has been on Australian species from the subfamily Amphibolurinae, but only the sex chromosomes of the Australian central bearded dragon (Pogona vitticeps) are well-characterized cytogenetically. To determine the level of synteny of the sex chromosomes of P. vitticeps across agamid subfamilies, we performed cross-species two-colour FISH using two bacterial artificial chromosome (BAC) clones from the pseudo-autosomal regions of P. vitticeps. We mapped these two BACs across representative species from all six subfamilies as well as two species of chameleons, the sister group to agamids. We found that one of these BAC sequences is conserved in macrochromosomes and the other in microchromosomes across the agamid lineages. However, within the Amphibolurinae, there is evidence of multiple chromosomal rearrangements with one of the BACs mapping to the second-largest chromosome pair and to the microchromosomes in multiple species including the sex chromosomes of P. vitticeps. Intriguingly, no hybridization signal was observed in chameleons for either of these BACs, suggesting a likely agamid origin of these sequences. Our study shows lineage-specific evolution of sequences/syntenic blocks and successive rearrangements and reveals a complex history of sequences leading to their association with important biological processes such as the evolution of sex chromosomes and sex determination.
Collapse
|
22
|
Do sex chromosomes of snakes, monitor lizards, and iguanian lizards result from multiple fission of an “ancestral amniote super-sex chromosome”? Chromosome Res 2020; 28:209-228. [DOI: 10.1007/s10577-020-09631-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 01/12/2023]
|
23
|
Iannucci A, Altmanová M, Ciofi C, Ferguson-Smith M, Milan M, Pereira JC, Pether J, Rehák I, Rovatsos M, Stanyon R, Velenský P, Ráb P, Kratochvíl L, Johnson Pokorná M. Conserved sex chromosomes and karyotype evolution in monitor lizards (Varanidae). Heredity (Edinb) 2019; 123:215-227. [PMID: 30670841 PMCID: PMC6781170 DOI: 10.1038/s41437-018-0179-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 11/08/2022] Open
Abstract
Despite their long history with the basal split dating back to the Eocene, all species of monitor lizards (family Varanidae) studied so far share the same chromosome number of 2n = 40. However, there are differences in the morphology of the macrochromosome pairs 5-8. Further, sex determination, which revealed ZZ/ZW sex microchromosomes, was studied only in a few varanid species and only with techniques that did not test their homology. The aim of this study was to (i) test if cryptic interchromosomal rearrangements of larger chromosomal blocks occurred during the karyotype evolution of this group, (ii) contribute to the reconstruction of the varanid ancestral karyotype, and (iii) test homology of sex chromosomes among varanids. We investigated these issues by hybridizing flow sorted chromosome paints from Varanus komodoensis to metaphases of nine species of monitor lizards. The results show that differences in the morphology of the chromosome pairs 5-8 can be attributed to intrachromosomal rearrangements, which led to transitions between acrocentric and metacentric chromosomes in both directions. We also documented the first case of spontaneous triploidy among varanids in Varanus albigularis. The triploid individual was fully grown, which demonstrates that polyploidization is compatible with life in this lineage. We found that the W chromosome differs between species in size and heterochromatin content. The varanid Z chromosome is clearly conserved in all the analyzed species. Varanids, in addition to iguanas, caenophidian snakes, and lacertid lizards, are another squamate group with highly conserved sex chromosomes over a long evolutionary time.
Collapse
Affiliation(s)
- Alessio Iannucci
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy
| | - Marie Altmanová
- Department of Ecology, Charles University, Viničná 7, 128 00, Prague, Czech Republic
- Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic
| | - Claudio Ciofi
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy
| | - Malcolm Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Jorge Claudio Pereira
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | - James Pether
- Reptilandia Park, Galdar, 35460, Gran Canaria, Spain
| | - Ivan Rehák
- Prague Zoological Garden, U Trojského zámku 120/3, 171 00, Prague, Czech Republic
| | - Michail Rovatsos
- Department of Ecology, Charles University, Viničná 7, 128 00, Prague, Czech Republic
- Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic
| | - Roscoe Stanyon
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy
| | - Petr Velenský
- Prague Zoological Garden, U Trojského zámku 120/3, 171 00, Prague, Czech Republic
| | - Petr Ráb
- Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic
| | - Lukáš Kratochvíl
- Department of Ecology, Charles University, Viničná 7, 128 00, Prague, Czech Republic.
| | - Martina Johnson Pokorná
- Department of Ecology, Charles University, Viničná 7, 128 00, Prague, Czech Republic
- Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic
| |
Collapse
|
24
|
Distribution and amplification of interstitial telomeric sequences (ITSs) in Australian dragon lizards support frequent chromosome fusions in Iguania. PLoS One 2019; 14:e0212683. [PMID: 30794668 PMCID: PMC6386254 DOI: 10.1371/journal.pone.0212683] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/07/2019] [Indexed: 11/19/2022] Open
Abstract
Telomeric sequences are generally located at the ends of chromosomes; however, they can also be found in non-terminal chromosomal regions when they are known as interstitial telomeric sequences (ITSs). Distribution of ITSs across closely related and divergent species elucidates karyotype evolution and speciation as ITSs provide evolutionary evidence for chromosome fusion. In this study, we performed physical mapping of telomeric repeats by fluorescence in situ hybridisation (FISH) in seven Australian dragon lizards thought to represent derived karyotypes of squamate reptiles and a gecko lizard with considerably different karyotypic feature. Telomeric repeats were present at both ends of all chromosomes in all species, while varying numbers of ITSs were also found on microchromosomes and in pericentromeric or centromeric regions on macrochromosomes in five lizard species examined. This suggests that chromosomal rearrangements from ancestral squamate reptiles to Iguania occurred mainly by fusion between ancestral types of acrocentric chromosomes and/or between microchromosomes, leading to appearance of bi-armed macrochromosomes, and in the reduction of microchromosome numbers. These results support the previously proposed hypothesis of karyotype evolution in squamate reptiles. In addition, we observed the presence of telomeric sequences in the similar regions to heterochromatin of the W microchromosome in Pogona barbata and Doporiphora nobbi, while sex chromosomes for the two species contained part of the nucleolar organiser regions (NORs). This likely implies that these ITSs are a part of the satellite DNA and not relics of chromosome fusions. Amplification of telomeric repeats may have involved heterochromatinisation of sex-specific W chromosomes and play a role in the organisation of the nucleolus.
Collapse
|
25
|
Rovatsos M, Rehák I, Velenský P, Kratochvíl L. Shared Ancient Sex Chromosomes in Varanids, Beaded Lizards, and Alligator Lizards. Mol Biol Evol 2019; 36:1113-1120. [DOI: 10.1093/molbev/msz024] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ivan Rehák
- Prague Zoological Garden, Prague, Czech Republic
| | | | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
26
|
Singchat W, O'Connor RE, Tawichasri P, Suntronpong A, Sillapaprayoon S, Suntrarachun S, Muangmai N, Baicharoen S, Peyachoknagul S, Chanhome L, Griffin D, Srikulnath K. Chromosome map of the Siamese cobra: did partial synteny of sex chromosomes in the amniote represent "a hypothetical ancestral super-sex chromosome" or random distribution? BMC Genomics 2018; 19:939. [PMID: 30558533 PMCID: PMC6296137 DOI: 10.1186/s12864-018-5293-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/21/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Unlike the chromosome constitution of most snakes (2n=36), the cobra karyotype shows a diploid chromosome number of 38 with a highly heterochromatic W chromosome and a large morphologically different chromosome 2. To investigate the process of sex chromosome differentiation and evolution between cobras, most snakes, and other amniotes, we constructed a chromosome map of the Siamese cobra (Naja kaouthia) with 43 bacterial artificial chromosomes (BACs) derived from the chicken and zebra finch libraries using the fluorescence in situ hybridization (FISH) technique, and compared it with those of the chicken, the zebra finch, and other amniotes. RESULTS We produced a detailed chromosome map of the Siamese cobra genome, focusing on chromosome 2 and sex chromosomes. Synteny of the Siamese cobra chromosome 2 (NKA2) and NKAZ were highly conserved among snakes and other squamate reptiles, except for intrachromosomal rearrangements occurring in NKA2. Interestingly, twelve BACs that had partial homology with sex chromosomes of several amniotes were mapped on the heterochromatic NKAW as hybridization signals such as repeat sequences. Sequence analysis showed that most of these BACs contained high proportions of transposable elements. In addition, hybridization signals of telomeric repeat (TTAGGG)n and six microsatellite repeat motifs ((AAGG)8, (AGAT)8, (AAAC)8, (ACAG)8, (AATC)8, and (AAAAT)6) were observed on NKAW, and most of these were also found on other amniote sex chromosomes. CONCLUSIONS The frequent amplification of repeats might involve heterochromatinization and promote sex chromosome differentiation in the Siamese cobra W sex chromosome. Repeat sequences are also shared among amniote sex chromosomes, which supports the hypothesis of an ancestral super-sex chromosome with overlaps of partial syntenies. Alternatively, amplification of microsatellite repeat motifs could have occurred independently in each lineage, representing convergent sex chromosomal differentiation among amniote sex chromosomes.
Collapse
Affiliation(s)
- Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Animal Breeding and Genetics Consortium of Kasetsart University (ABG-KU), Bangkok, 10900, Thailand
| | - Rebecca E O'Connor
- School of Biosciences, University of Kent, Canterbury, CT2 7NY, United Kingdom
| | - Panupong Tawichasri
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Animal Breeding and Genetics Consortium of Kasetsart University (ABG-KU), Bangkok, 10900, Thailand
| | - Aorarat Suntronpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Animal Breeding and Genetics Consortium of Kasetsart University (ABG-KU), Bangkok, 10900, Thailand
| | - Siwapech Sillapaprayoon
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Animal Breeding and Genetics Consortium of Kasetsart University (ABG-KU), Bangkok, 10900, Thailand
| | - Sunutcha Suntrarachun
- Department of Research and Development, Queen Saovabha Memorial Institute, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Narongrit Muangmai
- Animal Breeding and Genetics Consortium of Kasetsart University (ABG-KU), Bangkok, 10900, Thailand
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | - Sudarath Baicharoen
- Bureau of Conservation and Research, Zoological Park Organization under the Royal Patronage of His Majesty the King, Bangkok, Thailand
| | - Surin Peyachoknagul
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Lawan Chanhome
- Snake Farm, Queen Saovabha Memorial Institute, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Darren Griffin
- School of Biosciences, University of Kent, Canterbury, CT2 7NY, United Kingdom
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
- Animal Breeding and Genetics Consortium of Kasetsart University (ABG-KU), Bangkok, 10900, Thailand.
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok, 10900, Thailand.
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, 10900, Thailand.
| |
Collapse
|
27
|
Cavalcante MG, Bastos CEMC, Nagamachi CY, Pieczarka JC, Vicari MR, Noronha RCR. Physical mapping of repetitive DNA suggests 2n reduction in Amazon turtles Podocnemis (Testudines: Podocnemididae). PLoS One 2018; 13:e0197536. [PMID: 29813087 PMCID: PMC5973585 DOI: 10.1371/journal.pone.0197536] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/03/2018] [Indexed: 01/27/2023] Open
Abstract
Cytogenetic studies show that there is great karyotypic diversity in order Testudines (2n = 26-68), and that this may be mainly attributed to the presence/absence of microchromosomes. Members of the Podocnemididae family have the smallest diploid numbers of this order (2n = 26-28), which may be a derived condition of the group. Diverse studies suggest that repetitive-DNA-rich sites generally act as hotspots for double-strand breaks and chromosomal reorganization. In this context, we used fluorescent in situ hybridization (FISH) to map telomeric sequences (TTAGGG)n, 45S rDNA, and the genes encoding histones H1 and H3 in two species of genus Podocnemis. We also observed conservation of the 45S rDNA and H1 histone sequences (probable case of conserved synteny), but multiple conserved and non-conserved clusters of H3 genes, which colocalized with the interstitial telomeric sequences in the Podocnemis genome. Our results suggest that fusions have occurred between macro and microchromosomes or between microchromosomes, leading to the observed reduction in diploid number in the family Podocnemididae.
Collapse
Affiliation(s)
- Manoella Gemaque Cavalcante
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brasil
| | - Carlos Eduardo Matos Carvalho Bastos
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brasil
| | - Cleusa Yoshiko Nagamachi
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brasil
| | - Julio Cesar Pieczarka
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brasil
| | - Marcelo Ricardo Vicari
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brasil
| | - Renata Coelho Rodrigues Noronha
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brasil
| |
Collapse
|
28
|
Laopichienpong N, Muangmai N, Chanhome L, Suntrarachun S, Twilprawat P, Peyachoknagul S, Srikulnath K. Evolutionary Dynamics of the Gametologous CTNNB1 Gene on the Z and W Chromosomes of Snakes. J Hered 2018; 108:142-151. [PMID: 28175328 DOI: 10.1093/jhered/esw074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/13/2016] [Indexed: 12/29/2022] Open
Abstract
Snakes exhibit genotypic sex determination with female heterogamety (ZZ males and ZW females), and the state of sex chromosome differentiation also varies among lineages. To investigate the evolutionary history of homologous genes located in the nonrecombining region of differentiated sex chromosomes in snakes, partial sequences of the gametologous CTNNB1 gene were analyzed for 12 species belonging to henophid (Cylindrophiidae, Xenopeltidae, and Pythonidae) and caenophid snakes (Viperidae, Elapidae, and Colubridae). Nonsynonymous/synonymous substitution ratios (Ka/Ks) in coding sequences were low (Ka/Ks < 1) between CTNNB1Z and CTNNB1W, suggesting that these 2 genes may have similar functional properties. However, frequencies of intron sequence substitutions and insertion–deletions were higher in CTNNB1Z than CTNNB1W, suggesting that Z-linked sequences evolved faster than W-linked sequences. Molecular phylogeny based on both intron and exon sequences showed the presence of 2 major clades: 1) Z-linked sequences of Caenophidia and 2) W-linked sequences of Caenophidia clustered with Z-linked sequences of Henophidia, which suggests that the sequence divergence between CTNNB1Z and CTNNB1W in Caenophidia may have occurred by the cessation of recombination after the split from Henophidia.
Collapse
Affiliation(s)
- Nararat Laopichienpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, Thailand
| | - Narongrit Muangmai
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Lawan Chanhome
- Snake Farm, Queen Saovabha Memorial Institute, The Thai Red Cross Society, Bangkok, Thailand
| | - Sunutcha Suntrarachun
- Department of Research and Development, Queen Saovabha Memorial Institute, The Thai Red Cross Society, Bangkok, Thailand
| | - Panupon Twilprawat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, Thailand
| | - Surin Peyachoknagul
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, Thailand.,Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok, Thailand
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, Thailand.,Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
29
|
Evolution of Karyotypes in Chameleons. Genes (Basel) 2017; 8:genes8120382. [PMID: 29231849 PMCID: PMC5748700 DOI: 10.3390/genes8120382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 01/04/2023] Open
Abstract
The reconstruction of the evolutionary dynamics of karyotypes and sex determining systems in squamate reptiles is precluded by the lack of data in many groups including most chameleons (Squamata: Acrodonta: Chamaeleonidae). We performed cytogenetic analysis in 16 species of chameleons from 8 genera covering the phylogenetic diversity of the family and also phylogenetic reconstruction of karyotype evolution in this group. In comparison to other squamates, chameleons demonstrate rather variable karyotypes, differing in chromosome number, morphology and presence of interstitial telomeric signal (ITS). On the other hand, the location of rDNA is quite conserved among chameleon species. Phylogenetic analysis combining our new results and previously published data tentatively suggests that the ancestral chromosome number for chameleons is 2n = 36, which is the same as assumed for other lineages of the clade Iguania, i.e., agamids and iguanas. In general, we observed a tendency for the reduction of chromosome number during the evolution of chameleons, however, in Rieppeleon brevicaudatus, we uncovered a chromosome number of 2n = 62, very unusual among squamates, originating from a number of chromosome splits. Despite the presence of the highly differentiated ZZ/ZW sex chromosomes in the genus Furcifer, we did not detect any unequivocal sexual differences in the karyotypes of any other studied species of chameleons tested using differential staining and comparative genomic hybridization, suggesting that sex chromosomes in most chameleons are only poorly differentiated.
Collapse
|
30
|
Prakhongcheep O, Thapana W, Suntronpong A, Singchat W, Pattanatanang K, Phatcharakullawarawat R, Muangmai N, Peyachoknagul S, Matsubara K, Ezaz T, Srikulnath K. Lack of satellite DNA species-specific homogenization and relationship to chromosomal rearrangements in monitor lizards (Varanidae, Squamata). BMC Evol Biol 2017; 17:193. [PMID: 28814266 PMCID: PMC5559828 DOI: 10.1186/s12862-017-1044-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 08/08/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Satellite DNAs (stDNAs) are highly repeated sequences that constitute large portions of any genome. The evolutionary dynamics of stDNA (e.g. copy number, nucleotide sequence, location) can, therefore, provide an insight into genome organization and evolution. We investigated the evolutionary origin of VSAREP stDNA in 17 monitor lizards (seven Asian, five Australian, and five African) at molecular and cytogenetic level. RESULTS Results revealed that VSAREP is conserved in the genome of Asian and Australian varanids, but not in African varanids, suggesting that these sequences are either differentiated or lost in the African varanids. Phylogenetic and arrangement network analyses revealed the existence of at least four VSAREP subfamilies. The similarity of each sequence unit within the same VSAREP subfamily from different species was higher than those of other VSAREP subfamilies belonging to the same species. Additionally, all VSAREP subfamilies isolated from the three Australian species (Varanus rosenbergi, V. gouldii, and V. acanthurus) were co-localized near the centromeric or pericentromeric regions of the macrochromosomes, except for chromosomes 3 and 4 in each Australian varanid. However, their chromosomal arrangements were different among species. CONCLUSIONS The VSAREP stDNA family lack homogenized species-specific nucleotide positions in varanid lineage. Most VSAREP sequences were shared among varanids within the four VSAREP subfamilies. This suggests that nucleotide substitutions in each varanid species accumulated more slowly than homogenization rates in each VSAREP subfamily, resulting in non-species-specific evolution of stDNA profiles. Moreover, changes in location of VSAREP stDNA in each Australian varanid suggests a correlation with chromosomal rearrangements, leading to karyotypic differences among these species.
Collapse
Affiliation(s)
- Ornjira Prakhongcheep
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Animal Breeding and Genetics Consortium - Kasetsart University (ABG - KU), 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU), Kasetsart University, Bangkok, 10900, Thailand
| | - Watcharaporn Thapana
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Animal Breeding and Genetics Consortium - Kasetsart University (ABG - KU), 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU), Kasetsart University, Bangkok, 10900, Thailand
| | - Aorarat Suntronpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Animal Breeding and Genetics Consortium - Kasetsart University (ABG - KU), 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Animal Breeding and Genetics Consortium - Kasetsart University (ABG - KU), 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Khampee Pattanatanang
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Real Zoo, The Sky Shopping Center, Ayutthaya, 13210, Thailand
| | | | - Narongrit Muangmai
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Surin Peyachoknagul
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU), Kasetsart University, Bangkok, 10900, Thailand
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Kazumi Matsubara
- Wildlife Genetics Laboratory, Institute for Applied Ecology, University of Canberra, Canberra, ACT 2600, Australia
| | - Tariq Ezaz
- Wildlife Genetics Laboratory, Institute for Applied Ecology, University of Canberra, Canberra, ACT 2600, Australia
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Animal Breeding and Genetics Consortium - Kasetsart University (ABG - KU), 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU), Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
31
|
Ezaz T, Srikulnath K, Graves JAM. Origin of Amniote Sex Chromosomes: An Ancestral Super-Sex Chromosome, or Common Requirements? J Hered 2016; 108:94-105. [DOI: 10.1093/jhered/esw053] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/22/2016] [Indexed: 12/28/2022] Open
|
32
|
Johnson Pokorná M, Altmanová M, Rovatsos M, Velenský P, Vodička R, Rehák I, Kratochvíl L. First Description of the Karyotype and Sex Chromosomes in the Komodo Dragon (Varanus komodoensis). Cytogenet Genome Res 2016; 148:284-91. [DOI: 10.1159/000447340] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2016] [Indexed: 11/19/2022] Open
Abstract
The Komodo dragon (Varanus komodoensis) is the largest lizard in the world. Surprisingly, it has not yet been cytogenetically examined. Here, we present the very first description of its karyotype and sex chromosomes. The karyotype consists of 2n = 40 chromosomes, 16 macrochromosomes and 24 microchromosomes. Although the chromosome number is constant for all species of monitor lizards (family Varanidae) with the currently reported karyotype, variability in the morphology of the macrochromosomes has been previously documented within the group. We uncovered highly differentiated ZZ/ZW sex microchromosomes with a heterochromatic W chromosome in the Komodo dragon. Sex chromosomes have so far only been described in a few species of varanids including V. varius, the sister species to Komodo dragon, whose W chromosome is notably larger than that of the Komodo dragon. Accumulations of several microsatellite sequences in the W chromosome have recently been detected in 3 species of monitor lizards; however, these accumulations are absent from the W chromosome of the Komodo dragon. In conclusion, although varanids are rather conservative in karyotypes, their W chromosomes exhibit substantial variability at the sequence level, adding further evidence that degenerated sex chromosomes may represent the most dynamic genome part.
Collapse
|
33
|
Deakin JE, Edwards MJ, Patel H, O'Meally D, Lian J, Stenhouse R, Ryan S, Livernois AM, Azad B, Holleley CE, Li Q, Georges A. Anchoring genome sequence to chromosomes of the central bearded dragon (Pogona vitticeps) enables reconstruction of ancestral squamate macrochromosomes and identifies sequence content of the Z chromosome. BMC Genomics 2016; 17:447. [PMID: 27286959 PMCID: PMC4902969 DOI: 10.1186/s12864-016-2774-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/25/2016] [Indexed: 12/30/2022] Open
Abstract
Background Squamates (lizards and snakes) are a speciose lineage of reptiles displaying considerable karyotypic diversity, particularly among lizards. Understanding the evolution of this diversity requires comparison of genome organisation between species. Although the genomes of several squamate species have now been sequenced, only the green anole lizard has any sequence anchored to chromosomes. There is only limited gene mapping data available for five other squamates. This makes it difficult to reconstruct the events that have led to extant squamate karyotypic diversity. The purpose of this study was to anchor the recently sequenced central bearded dragon (Pogona vitticeps) genome to chromosomes to trace the evolution of squamate chromosomes. Assigning sequence to sex chromosomes was of particular interest for identifying candidate sex determining genes. Results By using two different approaches to map conserved blocks of genes, we were able to anchor approximately 42 % of the dragon genome sequence to chromosomes. We constructed detailed comparative maps between dragon, anole and chicken genomes, and where possible, made broader comparisons across Squamata using cytogenetic mapping information for five other species. We show that squamate macrochromosomes are relatively well conserved between species, supporting findings from previous molecular cytogenetic studies. Macrochromosome diversity between members of the Toxicofera clade has been generated by intrachromosomal, and a small number of interchromosomal, rearrangements. We reconstructed the ancestral squamate macrochromosomes by drawing upon comparative cytogenetic mapping data from seven squamate species and propose the events leading to the arrangements observed in representative species. In addition, we assigned over 8 Mbp of sequence containing 219 genes to the Z chromosome, providing a list of genes to begin testing as candidate sex determining genes. Conclusions Anchoring of the dragon genome has provided substantial insight into the evolution of squamate genomes, enabling us to reconstruct ancestral macrochromosome arrangements at key positions in the squamate phylogeny, demonstrating that fusions between macrochromosomes or fusions of macrochromosomes and microchromosomes, have played an important role during the evolution of squamate genomes. Assigning sequence to the sex chromosomes has identified NR5A1 as a promising candidate sex determining gene in the dragon. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2774-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janine E Deakin
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia.
| | - Melanie J Edwards
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Hardip Patel
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Denis O'Meally
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Jinmin Lian
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, China
| | - Rachael Stenhouse
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Sam Ryan
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Alexandra M Livernois
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Bhumika Azad
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Clare E Holleley
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Qiye Li
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, China.,Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, 1350, Denmark
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| |
Collapse
|
34
|
Srikulnath K, Thapana W, Muangmai N. Role of Chromosome Changes in Crocodylus Evolution and Diversity. Genomics Inform 2015; 13:102-11. [PMID: 26865840 PMCID: PMC4742319 DOI: 10.5808/gi.2015.13.4.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/03/2015] [Accepted: 11/16/2015] [Indexed: 01/21/2023] Open
Abstract
The karyotypes of most species of crocodilians were studied using conventional and molecular cytogenetics. These provided an important contribution of chromosomal rearrangements for the evolutionary processes of Crocodylia and Sauropsida (birds and reptiles). The karyotypic features of crocodilians contain small diploid chromosome numbers (30~42), with little interspecific variation of the chromosome arm number (fundamental number) among crocodiles (56~60). This suggested that centric fusion and/or fission events occurred in the lineage, leading to crocodilian evolution and diversity. The chromosome numbers of Alligator, Caiman, Melanosuchus, Paleosuchus, Gavialis, Tomistoma, Mecistops, and Osteolaemus were stable within each genus, whereas those of Crocodylus (crocodylians) varied within the taxa. This agreed with molecular phylogeny that suggested a highly recent radiation of Crocodylus species. Karyotype analysis also suggests the direction of molecular phylogenetic placement among Crocodylus species and their migration from the Indo-Pacific to Africa and The New World. Crocodylus species originated from an ancestor in the Indo-Pacific around 9~16 million years ago (MYA) in the mid-Miocene, with a rapid radiation and dispersion into Africa 8~12 MYA. This was followed by a trans-Atlantic dispersion to the New World between 4~8 MYA in the Pliocene. The chromosomes provided a better understanding of crocodilian evolution and diversity, which will be useful for further study of the genome evolution in Crocodylia.
Collapse
Affiliation(s)
- Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Watcharaporn Thapana
- Laboratory of Animal Cytogenetics and Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Narongrit Muangmai
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
35
|
Domaschenz R, Livernois AM, Rao S, Ezaz T, Deakin JE. Immunofluorescent staining reveals hypermethylation of microchromosomes in the central bearded dragon, Pogona vitticeps. Mol Cytogenet 2015; 8:104. [PMID: 26719769 PMCID: PMC4696178 DOI: 10.1186/s13039-015-0208-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/18/2015] [Indexed: 11/18/2022] Open
Abstract
Background Studies of model organisms have demonstrated that DNA cytosine methylation and histone modifications are key regulators of gene expression in biological processes. Comparatively little is known about the presence and distribution of epigenetic marks in non-model amniotes such as non-avian reptiles whose genomes are typically packaged into chromosomes of distinct size classes. Studies of chicken karyotypes have associated the gene-richness and high GC content of microchromosomes with a distinct epigenetic landscape. To determine whether this is likely to be a common feature of amniote microchromosomes, we have analysed the distribution of epigenetic marks using immunofluorescence on metaphase chromosomes of the central bearded dragon (Pogona vitticeps). This study is the first to study the distribution of epigenetic marks on non-avian reptile chromosomes. Results We observed an enrichment of DNA cytosine methylation, active modifications H3K4me2 and H3K4me3, as well as the repressive mark H3K27me3 in telomeric regions on macro and microchromosomes. Microchromosomes were hypermethylated compared to macrochromosomes, as they are in chicken. However, differences between macro- and microchromosomes for histone modifications associated with actively transcribed or repressed DNA were either less distinct or not detectable. Conclusions Hypermethylation of microchromosomes compared to macrochromosomes is a shared feature between P. vitticeps and avian species. The lack of the clear distinction between macro- and microchromosome staining patterns for active and repressive histone modifications makes it difficult to determine at this stage whether microchrosome hypermethylation is correlated with greater gene density as it is in aves, or associated with the greater GC content of P. vitticeps microchromosomes compared to macrochromosomes.
Collapse
Affiliation(s)
- Renae Domaschenz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601 Australia.,Present address: John Curtin School of Medical Research, The Australian National University, Canberra, ACT Australia
| | | | - Sudha Rao
- Discipline of Biomedical Sciences, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, ACT 2601 Australia
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601 Australia
| | - Janine E Deakin
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601 Australia
| |
Collapse
|
36
|
Matsubara K, Uno Y, Srikulnath K, Matsuda Y, Miller E, Olsson M. No Interstitial Telomeres on Autosomes but Remarkable Amplification of Telomeric Repeats on the W Sex Chromosome in the Sand Lizard (Lacerta agilis). ACTA ACUST UNITED AC 2015; 106:753-7. [PMID: 26464091 DOI: 10.1093/jhered/esv083] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/25/2015] [Indexed: 11/13/2022]
Abstract
Telomeres are repeat (TTAGGG) n sequences that form terminal ends of chromosomes and have several functions, such as protecting the coding DNA from erosion at mitosis. Due to chromosomal rearrangements through evolutionary history (e.g., inversions and fusions), telomeric sequences are also found between the centromere and the terminal ends (i.e., at interstitial telomeric sites, ITSs). ITS telomere sequences have been implicated in heritable disease caused by genomic instability of ITS polymorphic variants, both with respect to copy number and sequence. In the sand lizard (Lacerta agilis), we have shown that telomere length is predictive of lifetime fitness in females but not males. To assess whether this sex specific fitness effect could be traced to ITSs differences, we mapped (TTAGGG) n sequences using fluorescence in situ hybridization in fibroblast cells cultured from 4 specimens of known sex. No ITSs could be found on autosomes in either sex. However, females have heterogametic sex chromosomes in sand lizards (ZW, 2n = 38) and the female W chromosome showed degeneration and remarkable (TTAGGG) n amplification, which was absent in the Z chromosomes. This work warrants further research on sex chromosome content, in particular of the degenerate W chromosome, and links to female fitness in sand lizards.
Collapse
Affiliation(s)
- Kazumi Matsubara
- From the Laboratory of Animal Genetics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan (Matsubara, Uno, Srikulnath, and Matsuda); Department of Information and Biological Sciences, Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan (Matsubara); Laboratory of Animal Cytogenetics & Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand (Srikulnath); Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan (Matsuda); Sydney Medical School QEII Research Institute for Mothers and Infants D02, The University of Sydney , NSW 2006, Australia (Miller); School of Biological Sciences, The University of Sydney, Heydon-Laurence Building A08, NSW 2006, Australia (Olsson); and Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden (Olsson)
| | - Yoshinobu Uno
- From the Laboratory of Animal Genetics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan (Matsubara, Uno, Srikulnath, and Matsuda); Department of Information and Biological Sciences, Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan (Matsubara); Laboratory of Animal Cytogenetics & Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand (Srikulnath); Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan (Matsuda); Sydney Medical School QEII Research Institute for Mothers and Infants D02, The University of Sydney , NSW 2006, Australia (Miller); School of Biological Sciences, The University of Sydney, Heydon-Laurence Building A08, NSW 2006, Australia (Olsson); and Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden (Olsson)
| | - Kornsorn Srikulnath
- From the Laboratory of Animal Genetics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan (Matsubara, Uno, Srikulnath, and Matsuda); Department of Information and Biological Sciences, Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan (Matsubara); Laboratory of Animal Cytogenetics & Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand (Srikulnath); Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan (Matsuda); Sydney Medical School QEII Research Institute for Mothers and Infants D02, The University of Sydney , NSW 2006, Australia (Miller); School of Biological Sciences, The University of Sydney, Heydon-Laurence Building A08, NSW 2006, Australia (Olsson); and Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden (Olsson)
| | - Yoichi Matsuda
- From the Laboratory of Animal Genetics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan (Matsubara, Uno, Srikulnath, and Matsuda); Department of Information and Biological Sciences, Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan (Matsubara); Laboratory of Animal Cytogenetics & Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand (Srikulnath); Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan (Matsuda); Sydney Medical School QEII Research Institute for Mothers and Infants D02, The University of Sydney , NSW 2006, Australia (Miller); School of Biological Sciences, The University of Sydney, Heydon-Laurence Building A08, NSW 2006, Australia (Olsson); and Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden (Olsson)
| | - Emily Miller
- From the Laboratory of Animal Genetics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan (Matsubara, Uno, Srikulnath, and Matsuda); Department of Information and Biological Sciences, Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan (Matsubara); Laboratory of Animal Cytogenetics & Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand (Srikulnath); Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan (Matsuda); Sydney Medical School QEII Research Institute for Mothers and Infants D02, The University of Sydney , NSW 2006, Australia (Miller); School of Biological Sciences, The University of Sydney, Heydon-Laurence Building A08, NSW 2006, Australia (Olsson); and Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden (Olsson)
| | - Mats Olsson
- From the Laboratory of Animal Genetics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan (Matsubara, Uno, Srikulnath, and Matsuda); Department of Information and Biological Sciences, Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan (Matsubara); Laboratory of Animal Cytogenetics & Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand (Srikulnath); Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan (Matsuda); Sydney Medical School QEII Research Institute for Mothers and Infants D02, The University of Sydney , NSW 2006, Australia (Miller); School of Biological Sciences, The University of Sydney, Heydon-Laurence Building A08, NSW 2006, Australia (Olsson); and Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden (Olsson).
| |
Collapse
|
37
|
Female heterogamety in Madagascar chameleons (Squamata: Chamaeleonidae: Furcifer): differentiation of sex and neo-sex chromosomes. Sci Rep 2015; 5:13196. [PMID: 26286647 PMCID: PMC4541320 DOI: 10.1038/srep13196] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/14/2015] [Indexed: 12/26/2022] Open
Abstract
Amniotes possess variability in sex determining mechanisms, however, this diversity is still only partially known throughout the clade and sex determining systems still remain unknown even in such a popular and distinctive lineage as chameleons (Squamata: Acrodonta: Chamaeleonidae). Here, we present evidence for female heterogamety in this group. The Malagasy giant chameleon (Furcifer oustaleti) (chromosome number 2n = 22) possesses heteromorphic Z and W sex chromosomes with heterochromatic W. The panther chameleon (Furcifer pardalis) (2n = 22 in males, 21 in females), the second most popular chameleon species in the world pet trade, exhibits a rather rare Z1Z1Z2Z2/Z1Z2W system of multiple sex chromosomes, which most likely evolved from W-autosome fusion. Notably, its neo-W chromosome is partially heterochromatic and its female-specific genetic content has expanded into the previously autosomal region. Showing clear evidence for genotypic sex determination in the panther chameleon, we resolve the long-standing question of whether or not environmental sex determination exists in this species. Together with recent findings in other reptile lineages, our work demonstrates that female heterogamety is widespread among amniotes, adding another important piece to the mosaic of knowledge on sex determination in amniotes needed to understand the evolution of this important trait.
Collapse
|
38
|
Interstitial Telomeric Motifs in Squamate Reptiles: When the Exceptions Outnumber the Rule. PLoS One 2015; 10:e0134985. [PMID: 26252002 PMCID: PMC4529230 DOI: 10.1371/journal.pone.0134985] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/15/2015] [Indexed: 12/19/2022] Open
Abstract
Telomeres are nucleoprotein complexes protecting the physical ends of linear eukaryotic chromosomes and therefore helping to ensure their stability and integrity. Additionally, telomeric sequences can be localized in non-terminal regions of chromosomes, forming so-called interstitial telomeric sequences (ITSs). ITSs are traditionally considered to be relics of chromosomal rearrangements and thus very informative in the reconstruction of the evolutionary history of karyotype formation. We examined the distribution of the telomeric motifs (TTAGGG)n using fluorescence in situ hybridization (FISH) in 30 species, representing 17 families of squamate reptiles, and compared them with the collected data from another 38 species from literature. Out of the 68 squamate species analyzed, 35 possess ITSs in pericentromeric regions, centromeric regions and/or within chromosome arms. We conclude that the occurrence of ITSs is rather common in squamates, despite their generally conserved karyotypes, suggesting frequent and independent cryptic chromosomal rearrangements in this vertebrate group.
Collapse
|
39
|
Srikulnath K, Uno Y, Nishida C, Ota H, Matsuda Y. Karyotype Reorganization in the Hokou Gecko (Gekko hokouensis, Gekkonidae): The Process of Microchromosome Disappearance in Gekkota. PLoS One 2015; 10:e0134829. [PMID: 26241471 PMCID: PMC4524605 DOI: 10.1371/journal.pone.0134829] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/15/2015] [Indexed: 01/12/2023] Open
Abstract
The Hokou gecko (Gekko hokouensis: Gekkonidae, Gekkota, Squamata) has the chromosome number 2n = 38, with no microchromosomes. For molecular cytogenetic characterization of the gekkotan karyotype, we constructed a cytogenetic map for G. hokouensis, which retains the ancestral karyotype of Gekkota, with 86 functional genes, and compared it with cytogenetic maps for four Toxicofera species that have many microchromosomes (Elaphe quadrivirgata, Varanus salvator macromaculatus, Leiolepis reevesii rubritaeniata, and Anolis carolinensis) and that for a lacertid species (Lacerta agilis) with only one pair of autosomal microchromosomes. Ten pairs of G. hokouensis chromosomes [GHO1, 2, 3, Z(4), 6, 7, 8, 13, 14, and 15] showed highly conserved linkage homology with macrochromosomes and/or macrochromosome arms of the four Toxicofera species and corresponded to eight L. agilis macrochromosomes (LAG). However, GHO5, GHO9, GHO10, GHO11, and LAG6 were composed of chromosome segments that have a homology with Toxicofera microchromosomes, and no homology was found in the chromosomes between G. hokouensis and L. agilis. These results suggest that repeated fusions of microchromosomes may have occurred independently in each lineage of Gekkota and Lacertidae, leading to the disappearance of microchromosomes and appearance of small-sized macrochromosomes.
Collapse
Affiliation(s)
- Kornsorn Srikulnath
- Laboratory of Animal Genetics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Laboratory of Animal Cytogenetics and Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU), Kasetsart University, Bangkok, Thailand
| | - Yoshinobu Uno
- Laboratory of Animal Genetics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Chizuko Nishida
- Department of Natural History Sciences, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, Japan
| | - Hidetoshi Ota
- Institute of Natural and Environmental Sciences, University of Hyogo, and Museum of Nature and Human Activities, Sanda, Hyogo, Japan
| | - Yoichi Matsuda
- Laboratory of Animal Genetics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
40
|
Badenhorst D, Hillier LW, Literman R, Montiel EE, Radhakrishnan S, Shen Y, Minx P, Janes DE, Warren WC, Edwards SV, Valenzuela N. Physical Mapping and Refinement of the Painted Turtle Genome (Chrysemys picta) Inform Amniote Genome Evolution and Challenge Turtle-Bird Chromosomal Conservation. Genome Biol Evol 2015; 7:2038-50. [PMID: 26108489 PMCID: PMC4524486 DOI: 10.1093/gbe/evv119] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2015] [Indexed: 01/04/2023] Open
Abstract
Comparative genomics continues illuminating amniote genome evolution, but for many lineages our understanding remains incomplete. Here, we refine the assembly (CPI 3.0.3 NCBI AHGY00000000.2) and develop a cytogenetic map of the painted turtle (Chrysemys picta-CPI) genome, the first in turtles and in vertebrates with temperature-dependent sex determination. A comparison of turtle genomes with those of chicken, selected nonavian reptiles, and human revealed shared and novel genomic features, such as numerous chromosomal rearrangements. The largest conserved syntenic blocks between birds and turtles exist in four macrochromosomes, whereas rearrangements were evident in these and other chromosomes, disproving that turtles and birds retain fully conserved macrochromosomes for greater than 300 Myr. C-banding revealed large heterochromatic blocks in the centromeric region of only few chromosomes. The nucleolar-organizing region (NOR) mapped to a single CPI microchromosome, whereas in some turtles and lizards the NOR maps to nonhomologous sex-chromosomes, thus revealing independent translocations of the NOR in various reptilian lineages. There was no evidence for recent chromosomal fusions as interstitial telomeric-DNA was absent. Some repeat elements (CR1-like, Gypsy) were enriched in the centromeres of five chromosomes, whereas others were widespread in the CPI genome. Bacterial artificial chromosome (BAC) clones were hybridized to 18 of the 25 CPI chromosomes and anchored to a G-banded ideogram. Several CPI sex-determining genes mapped to five chromosomes, and homology was detected between yet other CPI autosomes and the globally nonhomologous sex chromosomes of chicken, other turtles, and squamates, underscoring the independent evolution of vertebrate sex-determining mechanisms.
Collapse
Affiliation(s)
- Daleen Badenhorst
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| | | | - Robert Literman
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| | | | | | - Yingjia Shen
- The Genome Institute at Washington University, St Louis
| | - Patrick Minx
- The Genome Institute at Washington University, St Louis
| | - Daniel E Janes
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University Department of Organismic and Evolutionary Biology, Harvard University
| | | | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| |
Collapse
|
41
|
Novel X-linked genes revealed by quantitative polymerase chain reaction in the green anole, Anolis carolinensis. G3-GENES GENOMES GENETICS 2014; 4:2107-13. [PMID: 25172916 PMCID: PMC4232536 DOI: 10.1534/g3.114.014084] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The green anole, Anolis carolinensis (ACA), is the model reptile for a vast array of biological disciplines. It was the first nonavian reptile to have its genome fully sequenced. During the genome project, the XX/XY system of sex chromosomes homologous to chicken chromosome 15 (GGA15) was revealed, and 106 X-linked genes were identified. We selected 38 genes located on eight scaffolds in ACA and having orthologs located on GGA15, then tested their linkage to ACA X chromosome by using comparative quantitative fluorescent real-time polymerase chain reaction applied to male and female genomic DNA. All tested genes appeared to be X-specific and not present on the Y chromosome. Assuming that all genes located on these scaffolds should be localized to the ACA X chromosome, we more than doubled the number of known X-linked genes in ACA, from 106 to 250. While demonstrating that the gene content of chromosome X in ACA and GGA15 is largely conserved, we nevertheless showed that numerous interchromosomal rearrangements had occurred since the splitting of the chicken and anole evolutionary lineages. The presence of many ACA X-specific genes localized to distinct contigs indicates that the ACA Y chromosome should be highly degenerated, having lost a large amount of its original gene content during evolution. The identification of novel genes linked to the X chromosome and absent on the Y chromosome in the model lizard species contributes to ongoing research as to the evolution of sex determination in reptiles and provides important information for future comparative and functional genomics.
Collapse
|
42
|
Pokorná MJ, Rovatsos M, Kratochvíl L. Sex chromosomes and karyotype of the (nearly) mythical creature, the Gila monster, Heloderma suspectum (Squamata: Helodermatidae). PLoS One 2014; 9:e104716. [PMID: 25119263 PMCID: PMC4131918 DOI: 10.1371/journal.pone.0104716] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 07/15/2014] [Indexed: 12/31/2022] Open
Abstract
A wide variety of sex determination systems exist among squamate reptiles. They can therefore serve as an important model for studies of evolutionary transitions among particular sex determination systems. However, we still have only a limited knowledge of sex determination in certain important lineages of squamates. In this respect, one of the most understudied groups is the family Helodermatidae (Anguimorpha) encompassing the only two venomous species of lizards which are potentially lethal to human beings. We uncovered homomorphic ZZ/ZW sex chromosomes in the Gila monster (Heloderma suspectum) with a highly heterochromatic W chromosome. The sex chromosomes are morphologically similar to the ZZ/ZW sex chromosomes of monitor lizards (Varanidae). If the sex chromosomes of helodermatids and varanids are homologous, female heterogamety may be ancestral for the whole Anguimorpha group. Moreover, we found that the karyotype of the Gila monster consists of 2n = 36 chromosomes (14 larger metacentric chromosomes and 22 acrocentric microchromosomes). 2n = 36 is the widely distributed chromosomal number among squamates. In his pioneering works representing the only previous cytogenetic examination of the family Helodermatidae, Matthey reported the karyotype as 2n = 38 and suggested a different chromosomal morphology for this species. We believe that this was probably erroneously. We also discovered a strong accumulation of telomeric sequences on several pairs of microchromosomes in the Gila monster, which is a trait documented relatively rarely in vertebrates. These new data fill an important gap in our understanding of the sex determination and karyotype evolution of squamates.
Collapse
Affiliation(s)
- Martina Johnson Pokorná
- Department of Ecology, Faculty of Science, Charles University in Prague, Praha, Czech Republic
- Institute of Animal Physiology and Genetics, Academy of the Sciences of the Czech Republic, Liběchov, Czech Republic
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University in Prague, Praha, Czech Republic
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University in Prague, Praha, Czech Republic
- * E-mail:
| |
Collapse
|
43
|
Deakin JE, Ezaz T. Tracing the evolution of amniote chromosomes. Chromosoma 2014; 123:201-16. [PMID: 24664317 PMCID: PMC4031395 DOI: 10.1007/s00412-014-0456-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 01/09/2023]
Abstract
A great deal of diversity in chromosome number and arrangement is observed across the amniote phylogeny. Understanding how this diversity is generated is important for determining the role of chromosomal rearrangements in generating phenotypic variation and speciation. Gaining this understanding is achieved by reconstructing the ancestral genome arrangement based on comparisons of genome organization of extant species. Ancestral karyotypes for several amniote lineages have been reconstructed, mainly from cross-species chromosome painting data. The availability of anchored whole genome sequences for amniote species has increased the evolutionary depth and confidence of ancestral reconstructions from those made solely from chromosome painting data. Nonetheless, there are still several key lineages where the appropriate data required for ancestral reconstructions is lacking. This review highlights the progress that has been made towards understanding the chromosomal changes that have occurred during amniote evolution and the reconstruction of ancestral karyotypes.
Collapse
Affiliation(s)
- Janine E Deakin
- Institute for Applied Ecology, University of Canberra, Canberra, 2601, Australia,
| | | |
Collapse
|
44
|
Identification of the linkage group of the Z sex chromosomes of the sand lizard (Lacerta agilis, Lacertidae) and elucidation of karyotype evolution in lacertid lizards. Chromosoma 2014; 123:563-75. [DOI: 10.1007/s00412-014-0467-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/04/2014] [Accepted: 05/06/2014] [Indexed: 01/04/2023]
|
45
|
Ishijima J, Uno Y, Nishida C, Matsuda Y. Genomic structures of the kW1 loci on the Z and W chromosomes in ratite birds: structural changes at an early stage of W chromosome differentiation. Cytogenet Genome Res 2014; 142:255-67. [PMID: 24820528 DOI: 10.1159/000362479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2014] [Indexed: 11/19/2022] Open
Abstract
The W chromosome of ratite birds shows minimal morphological differentiation and retains homology of genetic linkage and gene order with a substantial stretch of the Z chromosome; however, the molecular structure in the differentiated region is still not well known. The kW1 sequence was isolated from the kiwi as a W-specific DNA marker for PCR-based molecular sexing of ratite birds. In ratite W chromosomes, this sequence commonly contains a ∼200-bp deletion. To characterize the very early event of avian sex chromosome differentiation, we performed molecular cytogenetic analyses of kW1 and its flanking sequences in paleognathous and neognathous birds and reptiles. Female-specific repeats were found in the kW1-flanking sequence of the cassowary (Casuarius casuarius), and the repeats have been amplified in the pericentromeric region of the W chromosomes of ratites, which may have resulted from the cessation of meiotic recombination between the Z and W chromosomes at an early stage of sex chromosome differentiation. The presence of the kW1 sequence in neognathous birds and a crocodilian species suggests that the kW1 sequence was present in the ancestral genome of Archosauria; however, it disappeared in other reptilian taxa and several lineages of neognathous birds.
Collapse
Affiliation(s)
- Junko Ishijima
- Laboratory of Animal Cytogenetics, Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
46
|
Matsubara K, Sarre SD, Georges A, Matsuda Y, Marshall Graves JA, Ezaz T. Highly differentiated ZW sex microchromosomes in the Australian Varanus species evolved through rapid amplification of repetitive sequences. PLoS One 2014; 9:e95226. [PMID: 24743344 PMCID: PMC3990592 DOI: 10.1371/journal.pone.0095226] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/24/2014] [Indexed: 11/20/2022] Open
Abstract
Transitions between sex determination systems have occurred in many lineages of squamates and it follows that novel sex chromosomes will also have arisen multiple times. The formation of sex chromosomes may be reinforced by inhibition of recombination and the accumulation of repetitive DNA sequences. The karyotypes of monitor lizards are known to be highly conserved yet the sex chromosomes in this family have not been fully investigated. Here, we compare male and female karyotypes of three Australian monitor lizards, Varanus acanthurus, V. gouldii and V. rosenbergi, from two different clades. V. acanthurus belongs to the acanthurus clade and the other two belong to the gouldii clade. We applied C-banding and comparative genomic hybridization to reveal that these species have ZZ/ZW sex micro-chromosomes in which the W chromosome is highly differentiated from the Z chromosome. In combination with previous reports, all six Varanus species in which sex chromosomes have been identified have ZZ/ZW sex chromosomes, spanning several clades on the varanid phylogeny, making it likely that the ZZ/ZW sex chromosome is ancestral for this family. However, repetitive sequences of these ZW chromosome pairs differed among species. In particular, an (AAT)n microsatellite repeat motif mapped by fluorescence in situ hybridization on part of W chromosome in V. acanthurus only, whereas a (CGG)n motif mapped onto the W chromosomes of V. gouldii and V. rosenbergi. Furthermore, the W chromosome probe for V. acanthurus produced hybridization signals only on the centromeric regions of W chromosomes of the other two species. These results suggest that the W chromosome sequences were not conserved between gouldii and acanthurus clades and that these repetitive sequences have been amplified rapidly and independently on the W chromosome of the two clades after their divergence.
Collapse
Affiliation(s)
- Kazumi Matsubara
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Stephen D. Sarre
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Yoichi Matsuda
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | | | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|