1
|
Mejia-Trujillo R, Zhao Q, Rahman A, Cenik ES. RNA Pol I activity maintains chromatin condensation and the H3K4me3 gradient essential for oogenesis, independent of ribosome production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.07.652530. [PMID: 40463076 PMCID: PMC12132276 DOI: 10.1101/2025.05.07.652530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2025]
Abstract
Oogenesis requires extensive and dynamic chromatin remodeling that primes gene promoters for later transcriptional activation during embryonic development. Here, we uncover a pivotal, non-canonical role for RNA Polymerase I (Pol I) in driving these chromatin state transitions during Caenorhabditis elegans oogenesis. Using the auxin-inducible degron system to selectively deplete either a Pol I-specific catalytic subunit or a ribosome assembly factor, we disentangle the consequences of impaired nucleolar integrity from reductions in ribosome biogenesis. Strikingly, although disrupting ribosome assembly caused minimal effects on oocyte production, loss of nucleolar structure via Pol I depletion led to severe meiotic chromosome abnormalities, widespread changes in chromatin accessibility, and a dampening of the typical distal-proximal H3K4me3 gradient required for oogenesis, resulting in fewer but significantly larger oocytes. Despite their promoters becoming more accessible, oogenesis genes did not show large changes in steady-state mRNA, consistent with transcriptional repression prior to fertilization. Instead, Pol I depletion prematurely remodeled oogenic chromatin, through a misdirection of H3K4me3 deposition towards promoters normally primed for zygotic genome activation. These findings reveal an epigenetic gating function for nucleolar integrity in oocyte maturation: Pol I preserves three-dimensional chromatin organization and maintains proper spatiotemporal regulation of histone modifications, independent of ribosome production. Given the evolutionary conservation of nucleolar dynamics and histone modifications during gametogenesis, our work suggests that nucleolar stress, whether from environmental factors, aging, or genetic disorders, could broadly compromise fertility by disrupting oogenic chromatin priming.
Collapse
Affiliation(s)
- Raquel Mejia-Trujillo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Qiuxia Zhao
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Ayesha Rahman
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Elif Sarinay Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
2
|
Tartakoff AM. How the concentric organization of the nucleolus and chromatin ensures accuracy of ribosome biogenesis and drives transport. Genetics 2025; 229:iyaf030. [PMID: 40152466 DOI: 10.1093/genetics/iyaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
The biogenetic transport of ribosomal subunit precursors must be conducted with precision to ensure production of functional ribosomes. With a focus on ribosome biogenesis in higher eukaryotic cells, we here discuss the following: (1) the concentric organization of the phases/subcompartments of the nucleus-including chromatin, (2) why the nucleolus reorganizes when ribosomal RNA synthesis is inhibited, and (3) the mechanism responsible for vectorial transport of particulate subunit intermediates between subcompartments. We call attention to evidence that (1) nucleolar proteins can access the entire volume of the nucleus, (2) that the packaging of rDNA is a key determinant of topology, (3) the constancy of contacts between subcompartments, and the likely importance of a Brownian ratchet for imparting both directionality and quality control upon transport. Transport appears to depend on "self-immersion," whereby the surfaces of particulate intermediates successively interact with components of the surrounding milieux, each of which may be thought of as a distinct solvent. The result is a vectorial and ordered process.
Collapse
Affiliation(s)
- Alan M Tartakoff
- Department of Pathology, Case Western Reserve University, 2109 Cornell Road, Cleveland, OH 44106, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Dogra P, Ferrolino MC, Khatun S, Tolbert M, Miao Q, Pruett-Miller SM, Pitre A, Tripathi S, Campbell GE, Bajpai R, Freyaldenhoven T, Gibbs E, Park CG, Kriwacki RW. Granular component sub-phases direct ribosome biogenesis in the nucleolus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.01.640913. [PMID: 40093048 PMCID: PMC11908144 DOI: 10.1101/2025.03.01.640913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The hierarchical, multiphase organization of the nucleolus underlies ribosome biogenesis. Ribonucleoprotein particles that regulate ribosomal subunit assembly are heterogeneously disposed in the granular component (GC) of the nucleolus. However, the molecular origins of the GC's spatial heterogeneity and its association with ribosomal subunit assembly remain poorly understood. Here, using super-resolution microscopy, we uncover that key GC biomolecules, including nucleophosmin (NPM1), surfeit locus protein 6 (SURF6), and ribosomal RNA (rRNA), are heterogeneously localized within sub-phases in the GC. In vitro reconstitution showed that these GC biomolecules form multiphase condensates with SURF6/rRNA-rich core and NPM1-rich shell, providing a mechanistic basis for GC's spatial heterogeneity. SURF6's association with rRNA is weakened upon ribosome subunit assembly, enabling NPM1 to extract assembled subunits from condensates-suggesting an assembly-line-like mechanism of subunit efflux from the GC. Our results establish a framework for understanding the heterogeneous structure of the GC and reveal how its distinct sub-phases facilitate ribosome subunit assembly.
Collapse
|
4
|
Scott JS, Al Ayadi L, Epeslidou E, van Scheppingen RH, Mukha A, Kaaij LJT, Lutz C, Prekovic S. Emerging roles of cohesin-STAG2 in cancer. Oncogene 2025; 44:277-287. [PMID: 39613934 DOI: 10.1038/s41388-024-03221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024]
Abstract
Cohesin, a crucial regulator of genome organisation, plays a fundamental role in maintaining chromatin architecture as well as gene expression. Among its subunits, STAG2 stands out because of its frequent deleterious mutations in various cancer types, such as bladder cancer and melanoma. Loss of STAG2 function leads to significant alterations in chromatin structure, disrupts transcriptional regulation, and impairs DNA repair pathways. In this review, we explore the molecular mechanisms underlying cohesin-STAG2 function, highlighting its roles in healthy cells and its contributions to cancer biology, showing how STAG2 dysfunction promotes tumourigenesis and presents opportunities for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Julia S Scott
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Loubna Al Ayadi
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | | | | | - Anna Mukha
- Department of Medical BioSciences, RadboudUMC, Nijmegen, The Netherlands
| | - Lucas J T Kaaij
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Stefan Prekovic
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Tran TTQ, Do TH, Pham TT, Luu PTT, Pham OM, Nguyen UQ, Vuong LD, Nguyen QN, Mai TV, Ho SV, Nguyen TT, Vo LTT. Hypermethylation at 45S rDNA promoter in cancers. PLoS One 2025; 20:e0311085. [PMID: 39775079 PMCID: PMC11706406 DOI: 10.1371/journal.pone.0311085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/11/2024] [Indexed: 01/11/2025] Open
Abstract
The ribosomal genes (rDNA genes) encode 47S rRNA which accounts for up to 80% of all cellular RNA. At any given time, no more than 50% of rDNA genes are actively transcribed, and the other half is silent by forming heterochromatin structures through DNA methylation. In cancer cells, upregulation of ribosome biogenesis has been recognized as a hallmark feature, thus, the reduced methylation of rDNA promoter has been thought to support conformational changes of chromatin accessibility and the subsequent increase in rDNA transcription. However, an increase in the heterochromatin state through rDNA hypermethylation can be a protective mechanism teetering on the brink of a threshold where cancer cells rarely successfully proliferate. Hence, clarifying hypo- or hypermethylation of rDNA will unravel its additional cellular functions, including organization of genome architecture and regulation of gene expression, in response to growth signaling, cellular stressors, and carcinogenesis. Using the bisulfite-based quantitative real-time methylation-specific PCR (qMSP) method after ensuring unbiased amplification and complete bisulfite conversion of the minuscule DNA amount of 1 ng, we established that the rDNA promoter was significantly hypermethylated in 107 breast, 65 lung, and 135 colon tumour tissue samples (46.81%, 51.02% and 96.60%, respectively) as compared with their corresponding adjacent normal samples (26.84%, 38.26% and 77.52%, respectively; p < 0.0001). An excessive DNA input of 1 μg resulted in double-stranded rDNA remaining unconverted even after bisulfite conversion, hence the dramatic drop in the single-stranded DNA that strictly required for bisulfite conversion, and leading to an underestimation of rDNA promoter methylation, in other words, a faulty hypomethylation status of the rDNA promoter. Our results are in line with the hypothesis that an increase in rDNA methylation is a natural pathway protecting rDNA repeats that are extremely sensitive to DNA damage in cancer cells.
Collapse
Affiliation(s)
- Trang Thi Quynh Tran
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
- VNU Institute of Microbiology and Biotechnology
| | - Trang Hien Do
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Tung The Pham
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Phương Thi Thu Luu
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Oanh Minh Pham
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | | | | | | | | | - Son Van Ho
- Department of Chemistry, 175 Hospital, Ho Chi Minh City, Vietnam
| | - Than Thi Nguyen
- Department of Chemistry, 175 Hospital, Ho Chi Minh City, Vietnam
| | - Lan Thi Thuong Vo
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
- VNU Institute of Microbiology and Biotechnology
| |
Collapse
|
6
|
Shi X, Li Y, Zhou H, Hou X, Yang J, Malik V, Faiola F, Ding J, Bao X, Modic M, Zhang W, Chen L, Mahmood SR, Apostolou E, Yang FC, Xu M, Xie W, Huang X, Chen Y, Wang J. DDX18 coordinates nucleolus phase separation and nuclear organization to control the pluripotency of human embryonic stem cells. Nat Commun 2024; 15:10803. [PMID: 39738032 PMCID: PMC11685540 DOI: 10.1038/s41467-024-55054-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Pluripotent stem cells possess a unique nuclear architecture characterized by a larger nucleus and more open chromatin, which underpins their ability to self-renew and differentiate. Here, we show that the nucleolus-specific RNA helicase DDX18 is essential for maintaining the pluripotency of human embryonic stem cells. Using techniques such as Hi-C, DNA/RNA-FISH, and biomolecular condensate analysis, we demonstrate that DDX18 regulates nucleolus phase separation and nuclear organization by interacting with NPM1 in the granular nucleolar component, driven by specific nucleolar RNAs. Loss of DDX18 disrupts nucleolar substructures, impairing centromere clustering and perinucleolar heterochromatin (PNH) formation. To probe this further, we develop NoCasDrop, a tool enabling precise nucleolar targeting and controlled liquid condensation, which restores centromere clustering and PNH integrity while modulating developmental gene expression. This study reveals how nucleolar phase separation dynamics govern chromatin organization and cell fate, offering fresh insights into the molecular regulation of stem cell pluripotency.
Collapse
Affiliation(s)
- Xianle Shi
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanjing Li
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai, China
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Xiukun Hou
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jihong Yang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Vikas Malik
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Francesco Faiola
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Junjun Ding
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xichen Bao
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Miha Modic
- The Francis Crick Institute and University College London, London, UK
| | - Weiyu Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Lingyi Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Syed Raza Mahmood
- Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Effie Apostolou
- Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Feng-Chun Yang
- Department of Molecular Medicine/Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mingjiang Xu
- Department of Molecular Medicine/Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Wei Xie
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xin Huang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Yong Chen
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
7
|
Nguyen KT, Doan HTT, Pham LTK, Roan DT, Agatsuma T, Doanh PN, Le TH. Nuclear ribosomal transcription units in Asian Paragonimus species (Paragonimidae: Platyhelminthes): genetic characteristics, polymorphism, and implications for intersuperfamilial phylogeny. Parasitol Res 2024; 123:368. [PMID: 39496997 DOI: 10.1007/s00436-024-08391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024]
Abstract
The entire transcribed sequences (from the 5' terminus of 18S to the 3' terminus of 28S rRNA genes) of the ribosomal transcription units (rTU*) of five Asian Paragonimus species were obtained and characterized. The rTU* length was 7661 bp for P. heterotremus (LC strain, Vietnam), 7422 bp for P. iloktsuenensis (Amami strain, Japan), 6932 bp for P. skrjabini miyazakii (OkuST1 strain, Japan), 7422 bp for P. ohirai (Kino strain, Japan), and three strains of P. westermani: 8616 bp (Megha strain, India), 7292 bp (Bogil strain, South Korea), and 7052 bp (QT2 strain, Vietnam) without intergenic spacer region (IGS). All seven Asian Paragonimus strains' genetic characteristics were described, including the length of individual genes/regions, repeat polymorphism, base composition, and skewness. To investigate the superfamilial relationships in the Xiphidiata, with a focus on the Troglotrematoidea and its associated superfamilies, we used the PhyML software package to create three comprehensive maximum-likelihood phylogenies. The datasets used were 83 concatenated 28S + 18S, 83 single complete 18S, and 157 single, partial 28S rDNA sequences, respectively, from entire rTUs and/or accessible ribosomal sequences of the same species from the suborders Xiphidiata, Echinostomata, and Haplosplanchnata, with a Schistosoma sequence as an outgroup. Three phylogenetic trees revealed that Echinostomata and Haplosplanchnata are monophyletic, while Xiphidiata is polyphyletic and contains the monophyletic Troglotrematoidea. The concatenated 18S + 28S and single 18S phylogenies revealed well-bootstrap supported seven superfamilies (Troglotrematoidea, Haploporoidea, Gorgoderoidea, Brachycladioidea, Microphalloidea, Plagiorchioidea, and Opecoeloidea) that are monophyletic in the Xiphidiata. The Haploporoidea was a basal superfamily nested close to the Gorgoderoidea and Troglotrematoidea and was not supported as a distinct suborder Haploporata. Six of seven xiphidiatan superfamilies were monophyletic in the partial 28S phylogeny, with the exception of Opecoeloidea, which was separated into two different subclades: Opecoelidae and Stenakridae/Zdzitowieckitrematidae. The monophyletic Haploporoidea/Haploporata was separated from the Gorgoderoidea associates and placed in a marginal group in Xiphidiata. There were two notable clusters in the Paragonimidae: mixed-Paragonimus, which included a fairly compact group of P. heterotremus strains, and P. westermani/siamensis, which was divided into geographical/country strain groups. In conclusion, combined ribosomal rDNA sequences were more effective than single rDNA markers in resolving interfamilial and familial relationships. The ribosomal datasets presented here will be useful for taxonomic reassessment, as well as evolutionary and population genetics research in the Troglotrematoidea and other superfamilies in the Xiphidiata and the class Trematoda.
Collapse
MESH Headings
- Paragonimus/classification
- Paragonimus/genetics
- Paragonimus/isolation & purification
- RNA, Ribosomal, 18S
- RNA, Ribosomal, 28S
- DNA, Ribosomal/genetics
- DNA, Helminth/genetics
- Genes, Helminth/genetics
- Genetics, Population
- Animals
- Transcription, Genetic
- Cell Nucleus/genetics
- Asia
- Metacercariae/isolation & purification
- Metacercariae/pathogenicity
- Disease Models, Animal
- Paragonimiasis/parasitology
- Paragonimiasis/transmission
- Cats
- Dogs
- Brachyura/parasitology
- Molecular Sequence Annotation
- Polymorphism, Genetic
Collapse
Affiliation(s)
- Khue Thi Nguyen
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd, Cau Giay, Hanoi, Vietnam
| | - Huong Thi Thanh Doan
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd, Cau Giay, Hanoi, Vietnam
| | - Linh Thi Khanh Pham
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd, Cau Giay, Hanoi, Vietnam
| | - Do Thi Roan
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd, Cau Giay, Hanoi, Vietnam
| | - Takeshi Agatsuma
- Department of Environmental Health Sciences, Kochi Medical School, Kohasu, Oko-Cho 185-1, Nankoku, Kochi, 783-8505, Japan
| | - Pham Ngoc Doanh
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thanh Hoa Le
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd, Cau Giay, Hanoi, Vietnam.
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd, Cau Giay, Hanoi, Vietnam.
| |
Collapse
|
8
|
Rajshekar S, Adame-Arana O, Bajpai G, Colmenares S, Lin K, Safran S, Karpen GH. Affinity hierarchies and amphiphilic proteins underlie the co-assembly of nucleolar and heterochromatin condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.06.547894. [PMID: 37808710 PMCID: PMC10557603 DOI: 10.1101/2023.07.06.547894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Nucleoli are surrounded by Pericentromeric Heterochromatin (PCH), reflecting a close spatial association between the two largest biomolecular condensates in eukaryotic nuclei. Nucleoli are the sites of ribosome synthesis, while the repeat-rich PCH is essential for chromosome segregation, genome stability, and transcriptional silencing. How and why these two distinct condensates co-assemble is unclear. Here, using high-resolution live imaging of Drosophila embryogenesis, we find that de novo establishment of PCH around the nucleolus is highly dynamic, transitioning from the nuclear edge to surrounding the nucleolus. Eliminating the nucleolus by removing the ribosomal RNA genes (rDNA) resulted in increased PCH compaction and subsequent reorganization into a toroidal structure. In addition, in embryos lacking rDNA, some nucleolar proteins were redistributed into new bodies or 'neocondensates', including enrichment in the PCH toroidal hole. Combining these observations with physical modeling revealed that nucleolar-PCH associations can be mediated by a hierarchy of interaction strengths between PCH, nucleoli, and 'amphiphilic' protein(s) that have affinities for both nucleolar and PCH components. We validated this model by identifying a candidate amphiphile, a DEAD-Box RNA Helicase called Pitchoune, whose depletion or mutation of its PCH interaction motif disrupted PCH-nucleolar associations. Together, this study unveils a dynamic program for establishing nucleolar-PCH associations during animal development, demonstrates that nucleoli are required for normal PCH organization, and identifies Pitchoune as an amphiphilic molecular link required for PCH-nucleolar associations.
Collapse
Affiliation(s)
- Srivarsha Rajshekar
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, USA
| | - Omar Adame-Arana
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Gaurav Bajpai
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
- Department of Physics, Northeastern University, Boston, USA
| | - Serafin Colmenares
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, USA
| | - Kyle Lin
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, USA
| | - Samuel Safran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Gary H Karpen
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, USA
- Division of Biological Sciences and the Environment, Lawrence Berkeley National Laboratory, Berkeley, USA
| |
Collapse
|
9
|
Panichnantakul P, Aguilar LC, Daynard E, Guest M, Peters C, Vogel J, Oeffinger M. Protein UFMylation regulates early events during ribosomal DNA-damage response. Cell Rep 2024; 43:114738. [PMID: 39277864 DOI: 10.1016/j.celrep.2024.114738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/17/2024] Open
Abstract
The highly repetitive and transcriptionally active ribosomal DNA (rDNA) genes are exceedingly susceptible to genotoxic stress. Induction of DNA double-strand breaks (DSBs) in rDNA repeats is associated with ataxia-telangiectasia-mutated (ATM)-dependent rDNA silencing and nucleolar reorganization where rDNA is segregated into nucleolar caps. However, the regulatory events underlying this response remain elusive. Here, we identify protein UFMylation as essential for rDNA-damage response in human cells. We further show the only ubiquitin-fold modifier 1 (UFM1)-E3 ligase UFL1 and its binding partner DDRGK1 localize to nucleolar caps upon rDNA damage and that UFL1 loss impairs ATM activation and rDNA transcriptional silencing, leading to reduced rDNA segregation. Moreover, analysis of nuclear and nucleolar UFMylation targets in response to DSB induction further identifies key DNA-repair factors including ATM, in addition to chromatin and actin network regulators. Taken together, our data provide evidence of an essential role for UFMylation in orchestrating rDNA DSB repair.
Collapse
Affiliation(s)
- Pudchalaluck Panichnantakul
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Lisbeth C Aguilar
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Evan Daynard
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Mackenzie Guest
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Colten Peters
- Department of Biology, Faculty of Medicine, McGill University, Montréal, QC H3A 1B1, Canada
| | - Jackie Vogel
- Department of Biology, Faculty of Medicine, McGill University, Montréal, QC H3A 1B1, Canada
| | - Marlene Oeffinger
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada; Département de biochimie et médicine moléculaire, Faculté de Médicine, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
10
|
Potapova T, Kostos P, McKinney S, Borchers M, Haug J, Guarracino A, Solar S, Gogol M, Monfort Anez G, de Lima LG, Wang Y, Hall K, Hoffman S, Garrison E, Phillippy AM, Gerton JL. Epigenetic control and inheritance of rDNA arrays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612795. [PMID: 39372739 PMCID: PMC11451732 DOI: 10.1101/2024.09.13.612795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Ribosomal RNA (rRNA) genes exist in multiple copies arranged in tandem arrays known as ribosomal DNA (rDNA). The total number of gene copies is variable, and the mechanisms buffering this copy number variation remain unresolved. We surveyed the number, distribution, and activity of rDNA arrays at the level of individual chromosomes across multiple human and primate genomes. Each individual possessed a unique fingerprint of copy number distribution and activity of rDNA arrays. In some cases, entire rDNA arrays were transcriptionally silent. Silent rDNA arrays showed reduced association with the nucleolus and decreased interchromosomal interactions, indicating that the nucleolar organizer function of rDNA depends on transcriptional activity. Methyl-sequencing of flow-sorted chromosomes, combined with long read sequencing, showed epigenetic modification of rDNA promoter and coding region by DNA methylation. Silent arrays were in a closed chromatin state, as indicated by the accessibility profiles derived from Fiber-seq. Removing DNA methylation restored the transcriptional activity of silent arrays. Array activity status remained stable through the iPS cell re-programming. Family trio analysis demonstrated that the inactive rDNA haplotype can be traced to one of the parental genomes, suggesting that the epigenetic state of rDNA arrays may be heritable. We propose that the dosage of rRNA genes is epigenetically regulated by DNA methylation, and these methylation patterns specify nucleolar organizer function and can propagate transgenerationally.
Collapse
Affiliation(s)
- Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Paxton Kostos
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Jeff Haug
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Steven Solar
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Madelaine Gogol
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | | | - Yan Wang
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Kate Hall
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adam M. Phillippy
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
11
|
González-Arzola K. The nucleolus: Coordinating stress response and genomic stability. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195029. [PMID: 38642633 DOI: 10.1016/j.bbagrm.2024.195029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
The perception that the nucleoli are merely the organelles where ribosome biogenesis occurs is challenged. Only around 30 % of nucleolar proteins are solely involved in producing ribosomes. Instead, the nucleolus plays a critical role in controlling protein trafficking during stress and, according to its dynamic nature, undergoes continuous protein exchange with nucleoplasm under various cellular stressors. Hence, the concept of nucleolar stress has evolved as cellular insults that disrupt the structure and function of the nucleolus. Considering the emerging role of this organelle in DNA repair and the fact that rDNAs are the most fragile genomic loci, therapies targeting the nucleoli are increasingly being developed. Besides, drugs that target ribosome synthesis and induce nucleolar stress can be used in cancer therapy. In contrast, agents that regulate nucleolar activity may be a potential treatment for neurodegeneration caused by abnormal protein accumulation in the nucleolus. Here, I explore the roles of nucleoli beyond their ribosomal functions, highlighting the factors triggering nucleolar stress and their impact on genomic stability.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, 41092 Seville, Spain; Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
12
|
Luo X, Liu Y, Gong X, Ye M, Xiao Q, Zeng Z. Karyotype Description and Comparative Chromosomal Mapping of 5S rDNA in 42 Species. Genes (Basel) 2024; 15:647. [PMID: 38790276 PMCID: PMC11121585 DOI: 10.3390/genes15050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/29/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
This study was conducted to evaluate the 5S rDNA site number, position, and origin of signal pattern diversity in 42 plant species using fluorescence in situ hybridization. The species were selected based on the discovery of karyotype rearrangement, or because 5S rDNA had not yet been explored the species. The chromosome number varied from 14 to 160, and the chromosome length ranged from 0.63 to 6.88 μm, with 21 species having small chromosomes (<3 μm). The chromosome numbers of three species and the 5S rDNA loci of nineteen species are reported for the first time. Six 5S rDNA signal pattern types were identified. The 5S rDNA varied and was abundant in signal site numbers (2-18), positions (distal, proximal, outside of chromosome arms), and even in signal intensity. Variation in the numbers and locations of 5S rDNA was observed in 20 species, whereas an extensive stable number and location of 5S rDNA was found in 22 species. The potential origin of the signal pattern diversity was proposed and discussed. These data characterized the variability of 5S rDNA within the karyotypes of the 42 species that exhibited chromosomal rearrangements and provided anchor points for genetic physical maps.
Collapse
Affiliation(s)
- Xiaomei Luo
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (X.G.); (M.Y.)
| | - Yunke Liu
- Chengdu Academy of Agriculture and Forestry Sciences, Nongke Road 200, Wenjiang District, Chengdu 611130, China; (Y.L.); (Q.X.); (Z.Z.)
| | - Xiao Gong
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (X.G.); (M.Y.)
| | - Meng Ye
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (X.G.); (M.Y.)
| | - Qiangang Xiao
- Chengdu Academy of Agriculture and Forestry Sciences, Nongke Road 200, Wenjiang District, Chengdu 611130, China; (Y.L.); (Q.X.); (Z.Z.)
| | - Zhen Zeng
- Chengdu Academy of Agriculture and Forestry Sciences, Nongke Road 200, Wenjiang District, Chengdu 611130, China; (Y.L.); (Q.X.); (Z.Z.)
| |
Collapse
|
13
|
Jiang W, Qiao Q, Chen J, Bao P, Tao Y, Zhang Y, Xu Z. Rna Buffering Fluorogenic Probe for Nucleolar Morphology Stable Imaging And Nucleolar Stress-Generating Agents Screening. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309743. [PMID: 38326089 PMCID: PMC11022735 DOI: 10.1002/advs.202309743] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Indexed: 02/09/2024]
Abstract
In the realm of cell research, membraneless organelles have become a subject of increasing interest. However, their ever-changing and amorphous morphological characteristics have long presented a formidable challenge when it comes to studying their structure and function. In this paper, a fluorescent probe Nu-AN is reported, which exhibits the remarkable capability to selectively bind to and visualize the nucleolus morphology, the largest membraneless organelle within the nucleus. Nu-AN demonstrates a significant enhancement in fluorescence upon its selective binding to nucleolar RNA, due to the inhibited twisted intramolecular charge-transfer (TICT) and reduced hydrogen bonding with water. What sets Nu-AN apart is its neutral charge and weak interaction with nucleolus RNA, enabling it to label the nucleolus selectively and reversibly. This not only reduces interference but also permits the replacement of photobleached probes with fresh ones outside the nucleolus, thereby preserving imaging photostability. By closely monitoring morphology-specific changes in the nucleolus with this buffering fluorogenic probe, screenings for agents are conducted that induce nucleolar stress within living cells.
Collapse
Affiliation(s)
- Wenchao Jiang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
| | - Jie Chen
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Pengjun Bao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yi Tao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yinchan Zhang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
14
|
Pantoja MHDA, Novais FJD, Mourão GB, Mateescu RG, Poleti MD, Beline M, Monteiro CP, Fukumasu H, Titto CG. Exploring candidate genes for heat tolerance in ovine through liver gene expression. Heliyon 2024; 10:e25692. [PMID: 38370230 PMCID: PMC10869868 DOI: 10.1016/j.heliyon.2024.e25692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
Thermotolerance has become an essential factor in the prevention of the adverse effects of heat stress, but it varies among animals. Identifying genes related to heat adaptability traits is important for improving thermotolerance and for selecting more productive animals in hot environments. The primary objective of this research was to find candidate genes in the liver that play a crucial role in the heat stress response of Santa Ines sheep, which exhibit varying levels of heat tolerance. To achieve this goal, 80 sheep were selected based on their thermotolerance and placed in a climate chamber for 10 days, during which the average temperature was maintained at 36 °C from 10 a.m. to 4 p.m. and 28 °C from 4 p.m. to 10 a.m. A subset of 14 extreme animals, with seven thermotolerant and seven non-thermotolerant animals based on heat loss (rectal temperature), were selected for liver sampling. RNA sequencing and differential gene expression analysis were performed. Thermotolerant sheep showed higher expression of genes GPx3, RGS6, GPAT3, VLDLR, LOC101108817, and EVC. These genes were mainly related to the Hedgehog signaling pathway, glutathione metabolism, glycerolipid metabolism, and thyroid hormone synthesis. These enhanced pathways in thermotolerant animals could potentially mitigate the negative effects of heat stress, conferring greater heat resistance.
Collapse
Affiliation(s)
- Messy Hannear de Andrade Pantoja
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Francisco José de Novais
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Gerson Barreto Mourão
- Escola Superior de Agricultura Luiz de Queiroz, Universidade São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Raluca G. Mateescu
- Department of Animal Science, University of Florida, Gainesville, FL, United States
| | - Mirele Daiana Poleti
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Mariane Beline
- Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061-0002, United States
| | - Camylla Pedrosa Monteiro
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Heidge Fukumasu
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Cristiane Gonçalves Titto
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| |
Collapse
|
15
|
Filippopoulou C, Thomé CC, Perdikari S, Ntini E, Simos G, Bohnsack KE, Chachami G. Hypoxia-driven deSUMOylation of EXOSC10 promotes adaptive changes in the transcriptome profile. Cell Mol Life Sci 2024; 81:58. [PMID: 38279024 PMCID: PMC10817850 DOI: 10.1007/s00018-023-05035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/12/2023] [Accepted: 11/06/2023] [Indexed: 01/28/2024]
Abstract
Reduced oxygen availability (hypoxia) triggers adaptive cellular responses via hypoxia-inducible factor (HIF)-dependent transcriptional activation. Adaptation to hypoxia also involves transcription-independent processes like post-translational modifications; however, these mechanisms are poorly characterized. Investigating the involvement of protein SUMOylation in response to hypoxia, we discovered that hypoxia strongly decreases the SUMOylation of Exosome subunit 10 (EXOSC10), the catalytic subunit of the RNA exosome, in an HIF-independent manner. EXOSC10 is a multifunctional exoribonuclease enriched in the nucleolus that mediates the processing and degradation of various RNA species. We demonstrate that the ubiquitin-specific protease 36 (USP36) SUMOylates EXOSC10 and we reveal SUMO1/sentrin-specific peptidase 3 (SENP3) as the enzyme-mediating deSUMOylation of EXOSC10. Under hypoxia, EXOSC10 dissociates from USP36 and translocates from the nucleolus to the nucleoplasm concomitant with its deSUMOylation. Loss of EXOSC10 SUMOylation does not detectably affect rRNA maturation but affects the mRNA transcriptome by modulating the expression levels of hypoxia-related genes. Our data suggest that dynamic modulation of EXOSC10 SUMOylation and localization under hypoxia regulates the RNA degradation machinery to facilitate cellular adaptation to low oxygen conditions.
Collapse
Affiliation(s)
- Chrysa Filippopoulou
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Chairini C Thomé
- Department of Molecular Biology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Sofia Perdikari
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Greece
| | - Evgenia Ntini
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Georgia Chachami
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| |
Collapse
|
16
|
Xiang Y, Zhang M, Hu Y, Wang L, Xiao X, Yin F, Cao X, Sui M, Yao Y. Epigenetic modifications of 45S rDNA associates with the disruption of nucleolar organisation during Cd stress response in Pakchoi. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115859. [PMID: 38157795 DOI: 10.1016/j.ecoenv.2023.115859] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/06/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
The role of the nucleolus in Pakchoi response to Cd stress remains largely unknown. In this work, we focus on exploring the underling mechanism between nucleolus disruption and epigenetic modification in Cd stressed-Pakchoi. Our results indicated that the proportion of nucleolus disruption, decondensation of 45 S rDNA chromatin, and a simultaneous increase in 5' external transcribed spacer region (ETS) transcription were observed with increasing Cd concentration, accompanied by genome-wide alterations in the levels of histone acetylation and methylation. Further results showed that Cd treatment exhibited a significant increase in H3K9ac, H4K5ac, and H3K9me2 levels occurred in promoter regions of the 45 S rDNA. Additionally, DNA methylation assays in the 45 S rDNA promoter region revealed that individual site-specific hypomethylation may be engaged in the activation of 45 S rDNA transcription. Our study provides some molecular mechanisms for the linkage between Cd stress, rDNA epigenetic modifications, and nucleolus disintegration in plants.
Collapse
Affiliation(s)
- Yan Xiang
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ming Zhang
- Department of Biotechnology, Jiangxi Biotech Vocational College, Nanchang 330200, China
| | - Yuanfeng Hu
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Liangdeng Wang
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xufeng Xiao
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Fengrui Yin
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoqun Cao
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meilan Sui
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuekeng Yao
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
17
|
Potapova TA, Unruh JR, Conkright-Fincham J, Banks CAS, Florens L, Schneider DA, Gerton JL. Distinct states of nucleolar stress induced by anticancer drugs. eLife 2023; 12:RP88799. [PMID: 38099650 PMCID: PMC10723795 DOI: 10.7554/elife.88799] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Ribosome biogenesis is a vital and highly energy-consuming cellular function occurring primarily in the nucleolus. Cancer cells have an elevated demand for ribosomes to sustain continuous proliferation. This study evaluated the impact of existing anticancer drugs on the nucleolus by screening a library of anticancer compounds for drugs that induce nucleolar stress. For a readout, a novel parameter termed 'nucleolar normality score' was developed that measures the ratio of the fibrillar center and granular component proteins in the nucleolus and nucleoplasm. Multiple classes of drugs were found to induce nucleolar stress, including DNA intercalators, inhibitors of mTOR/PI3K, heat shock proteins, proteasome, and cyclin-dependent kinases (CDKs). Each class of drugs induced morphologically and molecularly distinct states of nucleolar stress accompanied by changes in nucleolar biophysical properties. In-depth characterization focused on the nucleolar stress induced by inhibition of transcriptional CDKs, particularly CDK9, the main CDK that regulates RNA Pol II. Multiple CDK substrates were identified in the nucleolus, including RNA Pol I- recruiting protein Treacle, which was phosphorylated by CDK9 in vitro. These results revealed a concerted regulation of RNA Pol I and Pol II by transcriptional CDKs. Our findings exposed many classes of chemotherapy compounds that are capable of inducing nucleolar stress, and we recommend considering this in anticancer drug development.
Collapse
Affiliation(s)
| | - Jay R Unruh
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | | | | | | - David Alan Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Jennifer L Gerton
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical CenterKansas CityUnited States
| |
Collapse
|
18
|
Martin RM, de Almeida MR, Gameiro E, de Almeida SF. Live-cell imaging unveils distinct R-loop populations with heterogeneous dynamics. Nucleic Acids Res 2023; 51:11010-11023. [PMID: 37819055 PMCID: PMC10639055 DOI: 10.1093/nar/gkad812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
We have developed RHINO, a genetically encoded sensor that selectively binds RNA:DNA hybrids enabling live-cell imaging of cellular R-loops. RHINO comprises a tandem array of three copies of the RNA:DNA hybrid binding domain of human RNase H1 connected by optimized linker segments and fused to a fluorescent protein. This tool allows the measurement of R-loop abundance and dynamics in live cells with high specificity and sensitivity. Using RHINO, we provide a kinetic framework for R-loops at nucleoli, telomeres and protein-coding genes. Our findings demonstrate that R-loop dynamics vary significantly across these regions, potentially reflecting the distinct roles R-loops play in different chromosomal contexts. RHINO is a powerful tool for investigating the role of R-loops in cellular processes and their contribution to disease development and progression.
Collapse
Affiliation(s)
- Robert M Martin
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Madalena R de Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Eduardo Gameiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Sérgio F de Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
19
|
Ortega JA, Sasselli IR, Boccitto M, Fleming AC, Fortuna TR, Li Y, Sato K, Clemons TD, Mckenna ED, Nguyen TP, Anderson EN, Asin J, Ichida JK, Pandey UB, Wolin SL, Stupp SI, Kiskinis E. CLIP-Seq analysis enables the design of protective ribosomal RNA bait oligonucleotides against C9ORF72 ALS/FTD poly-GR pathophysiology. SCIENCE ADVANCES 2023; 9:eadf7997. [PMID: 37948524 PMCID: PMC10637751 DOI: 10.1126/sciadv.adf7997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia patients with a hexanucleotide repeat expansion in C9ORF72 (C9-HRE) accumulate poly-GR and poly-PR aggregates. The pathogenicity of these arginine-rich dipeptide repeats (R-DPRs) is thought to be driven by their propensity to bind low-complexity domains of multivalent proteins. However, the ability of R-DPRs to bind native RNA and the significance of this interaction remain unclear. Here, we used computational and experimental approaches to characterize the physicochemical properties of R-DPRs and their interaction with RNA. We find that poly-GR predominantly binds ribosomal RNA (rRNA) in cells and exhibits an interaction that is predicted to be energetically stronger than that for associated ribosomal proteins. Critically, modified rRNA "bait" oligonucleotides restore poly-GR-associated ribosomal deficits and ameliorate poly-GR toxicity in patient neurons and Drosophila models. Our work strengthens the hypothesis that ribosomal function is impaired by R-DPRs, highlights a role for direct rRNA binding in mediating ribosomal dysfunction, and presents a strategy for protecting against C9-HRE pathophysiological mechanisms.
Collapse
Affiliation(s)
- Juan A. Ortega
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, Barcelona 08907, Spain
| | - Ivan R. Sasselli
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro de Fisica de Materiales (CFM), CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Marco Boccitto
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Andrew C. Fleming
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tyler R. Fortuna
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Yichen Li
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kohei Sato
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
| | - Tristan D. Clemons
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth D. Mckenna
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Thao P. Nguyen
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eric N. Anderson
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Jesus Asin
- Department of Statistical Methods, School of Engineering, University of Zaragoza, Zaragoza 50018, Spain
| | - Justin K. Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Udai B. Pandey
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Sandra L. Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Samuel I. Stupp
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
20
|
Daiß JL, Griesenbeck J, Tschochner H, Engel C. Synthesis of the ribosomal RNA precursor in human cells: mechanisms, factors and regulation. Biol Chem 2023; 404:1003-1023. [PMID: 37454246 DOI: 10.1515/hsz-2023-0214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
The ribosomal RNA precursor (pre-rRNA) comprises three of the four ribosomal RNAs and is synthesized by RNA polymerase (Pol) I. Here, we describe the mechanisms of Pol I transcription in human cells with a focus on recent insights gained from structure-function analyses. The comparison of Pol I-specific structural and functional features with those of other Pols and with the excessively studied yeast system distinguishes organism-specific from general traits. We explain the organization of the genomic rDNA loci in human cells, describe the Pol I transcription cycle regarding structural changes in the enzyme and the roles of human Pol I subunits, and depict human rDNA transcription factors and their function on a mechanistic level. We disentangle information gained by direct investigation from what had apparently been deduced from studies of the yeast enzymes. Finally, we provide information about how Pol I mutations may contribute to developmental diseases, and why Pol I is a target for new cancer treatment strategies, since increased rRNA synthesis was correlated with rapidly expanding cell populations.
Collapse
Affiliation(s)
- Julia L Daiß
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Herbert Tschochner
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Christoph Engel
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
21
|
Yang ZY, Yan XC, Zhang JYL, Liang L, Gao CC, Zhang PR, Liu Y, Sun JX, Ruan B, Duan JL, Wang RN, Feng XX, Che B, Xiao T, Han H. Repression of rRNA gene transcription by endothelial SPEN deficiency normalizes tumor vasculature via nucleolar stress. J Clin Invest 2023; 133:e159860. [PMID: 37607001 PMCID: PMC10575731 DOI: 10.1172/jci159860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
Human cancers induce a chaotic, dysfunctional vasculature that promotes tumor growth and blunts most current therapies; however, the mechanisms underlying the induction of a dysfunctional vasculature have been unclear. Here, we show that split end (SPEN), a transcription repressor, coordinates rRNA synthesis in endothelial cells (ECs) and is required for physiological and tumor angiogenesis. SPEN deficiency attenuated EC proliferation and blunted retinal angiogenesis, which was attributed to p53 activation. Furthermore, SPEN knockdown activated p53 by upregulating noncoding promoter RNA (pRNA), which represses rRNA transcription and triggers p53-mediated nucleolar stress. In human cancer biopsies, a low endothelial SPEN level correlated with extended overall survival. In mice, endothelial SPEN deficiency compromised rRNA expression and repressed tumor growth and metastasis by normalizing tumor vessels, and this was abrogated by p53 haploinsufficiency. rRNA gene transcription is driven by RNA polymerase I (RNPI). We found that CX-5461, an RNPI inhibitor, recapitulated the effect of Spen ablation on tumor vessel normalization and combining CX-5461 with cisplatin substantially improved the efficacy of treating tumors in mice. Together, these results demonstrate that SPEN is required for angiogenesis by repressing pRNA to enable rRNA gene transcription and ribosomal biogenesis and that RNPI represents a target for tumor vessel normalization therapy of cancer.
Collapse
|
22
|
de Menezes Cavalcante Sassi F, Sember A, Deon GA, Liehr T, Padutsch N, Oyakawa OT, Vicari MR, Bertollo LAC, Moreira-Filho O, de Bello Cioffi M. Homeology of sex chromosomes in Amazonian Harttia armored catfishes supports the X-fission hypothesis for the X 1X 2Y sex chromosome system origin. Sci Rep 2023; 13:15756. [PMID: 37735233 PMCID: PMC10514344 DOI: 10.1038/s41598-023-42617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
The Neotropical monophyletic catfish genus Harttia represents an excellent model to study karyotype and sex chromosome evolution in teleosts. Its species split into three phylogenetic clades distributed along the Brazilian territory and they differ widely in karyotype traits, including the presence of standard or multiple sex chromosome systems in some members. Here, we investigate the chromosomal rearrangements and associated synteny blocks involved in the origin of a multiple X1X2Y sex chromosome system present in three out of six sampled Amazonian-clade species. Using 5S and 18S ribosomal DNA fluorescence in situ hybridization and whole chromosome painting with probes corresponding to X1 and X2 chromosomes of X1X2Y system from H. punctata, we confirm previous assumptions that X1X2Y sex chromosome systems of H. punctata, H. duriventris and H. villasboas represent the same linkage groups which also form the putative XY sex chromosomes of H. rondoni. The shared homeology between X1X2Y sex chromosomes suggests they might have originated once in the common ancestor of these closely related species. A joint arrangement of mapped H. punctata X1 and X2 sex chromosomes in early diverging species of different Harttia clades suggests that the X1X2Y sex chromosome system may have formed through an X chromosome fission rather than previously proposed Y-autosome fusion.
Collapse
Affiliation(s)
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská, 89, Liběchov, Czech Republic
| | - Geize Aparecida Deon
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Thomas Liehr
- Institut für Humangenetik, Universitätsklinikum Jena, 07747, Jena, Germany.
| | - Niklas Padutsch
- Institut für Humangenetik, Universitätsklinikum Jena, 07747, Jena, Germany
| | | | - Marcelo Ricardo Vicari
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Luiz Antonio Carlos Bertollo
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Orlando Moreira-Filho
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
23
|
Wang W, Zhang X, Garcia S, Leitch AR, Kovařík A. Intragenomic rDNA variation - the product of concerted evolution, mutation, or something in between? Heredity (Edinb) 2023; 131:179-188. [PMID: 37402824 PMCID: PMC10462631 DOI: 10.1038/s41437-023-00634-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
The classical model of concerted evolution states that hundreds to thousands of ribosomal DNA (rDNA) units undergo homogenization, making the multiple copies of the individual units more uniform across the genome than would be expected given mutation frequencies and gene redundancy. While the universality of this over 50-year-old model has been confirmed in a range of organisms, advanced high throughput sequencing techniques have also revealed that rDNA homogenization in many organisms is partial and, in rare cases, even apparently failing. The potential underpinning processes leading to unexpected intragenomic variation have been discussed in a number of studies, but a comprehensive understanding remains to be determined. In this work, we summarize information on variation or polymorphisms in rDNAs across a wide range of taxa amongst animals, fungi, plants, and protists. We discuss the definition and description of concerted evolution and describe whether incomplete concerted evolution of rDNAs predominantly affects coding or non-coding regions of rDNA units and if it leads to the formation of pseudogenes or not. We also discuss the factors contributing to rDNA variation, such as interspecific hybridization, meiotic cycles, rDNA expression status, genome size, and the activity of effector genes involved in genetic recombination, epigenetic modifications, and DNA editing. Finally, we argue that a combination of approaches is needed to target genetic and epigenetic phenomena influencing incomplete concerted evolution, to give a comprehensive understanding of the evolution and functional consequences of intragenomic variation in rDNA.
Collapse
Affiliation(s)
- Wencai Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xianzhi Zhang
- Department of Horticulture, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Sònia Garcia
- Institut Botànic de Barcelona, IBB (CSIC - Ajuntament de Barcelona), Barcelona, Spain
| | - Andrew R Leitch
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Aleš Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, CZ-61200, Czech Republic.
| |
Collapse
|
24
|
Yang XM, Wang XQ, Hu LP, Feng MX, Zhou YQ, Li DX, Li J, Miao XC, Zhang YL, Yao LL, Nie HZ, Huang S, Xia Q, Zhang XL, Jiang SH, Zhang ZG. Nucleolar HEAT Repeat Containing 1 Up-regulated by the Mechanistic Target of Rapamycin Complex 1 Signaling Promotes Hepatocellular Carcinoma Growth by Dominating Ribosome Biogenesis and Proteome Homeostasis. Gastroenterology 2023; 165:629-646. [PMID: 37247644 DOI: 10.1053/j.gastro.2023.05.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 04/14/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND & AIMS Hyperactivation of ribosome biogenesis leads to hepatocyte transformation and plays pivotal roles in hepatocellular carcinoma (HCC) development. We aimed to identify critical ribosome biogenesis proteins that are overexpressed and crucial in HCC progression. METHODS HEAT repeat containing 1 (HEATR1) expression and clinical correlations were analyzed using The Cancer Genome Atlas and Gene Expression Omnibus databases and further evaluated by immunohistochemical analysis of an HCC tissue microarray. Gene expression was knocked down by small interfering RNA. HEATR1-knockdown cells were subjected to viability, cell cycle, and apoptosis assays and used to establish subcutaneous and orthotopic tumor models. Chromatin immunoprecipitation and quantitative polymerase chain reaction were performed to detect the association of candidate proteins with specific DNA sequences. Endogenous coimmunoprecipitation combined with mass spectrometry was used to identify protein interactions. We performed immunoblot and immunofluorescence assays to detect and localize proteins in cells. The nucleolus ultrastructure was detected by transmission electron microscopy. Click-iT (Thermo Fisher Scientific) RNA imaging and puromycin incorporation assays were used to measure nascent ribosomal RNA and protein synthesis, respectively. Proteasome activity, 20S proteasome foci formation, and protein stability were evaluated in HEATR1-knockdown HCC cells. RESULTS HEATR1 was the most up-regulated gene in a set of ribosome biogenesis mediators in HCC samples. High expression of HEATR1 was associated with poor survival and malignant clinicopathologic features in patients with HCC and contributed to HCC growth in vitro and in vivo. HEATR1 expression was regulated by the transcription factor specificity protein 1, which can be activated by insulin-like growth factor 1-mammalian target of rapamycin complex 1 signaling in HCC cells. HEATR1 localized predominantly in the nucleolus, bound to ribosomal DNA, and was associated with RNA polymerase I transcription/processing factors. Knockdown of HEATR1 disrupted ribosomal RNA biogenesis and impaired nascent protein synthesis, leading to reduced cytoplasmic proteasome activity and inhibitory-κB/nuclear factor-κB signaling. Moreover, HEATR1 knockdown induced nucleolar stress with increased nuclear proteasome activity and inactivation of the nucleophosmin 1-MYC axis. CONCLUSIONS Our study revealed that HEATR1 is up-regulated by insulin-like growth factor 1-mammalian target of rapamycin complex 1-specificity protein 1 signaling in HCC and functions as a crucial regulator of ribosome biogenesis and proteome homeostasis to promote HCC development.
Collapse
Affiliation(s)
- Xiao-Mei Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Qi Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Peng Hu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Xuan Feng
- Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao-Qi Zhou
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Xue Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Cao Miao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Li Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin-Li Yao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-Zhen Nie
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Huang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Xia
- Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue-Li Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shu-Heng Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhi-Gang Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
25
|
Dash S, Lamb MC, Lange JJ, McKinney MC, Tsuchiya D, Guo F, Zhao X, Corbin TJ, Kirkman M, Delventhal K, Moore EL, McKinney S, Shiang R, Trainor PA. rRNA transcription is integral to phase separation and maintenance of nucleolar structure. PLoS Genet 2023; 19:e1010854. [PMID: 37639467 PMCID: PMC10513380 DOI: 10.1371/journal.pgen.1010854] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/21/2023] [Accepted: 07/03/2023] [Indexed: 08/31/2023] Open
Abstract
Transcription of ribosomal RNA (rRNA) by RNA Polymerase (Pol) I in the nucleolus is necessary for ribosome biogenesis, which is intimately tied to cell growth and proliferation. Perturbation of ribosome biogenesis results in tissue specific disorders termed ribosomopathies in association with alterations in nucleolar structure. However, how rRNA transcription and ribosome biogenesis regulate nucleolar structure during normal development and in the pathogenesis of disease remains poorly understood. Here we show that homozygous null mutations in Pol I subunits required for rRNA transcription and ribosome biogenesis lead to preimplantation lethality. Moreover, we discovered that Polr1a-/-, Polr1b-/-, Polr1c-/- and Polr1d-/- mutants exhibit defects in the structure of their nucleoli, as evidenced by a decrease in number of nucleolar precursor bodies and a concomitant increase in nucleolar volume, which results in a single condensed nucleolus. Pharmacological inhibition of Pol I in preimplantation and midgestation embryos, as well as in hiPSCs, similarly results in a single condensed nucleolus or fragmented nucleoli. We find that when Pol I function and rRNA transcription is inhibited, the viscosity of the granular compartment of the nucleolus increases, which disrupts its phase separation properties, leading to a single condensed nucleolus. However, if a cell progresses through mitosis, the absence of rRNA transcription prevents reassembly of the nucleolus and manifests as fragmented nucleoli. Taken together, our data suggests that Pol I function and rRNA transcription are required for maintaining nucleolar structure and integrity during development and in the pathogenesis of disease.
Collapse
Affiliation(s)
- Soma Dash
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Maureen C. Lamb
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jeffrey J. Lange
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Mary C. McKinney
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Xia Zhao
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Timothy J. Corbin
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - MaryEllen Kirkman
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kym Delventhal
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Emma L. Moore
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Rita Shiang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
26
|
Zhu G, Khalid F, Zhang D, Cao Z, Maity P, Kestler HA, Orioli D, Scharffetter-Kochanek K, Iben S. Ribosomal Dysfunction Is a Common Pathomechanism in Different Forms of Trichothiodystrophy. Cells 2023; 12:1877. [PMID: 37508541 PMCID: PMC10377840 DOI: 10.3390/cells12141877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Mutations in a broad variety of genes can provoke the severe childhood disorder trichothiodystrophy (TTD) that is classified as a DNA repair disease or a transcription syndrome of RNA polymerase II. In an attempt to identify the common underlying pathomechanism of TTD we performed a knockout/knockdown of the two unrelated TTD factors TTDN1 and RNF113A and investigated the consequences on ribosomal biogenesis and performance. Interestingly, interference with these TTD factors created a nearly uniform impact on RNA polymerase I transcription with downregulation of UBF, disturbed rRNA processing and reduction of the backbone of the small ribosomal subunit rRNA 18S. This was accompanied by a reduced quality of decoding in protein translation and the accumulation of misfolded and carbonylated proteins, indicating a loss of protein homeostasis (proteostasis). As the loss of proteostasis by the ribosome has been identified in the other forms of TTD, here we postulate that ribosomal dysfunction is a common underlying pathomechanism of TTD.
Collapse
Affiliation(s)
- Gaojie Zhu
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Fatima Khalid
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Danhui Zhang
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Zhouli Cao
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Hans A Kestler
- Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Donata Orioli
- Istituto di Genetica Molecolare L.L. Cavalli-Sforza CNR, 27100 Pavia, Italy
| | | | - Sebastian Iben
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
27
|
Wu S, Chen J, Teo BHD, Wee SYK, Wong MHM, Cui J, Chen J, Leong KP, Lu J. The axis of complement C1 and nucleolus in antinuclear autoimmunity. Front Immunol 2023; 14:1196544. [PMID: 37359557 PMCID: PMC10288996 DOI: 10.3389/fimmu.2023.1196544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Antinuclear autoantibodies (ANA) are heterogeneous self-reactive antibodies that target the chromatin network, the speckled, the nucleoli, and other nuclear regions. The immunological aberration for ANA production remains partially understood, but ANA are known to be pathogenic, especially, in systemic lupus erythematosus (SLE). Most SLE patients exhibit a highly polygenic disease involving multiple organs, but in rare complement C1q, C1r, or C1s deficiencies, the disease can become largely monogenic. Increasing evidence point to intrinsic autoimmunogenicity of the nuclei. Necrotic cells release fragmented chromatins as nucleosomes and the alarmin HMGB1 is associated with the nucleosomes to activate TLRs and confer anti-chromatin autoimmunogenecity. In speckled regions, the major ANA targets Sm/RNP and SSA/Ro contain snRNAs that confer autoimmunogenecity to Sm/RNP and SSA/Ro antigens. Recently, three GAR/RGG-containing alarmins have been identified in the nucleolus that helps explain its high autoimmunogenicity. Interestingly, C1q binds to the nucleoli exposed by necrotic cells to cause protease C1r and C1s activation. C1s cleaves HMGB1 to inactive its alarmin activity. C1 proteases also degrade many nucleolar autoantigens including nucleolin, a major GAR/RGG-containing autoantigen and alarmin. It appears that the different nuclear regions are intrinsically autoimmunogenic by containing autoantigens and alarmins. However, the extracellular complement C1 complex function to dampen nuclear autoimmunogenecity by degrading these nuclear proteins.
Collapse
Affiliation(s)
- Shan Wu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Junjie Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Boon Heng Dennis Teo
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Seng Yin Kelly Wee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ming Hui Millie Wong
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jianzhou Cui
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jinmiao Chen
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Khai Pang Leong
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Jinhua Lu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
28
|
Glugoski L, Deon GA, Nogaroto V, Moreira-Filho O, Vicari MR. Robertsonian Fusion Site in Rineloricaria pentamaculata (Siluriformes: Loricariidae): Involvement of 5S Ribosomal DNA and Satellite Sequences. Cytogenet Genome Res 2023; 162:657-664. [PMID: 37054691 DOI: 10.1159/000530636] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/07/2023] [Indexed: 04/15/2023] Open
Abstract
Cytogenetic studies demonstrated that unstable chromosomal sites in armored catfishes (Loricariidae) triggered intense karyotypic diversification, mainly derived from Robertsonian rearrangements. In Loricariinae, the presence of ribosomal DNA (rDNA) clusters and their flanking repeated regions (such as microsatellites or partial transposable element sequences) was proposed to facilitate chromosomal rearrangements. Hence, this study aimed to characterize the numerical chromosomal polymorphism observed in Rineloricaria pentamaculata and evaluate the chromosomal rearrangements which originated diploid chromosome number (2n) variation, from 56 to 54. Our data indicate a centric fusion event between acrocentric chromosomes of pairs 15 and 18, bearing 5S rDNA sites on their short (p) arms. This chromosome fusion established the numerical polymorphism, decreasing the 2n from original 56 (karyomorph A) to 55 in karyomorph B and 54 in karyomorph C. Although vestiges of telomeric sequences were evidenced at the fusion point, no 5S rDNA was detected in this region. The acrocentric chromosomes involved in the origin of the fusion were enriched with (CA)n and (GA)n microsatellites. Repetitive sequences in the acrocentric chromosomes subtelomeres have facilitated the rearrangement. Our study thus reinforces the view on the important role of particular repetitive DNA classes in promoting chromosome fusions which frequently drive Rineloricaria karyotype evolution.
Collapse
Affiliation(s)
- Larissa Glugoski
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Geize A Deon
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Viviane Nogaroto
- Department of Structural Biology, Molecular and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Orlando Moreira-Filho
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Marcelo Ricardo Vicari
- Department of Structural Biology, Molecular and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
29
|
McGee JP, Armache JP, Lindner SE. Ribosome heterogeneity and specialization of Plasmodium parasites. PLoS Pathog 2023; 19:e1011267. [PMID: 37053161 PMCID: PMC10101515 DOI: 10.1371/journal.ppat.1011267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Affiliation(s)
- James P. McGee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania, United States of America
- Huck Center for Malaria Research, Pennsylvania State University, Pennsylvania, United States of America
| | - Jean-Paul Armache
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, Pennsylvania, United States of America
| | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania, United States of America
- Huck Center for Malaria Research, Pennsylvania State University, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, Pennsylvania, United States of America
| |
Collapse
|
30
|
Marajó L, Viana PF, Ferreira AMV, Py-Daniel LHR, Cioffi MDB, Sember A, Feldberg E. Chromosomal rearrangements and the first indication of an ♀X 1 X 1 X 2 X 2 /♂X 1 X 2 Y sex chromosome system in Rineloricaria fishes (Teleostei: Siluriformes). JOURNAL OF FISH BIOLOGY 2023; 102:443-454. [PMID: 36427042 DOI: 10.1111/jfb.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Rineloricaria is the most diverse genus within the freshwater fish subfamily Loricariinae, and it is widely distributed in the Neotropical region. Despite limited cytogenetic data, records from southern and south-eastern Brazil suggest a high rate of chromosomal rearrangements in this genus, mirrored in remarkable inter- and intraspecific karyotype variability. In the present work, we investigated the karyotype features of Rineloricaria teffeana, an endemic representative from northern Brazil, using both conventional and molecular cytogenetic techniques. We revealed different diploid chromosome numbers (2n) between sexes (33♂/34♀), which suggests the presence of an ♀X1 X1 X2 X2 /♂X1 X2 Y multiple sex chromosome system. The male-limited Y chromosome was the largest and the only biarmed element in the karyotype, implying Y-autosome fusion as the most probable mechanism behind its origination. C-banding revealed low amounts of constitutive heterochromatin, mostly confined to the (peri)centromeric regions of most chromosomes (including the X2 and the Y) but also occupying the distal regions of a few chromosomal pairs. The chromosomal localization of the 18S ribosomal DNA (rDNA) clusters revealed a single site on chromosome pair 4, which was adjacent to the 5S rDNA cluster. Additional 5S rDNA loci were present on the autosome pair 8, X1 chromosome, and in the presumed fusion point on the Y chromosome. The probe for telomeric repeat motif (TTAGGG)n revealed signals of variable intensities at the ends of all chromosomes except for the Y chromosome, where no detectable signals were evidenced. Male-to-female comparative genomic hybridization revealed no sex-specific or sex-biased repetitive DNA accumulations, suggesting a presumably low level of neo-Y chromosome differentiation. We provide evidence that rDNA sites might have played a role in the formation of this putative multiple sex chromosome system and that chromosome fusions originate through different mechanisms among different Rineloricaria species.
Collapse
Affiliation(s)
- Leandro Marajó
- Laboratório de Genética Animal, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Patrik Ferreira Viana
- Laboratório de Genética Animal, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Alex Matheus Viana Ferreira
- Laboratório de Genética Animal, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Lúcia Helena Rapp Py-Daniel
- Coleção de Peixes, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Eliana Feldberg
- Laboratório de Genética Animal, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| |
Collapse
|
31
|
Merkel Cell Polyomavirus Large T Antigen Induces Cellular Senescence for Host Growth Arrest and Viral Genome Persistence through Its Unique Domain. Cells 2023; 12:cells12030380. [PMID: 36766726 PMCID: PMC9913222 DOI: 10.3390/cells12030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Senescent cells accumulate in the host during the aging process and are associated with age-related pathogeneses, including cancer. Although persistent senescence seems to contribute to many aspects of cellular pathways and homeostasis, the role of senescence in virus-induced human cancer is not well understood. Merkel cell carcinoma (MCC) is an aggressive skin cancer induced by a life-long human infection of Merkel cell polyomavirus (MCPyV). Here, we show that MCPyV large T (LT) antigen expression in human skin fibroblasts causes a novel nucleolar stress response, followed by p21-dependent senescence and senescence-associated secretory phenotypes (SASPs), which are required for MCPyV genome maintenance. Senolytic and navitoclax treatments result in decreased senescence and MCPyV genome levels, suggesting a potential therapeutic for MCC prevention. Our results uncover the mechanism of a host stress response regulating human polyomavirus genome maintenance in viral persistency, which may lead to targeted intervention for MCC.
Collapse
|
32
|
Regulation of RNA Polymerase I Stability and Function. Cancers (Basel) 2022; 14:cancers14235776. [PMID: 36497261 PMCID: PMC9737084 DOI: 10.3390/cancers14235776] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
RNA polymerase I is a highly processive enzyme with fast initiation and elongation rates. The structure of Pol I, with its in-built RNA cleavage ability and incorporation of subunits homologous to transcription factors, enables it to quickly and efficiently synthesize the enormous amount of rRNA required for ribosome biogenesis. Each step of Pol I transcription is carefully controlled. However, cancers have highjacked these control points to switch the enzyme, and its transcription, on permanently. While this provides an exceptional benefit to cancer cells, it also creates a potential cancer therapeutic vulnerability. We review the current research on the regulation of Pol I transcription, and we discuss chemical biology efforts to develop new targeted agents against this process. Lastly, we highlight challenges that have arisen from the introduction of agents with promiscuous mechanisms of action and provide examples of agents with specificity and selectivity against Pol I.
Collapse
|
33
|
Ummarino A, Caputo M, Tucci FA, Pezzicoli G, Piepoli A, Gentile A, Latiano T, Panza A, Calà N, Ceglia AP, Pistoio G, Troiano V, Pucatti M, Latiano A, Andriulli A, Tucci A, Palmieri O. A PCR-based method for the diagnosis of Enterobius vermicularis in stool samples, specifically designed for clinical application. Front Microbiol 2022; 13:1028988. [PMID: 36466657 PMCID: PMC9712443 DOI: 10.3389/fmicb.2022.1028988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/31/2022] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Enterobius vermicularis (E. vermicularis) is a nematode that infects up to 200 million people worldwide, despite effective medications being available. Conventional diagnostic tests are hindered by low sensitivity and poor patient compliance. Furthermore, no biomolecular techniques are available for clinical application. The aim of this study was to develop a procedure specifically designed for clinical application to detect E. vermicularis by means of PCR. MATERIALS AND METHODS Two subject groups were taken into account: a group of 27 infected patients and a control group of 27 healthy subjects. A nested-PCR was performed on fecal samples to detect E. vermicularis. Due to the intrinsic difficulties of the fecal matrix, several countermeasures were adopted to ensure the efficient performance of the method: (a) a large amount of feces for the extraction process (20 g instead of 200 mg); (b) a combination of chemical and physical treatments to grind the fecal matrix; (c) an additional purification process for the negative samples after the first nested-PCR; and (d) the selection of a very specific target region for the PCR. RESULTS Due to the lack of overlap with other organisms, a sequence of the 5S ribosomal DNA (rDNA) spacer region including the tract SL1 was chosen to design appropriate external and internal primers. The first nested-PCR detected E.vermicularis in 19/27 samples from infected patients. After further purification, 5/8 of the negative samples resulted positive at the second PCR. Conversely, all the samples from healthy controls resulted negative to both PCRs. Sensitivity and specificity of the method were, respectively, 88.9% and 100%. CONCLUSION The results prove the high diagnostic accuracy of the proposed method, addressing and overcoming the challenges posed by both conventional tests and PCR-based approaches. Therefore, the method can be proposed for clinical application.
Collapse
Affiliation(s)
- Aldo Ummarino
- Agorà Biomedical Sciences, Etromapmacs Pole, Lesina (FG), Italy
| | - Michele Caputo
- Agorà Biomedical Sciences, Etromapmacs Pole, Lesina (FG), Italy
| | | | | | - Ada Piepoli
- Gastroenterology Unit, Fondazione IRCCS “Casa Sollievo Della Sofferenza” Hospital, Viale Cappuccini, Italy
| | - Annamaria Gentile
- Gastroenterology Unit, Fondazione IRCCS “Casa Sollievo Della Sofferenza” Hospital, Viale Cappuccini, Italy
| | - Tiziana Latiano
- Gastroenterology Unit, Fondazione IRCCS “Casa Sollievo Della Sofferenza” Hospital, Viale Cappuccini, Italy
| | - Anna Panza
- Gastroenterology Unit, Fondazione IRCCS “Casa Sollievo Della Sofferenza” Hospital, Viale Cappuccini, Italy
| | - Nicholas Calà
- Agorà Biomedical Sciences, Etromapmacs Pole, Lesina (FG), Italy
| | | | | | | | - Michela Pucatti
- Agorà Biomedical Sciences, Etromapmacs Pole, Lesina (FG), Italy
| | - Anna Latiano
- Gastroenterology Unit, Fondazione IRCCS “Casa Sollievo Della Sofferenza” Hospital, Viale Cappuccini, Italy
| | - Angelo Andriulli
- Gastroenterology Unit, Fondazione IRCCS “Casa Sollievo Della Sofferenza” Hospital, Viale Cappuccini, Italy
| | - Antonio Tucci
- Agorà Biomedical Sciences, Etromapmacs Pole, Lesina (FG), Italy
| | - Orazio Palmieri
- Gastroenterology Unit, Fondazione IRCCS “Casa Sollievo Della Sofferenza” Hospital, Viale Cappuccini, Italy
| |
Collapse
|
34
|
Abstract
Inheriting the wrong number of chromosomes is one of the leading causes of infertility and birth defects in humans. However, in many organisms, individual chromosomes vary dramatically in both organization, sequence, and size. Chromosome segregation systems must be capable of accounting for these differences to reliably segregate chromosomes. During gametogenesis, meiosis ensures that all chromosomes segregate properly into gametes (i.e., egg or sperm). Interestingly, not all chromosomes exhibit the same dynamics during meiosis, which can lead to chromosome-specific behaviors and defects. This review will summarize some of the chromosome-specific meiotic events that are currently known and discuss their impact on meiotic outcomes.
Collapse
|
35
|
Araya-Jaime CA, Silva DMZDA, da Silva LRR, do Nascimento CN, Oliveira C, Foresti F. Karyotype description and comparative chromosomal mapping of rDNA and U2 snDNA sequences in Eigenmannialimbata and E.microstoma (Teleostei, Gymnotiformes, Sternopygidae). COMPARATIVE CYTOGENETICS 2022; 16:127-142. [PMID: 36761809 PMCID: PMC9849054 DOI: 10.3897/compcytogen.v16i2.72190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 04/09/2022] [Indexed: 06/18/2023]
Abstract
The genus Eigenmannia Jordan et Evermann,1896 includes electric fishes endemic to the Neotropical region with extensive karyotype variability and occurrence of different sex chromosome systems, however, cytogenetic studies within this group are restricted to few species. Here, we describe the karyotypes of Eigenmannialimbata (Schreiner et Miranda Ribeiro, 1903) and E.microstoma (Reinhardt, 1852) and the chromosomal locations of 5S and 18S rDNAs (ribosomal RNA genes) and U2 snDNA (small nuclear RNA gene). Among them, 18S rDNA sites were situated in only one chromosomal pair in both species, and co-localized with 5S rDNA in E.microstoma. On the other hand, 5S rDNA and U2 snRNA sites were observed on several chromosomes, with variation in the number of sites between species under study. These two repetitive DNAs were observed co-localized in one chromosomal pair in E.limbata and in four pairs in E.microstoma. Our study shows a new case of association of these two types of repetitive DNA in the genome of Gymnotiformes.
Collapse
Affiliation(s)
- Cristian Andrés Araya-Jaime
- Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile
| | | | | | | | - Claudio Oliveira
- Departamento de Biología, Universidad de La Serena, La Serena, Chile
| | - Fausto Foresti
- Departamento de Biología, Universidad de La Serena, La Serena, Chile
| |
Collapse
|
36
|
Pundel OJ, Blowes LM, Connelly JT. Extracellular Adhesive Cues Physically Define Nucleolar Structure and Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105545. [PMID: 35122409 PMCID: PMC8981897 DOI: 10.1002/advs.202105545] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/19/2022] [Indexed: 05/14/2023]
Abstract
Adhesive cues from the extracellular matrix (ECM) specify the size and shape of the nucleus via mechanical forces transmitted through the cytoskeleton. However, the effects of these biophysical stimuli on internal nuclear architecture and cellular responses remain poorly understood. This study investigates the direct impact of ECM adhesion on nucleolar remodeling in human keratinocytes using micropatterned substrates. Limited adhesion on small micropatterns promotes fusion of nucleoli, alongside a reduction in nuclear volume and condensation of heterochromatin. These changes in nucleolar architecture are mediated by altered chromatin biomechanics and depend on integration of the nucleus with the actin cytoskeleton. Functionally, nucleolar remodeling regulates ribogenesis and protein synthesis in keratinocytes and is associated with specific transcriptional changes in ribogenesis genes. Together, these findings demonstrate that cell shape and nuclear morphology control nucleolar structure and function and implicate the nucleolus as a key mechano-sensing element within the cell.
Collapse
Affiliation(s)
- Oscar J. Pundel
- Centre for Cell Biology and Cutaneous Research4 Newark StreetLondonE1 2ATUK
| | - Liisa M. Blowes
- Centre for Cell Biology and Cutaneous Research4 Newark StreetLondonE1 2ATUK
| | - John T. Connelly
- Centre for Cell Biology and Cutaneous Research4 Newark StreetLondonE1 2ATUK
| |
Collapse
|
37
|
Thakur BL, Ray A, Redon CE, Aladjem MI. Preventing excess replication origin activation to ensure genome stability. Trends Genet 2022; 38:169-181. [PMID: 34625299 PMCID: PMC8752500 DOI: 10.1016/j.tig.2021.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 02/03/2023]
Abstract
Cells activate distinctive regulatory pathways that prevent excessive initiation of DNA replication to achieve timely and accurate genome duplication. Excess DNA synthesis is constrained by protein-DNA interactions that inhibit initiation at dormant origins. In parallel, specific modifications of pre-replication complexes prohibit post-replicative origin relicensing. Replication stress ensues when the controls that prevent excess replication are missing in cancer cells, which often harbor extrachromosomal DNA that can be further amplified by recombination-mediated processes to generate chromosomal translocations. The genomic instability that accompanies excess replication origin activation can provide a promising target for therapeutic intervention. Here we review molecular pathways that modulate replication origin dormancy, prevent excess origin activation, and detect, encapsulate, and eliminate persistent excess DNA.
Collapse
Affiliation(s)
- Bhushan L Thakur
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Anagh Ray
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
38
|
Chebrout M, Koné MC, Jan HU, Cournut M, Letheule M, Fleurot R, Aguirre-Lavin T, Peynot N, Jouneau A, Beaujean N, Bonnet-Garnier A. Transcription of rRNA in early mouse embryos promotes chromatin reorganization and expression of major satellite repeats. J Cell Sci 2022; 135:274059. [DOI: 10.1242/jcs.258798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 01/09/2022] [Indexed: 11/20/2022] Open
Abstract
During the first cell cycles of the early development, the chromatin of the embryo is highly reprogrammed alongside that embryonic genome starts its own transcription. The spatial organization of the genome is a major process that contributes to regulating gene transcription in time and space, however, it is poorly studied in the context of early embryos. To study the cause and effect link between transcription and spatial organization in embryos, we focused on the ribosomal genes, that are first silent and begin to transcribe during the 2-cell stage in the mouse. We demonstrated that ribosomal sequences and early unprocessed rRNAs are spatially organized in a very peculiar manner from the 2-cell to the 16-cell. Using drugs interfering with ribosomal DNA transcription, we show that this organization, totally different from somatic cells, depends on an active transcription of ribosomal genes and induces a unique chromatin environment that favors transcription of major satellite sequences after the 4-cell stage.
Collapse
Affiliation(s)
- Martine Chebrout
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Maïmouna Coura Koné
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Habib U. Jan
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Marie Cournut
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Martine Letheule
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Renaud Fleurot
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Tiphaine Aguirre-Lavin
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Nathalie Peynot
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Alice Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Nathalie Beaujean
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Amélie Bonnet-Garnier
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| |
Collapse
|
39
|
Nazar N, Howard C, Slater A, Sgamma T. Challenges in Medicinal and Aromatic Plants DNA Barcoding-Lessons from the Lamiaceae. PLANTS (BASEL, SWITZERLAND) 2022; 11:137. [PMID: 35009140 PMCID: PMC8747715 DOI: 10.3390/plants11010137] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The potential value of DNA barcoding for the identification of medicinal plants and authentication of traded plant materials has been widely recognized; however, a number of challenges remain before DNA methods are fully accepted as an essential quality control method by industry and regulatory authorities. The successes and limitations of conventional DNA barcoding are considered in relation to important members of the Lamiaceae. The mint family (Lamiaceae) contains over one thousand species recorded as having a medicinal use, with many more exploited in food and cosmetics for their aromatic properties. The family is characterized by a diversity of secondary products, most notably the essential oils (EOs) produced in external glandular structures on the aerial parts of the plant that typify well-known plants of the basil (Ocimum), lavender (Lavandula), mint (Mentha), thyme (Thymus), sage (Salvia) and related genera. This complex, species-rich family includes widely cultivated commercial hybrids and endangered wild-harvested traditional medicines, and examples of potential toxic adulterants within the family are explored in detail. The opportunities provided by next generation sequencing technologies to whole plastome barcoding and nuclear genome sequencing are also discussed with relevant examples.
Collapse
Affiliation(s)
- Nazia Nazar
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK;
| | - Caroline Howard
- Tree of Life Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK;
| | - Adrian Slater
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK;
| | - Tiziana Sgamma
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK;
| |
Collapse
|
40
|
Kasselimi E, Pefani DE, Taraviras S, Lygerou Z. Ribosomal DNA and the nucleolus at the heart of aging. Trends Biochem Sci 2022; 47:328-341. [DOI: 10.1016/j.tibs.2021.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022]
|
41
|
Phase Separation of Intrinsically Disordered Nucleolar Proteins Relate to Localization and Function. Int J Mol Sci 2021; 22:ijms222313095. [PMID: 34884901 PMCID: PMC8657925 DOI: 10.3390/ijms222313095] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/28/2021] [Indexed: 01/10/2023] Open
Abstract
The process of phase separation allows for the establishment and formation of subcompartmentalized structures, thus enabling cells to perform simultaneous processes with precise organization and low energy requirements. Chemical modifications of proteins, RNA, and lipids alter the molecular environment facilitating enzymatic reactions at higher concentrations in particular regions of the cell. In this review, we discuss the nucleolus as an example of the establishment, dynamics, and maintenance of a membraneless organelle with a high level of organization.
Collapse
|
42
|
Takeda I, Araki M, Ishiguro KI, Ohga T, Takada K, Yamaguchi Y, Hashimoto K, Kai T, Nakagata N, Imasaka M, Yoshinobu K, Araki K. Gene trapping reveals a new transcriptionally active genome element: The chromosome-specific clustered trap region. Genes Cells 2021; 26:874-890. [PMID: 34418226 DOI: 10.1111/gtc.12890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/01/2022]
Abstract
Nearly half of the human genome consists of repetitive sequences such as long interspersed nuclear elements. The relationship between these repeating sequences and diseases has remained unclear. Gene trapping is a useful technique for disrupting a gene and expressing a reporter gene by using the promoter activity of the gene. The analysis of trapped genes revealed a new genome element-the chromosome-specific clustered trap (CSCT) region. For any examined sequence within this region, an equivalent was found using the BLAT of the University of California, Santa Cruz (UCSC) Genome Browser. CSCT13 mapped to chromosome 13 and contained only three genes. To elucidate its in vivo function, the whole CSCT13 region (1.6 Mbp) was deleted using the CRISPR/Cas9 system in mouse embryonic stem cells, and subsequently, a CSCT13 knockout mouse line was established. The rate of homozygotes was significantly lower than expected according to Mendel's laws. In addition, the number of offspring obtained by mating homozygotes was significantly smaller than that obtained by crossing controls. Furthermore, CSCT13 might have an effect on meiotic homologous recombination. This study identifies a transcriptionally active CSCT with an important role in mouse development.
Collapse
Affiliation(s)
- Iyo Takeda
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Masatake Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Kei-Ichiro Ishiguro
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Toshinori Ohga
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Kouki Takada
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Yusuke Yamaguchi
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Koichi Hashimoto
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Takuma Kai
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Mai Imasaka
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Kumiko Yoshinobu
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
43
|
Herbert A. The Simple Biology of Flipons and Condensates Enhances the Evolution of Complexity. Molecules 2021; 26:molecules26164881. [PMID: 34443469 PMCID: PMC8400190 DOI: 10.3390/molecules26164881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 01/09/2023] Open
Abstract
The classical genetic code maps nucleotide triplets to amino acids. The associated sequence composition is complex, representing many elaborations during evolution of form and function. Other genomic elements code for the expression and processing of RNA transcripts. However, over 50% of the human genome consists of widely dispersed repetitive sequences. Among these are simple sequence repeats (SSRs), representing a class of flipons, that under physiological conditions, form alternative nucleic acid conformations such as Z-DNA, G4 quartets, I-motifs, and triplexes. Proteins that bind in a structure-specific manner enable the seeding of condensates with the potential to regulate a wide range of biological processes. SSRs also encode the low complexity peptide repeats to patch condensates together, increasing the number of combinations possible. In situations where SSRs are transcribed, SSR-specific, single-stranded binding proteins may further impact condensate formation. Jointly, flipons and patches speed evolution by enhancing the functionality of condensates. Here, the focus is on the selection of SSR flipons and peptide patches that solve for survival under a wide range of environmental contexts, generating complexity with simple parts.
Collapse
Affiliation(s)
- Alan Herbert
- Unit 3412, Discovery, InsideOutBio 42 8th Street, Charlestown, MA 02129, USA
| |
Collapse
|
44
|
Remnant L, Kochanova NY, Reid C, Cisneros-Soberanis F, Earnshaw WC. The intrinsically disorderly story of Ki-67. Open Biol 2021; 11:210120. [PMID: 34375547 PMCID: PMC8354752 DOI: 10.1098/rsob.210120] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/13/2021] [Indexed: 01/14/2023] Open
Abstract
Ki-67 is one of the most famous marker proteins used by histologists to identify proliferating cells. Indeed, over 30 000 articles referring to Ki-67 are listed on PubMed. Here, we review some of the current literature regarding the protein. Despite its clinical importance, our knowledge of the molecular biology and biochemistry of Ki-67 is far from complete, and its exact molecular function(s) remain enigmatic. Furthermore, reports describing Ki-67 function are often contradictory, and it has only recently become clear that this proliferation marker is itself dispensable for cell proliferation. We discuss the unusual organization of the protein and its mRNA and how they relate to various models for its function. In particular, we focus on ways in which the intrinsically disordered structure of Ki-67 might aid in the assembly of the still-mysterious mitotic chromosome periphery compartment by controlling liquid-liquid phase separation of nucleolar proteins and RNAs.
Collapse
Affiliation(s)
- Lucy Remnant
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Natalia Y. Kochanova
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Caitlin Reid
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Fernanda Cisneros-Soberanis
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - William C. Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
45
|
Jernfors T, Danforth J, Kesäniemi J, Lavrinienko A, Tukalenko E, Fajkus J, Dvořáčková M, Mappes T, Watts PC. Expansion of rDNA and pericentromere satellite repeats in the genomes of bank voles Myodes glareolus exposed to environmental radionuclides. Ecol Evol 2021; 11:8754-8767. [PMID: 34257925 PMCID: PMC8258220 DOI: 10.1002/ece3.7684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022] Open
Abstract
Altered copy number of certain highly repetitive regions of the genome, such as satellite DNA within heterochromatin and ribosomal RNA loci (rDNA), is hypothesized to help safeguard the genome against damage derived from external stressors. We quantified copy number of the 18S rDNA and a pericentromeric satellite DNA (Msat-160) in bank voles (Myodes glareolus) inhabiting the Chernobyl Exclusion Zone (CEZ), an area that is contaminated by radionuclides and where organisms are exposed to elevated levels of ionizing radiation. We found a significant increase in 18S rDNA and Msat-160 content in the genomes of bank voles from contaminated locations within the CEZ compared with animals from uncontaminated locations. Moreover, 18S rDNA and Msat-160 copy number were positively correlated in the genomes of bank voles from uncontaminated, but not in the genomes of animals inhabiting contaminated, areas. These results show the capacity for local-scale geographic variation in genome architecture and are consistent with the genomic safeguard hypothesis. Disruption of cellular processes related to genomic stability appears to be a hallmark effect in bank voles inhabiting areas contaminated by radionuclides.
Collapse
Affiliation(s)
- Toni Jernfors
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - John Danforth
- Department of Biochemistry & Molecular BiologyRobson DNA Science CentreArnie Charbonneau Cancer InstituteCumming School of MedicineUniversity of CalgaryCalgaryCanada
| | - Jenni Kesäniemi
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Anton Lavrinienko
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Eugene Tukalenko
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
- National Research Center for Radiation Medicine of the National Academy of Medical ScienceKyivUkraine
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and ProteomicsCentral European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
- Laboratory of Functional Genomics and ProteomicsNCBRFaculty of ScienceMasaryk UniversityBrnoCzech Republic
- Department of Cell Biology and RadiobiologyInstitute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and ProteomicsCentral European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Tapio Mappes
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Phillip C. Watts
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
46
|
Krak K, Caklová P, Kopecký D, Blattner FR, Mahelka V. Horizontally Acquired nrDNAs Persist in Low Amounts in Host Hordeum Genomes and Evolve Independently of Native nrDNA. FRONTIERS IN PLANT SCIENCE 2021; 12:672879. [PMID: 34079572 PMCID: PMC8165317 DOI: 10.3389/fpls.2021.672879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Nuclear ribosomal DNA (nrDNA) has displayed extraordinary dynamics during the evolution of plant species. However, the patterns and evolutionary significance of nrDNA array expansion or contraction are still relatively unknown. Moreover, only little is known of the fate of minority nrDNA copies acquired between species via horizontal transfer. The barley genus Hordeum (Poaceae) represents a good model for such a study, as species of section Stenostachys acquired nrDNA via horizontal transfer from at least five different panicoid genera, causing long-term co-existence of native (Hordeum-like) and non-native (panicoid) nrDNAs. Using quantitative PCR, we investigated copy number variation (CNV) of nrDNA in the diploid representatives of the genus Hordeum. We estimated the copy number of the foreign, as well as of the native ITS types (ribotypes), and followed the pattern of their CNV in relation to the genus' phylogeny, species' genomes size and the number of nrDNA loci. For the native ribotype, we encountered an almost 19-fold variation in the mean copy number among the taxa analysed, ranging from 1689 copies (per 2C content) in H. patagonicum subsp. mustersii to 31342 copies in H. murinum subsp. glaucum. The copy numbers did not correlate with any of the genus' phylogeny, the species' genome size or the number of nrDNA loci. The CNV was high within the recognised groups (up to 13.2 × in the American I-genome species) as well as between accessions of the same species (up to 4×). Foreign ribotypes represent only a small fraction of the total number of nrDNA copies. Their copy numbers ranged from single units to tens and rarely hundreds of copies. They amounted, on average, to between 0.1% (Setaria ribotype) and 1.9% (Euclasta ribotype) of total nrDNA. None of the foreign ribotypes showed significant differences with respect to phylogenetic groups recognised within the sect. Stenostachys. Overall, no correlation was found between copy numbers of native and foreign nrDNAs suggesting the sequestration and independent evolution of native and non-native nrDNA arrays. Therefore, foreign nrDNA in Hordeum likely poses a dead-end by-product of horizontal gene transfer events.
Collapse
Affiliation(s)
- Karol Krak
- Czech Academy of Sciences, Institute of Botany, Prùhonice, Czechia
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague 6, Czechia
| | - Petra Caklová
- Czech Academy of Sciences, Institute of Botany, Prùhonice, Czechia
| | - David Kopecký
- Czech Academy of Sciences, Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Frank R. Blattner
- Experimental Taxonomy, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- German Centre of Integrative Biodiversity Research (iDiv) Halle–Jena–Leipzig, Leipzig, Germany
| | - Václav Mahelka
- Czech Academy of Sciences, Institute of Botany, Prùhonice, Czechia
| |
Collapse
|
47
|
Ogawa LM, Buhagiar AF, Abriola L, Leland BA, Surovtseva YV, Baserga SJ. Increased numbers of nucleoli in a genome-wide RNAi screen reveal proteins that link the cell cycle to RNA polymerase I transcription. Mol Biol Cell 2021; 32:956-973. [PMID: 33689394 PMCID: PMC8108525 DOI: 10.1091/mbc.e20-10-0670] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nucleoli are dynamic nuclear condensates in eukaryotic cells that originate through ribosome biogenesis at loci that harbor the ribosomal DNA. These loci are known as nucleolar organizer regions (NORs), and there are 10 in a human diploid genome. While there are 10 NORs, however, the number of nucleoli observed in cells is variable. Furthermore, changes in number are associated with disease, with increased numbers and size common in aggressive cancers. In the near-diploid human breast epithelial cell line, MCF10A, the most frequently observed number of nucleoli is two to three per cell. Here, to identify novel regulators of ribosome biogenesis we used high-throughput quantitative imaging of MCF10A cells to identify proteins that, when depleted, increase the percentage of nuclei with ≥5 nucleoli. Unexpectedly, this unique screening approach led to identification of proteins associated with the cell cycle. Functional analysis on a subset of hits further revealed not only proteins required for progression through the S and G2/M phase, but also proteins required explicitly for the regulation of RNA polymerase I transcription and protein synthesis. Thus, results from this screen for increased nucleolar number highlight the significance of the nucleolus in human cell cycle regulation, linking RNA polymerase I transcription to cell cycle progression.
Collapse
Affiliation(s)
- Lisa M Ogawa
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT 06520
| | - Amber F Buhagiar
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT 06520
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, CT 06516
| | - Bryan A Leland
- Yale Center for Molecular Discovery, Yale University, West Haven, CT 06516
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, West Haven, CT 06516
| | - Susan J Baserga
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT 06520.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06520.,Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
48
|
Bizhanova A, Kaufman PD. Close to the edge: Heterochromatin at the nucleolar and nuclear peripheries. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2021; 1864:194666. [PMID: 33307247 PMCID: PMC7855492 DOI: 10.1016/j.bbagrm.2020.194666] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/11/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023]
Abstract
Chromatin is a dynamic structure composed of DNA, RNA, and proteins, regulating storage and expression of the genetic material in the nucleus. Heterochromatin plays a crucial role in driving the three-dimensional arrangement of the interphase genome, and in preserving genome stability by maintaining a subset of the genome in a silent state. Spatial genome organization contributes to normal patterns of gene function and expression, and is therefore of broad interest. Mammalian heterochromatin, the focus of this review, mainly localizes at the nuclear periphery, forming Lamina-associated domains (LADs), and at the nucleolar periphery, forming Nucleolus-associated domains (NADs). Together, these regions comprise approximately one-half of mammalian genomes, and most but not all loci within these domains are stochastically placed at either of these two locations after exit from mitosis at each cell cycle. Excitement about the role of these heterochromatic domains in early development has recently been heightened by the discovery that LADs appear at some loci in the preimplantation mouse embryo prior to other chromosomal features like compartmental identity and topologically-associated domains (TADs). While LADs have been extensively studied and mapped during cellular differentiation and early embryonic development, NADs have been less thoroughly studied. Here, we summarize pioneering studies of NADs and LADs, more recent advances in our understanding of cis/trans-acting factors that mediate these localizations, and discuss the functional significance of these associations.
Collapse
Affiliation(s)
- Aizhan Bizhanova
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Paul D Kaufman
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
49
|
Metge BJ, Kammerud SC, Pruitt HC, Shevde LA, Samant RS. Hypoxia re-programs 2'-O-Me modifications on ribosomal RNA. iScience 2020; 24:102010. [PMID: 33490918 PMCID: PMC7811136 DOI: 10.1016/j.isci.2020.102010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/07/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is one of the critical stressors encountered by various cells of the human body under diverse pathophysiologic conditions including cancer and has profound impacts on several metabolic and physiologic processes. Hypoxia prompts internal ribosome entry site (IRES)-mediated translation of key genes, such as VEGF, that are vital for tumor progression. Here, we describe that hypoxia remarkably upregulates RNA Polymerase I activity. We discovered that in hypoxia, rRNA shows a different methylation pattern compared to normoxia. Heterogeneity in ribosomes due to the diversity of ribosomal RNA and protein composition has been postulated to generate “specialized ribosomes” that differentially regulate translation. We find that in hypoxia, a sub-set of differentially methylated ribosomes recognizes the VEGF-C IRES, suggesting that ribosomal heterogeneity allows for altered ribosomal functions in hypoxia. Chronic hypoxia stimulates RNA Pol I activity In hypoxia, a pool of specialized rRNA translates VEGFC IRES Hypoxia changes 2′-O-Me modification - epitranscriptomic marks on rRNA
Collapse
Affiliation(s)
- Brandon J Metge
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA
| | - Sarah C Kammerud
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA
| | - Hawley C Pruitt
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA.,Birmingham VA Medical Center, Birmingham, AL, USA
| |
Collapse
|
50
|
Kaliatsi EG, Giarimoglou N, Stathopoulos C, Stamatopoulou V. Non-Coding RNA-Driven Regulation of rRNA Biogenesis. Int J Mol Sci 2020; 21:E9738. [PMID: 33419375 PMCID: PMC7766524 DOI: 10.3390/ijms21249738] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022] Open
Abstract
Ribosomal RNA (rRNA) biogenesis takes place in the nucleolus, the most prominent condensate of the eukaryotic nucleus. The proper assembly and integrity of the nucleolus reflects the accurate synthesis and processing of rRNAs which in turn, as major components of ribosomes, ensure the uninterrupted flow of the genetic information during translation. Therefore, the abundant production of rRNAs in a precisely functional nucleolus is of outmost importance for the cell viability and requires the concerted action of essential enzymes, associated factors and epigenetic marks. The coordination and regulation of such an elaborate process depends on not only protein factors, but also on numerous regulatory non-coding RNAs (ncRNAs). Herein, we focus on RNA-mediated mechanisms that control the synthesis, processing and modification of rRNAs in mammals. We highlight the significance of regulatory ncRNAs in rRNA biogenesis and the maintenance of the nucleolar morphology, as well as their role in human diseases and as novel druggable molecular targets.
Collapse
Affiliation(s)
| | | | - Constantinos Stathopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (E.G.K.); (N.G.)
| | - Vassiliki Stamatopoulou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (E.G.K.); (N.G.)
| |
Collapse
|