1
|
SNAIL is induced by tamoxifen and leads to growth inhibition in invasive lobular breast carcinoma. Breast Cancer Res Treat 2019; 175:327-337. [PMID: 30798422 DOI: 10.1007/s10549-019-05161-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/05/2019] [Indexed: 01/09/2023]
Abstract
PURPOSE Invasive lobular carcinoma (ILC) is a histological subtype of breast cancer that is predominantly estrogen receptor alpha (ER)-positive (+) and is thus treated with endocrine therapies. Herein, we sought to understand the molecular underpinnings of the 4-hydroxytamoxifen (4OHT) resistance in ILC by assessing the potential role of the epithelial-to-mesenchymal transition transcription factor (EMT-TF) SNAIL (SNAI1). METHODS Using a series of breast cancer cell lines, we measured the basal, estrogen and 4OHT-induced expression of SNAIL and other EMT-TF family members by quantitative reverse transcription-polymerase chain reaction and immunoblotting. Chromatin immunoprecipitation experiments were performed to assess ER binding to the SNAIL promoter. Cell proliferation, cell cycle and apoptosis were assessed in 2D cultures. 3D growth was assessed in Matrigel and Collagen I cultures. RESULTS Estrogen and 4OHT induced SNAIL expression, but not that of the other EMT-TF family members SLUG (SNAI2) and SMUC (SNAI3), with the 4OHT effect being specific to the lobular but not the ductal subtype. We observed estrogen and 4OHT-induced ER recruitment to the SNAI1 promoter and high endogenous basal levels of SNAIL and several EMT-TFs in ILC cell lines. While SNAIL knockdown had a minor impact on the 4OHT partial agonism in estrogen-depleted conditions, it led to a surprising increase in cell proliferation in full serum. In complementary experiments, inducible SNAI1 overexpression caused decreased proliferation, associated with a cell cycle arrest in G0/G1. Additionally, apoptosis was observed in BCK4 cells. CONCLUSION These data suggest a previously unrecognized role for SNAIL in ILC, substantiating a context-dependent behavior for this EMT-TF.
Collapse
|
2
|
Zheng Y, Wang Z, Xiong X, Zhong Y, Zhang W, Dong Y, Li J, Zhu Z, Zhang W, Wu H, Gu W, Wu Y, Wang X, Song X. Membrane-tethered Notch1 exhibits oncogenic property via activation of EGFR-PI3K-AKT pathway in oral squamous cell carcinoma. J Cell Physiol 2018; 234:5940-5952. [PMID: 30515785 DOI: 10.1002/jcp.27022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 06/26/2018] [Indexed: 01/15/2023]
Abstract
Notch proteins are highly conserved cell surface receptors which play essential roles in cellular differentiation, proliferation, and apoptotic events at all stages of development. Recently, NOTCH1 mutations have been extensively observed in oral squamous cell carcinoma (OSCC) and are hinted to be Notch1-inactivating mutations. However, little is known about the biological effect of these reported mutations in OSCC. To mimic the inactivation of Notch1 due to inappropriate mutations and to determine the potential mechanisms, we utilized wild-type Notch1 vectors (Notch1WT ) or mutant Notch1 vectors (Notch1V1754L ) to transfect into OSCC cell lines. Membrane-tethered Notch1 induced by mutation was analyzed by immunofluorescence staining. γ-Secretase inhibitor PF-03084014 was utilized to determine the phenotype in the absence of endogenous Notch1 activation. Here we demonstrated that membrane-tethered Notch1 inactivated the canonical Notch1 signaling and oncogenic phenotypes were identified by promoting cell proliferation and invasion and by inducing epithelial-to-mesenchymal transition in cells. The γ-secretase inhibitor PF-03084014 also showed distinct oncogenic property after treatment. Importantly, both membrane-tethered Notch1 and PF-03084014 inhibitor activated the epidermal growth factor receptor (EGFR)-phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway, which has been confirmed as an overwhelming modulator in OSCC. This was the first time that we clearly simulated the mutated Notch1 activities and determined the oncogenic phenotypes of membrane-tethered Notch1. Compared with wild-type Notch1, membrane-tethered Notch1 was strongly associated with activated EGFR-PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Yang Zheng
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Zhao Wang
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Australian Institute for Bioengineering and Nanotechnology (AIBN) Corner College and Cooper Rds, The University of Queensland, Brisbane, QLD, Australia
| | - Xianbin Xiong
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Yi Zhong
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral Pathology, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Zhang
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral Pathology, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Yibo Dong
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Jialiang Li
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Zaiou Zhu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Zhang
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Heming Wu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology (AIBN) Corner College and Cooper Rds, The University of Queensland, Brisbane, QLD, Australia
| | - Yunong Wu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Xiang Wang
- Department of Stomatology, The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaomeng Song
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Imanishi H, Ansell DM, Chéret J, Harries M, Bertolini M, Sepp N, Bíró T, Poblet E, Jimenez F, Hardman J, Panicker SP, Ward CM, Paus R. Epithelial-to-Mesenchymal Stem Cell Transition in a Human Organ: Lessons from Lichen Planopilaris. J Invest Dermatol 2017; 138:511-519. [PMID: 29106928 DOI: 10.1016/j.jid.2017.09.047] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 12/15/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is critical for embryonic development and wound healing, and occurs in fibrotic disease and carcinoma. Here, we show that EMT also occurs within the bulge, the epithelial stem cell (eSC) niche of human scalp hair follicles, during the inflammatory permanent alopecia, lichen planopilaris. We show that a molecular EMT signature can be experimentally induced in healthy human eSCs in situ by antagonizing E-cadherin, combined with transforming growth factor-β1, epidermal growth factor, and IFN-γ administration, which to our knowledge has not been reported previously. Moreover, induction of EMT within primary human eSCs can be prevented and even partially reversed ex vivo by peroxisome proliferator-activated receptor-γ agonists, likely through suppression of the transforming growth factor-β signaling pathway. Furthermore, we show that peroxisome proliferator-activated receptor-γ agonists also attenuates the EMT signature even in lesional lichen planopilaris hair follicles ex vivo. We introduce lichen planopilaris as a model disease for pathological EMT in human adult eSCs, report a preclinical assay for therapeutically manipulating eSC EMT within a healthy human (mini-)organ, and show that peroxisome proliferator-activated receptor-γ agonists are promising agents for suppressing and partially reversing EMT in human hair follicles eSCs ex vivo, including in lichen planopilaris.
Collapse
Affiliation(s)
- Hisayoshi Imanishi
- Centre for Dermatology Research, University of Manchester, Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK; Department of Dermatology, Osaka City University Graduate School of Medicine, Japan
| | - David M Ansell
- Centre for Dermatology Research, University of Manchester, Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
| | | | - Matthew Harries
- Centre for Dermatology Research, University of Manchester, Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK; Dermatology Centre, University of Manchester, Salford Royal NHS Foundation Trust, Salford, UK
| | - Marta Bertolini
- Monasterium Laboratory, Münster, Germany; Department of Dermatology, University of Münster, Münster, Germany
| | - Norbert Sepp
- Department of Dermatology, Innsbruck Medical University, Innsbruck, Austria
| | - Tamás Bíró
- Departments of Immunology and Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Enrique Poblet
- Department of Pathology, University General Hospital of Murcia, Murcia, Spain
| | - Francisco Jimenez
- Mediteknia Dermatology Clinic, Medical Pathology Group, Instituto de Investigación Biosanitaria, Universidad de Las Palmas de Gran Canaria, Gran Canaria, Canary Islands, Spain
| | - Jonathan Hardman
- Centre for Dermatology Research, University of Manchester, Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
| | | | | | - Ralf Paus
- Centre for Dermatology Research, University of Manchester, Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK.
| |
Collapse
|
4
|
Pohlodek K, Tan YY, Singer CF, Gschwantler-Kaulich D. Cadherin-11 expression is upregulated in invasive human breast cancer. Oncol Lett 2016; 12:4393-4398. [PMID: 28101202 PMCID: PMC5228198 DOI: 10.3892/ol.2016.5236] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/26/2016] [Indexed: 12/15/2022] Open
Abstract
Loss of expression of cadherin-11 protein is correlated with a loss of epithelial phenotype and a gain in tumor cell proliferation and invasion. It has been hypothesized that cadherin-11 may be a molecular marker for a more aggressive subtype of breast cancer. The present study examined the expression of the mesenchymal gene/protein cadherin-11 in malignant, benign and healthy breast cancer samples. A paraffin-embedded tissue microarray of both malignant and benign/healthy breast tumor was used. Clinicopathological parameters, including age, grading, tumor size, hormone receptors and HER2 receptors status were obtained from patient medical records. Expression of cadherin-11 was analyzed using the monoclonal mouse anti cadherin-11 IgG2B clone. Total RNA was extracted from each breast cancer sample and subjected to semi-quantitative RT-PCR analysis for cadherin-11. Cadherin-11 was detected in 80/82 malignant breast cancer samples and in 33/70 non-malignant tissue samples. Cadherin-11 expression was observed to be predominantly localized to the membrane of tumor cells. When compared to healthy breast tissue biopsies, both cadherin-11 mRNA and protein were demonstrated to be significantly overexpressed in breast carcinoma (P=0.040 and P<0.0001, respectively). Within malignant tumors, however, protein expression was not identified to be associated with other clinicopathological parameters. Our results indicate that cadherin-11 expression is upregulated in malignant human breast cancer.
Collapse
Affiliation(s)
- Kamil Pohlodek
- Second Department of Gynecology and Obstetrics, Faculty of Medicine, Comenius University of Bratislava, 82606 Bratislava, Slovakia
| | - Yen Y Tan
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Christian F Singer
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Daphne Gschwantler-Kaulich
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
5
|
Singh M, Mukundan S, Jaramillo M, Oesterreich S, Sant S. Three-Dimensional Breast Cancer Models Mimic Hallmarks of Size-Induced Tumor Progression. Cancer Res 2016; 76:3732-43. [PMID: 27216179 DOI: 10.1158/0008-5472.can-15-2304] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 03/07/2016] [Indexed: 11/16/2022]
Abstract
Tumor size is strongly correlated with breast cancer metastasis and patient survival. Increased tumor size contributes to hypoxic and metabolic gradients in the solid tumor and to an aggressive tumor phenotype. Thus, it is important to develop three-dimensional (3D) breast tumor models that recapitulate size-induced microenvironmental changes and, consequently, natural tumor progression in real time without the use of artificial culture conditions or gene manipulations. Here, we developed size-controlled multicellular aggregates ("microtumors") of subtype-specific breast cancer cells by using non-adhesive polyethylene glycol dimethacrylate hydrogel microwells of defined sizes (150-600 μm). These 3D microtumor models faithfully represent size-induced microenvironmental changes, such as hypoxic gradients, cellular heterogeneity, and spatial distribution of necrotic/proliferating cells. These microtumors acquire hallmarks of tumor progression in the same cell lines within 6 days. Of note, large microtumors of hormone receptor-positive cells exhibited an aggressive phenotype characterized by collective cell migration and upregulation of mesenchymal markers at mRNA and protein level, which was not observed in small microtumors. Interestingly, triple-negative breast cancer (TNBC) cell lines did not show size-dependent upregulation of mesenchymal markers. In conclusion, size-controlled microtumor models successfully recapitulated clinically observed positive association between tumor size and aggressive phenotype in hormone receptor-positive breast cancer while maintaining clinically proven poor correlation of tumor size with aggressive phenotype in TNBC. Such clinically relevant 3D models generated under controlled experimental conditions can serve as precise preclinical models to study mechanisms involved in breast tumor progression as well as antitumor drug effects as a function of tumor progression. Cancer Res; 76(13); 3732-43. ©2016 AACR.
Collapse
Affiliation(s)
- Manjulata Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shilpaa Mukundan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Maria Jaramillo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Steffi Oesterreich
- Women's Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, School of Medicine, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania. Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania. McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
6
|
Vergara D, Simeone P, Franck J, Trerotola M, Giudetti A, Capobianco L, Tinelli A, Bellomo C, Fournier I, Gaballo A, Alberti S, Salzet M, Maffia M. Translating epithelial mesenchymal transition markers into the clinic: Novel insights from proteomics. EUPA OPEN PROTEOMICS 2016; 10:31-41. [PMID: 29900098 PMCID: PMC5988589 DOI: 10.1016/j.euprot.2016.01.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/30/2015] [Accepted: 01/05/2016] [Indexed: 12/15/2022]
Abstract
The growing understanding of the molecular mechanisms underlying epithelial-to-mesenchymal transition (EMT) may represent a potential source of clinical markers. Despite EMT drivers have not yet emerged as candidate markers in the clinical setting, their association with established clinical markers may improve their specificity and sensitivity. Mass spectrometry-based platforms allow analyzing multiple samples for the expression of EMT candidate markers, and may help to diagnose diseases or monitor treatment efficiently. This review highlights proteomic approaches applied to elucidate the differences between epithelial and mesenchymal tumors and describes how these can be used for target discovery and validation.
Collapse
Affiliation(s)
- Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy.,Laboratory of Clinical Proteomic, "Giovanni Paolo II" Hospital, ASL-Lecce, Italy
| | - Pasquale Simeone
- Research Centre on Aging (Ce.S.I), Unit of Cytomorphology, "University G. d'Annunzio" Foundation, 66100 Chieti, Italy.,Department of Medicine and Aging Science, School of Medicine and Health Science, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Julien Franck
- U1192 INSERM, Laboratoire PRISM: Protéomique, Réponse Inflammatoire, Spectrométrie de Masse, Université Lille 1, Villeneuve D'Ascq, France
| | - Marco Trerotola
- Unit of Cancer Pathology, CeSI, Foundation University 'G. d'Annunzio', Chieti, Italy.,Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Anna Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy
| | - Andrea Tinelli
- Department of Gynecology and Obstetrics, Division of Experimental Endoscopic Surgery, Imaging, Minimally Invasive Therapy and Technology, "Vito Fazzi" Hospital, ASL-Lecce, Italy.,International Translational Medicine and Biomodelling Research Group, Department of Applied Mathematics, Moscow Institute of Physics and Technology (MIPT), State University, Moscow, Russia
| | - Claudia Bellomo
- Department of Medical Biochemistry and Microbiology and Ludwig Institute for Cancer Research, Science for Life Laboratory, Biomedical Center, Uppsala University, Box 582, SE 75 123 Uppsala, Sweden
| | - Isabelle Fournier
- U1192 INSERM, Laboratoire PRISM: Protéomique, Réponse Inflammatoire, Spectrométrie de Masse, Université Lille 1, Villeneuve D'Ascq, France
| | - Antonio Gaballo
- CNR NANOTEC-Institute of Nanotechnology, Polo di Nanotecnologia c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Saverio Alberti
- Unit of Cancer Pathology, CeSI, Foundation University 'G. d'Annunzio', Chieti, Italy
| | - Michel Salzet
- U1192 INSERM, Laboratoire PRISM: Protéomique, Réponse Inflammatoire, Spectrométrie de Masse, Université Lille 1, Villeneuve D'Ascq, France
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy.,Laboratory of Clinical Proteomic, "Giovanni Paolo II" Hospital, ASL-Lecce, Italy
| |
Collapse
|
7
|
Li JP, Yang YX, Liu QL, Zhou ZW, Pan ST, He ZX, Zhang X, Yang T, Pan SY, Duan W, He SM, Chen XW, Qiu JX, Zhou SF. The pan-inhibitor of Aurora kinases danusertib induces apoptosis and autophagy and suppresses epithelial-to-mesenchymal transition in human breast cancer cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1027-62. [PMID: 25733818 PMCID: PMC4338784 DOI: 10.2147/dddt.s74412] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Danusertib (Danu) is a pan-inhibitor of Aurora kinases and a third-generation breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 (Bcr-Abl) tyrosine kinase inhibitor, but its antitumor effect and underlying mechanisms in the treatment of human breast cancer remain elusive. This study aimed to investigate the effects of Danu on the growth, apoptosis, autophagy, and epithelial-to-mesenchymal transition (EMT) and the molecular mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. The results demonstrated that Danu remarkably inhibited cell proliferation, induced apoptosis and autophagy, and suppressed EMT in both breast cancer cell lines. Danu arrested MCF7 and MDA-MB-231 cells in G2/M phase, accompanied by the downregulation of cyclin-dependent kinase 1 and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53. Danu significantly decreased the expression of B-cell lymphoma-extra-large (Bcl-xl) and B-cell lymphoma 2 (Bcl-2), but increased the expression of Bcl-2-associated X protein (Bax) and p53-upregulated modulator of apoptosis (PUMA), and promoted the cleavage of caspases 3 and 9. Furthermore, Danu significantly increased the expression levels of the membrane-bound microtubule-associated protein 1A/1B-light chain 3 (LC3-II) and beclin 1 in breast cancer cells, two markers for autophagy. Danu induced the activation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases 1 and 2 (Erk1/2) and inhibited the activation of protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways in breast cancer cells. Treatment with wortmannin (a phosphatidylinositol 3-kinase inhibitor) markedly inhibited Danu-induced activation of p38 MAPK and conversion of cytosolic LC3-I to membrane-bound LC3-II. Pharmacological inhibition and small interfering RNA-mediated knockdown of p38 MAPK suppressed Akt activation, resulting in LC3-II accumulation and enhanced autophagy. Pharmacological inhibition and small interfering RNA-mediated knockdown of Erk1/2 also remarkably increased the level of LC3-II in MCF7 cells. Moreover, Danu inhibited EMT in both MCF7 and MDA-MB-231 cells with upregulated E-cadherin and zona occludens protein 1 (ZO-1) but downregulated N-cadherin, zinc finger E-box-binding homeobox 1 (TCF8/ZEB1), snail, slug, vimentin, and β-catenin. Notably, Danu showed lower cytotoxicity toward normal breast epithelial MCF10A cells. These findings indicate that Danu promotes cellular apoptosis and autophagy but inhibits EMT in human breast cancer cells via modulation of p38 MAPK/Erk1/2/Akt/mTOR signaling pathways. Danu may represent a promising anticancer agent for breast cancer treatment. More studies are warranted to fully delineate the underlying mechanisms, efficacy, and safety of Danu in breast cancer therapy.
Collapse
Affiliation(s)
- Jin-Ping Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China ; Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Yin-Xue Yang
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Qi-Lun Liu
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| | - Shu-Ting Pan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Si-Yuan Pan
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Shu-Ming He
- Department of Obstetrics and Gynecology, Xiaolan People's Hospital affiliated to Southern Medical University, Zhongshan, Guangdong, People's Republic of China
| | - Xiao-Wu Chen
- Department of General Surgery, The First People's Hospital of Shunde affiliated to Southern Medical University, Shunde, Foshan, Guangdong, People's Republic of China
| | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| |
Collapse
|
8
|
Cao YW, Wan GX, Sun JP, Cui XB, Hu JM, Liang WH, Zheng YQ, Li WQ, Li F. Implications of the Notch1-Snail/Slug-epithelial to mesenchymal transition axis for lymph node metastasis in infiltrating ductal carcinoma. Kaohsiung J Med Sci 2014; 31:70-6. [PMID: 25645984 DOI: 10.1016/j.kjms.2014.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/04/2014] [Accepted: 11/13/2014] [Indexed: 01/23/2023] Open
Abstract
Emerging evidence suggests that activation of the Notch1 signaling pathway inducing epithelial to mesenchymal transition (EMT) mediated by Snail/Slug promotes invasion and metastasis of breast cancer cells in vitro. However, the implication of the Notch1-Snail/Slug-EMT axis in breast cancer patients remains unclear. A total of 200 formalin-fixed paraffin-embedded samples of invasive ductal carcinoma (IDC), and 37 adjacent non-neoplastic tissue (ANNT) samples from patients who had not been treated with neoadjuvant therapy were examined. Expression of Notch1, Slug, Snail, E-cadherin, N-cadherin, and vimentin was determined by immunohistochemistry on tissue microarrays (TMAs). The correlation between protein expression and clinicopathological characteristics of breast cancer patients was also evaluated. Results showed that a significantly high percentage of cases with high expression of Notch1 (74%, 148/200), Slug (36%, 72/200), Snail (62%, 124/200), and N-cadherin (77%, 153/200) and a low percentage of cases with high expression of E-cadherin (27%, 54/200) were observed in IDC compared to those in ANNTs. High Notch1, Slug, Snail, and N-cadherin expression and low E-cadherin expression in patients with IDC were significantly correlated with lymph node metastasis. In addition, correlation analysis results revealed that high Notch1 expression was significantly associated with high Slug, Snail, and N-cadherin expression and low E-cadherin expression in IDC. Furthermore, a high Snail expression was significantly associated with low E-cadherin expression, and a high Slug expression was found to be significantly associated with increased N-cadherin expression in patients with IDC. Hence, our study suggested that the Notch1-Snail/Slug-EMT axis may be implicated in the lymph node metastasis affecting patients with IDC.
Collapse
Affiliation(s)
- Yu-Wen Cao
- Department of Pathology and the Key Laboratories for Xinjiang Endemic and Ethnic Diseases (a joint venture with the Chinese Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Guo-Xing Wan
- Department of Pathology and the Key Laboratories for Xinjiang Endemic and Ethnic Diseases (a joint venture with the Chinese Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jian-Ping Sun
- Department of Pathology and the Key Laboratories for Xinjiang Endemic and Ethnic Diseases (a joint venture with the Chinese Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiao-Bin Cui
- Department of Pathology and the Key Laboratories for Xinjiang Endemic and Ethnic Diseases (a joint venture with the Chinese Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jian-Ming Hu
- Department of Pathology and the Key Laboratories for Xinjiang Endemic and Ethnic Diseases (a joint venture with the Chinese Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Wei-Hua Liang
- Department of Pathology and the Key Laboratories for Xinjiang Endemic and Ethnic Diseases (a joint venture with the Chinese Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yu-Qin Zheng
- Department of Pathology and the Key Laboratories for Xinjiang Endemic and Ethnic Diseases (a joint venture with the Chinese Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Wen-Qin Li
- Department of Pathology and the Key Laboratories for Xinjiang Endemic and Ethnic Diseases (a joint venture with the Chinese Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Feng Li
- Department of Pathology and the Key Laboratories for Xinjiang Endemic and Ethnic Diseases (a joint venture with the Chinese Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| |
Collapse
|
9
|
Cao YW, Li WQ, Wan GX, Li YX, Du XM, Li YC, Li F. Correlation and prognostic value of SIRT1 and Notch1 signaling in breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:97. [PMID: 25420528 PMCID: PMC4248440 DOI: 10.1186/s13046-014-0097-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/07/2014] [Indexed: 10/27/2023]
Abstract
BACKGROUND SIRT1 expression and Notch1 signaling have been implicated in tumorigenesis in many cancers, but their association with survival in breast cancer has not been determined. The purpose of this study was to assess the possible prognostic value of SIRT1, N1IC, and Snail expression in breast cancer patients. METHODS Immunohistochemistry was performed to examine the expression of SIRT1, N1IC, and Snail, and the combined expression of SIRT1 and N1IC, using tissue microarrays containing breast cancer tissue and matched adjacent normal breast tissue from 150 breast cancer patients. Survival analysis was carried out using the Kaplan-Meier method. Univariate and multivariate analysis were used to evaluate the prognostic value of SIRT1, N1IC, Snail and combined SIRT1/N1IC expression, in addition to other clinicopathological factors, including grade, lymph node status, disease stage, and estrogen, progesterone, and human epidermal growth factor receptor 2 receptor status in breast carcinoma patients. RESULTS SIRT1, N1IC, and Snail were all found to be highly expressed and an inverse correlation between SIRT1 and N1IC in breast cancer tissue. The three markers significantly correlated with lymph node status. Patients with low SIRT1 expression exhibited shorter overall survival (OS) and disease-free survival (DFS), and patients with combined low expression of SIRT1 and high expression of N1IC had the worse OS and DFS. Univariate and multivariate survival analysis revealed that low expression of SIRT1 and SIRT1-low/N1IC-high expression were independent prognostic factors for poor survival. CONCLUSIONS These results suggest that low expression of SIRT1 or the combined low expression of SIRT1 and high expression of N1IC could be used as indicators of poor prognosis, and may represent novel therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Yu-Wen Cao
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.
| | - Wen-Qin Li
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.
| | - Guo-Xing Wan
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.
| | - Yi-Xiao Li
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.
| | - Xiao-Ming Du
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.
| | - Yu-Cong Li
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.
| | - Feng Li
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
10
|
Xu B, Jin DY, Lou WH, Wang DS. Lipocalin-2 is associated with a good prognosis and reversing epithelial-to-mesenchymal transition in pancreatic cancer. World J Surg 2014; 37:1892-900. [PMID: 23539193 DOI: 10.1007/s00268-013-2009-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Lipocalin-2 is a multifaceted modulator in cancer progression. Its clinical significance is not clear in pancreatic cancer. The purpose of this study was to investigate whether lipocalin-2 is associated with good prognosis by reversing epithelial-to-mesenchymal transition (EMT) in pancreatic cancer. METHODS Lipocalin-2, E-cadherin, or vimentin expression was detected in 60 pancreatic adenocarcinoma specimens. Correlations between lipocalin-2 expression and EMT, the clinicopathologic characteristics, and prognosis were investigated. Whether pancreatic cancer cells' migration and invasion (some characteristics of EMT) were affected by lipocalin-2 was also explored. RESULTS High lipocalin-2 expression was significantly associated with a good prognosis in pancreatic cancer (p < 0.05). Overexpression of lipocalin-2 correlated with a lower extent of EMT (p < 0.05), increased E-cadherin expression (p < 0.05), decreased vimentin expression (p < 0.05), and reduced cancer cell migration and invasion in pancreatic cancer. CONCLUSIONS Lipocalin-2 may be considered an epithelial inducer, which may reverse EMT and predict a good prognosis in pancreatic cancer.
Collapse
Affiliation(s)
- Bin Xu
- Department of Hepato-biliary-pancreatic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai 200072, China.
| | | | | | | |
Collapse
|
11
|
Reza AMMT, Shiwani S, Singh NK, Lohakare JD, Lee SJ, Jeong DK, Han JY, Rengaraj D, Lee BW. Keratinocyte growth factor and thiazolidinediones and linolenic acid differentiate characterized mammary fat pad adipose stem cells isolated from prepubertal Korean black goat to epithelial and adipogenic lineage. In Vitro Cell Dev Biol Anim 2013; 50:194-206. [PMID: 24101555 DOI: 10.1007/s11626-013-9690-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 09/10/2013] [Indexed: 12/25/2022]
Abstract
The study was conducted to know and investigate the mechanism involved during mesenchymal to epithelial transition to unravel questions related to mammary gland development in prepubertal Korean black goat. We, therefore, biopsied mammary fat pad and isolated adipose cells and characterized with stemness factors (CD34, CD13, CD44, CD106, and vimentin) immunologically and through their genetic expression. Furthermore, characterized cells were differentiated to adipogenic (thiazolidinediones and α-linolenic acid) and epithelial (keratinocyte growth factor) lineages. Thiazolidinediones/or in combination with α-linolenic acid demonstrated significant upregulation of adipo-Q, PPAR-γ, CEBP-α, LPL, and resistin. Adipose stem cells in induction mixture (5 μg/ml insulin, 1 μg/ml hydrocortisone, and 10 ng/ml epidermal growth factor) and subsequent treatment with 10 ng/ml keratinocyte growth factor revealed their trans-differentiating ability to epithelial lineage. From 2 d onwards, the cells under keratinocyte growth factor influenced cells to assume rectangular (2-4 d) to cuboidal (8-10 d) shapes. Ayoub-Shklar stain developed brownish-red pigment in the transformed cells. Though, expressions of K8 and K18 were noted to be highly significant (p < 0.01) but expressions of epithelial membrane antigens and epithelial specific antigens were also significant (p < 0.05) compared to 0 d. Conclusively, epithelial transformations of mammary adipose stem cells would add up knowledge to develop therapeutic regimen to deal with mammary tissue injury and diseases.
Collapse
Affiliation(s)
- A M M T Reza
- Department of Animal Biotechnology, College of Animal Life Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Karch I, Schipper E, Christgen H, Kreipe H, Lehmann U, Christgen M. Is upregulation of BCL2 a determinant of tumor development driven by inactivation of CDH1/E-cadherin? PLoS One 2013; 8:e73062. [PMID: 24023670 PMCID: PMC3758309 DOI: 10.1371/journal.pone.0073062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/16/2013] [Indexed: 12/04/2022] Open
Abstract
Inactivation of CDH1, encoding E-cadherin, promotes cancer initiation and progression. According to a newly proposed molecular mechanism, loss of E-cadherin triggers an upregulation of the anti-apoptotic oncoprotein BCL2. Conversely, reconstitution of E-cadherin counteracts overexpression of BCL2. This reciprocal regulation is thought to be critical for early tumor development. We determined the relevance of this new concept in human infiltrating lobular breast cancer (ILBC), the prime tumor entity associated with CDH1 inactivation. BCL2 expression was examined in human ILBC cell lines (IPH-926, MDA-MB-134, SUM-44) harboring deleterious CDH1 mutations. To test for an intact regulatory axis between E-cadherin and BCL2, wild-type E-cadherin was reconstituted in ILBC cells by ectopic expression. Moreover, BCL2 and E-cadherin were evaluated in primary invasive breast cancers and in synchronous lobular carcinomas in situ (LCIS). MDA-MB-134 and IPH-926 showed little or no BCL2 expression, while SUM-44 ILBC cells were BCL2-positive. Reconstitution of E-cadherin failed to impact on BCL2 expression in all cell lines tested. Primary ILBCs were almost uniformly E-cadherin-negative (97%) and were frequently BCL2-negative (46%). When compared with an appropriate control group, ILBCs showed a trend towards an increased frequency of BCL2-negative cases (P = 0.064). In terminal duct-lobular units affected by LCIS, the E-cadherin-negative neoplastic component showed a similar or a reduced BCL2-immunoreactivity, when compared with the adjacent epithelium. In conclusion, upregulation of BCL2 is not involved in lobular breast carcinogenesis and is unlikely to represent an important determinant of tumor development driven by CDH1 inactivation.
Collapse
Affiliation(s)
- Inga Karch
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Lubbock ALR, Katz E, Harrison DJ, Overton IM. TMA Navigator: Network inference, patient stratification and survival analysis with tissue microarray data. Nucleic Acids Res 2013; 41:W562-8. [PMID: 23761446 PMCID: PMC3692046 DOI: 10.1093/nar/gkt529] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tissue microarrays (TMAs) allow multiplexed analysis of tissue samples and are frequently used to estimate biomarker protein expression in tumour biopsies. TMA Navigator (www.tmanavigator.org) is an open access web application for analysis of TMA data and related information, accommodating categorical, semi-continuous and continuous expression scores. Non-biological variation, or batch effects, can hinder data analysis and may be mitigated using the ComBat algorithm, which is incorporated with enhancements for automated application to TMA data. Unsupervised grouping of samples (patients) is provided according to Gaussian mixture modelling of marker scores, with cardinality selected by Bayesian information criterion regularization. Kaplan–Meier survival analysis is available, including comparison of groups identified by mixture modelling using the Mantel-Cox log-rank test. TMA Navigator also supports network inference approaches useful for TMA datasets, which often constitute comparatively few markers. Tissue and cell-type specific networks derived from TMA expression data offer insights into the molecular logic underlying pathophenotypes, towards more effective and personalized medicine. Output is interactive, and results may be exported for use with external programs. Private anonymous access is available, and user accounts may be generated for easier data management.
Collapse
Affiliation(s)
- Alexander L R Lubbock
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | | | |
Collapse
|
14
|
Arora H, Qureshi R, Park WY. miR-506 regulates epithelial mesenchymal transition in breast cancer cell lines. PLoS One 2013; 8:e64273. [PMID: 23717581 PMCID: PMC3661463 DOI: 10.1371/journal.pone.0064273] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 04/09/2013] [Indexed: 01/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an important parameter related to breast cancer survival. Among several microRNAs predicted to target EMT-related genes, miR-506 is a novel miRNA found to be significantly related to breast cancer patient survival in a meta-analysis. miR-506 suppressed the expression of mesenchymal genes such as Vimentin, Snai2, and CD151 in MDA-MB-231 human breast cancer cell line. Moreover, NF-κB bound to the upstream promoter region of miR-506 to suppress transcription. Overexpression of miR-506 inhibited TGFβ-induced EMT and suppressed adhesion, invasion, and migration of MDA-MB-231 cells. From these results, we concluded that miR-506 plays a key role in the process of EMT through posttranslational control of EMT-related genes.
Collapse
Affiliation(s)
- Himanshu Arora
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Rehana Qureshi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Woong-Yang Park
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
- * E-mail:
| |
Collapse
|
15
|
Oncostatin-M promotes phenotypic changes associated with mesenchymal and stem cell-like differentiation in breast cancer. Oncogene 2013; 33:1485-94. [PMID: 23584474 DOI: 10.1038/onc.2013.105] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 01/23/2013] [Accepted: 02/07/2013] [Indexed: 12/14/2022]
Abstract
Cancer stem cell (CSC) biology and the epithelial-to-mesenchymal transition (EMT) are thought to be mechanistically linked and may be key components of cancer development and progression. However, stimuli that induce EMT and CSC-like features ('stemness') are poorly defined. We and others have shown that the inflammatory cytokine oncostatin-M (OSM) mediates phenotypic changes in breast cancer that are consistent with EMT and dedifferentiation, including enhanced migration and loss of hormone receptors. In this study, we have expanded on these prior observations to determine whether OSM is a cell-extrinsic driver of EMT and/or stemness. OSM stimulation of the luminal breast cancer cell lines MCF7 and T47D induced EMT features including loss of membranous E-cadherin and induction of snail and slug expression. OSM treatment markedly enhanced the formation of mammospheres (up to 20-fold, P<0.001), which displayed high expression of the pluripotency factor SOX2. The proportion of cells with a CD44(high)CD24(-/low) phenotype was similarly increased by OSM (P<0.001). OSM-induced mammosphere formation and CD44(high)CD24(-/low) induction was dependent on PI3K signalling. In silico analysis of human breast tumours (from a publicly available data set, n=322) confirmed that co-expression of a PI3K transcriptional signature, but not MAPK or STAT3 signatures, was necessary to detect an association between OSMR and poor prognosis. Assessment of a second in silico data set (n=241 breast tumours) confirmed a significant relationship between OSMR, markers of EMT and CSCs, and chemotherapy resistance. Direct analysis of mRNA expression by RT-PCR in a third cohort (n=72 breast tumours) demonstrated that high expression of OSM is associated positively with indicators of EMT (SNAI1, P<0.001) and stemness (SOX2, P<0.05). Our data suggest for the first time that OSM may promote a clinically relevant EMT/CSC-like phenotype in human breast cancer via a PI3K-dependent mechanism.
Collapse
|
16
|
Siletz A, Schnabel M, Kniazeva E, Schumacher AJ, Shin S, Jeruss JS, Shea LD. Dynamic transcription factor networks in epithelial-mesenchymal transition in breast cancer models. PLoS One 2013; 8:e57180. [PMID: 23593114 PMCID: PMC3620167 DOI: 10.1371/journal.pone.0057180] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 01/17/2013] [Indexed: 12/11/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a complex change in cell differentiation that allows breast carcinoma cells to acquire invasive properties. EMT involves a cascade of regulatory changes that destabilize the epithelial phenotype and allow mesenchymal features to manifest. As transcription factors (TFs) are upstream effectors of the genome-wide expression changes that result in phenotypic change, understanding the sequential changes in TF activity during EMT provides rich information on the mechanism of this process. Because molecular interactions will vary as cells progress from an epithelial to a mesenchymal differentiation program, dynamic networks are needed to capture the changing context of molecular processes. In this study we applied an emerging high-throughput, dynamic TF activity array to define TF activity network changes in three cell-based models of EMT in breast cancer based on HMLE Twist ER and MCF-7 mammary epithelial cells. The TF array distinguished conserved from model-specific TF activity changes in the three models. Time-dependent data was used to identify pairs of TF activities with significant positive or negative correlation, indicative of interdependent TF activity throughout the six-day study period. Dynamic TF activity patterns were clustered into groups of TFs that change along a time course of gene expression changes and acquisition of invasive capacity. Time-dependent TF activity data was combined with prior knowledge of TF interactions to construct dynamic models of TF activity networks as epithelial cells acquire invasive characteristics. These analyses show EMT from a unique and targetable vantage and may ultimately contribute to diagnosis and therapy.
Collapse
Affiliation(s)
- Anaar Siletz
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, United States of America
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Michael Schnabel
- Physical Sciences – Oncology Center, Northwestern Institute on Complex Systems, Departments of Applied Mathematics and Physics, Northwestern University, Evanston, Illinois, United States of America
| | - Ekaterina Kniazeva
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Andrew J. Schumacher
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Seungjin Shin
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Jacqueline S. Jeruss
- Department of Surgery, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, United States of America
| | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, United States of America
- Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
17
|
Katz E, Sims AH, Sproul D, Caldwell H, Dixon MJ, Meehan RR, Harrison DJ. Targeting of Rac GTPases blocks the spread of intact human breast cancer. Oncotarget 2013; 3:608-19. [PMID: 22689141 PMCID: PMC3442288 DOI: 10.18632/oncotarget.520] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
High expression of Rac small GTPases in invasive breast ductal carcinoma is associated with poor prognosis, but its therapeutic value in human cancers is not clear. The aim of the current study was to determine the response of human primary breast cancers to Rac-based drug treatments ex vivo. Three-dimensional organotypic cultures were used to assess candidate therapeutic avenues in invasive breast cancers. Uniquely, in these primary cultures, the tumour is not disaggregated, with both epithelial and mesenchymal components maintained within a three-dimensional matrix of type I collagen. EHT 1864, a small molecule inhibitor of Rac GTPases, prevents spread of breast cancers in this setting, and also reduces proliferation at the invading edge. Rac1+ epithelial cells in breast tumours also contain high levels of the phosphorylated form of the transcription factor STAT3. The small molecule Stattic inhibits activation of STAT3 and induces effects similar to those seen with EHT 1864. Pan-Rac inhibition of proliferation precedes down-regulation of STAT3 activity, defining it as the last step in Rac activation during human breast cancer invasion. Our data highlights the potential use of Rac and STAT3 inhibition in treatment of invasive human breast cancer and the benefit of studying novel cancer treatments using three-dimensional primary tumour tissue explant cultures.
Collapse
Affiliation(s)
- Elad Katz
- Breakthrough Breast Cancer Research Unit, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Singleminded-2s (SIM2s) is a member of the bHLH/PAS family of transcription factors and a key regulator of mammary epithelial cell differentiation. SIM2s is highly expressed in mammary epithelial cells and down regulated in human breast cancer. Loss of Sim2s causes aberrant mouse mammary ductal development with features suggestive of malignant transformation, whereas over-expression of SIM2s promotes precocious alveolar differentiation in nulliparous mouse mammary glands, suggesting that SIM2s is required for establishing and enhancing mammary gland differentiation. To test the hypothesis that SIM2s regulates tumor cell differentiation, we analyzed SIM2s expression in human primary breast ductal carcinoma in situ (DCIS) samples and found that SIM2s is lost with progression from DCIS to invasive ductal cancer (IDC). Utilizing a MCF10DCIS.COM progression model, we have shown that SIM2s expression is decreased in MCF10DCIS.COM cells compared to MCF10A cells and reestablishment of SIM2s in MCF10DCIS.COM cells significantly inhibits growth and invasion in vitro and in vivo. Analysis of SIM2s-MCF10DCIS.com tumors showed that SIM2s promoted a more differentiated tumor phenotype including the expression of a broad range of luminal markers (CSN2 (β-casein), CDH1 (E-cadherin), and KER18 (keratin-18)) and suppressed genes associated with stem cell maintenance and a basal phenotype (SMO (smoothened), p63, SLUG (snail-2), KER14 (keratin-14) and VIM (vimentin)). Furthermore, loss of SIM2s expression in MCF10DCIS.COM xenografts resulted in a more invasive phenotype and increased lung metastasis likely due to an increase in hedgehog signaling and matrix metalloproteinase expression. Together, these exciting new data support a role for SIM2s in promoting human breast tumor differentiation and maintaining epithelial integrity.
Collapse
|
19
|
The use of automated quantitative analysis to evaluate epithelial-to-mesenchymal transition associated proteins in clear cell renal cell carcinoma. PLoS One 2012; 7:e31557. [PMID: 22363672 PMCID: PMC3283650 DOI: 10.1371/journal.pone.0031557] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 01/11/2012] [Indexed: 01/16/2023] Open
Abstract
Background Epithelial-to-mesenchymal transition (EMT) has recently been implicated in the initiation and progression of renal cell carcinoma (RCC). Some mRNA gene expression studies have suggested a link between the EMT phenotype and poorer clinical outcome from RCC. This study evaluated expression of EMT-associated proteins in RCC using in situ automated quantitative analysis immunofluorescence (AQUA) and compared expression levels with clinical outcome. Methods/Principal Findings Unsupervised hierarchical cluster analysis of pre-existing RCC gene expression array data (GSE16449) from 36 patients revealed the presence of an EMT transcriptional signature in RCC [E-cadherin high/SLUG low/SNAIL low]. As automated immunofluorescence technology is dependent on accurate definition of the tumour cells in which measurements take place is critical, extensive optimisation was carried out resulting in a novel pan-cadherin based tumour mask that distinguishes renal cancer cells from stromal components. 61 patients with ccRCC and clinical follow-up were subsequently assessed for expression of EMT-associated proteins (WT1, SNAIL, SLUG, E-cadherin and phospho-β-catenin) on tissue microarrays. Using Kaplan-Meier analysis both SLUG (p = 0.029) and SNAIL (p = 0.024) (log rank Mantel-Cox) were significantly associated with prolonged progression free survival (PFS). Using Cox regression univariate and multivariate analysis none of the biomarkers were significantly correlated with outcome. 14 of the 61 patients expressed the gene expression analysis predicted EMT-protein signature [E-cadherin high/SLUG low/SNAIL low], which was not found to be associated to PFS when measured at the protein level. A combination of high expression of SNAIL and low stage was able to stratify patients with greater significance (p = 0.001) then either variable alone (high SNAIL p = 0.024, low stage p = 0.029). Conclusions AQUA has been shown to have the potential to identify EMT related protein targets in RCC allowing for stratification of patients into high and low risk groups, as well the ability to assess the association of reputed EMT signatures to progression of the disease.
Collapse
|
20
|
Abstract
Cadherins are transmembrane receptors that function through calcium-dependent homophilic and heterophilic interactions that provide cell-cell contact and communication in many different organ systems. In the mammary gland only a few of the cadherins that make up this large superfamily of proteins have been characterized. Frequently in metastatic breast cancer, the genes for cadherins are epigenetically silenced, mutated, or regulated differently. During epithelial-mesenchymal transition, cadherins that are expressed normally in the epithelial cells are down-regulated, while cadherins expressed in the mesenchyme are up-regulated. This process is known as cadherin switching, and its regulation can sometimes facilitate the increased motility, invasiveness and proliferation that occurs in metastatic cancer cells. Depending on the context, however, cell motility, invasiveness, proliferation and expression of mesenchymal markers can be independently modulated from cadherin expression, leading to partial epithelial-mesenchymal transitions and even mesenchymal-epithelial transitions (METs). This review will summarize the current understanding of cadherins found in the mammary gland and what is known about their mechanism of regulation in the mammary gland during normal physiological conditions and in breast cancer.
Collapse
Affiliation(s)
- Jennifer L Andrews
- St Bonaventure University, Biology Department, William Walsh Science Building, #213, St Bonaventure, NY 14778, USA.
| | | | | |
Collapse
|
21
|
Breast cancer epithelial-to-mesenchymal transition: examining the functional consequences of plasticity. Breast Cancer Res 2011; 13:226. [PMID: 22078097 PMCID: PMC3326549 DOI: 10.1186/bcr3037] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a critical developmental process that has recently come to the forefront of cancer biology. In breast carcinomas, acquisition of a mesenchymal-like phenotype that is reminiscent of an EMT, termed oncogenic EMT, is associated with pro-metastatic properties, including increased motility, invasion, anoikis resistance, immunosuppression and cancer stem cell characteristics. This oncogenic EMT is a consequence of cellular plasticity, which allows for interconversion between epithelial and mesenchymal-like states, and is thought to enable tumor cells not only to escape from the primary tumor, but also to colonize a secondary site. Indeed, the plasticity of cancer cells may explain the range of pro-metastatic traits conferred by oncogenic EMT, such as the recently described link between EMT and cancer stem cells and/or therapeutic resistance. Continued research into this relationship will be critical in developing drugs that block mechanisms of breast cancer progression, ultimately improving patient outcomes.
Collapse
|