1
|
Pan C, Xu A, Ma X, Yao Y, Zhao Y, Wang C, Chen C. Research progress of Claudin-low breast cancer. Front Oncol 2023; 13:1226118. [PMID: 37904877 PMCID: PMC10613467 DOI: 10.3389/fonc.2023.1226118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/26/2023] [Indexed: 11/01/2023] Open
Abstract
Claudin-low breast cancer (CLBC) is a subgroup of breast cancer discovered at the molecular level in 2007. Claudin is one of the primary proteins that make up tight junctions, and it plays crucial roles in anti-inflammatory and antitumor responses as well as the maintenance of water and electrolyte balance. Decreased expression of claudin results in the disruption of tight junction structures and the activation of downstream signaling pathways, which can lead to tumor formation. The origin of Claudin-low breast cancer is still in dispute. Claudin-low breast cancer is characterized by low expression of Claudin3, 4, 7, E-cadherin, and HER2 and high expression of Vimentin, Snai 1/2, Twist 1/2, Zeb 1/2, and ALDH1, as well as stem cell characteristics. The clinical onset of claudin-low breast cancer is at menopause age, and its histological grade is higher. This subtype of breast cancer is more likely to spread to lymph nodes than other subtypes. Claudin-low breast cancer is frequently accompanied by increased invasiveness and a poor prognosis. According to a clinical retrospective analysis, claudin-low breast cancer can achieve low pathological complete remission. At present, although several therapeutic targets of claudin-low breast cancer have been identified, the effective treatment remains in basic research stages, and no animal studies or clinical trials have been designed. The origin, molecular biological characteristics, pathological characteristics, treatment, and prognosis of CLBC are extensively discussed in this article. This will contribute to a comprehensive understanding of CLBC and serve as the foundation for the individualization of breast cancer treatment.
Collapse
Affiliation(s)
- Chenglong Pan
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Anqi Xu
- Kunming Medical University, Kunming, Yunnan, China
- Department of Anesthesia, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaoling Ma
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Yanfei Yao
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Youmei Zhao
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Chunyan Wang
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ceshi Chen
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan, China
- The Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Sugita BM, Rodriguez Y, Fonseca AS, Nunes Souza E, Kallakury B, Cavalli IJ, Ribeiro EMSF, Aneja R, Cavalli LR. MiR-150-5p Overexpression in Triple-Negative Breast Cancer Contributes to the In Vitro Aggressiveness of This Breast Cancer Subtype. Cancers (Basel) 2022; 14:cancers14092156. [PMID: 35565284 PMCID: PMC9104497 DOI: 10.3390/cancers14092156] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 01/16/2023] Open
Abstract
Simple Summary Triple-negative breast cancer (TNBC) is a clinically aggressive type of breast cancer. MicroRNAs (miRNAs) are small molecules that regulate the expression of genes involved in tumor cell signaling. The miR-150-5p is frequently deregulated in cancer, with expression and mode of action varying according to the cancer type. In this study, we investigated the expression levels of miR-150-5p in TNBC, its association with clinical and pathological features of patients, and its role in modulating TNBC cell proliferation, migration, and drug resistance. Our results suggest that miR-150-5p is highly expressed in TNBC and that miR-150-5p expression levels are associated with tumor grade, patient survival, and ethnicity. Our findings also indicate that miR-150-5p contributes to the aggressive phenotypes of TNBC cells in vitro. Abstract MiR-150-5p is frequently deregulated in cancer, with expression and mode of action varying according to the tumor type. Here, we investigated the expression levels and role of miR-150-5p in the aggressive breast cancer subtype triple-negative breast cancer (TNBC). MiR-150-5p expression levels were analyzed in tissue samples from 113 patients with invasive breast cancer (56 TNBC and 57 non-TNBC) and 41 adjacent non-tumor tissues (ANT). Overexpression of miR-150-5p was observed in tumor tissues compared with ANT tissues and in TNBC compared with non-TNBC tissues. MiR-150-5p expression levels were significantly associated with high tumor grades and the Caucasian ethnicity. Interestingly, high miR-150-5p levels were associated with prolonged overall survival. Manipulation of miR-150-5p expression in TNBC cells modulated cell proliferation, clonogenicity, migration, and drug resistance. Manipulation of miR-150-5p expression also resulted in altered expression of its mRNA targets, including epithelial-to-mesenchymal transition markers, MYB, and members of the SRC pathway. These findings suggest that miR-150-5p is overexpressed in TNBC and contributes to the aggressiveness of TNBC cells in vitro.
Collapse
Affiliation(s)
- Bruna M. Sugita
- Research Institute Pele Pequeno Príncipe, Faculdades Pequeno Príncipe Curitiba, Curitiba 80250-060, Brazil; (B.M.S.); (A.S.F.); (E.N.S.)
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA;
- Genetics Post-Graduation Program, Department of Genetics, Federal University of Paraná, Curitiba 81530-000, Brazil; (I.J.C.); (E.M.S.F.R.)
| | - Yara Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA;
| | - Aline S. Fonseca
- Research Institute Pele Pequeno Príncipe, Faculdades Pequeno Príncipe Curitiba, Curitiba 80250-060, Brazil; (B.M.S.); (A.S.F.); (E.N.S.)
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA;
| | - Emanuelle Nunes Souza
- Research Institute Pele Pequeno Príncipe, Faculdades Pequeno Príncipe Curitiba, Curitiba 80250-060, Brazil; (B.M.S.); (A.S.F.); (E.N.S.)
| | - Bhaskar Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC 20007, USA;
| | - Iglenir J. Cavalli
- Genetics Post-Graduation Program, Department of Genetics, Federal University of Paraná, Curitiba 81530-000, Brazil; (I.J.C.); (E.M.S.F.R.)
| | - Enilze M. S. F. Ribeiro
- Genetics Post-Graduation Program, Department of Genetics, Federal University of Paraná, Curitiba 81530-000, Brazil; (I.J.C.); (E.M.S.F.R.)
| | - Ritu Aneja
- Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Luciane R. Cavalli
- Research Institute Pele Pequeno Príncipe, Faculdades Pequeno Príncipe Curitiba, Curitiba 80250-060, Brazil; (B.M.S.); (A.S.F.); (E.N.S.)
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA;
- Correspondence:
| |
Collapse
|
3
|
Wijesinghe KM, Kanak MA, Harrell JC, Dhakal S. Single-Molecule Sensor for High-Confidence Detection of miRNA. ACS Sens 2022; 7:1086-1094. [PMID: 35312280 PMCID: PMC9112324 DOI: 10.1021/acssensors.1c02748] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) play a crucial role in regulating gene expression and have been linked to many diseases. Therefore, sensitive and accurate detection of disease-linked miRNAs is vital to the emerging revolution in early diagnosis of diseases. While the detection of miRNAs is a challenge due to their intrinsic properties such as small size, high sequence similarity among miRNAs and low abundance in biological fluids, the majority of miRNA-detection strategies involve either target/signal amplification or involve complex sensing designs. In this study, we have developed and tested a DNA-based fluorescence resonance energy transfer (FRET) sensor that enables ultrasensitive detection of a miRNA biomarker (miRNA-342-3p) expressed by triple-negative breast cancer (TNBC) cells. The sensor shows a relatively low FRET state in the absence of a target but it undergoes continuous FRET transitions between low- and high-FRET states in the presence of the target. The sensor is highly specific, has a detection limit down to low femtomolar (fM) without having to amplify the target, and has a large dynamic range (3 orders of magnitude) extending to 300 000 fM. Using this strategy, we demonstrated that the sensor allows detection of miRNA-342-3p in the miRNA-extracts from cancer cell lines and TNBC patient-derived xenografts. Given the simple-to-design hybridization-based detection, the sensing platform developed here can be used to detect a wide range of miRNAs enabling early diagnosis and screening of other genetic disorders.
Collapse
Affiliation(s)
- Kalani M. Wijesinghe
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Mazhar A. Kanak
- Division of Transplant Surgery, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, United States
| | - J. Chuck Harrell
- Department of Pathology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
4
|
Skok K, Gradišnik L, Čelešnik H, Milojević M, Potočnik U, Jezernik G, Gorenjak M, Sobočan M, Takač I, Kavalar R, Maver U. MFUM-BrTNBC-1, a Newly Established Patient-Derived Triple-Negative Breast Cancer Cell Line: Molecular Characterisation, Genetic Stability, and Comprehensive Comparison with Commercial Breast Cancer Cell Lines. Cells 2021; 11:cells11010117. [PMID: 35011679 PMCID: PMC8749978 DOI: 10.3390/cells11010117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a breast cancer (BC) subtype that accounts for approximately 15–20% of all BC cases. Cancer cell lines (CLs) provide an efficient way to model the disease. We have recently isolated a patient-derived triple-negative BC CL MFUM-BrTNBC-1 and performed a detailed morphological and molecular characterisation and a comprehensive comparison with three commercial BC CLs (MCF-7, MDA-MB-231, MDA-MB-453). Light and fluorescence microscopy were used for morphological studies; immunocytochemical staining for hormone receptor, p53 and Ki67 status; RNA sequencing, qRT-PCR and STR analysis for molecular characterisation; and biomedical image analysis for comparative phenotypical analysis. The patient tissue-derived MFUM-BrTNBC-1 maintained the primary triple-negative receptor status. STR analysis showed a stable and unique STR profile up to the 6th passage. MFUM-BrTNBC-1 expressed EMT transition markers and displayed changes in several cancer-related pathways (MAPK, Wnt and PI3K signalling; nucleotide excision repair; and SWI/SNF chromatin remodelling). Morphologically, MFUM-BrTNBC-1 differed from the commercial TNBC CL MDA-MB-231. The advantages of MFUM-BrTNBC-1 are its isolation from a primary tumour, rather than a metastatic site; good growth characteristics; phenotype identical to primary tissue; complete records of origin; a unique identifier; complete, unique STR profile; quantifiable morphological properties; and genetic stability up to (at least) the 6th passage.
Collapse
Affiliation(s)
- Kristijan Skok
- Department of Pathology, Hospital Graz II, Location West, Göstinger Straße 22, 8020 Graz, Austria
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (L.G.); (H.Č.); (M.M.); (U.P.); (G.J.); (M.G.); (M.S.); (I.T.); (R.K.)
- Correspondence: (K.S.); (U.M.); Tel.: +43-316-5466-5541 (K.S.); +386-2-234-5823 (U.M.)
| | - Lidija Gradišnik
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (L.G.); (H.Č.); (M.M.); (U.P.); (G.J.); (M.G.); (M.S.); (I.T.); (R.K.)
| | - Helena Čelešnik
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (L.G.); (H.Č.); (M.M.); (U.P.); (G.J.); (M.G.); (M.S.); (I.T.); (R.K.)
- Faculty of Chemistry & Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Marko Milojević
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (L.G.); (H.Č.); (M.M.); (U.P.); (G.J.); (M.G.); (M.S.); (I.T.); (R.K.)
| | - Uroš Potočnik
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (L.G.); (H.Č.); (M.M.); (U.P.); (G.J.); (M.G.); (M.S.); (I.T.); (R.K.)
- Faculty of Chemistry & Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Gregor Jezernik
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (L.G.); (H.Č.); (M.M.); (U.P.); (G.J.); (M.G.); (M.S.); (I.T.); (R.K.)
| | - Mario Gorenjak
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (L.G.); (H.Č.); (M.M.); (U.P.); (G.J.); (M.G.); (M.S.); (I.T.); (R.K.)
| | - Monika Sobočan
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (L.G.); (H.Č.); (M.M.); (U.P.); (G.J.); (M.G.); (M.S.); (I.T.); (R.K.)
- Division for Gynecology and Perinatology, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
| | - Iztok Takač
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (L.G.); (H.Č.); (M.M.); (U.P.); (G.J.); (M.G.); (M.S.); (I.T.); (R.K.)
- Division for Gynecology and Perinatology, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
| | - Rajko Kavalar
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (L.G.); (H.Č.); (M.M.); (U.P.); (G.J.); (M.G.); (M.S.); (I.T.); (R.K.)
- Department of Pathology, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
| | - Uroš Maver
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (L.G.); (H.Č.); (M.M.); (U.P.); (G.J.); (M.G.); (M.S.); (I.T.); (R.K.)
- Correspondence: (K.S.); (U.M.); Tel.: +43-316-5466-5541 (K.S.); +386-2-234-5823 (U.M.)
| |
Collapse
|
5
|
Xuan Z, Chen C, Tang W, Ye S, Zheng J, Zhao Y, Shi Z, Zhang L, Sun H, Shao C. TKI-Resistant Renal Cancer Secretes Low-Level Exosomal miR-549a to Induce Vascular Permeability and Angiogenesis to Promote Tumor Metastasis. Front Cell Dev Biol 2021; 9:689947. [PMID: 34179017 PMCID: PMC8222687 DOI: 10.3389/fcell.2021.689947] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
Tyrosine kinase inhibitors (TKI)-resistant renal cancer is highly susceptible to metastasis, and enhanced vascular permeability promotes the process of metastasis. To evaluate the effect of cancer-derived exosomes on vascular endothelial cells and clarify the mechanism of metastasis in TKI-resistant renal cancer, we studied the crosstalk between clear cell renal cell carcinoma (ccRCC) cells and human umbilical vein endothelial cells (HUVECs). Exosomes from ccRCC cells enhanced the expression of vascular permeability-related proteins. Compared with sensitive strains, exosomes from resistant strains significantly enhanced vascular endothelial permeability, induced tumor angiogenesis and enhanced tumor lung metastasis in nude mice. The expression of miR-549a is lower in TKI-resistant cells and exosomes, which enhanced the expression of HIF1α in endothelial cells. In addition, TKI-resistant RCC cells reduced nuclear output of pre-miR-549a via the VEGFR2-ERK-XPO5 pathway, and reduced enrichment of mature miR-549a in cytoplasm, which in turn promoted HIF1α expression in RCC, leading to increased VEGF secretion and further activated VEGFR2 to form a feedback effect. miR-549a played an important role in the metastasis of renal cancer and might serve as a blood biomarker for ccRCC metastasis and even had the potential of becoming a new drug to inhibit TKI-resistance.
Collapse
Affiliation(s)
- Zuodong Xuan
- Medical College, Xiamen University, Xiamen, China
| | - Chen Chen
- Medical College, Xiamen University, Xiamen, China
| | - Wenbin Tang
- Medical College, Xiamen University, Xiamen, China
| | - Shaopei Ye
- Medical College, Xiamen University, Xiamen, China
| | | | - Yue Zhao
- Medical College, Xiamen University, Xiamen, China
| | - Zhiyuan Shi
- Medical College, Xiamen University, Xiamen, China
| | - Lei Zhang
- School of Public Health, Xiamen University, Xiamen, China
| | - Huimin Sun
- Department of Urology Surgery, Xiang'an Hospital, Xiamen University, Xiamen, China
| | - Chen Shao
- Department of Urology Surgery, Xiang'an Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Molecular Profiles of Brain Metastases: A Focus on Heterogeneity. Cancers (Basel) 2021; 13:cancers13112645. [PMID: 34071176 PMCID: PMC8198739 DOI: 10.3390/cancers13112645] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Precision cancer medicine depends on the characterization of tumor samples, usually by a single-tumor biopsy, to administer an optimal therapeutic. However, primary tumors and their metastases are often heterogeneous. A metastatic lesion may harbor a completely different genetic makeup to that of its parent tumor, and a single tumor sampling may be ineffective in selecting the most efficient therapy. Brain metastases, due to their low availability and specific microenvironment, pose a particular challenge for precision medicine. In this review, we highlight the genetic landscape of brain metastases, with a particular focus on their heterogeneity. To illustrate this problem, we present phenotypic alterations in brain metastases originating from lung cancer, breast cancer, and melanoma. This article may help clinicians better understand alterations in brain metastases and the relevance of their heterogeneity. Abstract Brain metastasis is a common and devastating clinical entity. Intratumor heterogeneity in brain metastases poses a crucial challenge to precision medicine. However, advances in next-generation sequencing, new insight into the pathophysiology of driver mutations, and the creation of novel tumor models have allowed us to gain better insight into the genetic landscapes of brain metastases, their temporal evolution, and their response to various treatments. A plethora of genomic studies have identified the heterogeneous clonal landscape of tumors and, at the same time, introduced potential targets for precision medicine. As an example, we present phenotypic alterations in brain metastases originating from three malignancies with the highest brain metastasis frequency: lung cancer, breast cancer, and melanoma. We discuss the barriers to precision medicine, tumor heterogeneity, the significance of blood-based biomarkers in tracking clonal evolution, the phylogenetic relationship between primary and metastatic tumors, blood–brain barrier heterogeneity, and limitations to ongoing research.
Collapse
|
7
|
Bussing D, Sharma S, Li Z, Meyer LF, Shah DK. Quantitative Evaluation of the Effect of Antigen Expression Level on Antibody-Drug Conjugate Exposure in Solid Tumor. AAPS JOURNAL 2021; 23:56. [PMID: 33856579 DOI: 10.1208/s12248-021-00584-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/17/2021] [Indexed: 12/22/2022]
Abstract
Antibody-drug conjugates (ADCs) rely on high expression of target antigens on cancer cells to effectively enter the cell and release a cytotoxic payload. Previous studies have shown that ADC efficacy is not always tied to antigen expression. However, our recent in vitro study suggests a linear relationship between antigen expression and the intracellular levels of the ADC payload. In this study, we have explored the relationship between antigen expression and intratumoral ADC exposure in vivo. Using trastuzumab-vc-MMAE (T-vc-MMAE) and four cell lines with varying expression of human epithelial growth factor receptor 2 (HER2), the pharmacokinetics of total trastuzumab, released ("free") MMAE, and total MMAE were evaluated in a tumor xenograft model. Nude mice were implanted with tumors originating from BT-474, MDA-MB-453, MCF-7, and MDA-MB-468 cell lines and dosed with 10 mg/kg or 1 mg/kg of ADC. Observed data were mathematically characterized using a mechanism-based PK model. A strong positive correlation was observed between antigen expression levels and free/total MMAE exposure (R2 ≥ 0.91) (total MMAE being the sum of released and conjugated MMAE) within the tumor, but not for total trastuzumab exposure. The PK model was able to recapitulate plasma PK through simulation; however, the tumor PK was overpredicted or underpredicted in some cases potentially due to differences in tumor vasculature or extracellular matrix conditions. Our results indicate a linear relationship between antigen expression and tumor exposure of free/total ADC payload in vivo, validating our previous finding in vitro, while also revealing the need to understand complex physiology of the tumor to predict tumor PK of ADC and its components. Our findings also support the concept of antigen expression screening in patients for targeted therapies like ADCs to achieve the maximum therapeutic benefit of the treatment.
Collapse
Affiliation(s)
- David Bussing
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Sharad Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA. .,NBE-PK, Research and Development, Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd., P.O. Box 368, Ridgefield, Connecticut, 06877-0368, USA.
| | - Zhe Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Lyndsey F Meyer
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
8
|
Balestrieri K, Kew K, McDaniel M, Ramez M, Pittman HK, Murray G, Vohra NA, Verbanac KM. Proteomic identification of tumor- and metastasis-associated galectin-1 in claudin-low breast cancer. Biochim Biophys Acta Gen Subj 2021; 1865:129784. [PMID: 33166603 DOI: 10.1016/j.bbagen.2020.129784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Metastasis and mortality remain high among breast cancer patients with the claudin-low subtype because these tumors are aggressive, chemoresistant, and lack targeted therapies. Our objective was to utilize discovery-based proteomics to identify proteins associated with claudin-low primary and metastatic tumors to gain insight into pathways and mechanisms of tumor progression. METHODS We used nano-LC-MS/MS proteomics to analyze orthotopic and metastatic tumors from the syngeneic murine T11 tumor model, which displays gene expression profiles mirroring human claudin-low tumors. Galectin-1 identity, expression and spatial distribution were investigated by biochemical and immunochemical methods and MALDI/IMS. RNA seq data from mouse and human tumors in our study and publicly available microarray data were analyzed for differential galectin-1 expression across breast cancer subtypes. RESULTS Galectin-1, an N-acetyllactosamine-binding protein, exhibited the highest sequence coverage and high abundance rank order among nano-LC-MS/MS-identified proteins shared by T11 claudin-low tumors but not normal tissue. Label-free quantitation, Western immunoblot and ELISA confirmed galectin-1 identity and significant differential expression. MALDI/IMS spatial mapping and immunohistochemistry detected galectin-1 in T11 metastatic lung foci. Immunohistochemistry of human claudin-low tumors demonstrated intermediate-to-high intensity galectin-1 staining of tumor and stroma. Gene expression analysis of mouse and human tumors found the highest galectin-1 levels in the claudin-low breast cancer subtype. CONCLUSIONS Proteomics and genomics reveal high expression of galectin-1 protein and RNA in primary and metastatic claudin-low breast cancer. GENERAL SIGNIFICANCE This work endorses proteomic approaches in cancer research and supports further investigations of the function and significance of galectin-1 overexpression in claudin-low tumor progression.
Collapse
Affiliation(s)
- Kassondra Balestrieri
- Brody School of Medicine, East Carolina University, Department of Surgery, 600 Moye Boulevard, Greenville, NC 27834, United States of America
| | - Kimberly Kew
- Brody School of Medicine, East Carolina University, Department of Biochemistry and Molecular Biology, 600 Moye Boulevard, Greenville, NC 27834, United States of America
| | - Moses McDaniel
- Brody School of Medicine, East Carolina University, Department of Surgery, 600 Moye Boulevard, Greenville, NC 27834, United States of America
| | - Mohamed Ramez
- Brody School of Medicine, East Carolina University, Department of Surgery, 600 Moye Boulevard, Greenville, NC 27834, United States of America
| | - H Keith Pittman
- Brody School of Medicine, East Carolina University, Department of Surgery, 600 Moye Boulevard, Greenville, NC 27834, United States of America
| | - Gina Murray
- Brody School of Medicine, East Carolina University, Department of Pathology, 600 Moye Boulevard, Greenville, NC 27834, United States of America
| | - Nasreen A Vohra
- Brody School of Medicine, East Carolina University, Department of Surgery, 600 Moye Boulevard, Greenville, NC 27834, United States of America
| | - Kathryn M Verbanac
- Brody School of Medicine, East Carolina University, Department of Surgery, 600 Moye Boulevard, Greenville, NC 27834, United States of America.
| |
Collapse
|
9
|
Uncovering mutation-specific morphogenic phenotypes and paracrine-mediated vessel dysfunction in a biomimetic vascularized mammary duct platform. Nat Commun 2020; 11:3377. [PMID: 32632100 PMCID: PMC7338408 DOI: 10.1038/s41467-020-17102-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 06/05/2020] [Indexed: 12/15/2022] Open
Abstract
The mammary gland is a highly vascularized tissue capable of expansion and regression during development and disease. To enable mechanistic insight into the coordinated morphogenic crosstalk between the epithelium and vasculature, we introduce a 3D microfluidic platform that juxtaposes a human mammary duct in proximity to a perfused endothelial vessel. Both compartments recapitulate stable architectural features of native tissue and the ability to undergo distinct forms of branching morphogenesis. Modeling HER2/ERBB2 amplification or activating PIK3CA(H1047R) mutation each produces ductal changes observed in invasive progression, yet with striking morphogenic and behavioral differences. Interestingly, PI3KαH1047R ducts also elicit increased permeability and structural disorganization of the endothelium, and we identify the distinct secretion of IL-6 as the paracrine cause of PI3KαH1047R-associated vascular dysfunction. These results demonstrate the functionality of a model system that facilitates the dissection of 3D morphogenic behaviors and bidirectional signaling between mammary epithelium and endothelium during homeostasis and pathogenesis.
Collapse
|
10
|
Babak MV, Zalutsky MR, Balyasnikova IV. Heterogeneity and vascular permeability of breast cancer brain metastases. Cancer Lett 2020; 489:174-181. [PMID: 32561415 DOI: 10.1016/j.canlet.2020.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Improvements in the diagnosis and treatment of systemic breast cancer have led to a prolongation in patient survival. Unfortunately, these advances are also associated with an increased incidence of brain metastases (BM), with the result that many patients succumb due to BM treatment failure. Intracranial delivery of many chemotherapeutic agents and other therapeutics is hindered by the presence of an impermeable blood-brain barrier (BBB) designed to protect the brain from harmful substances. The formation of BM compromises the integrity of the BBB, resulting in a highly heterogeneous blood-tumor barrier (BTB) with varying degrees of vascular permeability. Here, we discuss how blood vessels play an important role in the formation of brain micrometastases as well as in the transformation from poorly permeable BM to highly permeable BM. We then review the role of BTB vascular permeability in the diagnostics and the choice of treatment regimens for breast cancer brain metastases (BCBM) and discuss whether the vasculature of primary breast cancers can serve as a biomarker for BM. Specifically, we examine the association between the vascular permeability of BCBM and their accumulation of large molecules such as antibodies, which remains largely unexplored.
Collapse
Affiliation(s)
- Maria V Babak
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, People's Republic of China
| | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center; 311 Research Drive, Box 3808, Durham, NC, 27710, USA
| | - Irina V Balyasnikova
- Department of Neurological Surgery, The Feinberg School of Medicine, 303 E. Superior Street, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
11
|
Fougner C, Bergholtz H, Norum JH, Sørlie T. Re-definition of claudin-low as a breast cancer phenotype. Nat Commun 2020; 11:1787. [PMID: 32286297 PMCID: PMC7156396 DOI: 10.1038/s41467-020-15574-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
The claudin-low breast cancer subtype is defined by gene expression characteristics and encompasses a remarkably diverse range of breast tumors. Here, we investigate genomic, transcriptomic, and clinical features of claudin-low breast tumors. We show that claudin-low is not simply a subtype analogous to the intrinsic subtypes (basal-like, HER2-enriched, luminal A, luminal B and normal-like) as previously portrayed, but is a complex additional phenotype which may permeate breast tumors of various intrinsic subtypes. Claudin-low tumors are distinguished by low genomic instability, mutational burden and proliferation levels, and high levels of immune and stromal cell infiltration. In other aspects, claudin-low tumors reflect characteristics of their intrinsic subtype. Finally, we explore an alternative method for identifying claudin-low tumors and thereby uncover potential weaknesses in the established claudin-low classifier. In sum, these findings elucidate the heterogeneity in claudin-low breast tumors, and substantiate a re-definition of claudin-low as a cancer phenotype. In breast cancer, the claudin-low breast cancer subtype is remarkably diverse. Here, the authors propose that claudin-low is not a classical intrinsic breast cancer subtype, but rather a complex additional phenotype that can occur across intrinsic subtypes.
Collapse
Affiliation(s)
- Christian Fougner
- Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Helga Bergholtz
- Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jens Henrik Norum
- Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
| | - Therese Sørlie
- Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway. .,Institute for Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
12
|
Mishriki S, Aithal S, Gupta T, Sahu RP, Geng F, Puri IK. Fibroblasts Accelerate Formation and Improve Reproducibility of 3D Cellular Structures Printed with Magnetic Assistance. RESEARCH (WASHINGTON, D.C.) 2020; 2020:3970530. [PMID: 32776011 PMCID: PMC7395227 DOI: 10.34133/2020/3970530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/18/2020] [Indexed: 12/05/2022]
Abstract
Fibroblasts (mouse, NIH/3T3) are combined with MDA-MB-231 cells to accelerate the formation and improve the reproducibility of 3D cellular structures printed with magnetic assistance. Fibroblasts and MDA-MB-231 cells are cocultured to produce 12.5 : 87.5, 25 : 75, and 50 : 50 total population mixtures. These mixtures are suspended in a cell medium containing a paramagnetic salt, Gd-DTPA, which increases the magnetic susceptibility of the medium with respect to the cells. A 3D monotypic MDA-MB-231 cellular structure is printed within 24 hours with magnetic assistance, whereas it takes 48 hours to form a similar structure through gravitational settling alone. The maximum projected areas and circularities, and cellular ATP levels of the printed structures are measured for 336 hours. Increasing the relative amounts of the fibroblasts mixed with the MDA-MB-231 cells decreases the time taken to form the structures and improves their reproducibility. Structures produced through gravitational settling have larger maximum projected areas and cellular ATP, but are deemed less reproducible. The distribution of individual cell lines in the cocultured 3D cellular structures shows that printing with magnetic assistance yields 3D cellular structures that resemble in vivo tumors more closely than those formed through gravitational settling. The results validate our hypothesis that (1) fibroblasts act as a "glue" that supports the formation of 3D cellular structures, and (2) the structures are produced more rapidly and with greater reproducibility with magnetically assisted printing than through gravitational settling alone. Printing of 3D cellular structures with magnetic assistance has applications relevant to drug discovery, lab-on-chip devices, and tissue engineering.
Collapse
Affiliation(s)
- Sarah Mishriki
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Srivatsa Aithal
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Tamaghna Gupta
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Rakesh P. Sahu
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Fei Geng
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada
- Walter Booth School of Engineering Practice and Technology, Hamilton, Ontario, Canada
| | - Ishwar K. Puri
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Saenz FR, Ory V, Schmidt MO, Kallakury BV, Mueller SC, Furth PA, Wellstein A, Riegel AT. Depletion of the Transcriptional Coactivator Amplified in Breast Cancer 1 (AIB1) Uncovers Functionally Distinct Subpopulations in Triple-Negative Breast Cancer. Neoplasia 2019; 21:963-973. [PMID: 31437536 PMCID: PMC6706655 DOI: 10.1016/j.neo.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022]
Abstract
The transcriptional coactivator Amplified in Breast Cancer 1 (AIB1) plays a major role in the progression of hormone and HER2-dependent breast cancers but its role in triple negative breast cancer (TNBC) is undefined. Here, we report that established TNBC cell lines, as well as cells from a TNBC patient-derived xenograft (PDX) that survive chemotherapy treatment in vitro express lower levels of AIB1 protein. The surviving cell population has an impaired tube-formation phenotype when cultured onto basement membrane, a property shared with TNBC cells that survive shRNA-mediated depletion of AIB1 (AIB1LOW cells). DNA analysis by exome sequencing revealed that AIB1LOW cells represent a distinct subpopulation. Consistent with their in vitro phenotype AIB1LOW cells implanted orthotopically generated slower growing tumors with less capacity for pulmonary metastases. Gene expression analysis of cultured cells and tumors revealed that AIB1LOW cells display a distinct expression signature of genes in pro-inflammatory pathways, cell adhesion, proteolysis and tissue remodeling. Interestingly, the presence of this AIB1LOW expression signature in breast cancer specimens is associated with shorter disease free survival of chemotherapy treated patients. We concluded that TNBC cell lines contain heterogeneous populations with differential dependence on AIB1 and that the gene expression pattern of AIB1LOW cells may represent a signature indicative of poor response to chemotherapy in TNBC patients.
Collapse
Affiliation(s)
- F R Saenz
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - V Ory
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - M O Schmidt
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - B V Kallakury
- Department of Pathology, Georgetown University, Washington, DC, USA; The Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - S C Mueller
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - P A Furth
- Department of Oncology, Georgetown University, Washington, DC, USA; The Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA; Department of Medicine, Georgetown University, Washington, DC, USA
| | - A Wellstein
- Department of Oncology, Georgetown University, Washington, DC, USA; The Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - A T Riegel
- Department of Oncology, Georgetown University, Washington, DC, USA; The Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.
| |
Collapse
|
14
|
Fougner C, Bergholtz H, Kuiper R, Norum JH, Sørlie T. Claudin-low-like mouse mammary tumors show distinct transcriptomic patterns uncoupled from genomic drivers. Breast Cancer Res 2019; 21:85. [PMID: 31366361 PMCID: PMC6670237 DOI: 10.1186/s13058-019-1170-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Claudin-low breast cancer is a molecular subtype associated with poor prognosis and without targeted treatment options. The claudin-low subtype is defined by certain biological characteristics, some of which may be clinically actionable, such as high immunogenicity. In mice, the medroxyprogesterone acetate (MPA) and 7,12-dimethylbenzanthracene (DMBA)-induced mammary tumor model yields a heterogeneous set of tumors, a subset of which display claudin-low features. Neither the genomic characteristics of MPA/DMBA-induced claudin-low tumors nor those of human claudin-low breast tumors have been thoroughly explored. METHODS The transcriptomic characteristics and subtypes of MPA/DMBA-induced mouse mammary tumors were determined using gene expression microarrays. Somatic mutations and copy number aberrations in MPA/DMBA-induced tumors were identified from whole exome sequencing data. A publicly available dataset was queried to explore the genomic characteristics of human claudin-low breast cancer and to validate findings in the murine tumors. RESULTS Half of MPA/DMBA-induced tumors showed a claudin-low-like subtype. All tumors carried mutations in known driver genes. While the specific genes carrying mutations varied between tumors, there was a consistent mutational signature with an overweight of T>A transversions in TG dinucleotides. Most tumors carried copy number aberrations with a potential oncogenic driver effect. Overall, several genomic events were observed recurrently; however, none accurately delineated claudin-low-like tumors. Human claudin-low breast cancers carried a distinct set of genomic characteristics, in particular a relatively low burden of mutations and copy number aberrations. The gene expression characteristics of claudin-low-like MPA/DMBA-induced tumors accurately reflected those of human claudin-low tumors, including epithelial-mesenchymal transition phenotype, high level of immune activation, and low degree of differentiation. There was an elevated expression of the immunosuppressive genes PTGS2 (encoding COX-2) and CD274 (encoding PD-L1) in human and murine claudin-low tumors. CONCLUSIONS Our findings show that the claudin-low breast cancer subtype is not demarcated by specific genomic aberrations, but carries potentially targetable characteristics warranting further research.
Collapse
Affiliation(s)
- Christian Fougner
- Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
| | - Helga Bergholtz
- Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
| | - Raoul Kuiper
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jens Henrik Norum
- Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
| | - Therese Sørlie
- Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway. .,Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway. .,Institute for Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
15
|
On-Chip Preparation of Amphiphilic Nanomicelles-in-Sodium Alginate Spheroids as a Novel Platform Against Triple-Negative Human Breast Cancer Cells: Fabrication, Study of Microfluidics Flow Hydrodynamics and Proof of Concept for Anticancer and Drug Delivery Applications. J Pharm Sci 2019; 108:3528-3539. [PMID: 31351864 DOI: 10.1016/j.xphs.2019.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/20/2019] [Accepted: 07/19/2019] [Indexed: 11/20/2022]
Abstract
Spheroidal microparticles versatility as a drug carrier makes it a real workhorse in drug delivery applications. Despite of their long history, few research publications emphasize on how to improve their potential targeting ability, production rate, and dissolution characteristics. The current research presents an example of the combined state of the art of nano- and microparticles development technologies. Here in a novel on-chip, microfluidics approach is developed for encapsulating amphiphilic nanomicelles-in-sodium alginate spheroid. The designed nano-in-micro drug delivery system revealed a superior cytotoxicity against triple-negative human breast cancer cell line (MDA-MB-231), besides, a more sustained release of the drug. Hydrodynamics of the designed microchip was also investigated as a function of different flow rates with an insight on the dimensionless numbers; capillary number and Weber number throughout the microchannels. Our study confirmed the efficient encapsulation of nanomicelles within the alginate shell. The current microfluidics approach can be efficiently applied for uniform production of nano-in-microparticles with potential anticancer capability.
Collapse
|
16
|
Zhong W, Yang W, Qin Y, Gu W, Xue Y, Tang Y, Xu H, Wang H, Zhang C, Wang C, Sun B, Liu Y, Liu H, Zhou H, Chen S, Sun T, Yang C. 6-Gingerol stabilized the p-VEGFR2/VE-cadherin/β-catenin/actin complex promotes microvessel normalization and suppresses tumor progression. J Exp Clin Cancer Res 2019; 38:285. [PMID: 31266540 PMCID: PMC6604152 DOI: 10.1186/s13046-019-1291-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Anti-angiogenic therapies demonstrate anti-tumor effects by decreasing blood supply to tumors and inhibiting tumor growth. However, anti-angiogenic therapy may leads to changes in tumor microenvironment and increased invasiveness of tumor cells, which in turn promotes distant metastasis and increased drug resistance. METHODS The CO-IP assays, N-STORM and cytoskeleton analysis were used to confirm the mechanism that p-VEGFR2/VE-cadherin/β-catenin/actin complex regulates vascular remodeling and improves the tumor microenvironment. 6-gingerol (6G), the major bioactive component in ginger, stabilized this complex by enhancing the binding of VEGFa to VEGFR2 with non-pathway dependent. Biacore, pull down and molecular docking were employed to confirm the interaction between 6G and VEGFR2 and enhancement of VEGFa binding to VEGFR2. RESULTS Here, we report that microvascular structural entropy (MSE) may be a prognostic factor in several tumor types and have potential as a biomarker in the clinic. 6G regulates the structural organization of the microvascular bed to decrease MSE via the p-VEGFR2/VE-cadherin/β-catenin/actin complex and inhibit tumor progression. 6G promotes the normalization of tumor vessels, improves the tumor microenvironment and decreases MSE, facilitating the delivery of chemotherapeutic agents into the tumor core and thereby reducing tumor growth and metastasis. CONCLUSIONS This study demonstrated the importance of vascular normalization in tumor therapy and elucidated the mechanism of action of ginger, a medicinal compound that has been used in China since ancient times.
Collapse
Affiliation(s)
- Weilong Zhong
- Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, 300041 China
| | - Wendong Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350 China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450 China
| | - Yuan Qin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350 China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450 China
| | - Wenguang Gu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350 China
| | - Yinyin Xue
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350 China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450 China
| | - Yuanhao Tang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350 China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450 China
| | - Hengwei Xu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350 China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450 China
| | - Hongzhi Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350 China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450 China
| | - Chao Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350 China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450 China
| | - Changhua Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350 China
| | - Bo Sun
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450 China
| | - Yanrong Liu
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450 China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350 China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350 China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450 China
| | - Shuang Chen
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450 China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350 China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450 China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350 China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450 China
| |
Collapse
|
17
|
Sabra SA, Sheweita SA, Haroun M, Ragab D, Eldemellawy MA, Xia Y, Goodale D, Allan AL, Elzoghby AO, Rohani S. Magnetically Guided Self-Assembled Protein Micelles for Enhanced Delivery of Dasatinib to Human Triple-Negative Breast Cancer Cells. J Pharm Sci 2019; 108:1713-1725. [PMID: 30528944 DOI: 10.1016/j.xphs.2018.11.044] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/27/2018] [Indexed: 01/12/2023]
Abstract
Magnetic nanocarriers are useful in targeted cancer therapy. Dasatinib (DAS)-loaded magnetic micelles were prepared for magnetically guided drug delivery. The magnetic nanoplatform is composed of hydrophobic oleic acid-coated magnetite (Fe3O4) core along with DAS encapsulated in amphiphilic zein-lactoferrin self-assembled polymeric micelles. Transmission electron microscope analysis manifested formation of these magnetic micelles with a mean diameter of about 100 nm. In addition, drug-loaded magnetic micelles displayed a saturation magnetization of about 10.01 emu.g-1 with a superparamagnetic property. They also showed good in vitro serum stability and hemocompatibility accompanied with a sustained release of DAS in acidic pH. More importantly, they exhibited 1.35-fold increase in their in vitro cytotoxicity against triple-negative human breast cancer cell line (MDA-MB-231) using an external magnetic field compared to drug-loaded magnetic micelles in the absence of a magnetic field. Enhanced inhibition of p-c-Src protein expression level and in vitro cellular migration under the effect of magnetic field was noted owing to the dual-targeting strategy offered by the presence of a magnetic sensitive core, as well as the active targeting property of lactoferrin corona. Taken all together, these results suggest that DAS-loaded magnetic micelles possess a great potential for targeted therapy of breast cancer.
Collapse
Affiliation(s)
- Sally A Sabra
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada
| | - Salah A Sheweita
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Medhat Haroun
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Doaa Ragab
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Maha A Eldemellawy
- Pharmaceutical and Fermentation Industries Development Center (PFIDC), City for Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, 21934, Alexandria, Egypt
| | - Ying Xia
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| | - David Goodale
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| | - Alison L Allan
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada; Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115.
| | - Sohrab Rohani
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
18
|
Alzubi MA, Turner TH, Olex AL, Sohal SS, Tobin NP, Recio SG, Bergh J, Hatschek T, Parker JS, Sartorius CA, Perou CM, Dozmorov MG, Harrell JC. Separation of breast cancer and organ microenvironment transcriptomes in metastases. Breast Cancer Res 2019; 21:36. [PMID: 30841919 PMCID: PMC6404325 DOI: 10.1186/s13058-019-1123-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/19/2019] [Indexed: 02/08/2023] Open
Abstract
Background The seed and soil hypothesis was proposed over a century ago to describe why cancer cells (seeds) grow in certain organs (soil). Since then, the genetic properties that define the cancer cells have been heavily investigated; however, genomic mediators within the organ microenvironment that mediate successful metastatic growth are less understood. These studies sought to identify cancer- and organ-specific genomic programs that mediate metastasis. Methods In these studies, a set of 14 human breast cancer patient-derived xenograft (PDX) metastasis models was developed and then tested for metastatic tropism with two approaches: spontaneous metastases from mammary tumors and intravenous injection of PDX cells. The transcriptomes of the cancer cells when growing as tumors or metastases were separated from the transcriptomes of the microenvironment via species-specific separation of the genomes. Drug treatment of PDX spheroids was performed to determine if genes activated in metastases may identify targetable mediators of viability. Results The experimental approaches that generated metastases in PDX models were identified. RNA sequencing of 134 tumors, metastases, and normal non-metastatic organs identified cancer- and organ-specific genomic properties that mediated metastasis. A common genomic response of the liver microenvironment was found to occur in reaction to the invading PDX cells. Genes within the cancer cells were found to be either transiently regulated by the microenvironment or permanently altered due to clonal selection of metastatic sublines. Gene Set Enrichment Analyses identified more than 400 gene signatures that were commonly activated in metastases across basal-like PDXs. A Src signaling signature was found to be extensively upregulated in metastases, and Src inhibitors were found to be cytotoxic to PDX spheroids. Conclusions These studies identified that during the growth of breast cancer metastases, there were genomic changes that occurred within both the cancer cells and the organ microenvironment. We hypothesize that pathways upregulated in metastases are mediators of viability and that simultaneously targeting changes within different cancer cell pathways and/or different tissue compartments may be needed for inhibition of disease progression. Electronic supplementary material The online version of this article (10.1186/s13058-019-1123-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohammad A Alzubi
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA.,Integrative Life Sciences Program, Virginia Commonwealth University, Richmond, VA, USA
| | - Tia H Turner
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA.,C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Amy L Olex
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Sahib S Sohal
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - Nicholas P Tobin
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Susana G Recio
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Jonas Bergh
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Thomas Hatschek
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Joel S Parker
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carol A Sartorius
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Charles M Perou
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - J Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA. .,Integrative Life Sciences Program, Virginia Commonwealth University, Richmond, VA, USA. .,C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA. .,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
19
|
Vervoort SJ, de Jong OG, Roukens MG, Frederiks CL, Vermeulen JF, Lourenço AR, Bella L, Vidakovic AT, Sandoval JL, Moelans C, van Amersfoort M, Dallman MJ, Bruna A, Caldas C, Nieuwenhuis E, van der Wall E, Derksen P, van Diest P, Verhaar MC, Lam EWF, Mokry M, Coffer PJ. Global transcriptional analysis identifies a novel role for SOX4 in tumor-induced angiogenesis. eLife 2018; 7:e27706. [PMID: 30507376 PMCID: PMC6277201 DOI: 10.7554/elife.27706] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 11/07/2018] [Indexed: 12/30/2022] Open
Abstract
The expression of the transcription factor SOX4 is increased in many human cancers, however, the pro-oncogenic capacity of SOX4 can vary greatly depending on the type of tumor. Both the contextual nature and the mechanisms underlying the pro-oncogenic SOX4 response remain unexplored. Here, we demonstrate that in mammary tumorigenesis, the SOX4 transcriptional network is dictated by the epigenome and is enriched for pro-angiogenic processes. We show that SOX4 directly regulates endothelin-1 (ET-1) expression and can thereby promote tumor-induced angiogenesis both in vitro and in vivo. Furthermore, in breast tumors, SOX4 expression correlates with blood vessel density and size, and predicts poor-prognosis in patients with breast cancer. Our data provide novel mechanistic insights into context-dependent SOX4 target gene selection, and uncover a novel pro-oncogenic role for this transcription factor in promoting tumor-induced angiogenesis. These findings establish a key role for SOX4 in promoting metastasis through exploiting diverse pro-tumorigenic pathways.
Collapse
Affiliation(s)
- Stephin J Vervoort
- Department of Cell Biology, Center for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Olivier G de Jong
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - M Guy Roukens
- Department of Cell Biology, Center for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Cynthia L Frederiks
- Department of Cell Biology, Center for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Jeroen F Vermeulen
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Ana Rita Lourenço
- Department of Cell Biology, Center for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Laura Bella
- Department of Surgery and CancerImperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital CampusLondonUnited Kingdom
| | | | - José L Sandoval
- Cancer Research UK Cambridge Institute, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Cathy Moelans
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Margaret J Dallman
- Department of Life Sciences, Division of Cell and Molecular BiologyImperial College LondonLondonUnited Kingdom
| | - Alejandra Bruna
- Cancer Research UK Cambridge Institute, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Edward Nieuwenhuis
- Division of Pediatrics, Wilhelmina Children’s HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Patrick Derksen
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Paul van Diest
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Eric W-F Lam
- Department of Surgery and CancerImperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital CampusLondonUnited Kingdom
| | - Michal Mokry
- Division of Pediatrics, Wilhelmina Children’s HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Paul J Coffer
- Department of Cell Biology, Center for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
- Division of Pediatrics, Wilhelmina Children’s HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
20
|
Nagaraju S, Truong D, Mouneimne G, Nikkhah M. Microfluidic Tumor-Vascular Model to Study Breast Cancer Cell Invasion and Intravasation. Adv Healthc Mater 2018; 7:e1701257. [PMID: 29334196 DOI: 10.1002/adhm.201701257] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/14/2017] [Indexed: 12/16/2022]
Abstract
Cancer is a major leading cause of disease-related death in the world. The severe impact of cancer can be attributed to poor understanding of the mechanisms involved in earliest steps of the metastatic cascade, specifically invasion into the surrounding stroma and intravasation into the blood capillaries. However, conducting integrated biological studies of invasion and intravasation have been challenging, within in vivo models and traditional in vitro assay, due to difficulties in establishing a precise tumor microenvironment. To that end, in this work, a novel 3D microfluidic platform comprised of concentric three-layer cell-laden hydrogels for simultaneous investigation of breast cancer cell invasion and intravasation as well as vasculature maturation influenced by tumor-vascular crosstalk is developed. It was demonstrated that the presence of spontaneously formed vasculature enhance MDA-MB-231 invasion into the 3D stroma. Following invasion, cancer cells are visualized intravasating into the outer vasculature. Additionally, invading cancer cells significantly reduce vessel diameter while increasing permeability, consistent with previous in vivo studies. Major signaling cytokines involved in tumor-vascular crosstalk that govern cancer cell invasion and intravasation are further identified. Taken together, this platform will enable unique insights of critical biological events within the metastatic cascade, with significant potential for developing efficient cancer therapeutics.
Collapse
Affiliation(s)
- Supriya Nagaraju
- School of Biological and Health Systems Engineering (SBHSE) Arizona State University Tempe AZ 85287 USA
| | - Danh Truong
- School of Biological and Health Systems Engineering (SBHSE) Arizona State University Tempe AZ 85287 USA
| | | | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE) Arizona State University Tempe AZ 85287 USA
| |
Collapse
|
21
|
Langer EM, Kendsersky ND, Daniel CJ, Kuziel GM, Pelz C, Murphy KM, Capecchi MR, Sears RC. ZEB1-repressed microRNAs inhibit autocrine signaling that promotes vascular mimicry of breast cancer cells. Oncogene 2018; 37:1005-1019. [PMID: 29084210 PMCID: PMC5823716 DOI: 10.1038/onc.2017.356] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/13/2022]
Abstract
During normal tumor growth and in response to some therapies, tumor cells experience acute or chronic deprivation of nutrients and oxygen and induce tumor vascularization. While this occurs predominately through sprouting angiogenesis, tumor cells have also been shown to directly contribute to vessel formation through vascular mimicry (VM) and/or endothelial transdifferentiation. The extrinsic and intrinsic mechanisms underlying tumor cell adoption of endothelial phenotypes, however, are not well understood. Here we show that serum withdrawal induces mesenchymal breast cancer cells to undergo VM and that knockdown of the epithelial-to-mesenchymal transition (EMT) regulator, Zinc finger E-box binding homeobox 1 (ZEB1), or overexpression of the ZEB1-repressed microRNAs (miRNAs), miR-200c, miR-183, miR-96 and miR-182 inhibits this process. We find that secreted proteins Fibronectin 1 (FN1) and serine protease inhibitor (serpin) family E member 2 (SERPINE2) are essential for VM in this system. These secreted factors are upregulated in mesenchymal cells in response to serum withdrawal, and overexpression of VM-inhibiting miRNAs abrogates this upregulation. Intriguingly, the receptors for these secreted proteins, low-density lipoprotein receptor-related protein 1 (LRP1) and Integrin beta 1 (ITGB1), are also targets of the VM-inhibiting miRNAs, suggesting that autocrine signaling stimulating VM is regulated by ZEB1-repressed miRNA clusters. Together, these data provide mechanistic insight into the regulation of VM and suggest that miRNAs repressed during EMT, in addition to suppressing migratory and stem-like properties of tumor cells, also inhibit endothelial phenotypes of breast cancer cells adopted in response to a nutrient-deficient microenvironment.
Collapse
Affiliation(s)
- E M Langer
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - N D Kendsersky
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - C J Daniel
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - G M Kuziel
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - C Pelz
- Division of Bioinformatics and Computational Biology, Oregon Health & Science University, Portland, OR, USA
| | - K M Murphy
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Pathology & Immunology, Washington University, St. Louis, MO, USA
| | - M R Capecchi
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - R C Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
22
|
Hollern DP, Swiatnicki MR, Andrechek ER. Histological subtypes of mouse mammary tumors reveal conserved relationships to human cancers. PLoS Genet 2018; 14:e1007135. [PMID: 29346386 PMCID: PMC5773092 DOI: 10.1371/journal.pgen.1007135] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/28/2017] [Indexed: 01/03/2023] Open
Abstract
Human breast cancer has been characterized by extensive transcriptional heterogeneity, with dominant patterns reflected in the intrinsic subtypes. Mouse models of breast cancer also have heterogeneous transcriptomes and we noted that specific histological subtypes were associated with particular subsets. We hypothesized that unique sets of genes define each tumor histological type across mouse models of breast cancer. Using mouse models that contained both gene expression data and expert pathologist classification of tumor histology on a sample by sample basis, we predicted and validated gene expression signatures for Papillary, EMT, Microacinar and other histological subtypes. These signatures predict known histological events across murine breast cancer models and identify counterparts of mouse mammary tumor types in subtypes of human breast cancer. Importantly, the EMT, Adenomyoepithelial, and Solid signatures were predictive of clinical events in human breast cancer. In addition, a pan-cancer comparison revealed that the histological signatures were active in a variety of human cancers such as lung, oral, and esophageal squamous tumors. Finally, the differentiation status and transcriptional activity implicit within these signatures was identified. These data reveal that within tumor histology groups are unique gene expression profiles of differentiation and pathway activity that stretch well beyond the transgenic initiating events and that have clear applicability to human cancers. As a result, our work provides a predictive resource and insights into possible mechanisms that govern tumor heterogeneity.
Collapse
Affiliation(s)
- Daniel P. Hollern
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America
| | - Matthew R. Swiatnicki
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
| | - Eran R. Andrechek
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
| |
Collapse
|
23
|
Alečković M, Wei Y, LeRoy G, Sidoli S, Liu DD, Garcia BA, Kang Y. Identification of Nidogen 1 as a lung metastasis protein through secretome analysis. Genes Dev 2017; 31:1439-1455. [PMID: 28827399 PMCID: PMC5588926 DOI: 10.1101/gad.301937.117] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/31/2017] [Indexed: 11/24/2022]
Abstract
Secreted proteins play crucial roles in mediating tumor-stroma interactions during metastasis of cancer to different target organs. To comprehensively profile secreted proteins involved in lung metastasis, we applied quantitative mass spectrometry-based proteomics and identified 392 breast cancer-derived and 302 melanoma-derived proteins secreted from highly lung metastatic cells. The cancer-specific lung metastasis secretome signatures (LMSSs) displayed significant prognostic value in multiple cancer clinical data sets. Moreover, we observed a significant overlap of enriched pathways between the LMSSs of breast cancer and melanoma despite an overall small overlap of specific proteins, suggesting that common biological processes are executed by different proteins to enable the two cancer types to metastasize to the lung. Among the novel candidate lung metastasis proteins, Nidogen 1 (NID1) was confirmed to promote lung metastasis of breast cancer and melanoma, and its expression is correlated with poor clinical outcomes. In vitro functional analysis further revealed multiple prometastatic functions of NID1, including enhancing cancer cell migration and invasion, promoting adhesion to the endothelium and disrupting its integrity, and improving vascular tube formation capacity. As a secreted prometastatic protein, NID1 may be developed as a new biomarker for disease progression and therapeutic target in breast cancer and melanoma.
Collapse
Affiliation(s)
- Maša Alečković
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Gary LeRoy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Simone Sidoli
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Daniel D Liu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
24
|
Jung HS, Han J, Shi H, Koo S, Singh H, Kim HJ, Sessler JL, Lee JY, Kim JH, Kim JS. Overcoming the Limits of Hypoxia in Photodynamic Therapy: A Carbonic Anhydrase IX-Targeted Approach. J Am Chem Soc 2017; 139:7595-7602. [PMID: 28459562 DOI: 10.1021/jacs.7b02396] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A major challenge in photodynamic cancer therapy (PDT) is avoiding PDT-induced hypoxia, which can lead to cancer recurrence and progression through activation of various angiogenic factors and significantly reduce treatment outcomes. Reported here is an acetazolamide (AZ)-conjugated BODIPY photosensitizer (AZ-BPS) designed to mitigate the effects of PDT-based hypoxia by combining the benefits of anti-angiogenesis therapy with PDT. AZ-BPS showed specific affinity to aggressive cancer cells (MDA-MB-231 cells) that overexpress carbonic anhydrase IX (CAIX). It displayed enhanced photocytotoxicity compared to a reference compound, BPS, which is an analogous PDT agent that lacks an acetazolamide unit. AZ-BPS also displayed an enhanced in vivo efficacy in a xenograft mouse tumor regrowth model relative to BPS, an effect attributed to inhibition of tumor angiogenesis by both PDT-induced ROS generation and CAIX knockdown. AZ-BPS was evaluated successfully in clinical samples collected from breast cancer patients. We thus believe that the combined approach described here represents an attractive therapeutic approach to targeting CAIX-overexpressing tumors.
Collapse
Affiliation(s)
- Hyo Sung Jung
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712-1224, United States
| | - Jiyou Han
- Department of Biological Sciences, Laboratory of Stem Cell Research and Biotechnology, Hyupsung University , Hwasung-si 18330, Korea
| | - Hu Shi
- Department of Chemistry, Sungkyunkwan University , Suwon 440-746, Korea
| | | | | | | | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712-1224, United States
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University , Suwon 440-746, Korea
| | | | | |
Collapse
|
25
|
Lokerse WJM, Bolkestein M, Dalm SU, Eggermont AMM, de Jong M, Grüll H, Koning GA. Comparing the therapeutic potential of thermosensitive liposomes and hyperthermia in two distinct subtypes of breast cancer. J Control Release 2017; 258:34-42. [PMID: 28479096 DOI: 10.1016/j.jconrel.2017.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 01/08/2023]
Abstract
Local drug delivery of Doxorubicin (Dox) with thermosensitive liposomes (TSL) and hyperthermia (HT) has shown preclinically to achieve high local drug concentrations with good therapeutic efficacy. Currently, this is clinically studied for treatment of chest wall recurrence of breast cancer, however with various outcomes. This study examines the potency of neoadjuvant TSL HT combination therapy in two orthotopic mouse models of human breast cancer, MDA-MB-231 and T-47D, which morphologically correlate to mesenchymal and epithelial phenotypes, respectively. Both cell lines showed improved in vitro chemosensitivity and Dox uptake at HT. Dox-loaded TSL (TSLDox) was stable in vitro in FBS, BALB/c-nu plasma and human plasma, although release of the drug at HT was incomplete for the latter two. Combination treatment with TSLDox and HT in vivo was significantly more effective against MDA-MB-231 tumors, whereas T-47D tumors showed no significant therapeutic response. Ex vivo investigation revealed a higher mean vessel density and poorly differentiated extracellular matrix (ECM) in MDA-MB-231 tumors relative to T-47D tumors. Although in vitro results of the TSLDox and HT treatment were favorable for both cell types, the therapeutic efficacy in vivo was remarkably different. The well-differentiated and slowly-growing T-47D tumors may provide a microenvironment that limits drug delivery to the target cell and therefore renders the therapy ineffective. Mesenchymal and invasive MDA-MB-231 tumors display higher vascularization and less mature ECM, significantly enhancing tumor response to TSLDox and HT treatment. These results yield insight into the efficacy of TSL treatment within different tumor microenvironments, and further advance our understanding of factors that contribute to heterogeneous therapeutic outcomes in clinical trials.
Collapse
Affiliation(s)
- Wouter J M Lokerse
- Department of Surgery, Erasmus MC, 's-Gravendijkwal 230, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Michiel Bolkestein
- Department of Surgery, Erasmus MC, 's-Gravendijkwal 230, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Simone U Dalm
- Department of Nuclear Medicine, Erasmus MC, 's-Gravendijkwal 230, PO Box 2040, 3000 CA Rotterdam, The Netherlands; Department of Radiology, Erasmus MC, 's-Gravendijkwal 230, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Alexander M M Eggermont
- Cancer Institute Gustave-Roussy, 114 Rue Edouard Vaillant, Villejuif/Paris-Sud 94800, France
| | - Marion de Jong
- Department of Nuclear Medicine, Erasmus MC, 's-Gravendijkwal 230, PO Box 2040, 3000 CA Rotterdam, The Netherlands; Department of Radiology, Erasmus MC, 's-Gravendijkwal 230, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Holger Grüll
- Department of Radiology, University Hospital of Cologne, Kerpener Strasse 62, 50937, Cologne, Germany.
| | - Gerben A Koning
- Department of Surgery, Erasmus MC, 's-Gravendijkwal 230, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
26
|
Wahdan-Alaswad R, Harrell JC, Fan Z, Edgerton SM, Liu B, Thor AD. Metformin attenuates transforming growth factor beta (TGF-β) mediated oncogenesis in mesenchymal stem-like/claudin-low triple negative breast cancer. Cell Cycle 2017; 15:1046-59. [PMID: 26919310 DOI: 10.1080/15384101.2016.1152432] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Mesenchymal stem-like/claudin-low (MSL/CL) breast cancers are highly aggressive, express low cell-cell adhesion cluster containing claudins (CLDN3/CLDN4/CLDN7) with enrichment of epithelial-to-mesenchymal transition (EMT), immunomodulatory, and transforming growth factor-β (TGF-β) genes. We examined the biological, molecular and prognostic impact of TGF-β upregulation and/or inhibition using in vivo and in vitro methods. Using publically available breast cancer gene expression databases, we show that upregulation and enrichment of a TGF-β gene signature is most frequent in MSL/CL breast cancers and is associated with a worse outcome. Using several MSL/CL breast cancer cell lines, we show that TGF-β elicits significant increases in cellular proliferation, migration, invasion, and motility, whereas these effects can be abrogated by a specific inhibitor against TGF-β receptor I and the anti-diabetic agent metformin, alone or in combination. Prior reports from our lab show that TNBC is exquisitely sensitive to metformin treatment. Mechanistically, metformin blocks endogenous activation of Smad2 and Smad3 and dampens TGF-β-mediated activation of Smad2, Smad3, and ID1 both at the transcriptional and translational level. We report the use of ID1 and ID3 as clinical surrogate markers, where high expression of these TGF-β target genes was correlated to poor prognosis in claudin-low patients. Given TGF-β's role in tumorigenesis and immunomodulation, blockade of this pathway using direct kinase inhibitors or more broadly acting inhibitors may dampen or abolish pro-carcinogenic and metastatic signaling in patients with MCL/CL TNBC. Metformin therapy (with or without other agents) may be a heretofore unrecognized approach to reduce the oncogenic activities associated with TGF-β mediated oncogenesis.
Collapse
Affiliation(s)
- Reema Wahdan-Alaswad
- a Department of Pathology , University of Colorado , Anschutz Medical Campus Mail Stop B216, 12631 East 17th Ave, Room 2215A, Aurora , CO , USA
| | - J Chuck Harrell
- b Department of Pathology , Virginia Commonwealth University , 1101 E Marshall St., PO Box 980662, Richmond VA , USA
| | - Zeying Fan
- a Department of Pathology , University of Colorado , Anschutz Medical Campus Mail Stop B216, 12631 East 17th Ave, Room 2215A, Aurora , CO , USA
| | - Susan M Edgerton
- a Department of Pathology , University of Colorado , Anschutz Medical Campus Mail Stop B216, 12631 East 17th Ave, Room 2215A, Aurora , CO , USA
| | - Bolin Liu
- a Department of Pathology , University of Colorado , Anschutz Medical Campus Mail Stop B216, 12631 East 17th Ave, Room 2215A, Aurora , CO , USA
| | - Ann D Thor
- a Department of Pathology , University of Colorado , Anschutz Medical Campus Mail Stop B216, 12631 East 17th Ave, Room 2215A, Aurora , CO , USA
| |
Collapse
|
27
|
Lucas AT, White TF, Deal AM, Herity LB, Song G, Santos CM, Zamboni WC. Profiling the relationship between tumor-associated macrophages and pharmacokinetics of liposomal agents in preclinical murine models. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:471-482. [PMID: 27720926 DOI: 10.1016/j.nano.2016.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/18/2016] [Accepted: 09/24/2016] [Indexed: 12/23/2022]
Abstract
The mononuclear phagocyte system (MPS) has previously been shown to significantly affect the clearance, tumor delivery, and efficacy of nanoparticles (NPs). This study profiled MPS cell infiltration in murine preclinical tumor models and evaluated how these differences may affect tumor disposition of PEGylated liposomal doxorubicin (PLD) in models sensitive and resistant to PLD. Significant differences in MPS presence existed between tumor types (e.g. ovarian versus endometrial), cell lines within the same tumor type, and location of tumor implantation (i.e. flank versus orthotopic xenografts). Further, the differences in MPS presence of SKOV-3 ovarian and HEC1A endometrial orthotopic cancer models may account for the 2.6-fold greater PLD tumor exposure in SKOV-3, despite similar plasma, liver and spleen exposures. These findings suggest that profiling the presence of MPS cells within and between tumor types is important in tumor model selection and in tumor types and patients likely to respond to NP treatment.
Collapse
Affiliation(s)
- Andrew T Lucas
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Allison M Deal
- Lineberger Comprehensive Cancer Center Biostatistics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leah B Herity
- UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Gina Song
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charlene M Santos
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Animal Studies Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William C Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
28
|
Tracking metastatic breast cancer: the future of biology in biosensors. Med Oncol 2016; 33:36. [DOI: 10.1007/s12032-016-0748-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
|
29
|
Srinivasaraghavan V, Strobl J, Agah M. Microelectrode bioimpedance analysis distinguishes basal and claudin-low subtypes of triple negative breast cancer cells. Biomed Microdevices 2016. [PMID: 26216474 DOI: 10.1007/s10544-015-9977-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Triple negative breast cancer (TNBC) is highly aggressive and has a poor prognosis when compared to other molecular subtypes. In particular, the claudin-low subtype of TNBC exhibits tumor-initiating/cancer stem cell like properties. Here, we seek to find new biomarkers to discriminate different forms of TNBC by characterizing their bioimpedance. A customized bioimpedance sensor with four identical branched microelectrodes with branch widths adjusted to accommodate spreading of individual cells was fabricated on silicon and pyrex/glass substrates. Cell analyses were performed on the silicon devices which showed somewhat improved inter-electrode and intra-device reliability. We performed detailed analysis of the bioimpedance spectra of four TNBC cell lines, comparing the peak magnitude, peak frequency and peak phase angle between claudin-low TNBC subtype represented by MDA-MB-231 and Hs578T with that of two basal cells types, the TNBC MDA-MB-468, and an immortalized non-malignant basal breast cell line, MCF-10A. The claudin-low TNBC cell lines showed significantly higher peak frequencies and peak phase angles than the properties might be useful in distinguishing the clinically significant claudin-low subtype of TNBC.
Collapse
Affiliation(s)
- Vaishnavi Srinivasaraghavan
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, 302, Whittemore Hall, Blacksburg, VA, 24061, USA,
| | | | | |
Collapse
|
30
|
Development of a cell line from the American eel brain expressing endothelial cell properties. In Vitro Cell Dev Biol Anim 2015; 52:395-409. [DOI: 10.1007/s11626-015-9986-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 11/29/2015] [Indexed: 11/30/2022]
|
31
|
Wang Q, Zhang Y, Zhang T, Han ZG, Shan L. Low claudin-6 expression correlates with poor prognosis in patients with non-small cell lung cancer. Onco Targets Ther 2015; 8:1971-7. [PMID: 26261421 PMCID: PMC4527519 DOI: 10.2147/ott.s85478] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective Claudins are found in junctional complexes mediating cell adhesion and are involved in the attachment of tight junctions to the underlying cytoskeleton. Abnormal claudin-6 expression has been observed for a variety of malignant solid tumors, but the expression of claudin-6 in non-small cell lung cancer (NSCLC) has not yet been characterized. Methods Immunohistochemistry, reverse transcription-polymerase chain reaction (RT-PCR), and western blot analysis were used to quantify claudin-6 expression in 123 cases of NSCLC and non-cancerous adjacent tissue. We analyzed the relationship between claudin-6 expression and clinicopathological features of NSCLC. The Kaplan–Meier method was used to analyze postoperative survival rates, and the log-rank test was used to assess differences in survival rates. The Cox regression model was used to perform multivariate analysis. Results Claudin-6 expression was low for 61 of 123 (49.6%) NSCLC tissue samples and for 33 of 123 (26.8%) normal adjacent tissue samples. RT-PCR and western blot analyses confirmed the immunohistochemistry results. Claudin-6 expression was associated with lymph node metastasis (P<0.001) and TNM stage (P=0.007). Kaplan–Meier analysis indicated that patients with low claudin-6 expression had significantly lower survival rates than those with high claudin-6 expression. Multivariate analysis suggested that low claudin-6 expression was an independent indicator of prognosis in NSCLC patients. Conclusion Low claudin-6 expression is an independent prognostic biomarker that indicates a worse prognosis in patients with NSCLC.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Thoracic Oncology, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, People's Republic of China
| | - Yan Zhang
- Department of Thoracic Oncology, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, People's Republic of China
| | - Tao Zhang
- Department of Oncology, First Hospital of Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
| | - Zhi-Gang Han
- Department of Thoracic Oncology, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, People's Republic of China
| | - Li Shan
- Department of Thoracic Oncology, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, People's Republic of China
| |
Collapse
|
32
|
Ince TA, Sousa AD, Jones MA, Harrell JC, Agoston ES, Krohn M, Selfors LM, Liu W, Chen K, Yong M, Buchwald P, Wang B, Hale KS, Cohick E, Sergent P, Witt A, Kozhekbaeva Z, Gao S, Agoston AT, Merritt MA, Foster R, Rueda BR, Crum CP, Brugge JS, Mills GB. Characterization of twenty-five ovarian tumour cell lines that phenocopy primary tumours. Nat Commun 2015; 6:7419. [PMID: 26080861 PMCID: PMC4473807 DOI: 10.1038/ncomms8419] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 05/05/2015] [Indexed: 02/06/2023] Open
Abstract
Currently available human tumour cell line panels consist of a small number of lines in each lineage that generally fail to retain the phenotype of the original patient tumour. Here we develop a cell culture medium that enables us to routinely establish cell lines from diverse subtypes of human ovarian cancers with >95% efficiency. Importantly, the 25 new ovarian tumour cell lines described here retain the genomic landscape, histopathology and molecular features of the original tumours. Furthermore, the molecular profile and drug response of these cell lines correlate with distinct groups of primary tumours with different outcomes. Thus, tumour cell lines derived using this methodology represent a significantly improved platform to study human tumour pathophysiology and response to therapy.
Collapse
Affiliation(s)
- Tan A Ince
- Department of Pathology, Interdisciplinary Stem Cell Institute, Braman Family Breast Cancer Institute, and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Aurea D Sousa
- Department of Pathology, Interdisciplinary Stem Cell Institute, Braman Family Breast Cancer Institute, and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Michelle A Jones
- Department of Pathology, Interdisciplinary Stem Cell Institute, Braman Family Breast Cancer Institute, and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - J Chuck Harrell
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| | - Elin S Agoston
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Marit Krohn
- Department of Systems Biology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Wenbin Liu
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mao Yong
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Peter Buchwald
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Bin Wang
- Department of Pathology, Interdisciplinary Stem Cell Institute, Braman Family Breast Cancer Institute, and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Katherine S Hale
- Department of Systems Biology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Evan Cohick
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Petra Sergent
- Vincent Center for Reproductive Biology, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Abigail Witt
- Department of Pathology, Interdisciplinary Stem Cell Institute, Braman Family Breast Cancer Institute, and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Zhanna Kozhekbaeva
- Department of Pathology, Interdisciplinary Stem Cell Institute, Braman Family Breast Cancer Institute, and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Sizhen Gao
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Agoston T Agoston
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Melissa A Merritt
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Rosemary Foster
- Vincent Center for Reproductive Biology, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Bo R Rueda
- Vincent Center for Reproductive Biology, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Christopher P Crum
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Gordon B Mills
- Department of Systems Biology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
33
|
Duhachek-Muggy S, Zolkiewska A. ADAM12-L is a direct target of the miR-29 and miR-200 families in breast cancer. BMC Cancer 2015; 15:93. [PMID: 25886595 PMCID: PMC4352249 DOI: 10.1186/s12885-015-1108-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/20/2015] [Indexed: 12/18/2022] Open
Abstract
Background ADAM12-L and ADAM12-S represent two major splice variants of human metalloproteinase-disintegrin 12 mRNA, which differ in their 3′-untranslated regions (3′UTRs). ADAM12-L, but not ADAM12-S, has prognostic and chemopredictive values in breast cancer. Expression levels of the two ADAM12 splice variants in clinical samples are highly discordant, suggesting post-transcriptional regulation of the ADAM12 gene. The miR-29, miR-30, and miR-200 families have potential target sites in the ADAM12-L 3′UTR and they may negatively regulate ADAM12-L expression. Methods miR-29b/c, miR-30b/d, miR-200b/c, or control miRNA mimics were transfected into SUM159PT, BT549, SUM1315MO2, or Hs578T breast cancer cells. ADAM12-L and ADAM12-S mRNA levels were measured by qRT-PCR, and ADAM12-L protein was detected by Western blotting. Direct targeting of the ADAM12-L 3′UTR by miRNAs was tested using an ADAM12-L 3′UTR luciferase reporter. The rate of ADAM12-L translation was evaluated by metabolic labeling of cells with 35S cysteine/methionine. The roles of endogenous miR-29b and miR-200c were tested by transfecting cells with miRNA hairpin inhibitors. Results Transfection of miR-29b/c mimics strongly decreased ADAM12-L mRNA levels in SUM159PT and BT549 cells, whereas ADAM12-S levels were not changed. ADAM12-L, but not ADAM12-S, levels were also significantly diminished by miR-200b/c in SUM1315MO2 cells. In Hs578T cells, miR-200b/c mimics impeded translation of ADAM12-L mRNA. Importantly, both miR-29b/c and miR-200b/c strongly decreased steady state levels of ADAM12-L protein in all breast cancer cell lines tested. miR-29b/c and miR-200b/c also significantly decreased the activity of an ADAM12-L 3′UTR reporter, and this effect was abolished when miR-29b/c and miR-200b/c target sequences were mutated. In contrast, miR-30b/d did not elicit consistent and significant effects on ADAM12-L expression. Analysis of a publicly available gene expression dataset for 100 breast tumors revealed a statistically significant negative correlation between ADAM12-L and both miR-29b and miR-200c. Inhibition of endogenous miR-29b and miR-200c in SUM149PT and SUM102PT cells led to increased ADAM12-L expression. Conclusions The ADAM12-L 3′UTR is a direct target of miR-29 and miR-200 family members. Since the miR-29 and miR-200 families play important roles in breast cancer progression, these results may help explain the different prognostic and chemopredictive values of ADAM12-L and ADAM12-S in breast cancer.
Collapse
Affiliation(s)
- Sara Duhachek-Muggy
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506, USA.
| | - Anna Zolkiewska
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506, USA.
| |
Collapse
|
34
|
Flores AR, Rêma A, Carvalho F, Lopes G, Faustino A, Dias Pereira P. Clinicopathological significance of immunoexpression of claudin-1 and claudin-7 in feline mammary carcinomas. J Comp Pathol 2014; 151:339-346. [PMID: 25246182 DOI: 10.1016/j.jcpa.2014.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/21/2014] [Accepted: 07/28/2014] [Indexed: 01/16/2023]
Abstract
Claudins (CLDNs) are tight junction proteins that have a role in regulating cell adhesion and polarity, paracellular permeability, proliferation and differentiation. Several immunohistochemical studies have shown reduced expression of CLDN-1 and CLDN-7 in human and canine mammary carcinomas, suggesting that these proteins may participate in mammary carcinogenesis, invasion and metastasis. The present study characterizes expression of CLDN-1 and CLDN-7 in feline mammary carcinomas (n = 52) and their metastases (n = 29). There was an inverse association between CLDN-7 expression and histological grade of tumour. Reduced expression of CLDN-7 was significantly associated with decreased tubule formation, high proliferative activity and metastasis. No significant associations were found between CLDN-1 expression and any of these features. Evaluation of expression of CLDN-7, but not CLDN-1, may therefore provide prognostic information, assisting in the diagnosis of a subgroup of aggressive feline mammary carcinomas that share some features with the recently described 'claudin-low' subgroup of human breast cancer.
Collapse
Affiliation(s)
- A Rute Flores
- Instituto de Ciências Biomédicas de Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira N°228, 4050-313 Porto, Portugal
| | - A Rêma
- Instituto de Ciências Biomédicas de Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira N°228, 4050-313 Porto, Portugal
| | - F Carvalho
- Instituto de Ciências Biomédicas de Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira N°228, 4050-313 Porto, Portugal
| | - G Lopes
- Instituto de Ciências Biomédicas de Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira N°228, 4050-313 Porto, Portugal
| | - A Faustino
- Instituto de Ciências Biomédicas de Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira N°228, 4050-313 Porto, Portugal
| | - P Dias Pereira
- Instituto de Ciências Biomédicas de Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira N°228, 4050-313 Porto, Portugal.
| |
Collapse
|
35
|
Vascular channels formed by subpopulations of PECAM1+ melanoma cells. Nat Commun 2014; 5:5200. [PMID: 25335460 PMCID: PMC4261234 DOI: 10.1038/ncomms6200] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 09/09/2014] [Indexed: 12/18/2022] Open
Abstract
Targeting the vasculature remains a promising approach for treating solid tumors; however, the mechanisms of tumor neovascularization are diverse and complex. Here we uncover a new subpopulation of melanoma cells that express the vascular cell adhesion molecule PECAM1, but not VEGFR-2, and participate in a PECAM1-dependent form of vasculogenic mimicry (VM). Clonally-derived PECAM1+ tumor cells coalesce to form PECAM1-dependent networks in vitro and they generate well-perfused, VEGF-independent channels in mice. The neural crest specifier AP-2α is diminished in PECAM1+ melanoma cells and is a transcriptional repressor of PECAM1. Reintroduction of AP-2α into PECAM1+ tumor cells represses PECAM1 and abolishes tube-forming ability whereas AP-2α knockdown in PECAM1− tumor cells up-regulates PECAM1 expression and promotes tube formation. Thus, VM-competent subpopulations, rather than all cells within a tumor, may instigate VM, supplant host-derived endothelium, and form PECAM1-dependent conduits that are not diminished by neutralizing VEGF.
Collapse
|
36
|
Bockhorn J, Prat A, Chang YF, Liu X, Huang S, Shang M, Nwachukwu C, Gomez-Vega MJ, Harrell JC, Olopade OI, Perou CM, Liu H. Differentiation and loss of malignant character of spontaneous pulmonary metastases in patient-derived breast cancer models. Cancer Res 2014; 74:7406-17. [PMID: 25339353 DOI: 10.1158/0008-5472.can-14-1188] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Patient-derived human-in-mouse xenograft models of breast cancer (PDX models) that exhibit spontaneous lung metastases offer a potentially powerful model of cancer metastasis. In this study, we evaluated the malignant character of lung micrometastases that emerge in such models after orthotopic implantation of human breast tumor cells into the mouse mammary fat pad. Interestingly, relative to the parental primary breast tumors, the lung metastasis (met)-derived mammary tumors exhibited a slower growth rate and a reduced metastatic potential with a more differentiated epithelial status. Epigenetic correlates were determined by gene array analyses. Lung met-derived tumors displayed differential expression of negative regulators of cell proliferation and metabolism and positive regulators of mammary epithelial differentiation. Clinically, this signature correlated with breast tumor subtypes. We identified hsa-miR-138 (miR-138) as a novel regulator of invasion and epithelial-mesenchymal transition in breast cancer cells, acting by directly targeting the polycomb epigenetic regulator EZH2. Mechanistic investigations showed that GATA3 transcriptionally controlled miR-138 levels in lung metastases. Notably, the miR-138 activity signature served as a novel independent prognostic marker for patient survival beyond traditional pathologic variables, intrinsic subtypes, or a proliferation gene signature. Our results highlight the loss of malignant character in some lung micrometastatic lesions and the epigenetic regulation of this phenotype.
Collapse
Affiliation(s)
- Jessica Bockhorn
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois. Stanford Cancer Institute, Stanford University, Stanford, California
| | - Aleix Prat
- Translational Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain. Department of Medical Oncology, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Ya-Fang Chang
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois
| | - Xia Liu
- Deparment of Pathology, Case Comprehensive Cancer Center, and National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Simo Huang
- Deparment of Pathology, Case Comprehensive Cancer Center, and National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Meng Shang
- Illinois Institute of Technology, Chicago, Illinois
| | - Chika Nwachukwu
- Center for Clinical Cancer Genetics, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Maria J Gomez-Vega
- Center for Clinical Cancer Genetics, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - J Chuck Harrell
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Olufunmilayo I Olopade
- Center for Clinical Cancer Genetics, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Huiping Liu
- Deparment of Pathology, Case Comprehensive Cancer Center, and National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
37
|
Song G, Darr DB, Santos CM, Ross M, Valdivia A, Jordan JL, Midkiff BR, Cohen S, Nikolaishvili-Feinberg N, Miller CR, Tarrant TK, Rogers AB, Dudley AC, Perou CM, Zamboni WC. Effects of tumor microenvironment heterogeneity on nanoparticle disposition and efficacy in breast cancer tumor models. Clin Cancer Res 2014; 20:6083-95. [PMID: 25231403 DOI: 10.1158/1078-0432.ccr-14-0493] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Tumor cells are surrounded by a complex microenvironment. The purpose of our study was to evaluate the role of heterogeneity of the tumor microenvironment in the variability of nanoparticle (NP) delivery and efficacy. EXPERIMENTAL DESIGNS C3(1)-T-Antigen genetically engineered mouse model (C3-TAg) and T11/TP53(Null) orthotopic syngeneic murine transplant model (T11) representing human breast tumor subtypes basal-like and claudin-low, respectively, were evaluated. For the pharmacokinetic studies, non-liposomal doxorubicin (NL-doxo) or polyethylene glycol tagged (PEGylated) liposomal doxorubicin (PLD) was administered at 6 mg/kg i.v. x1. Area under the concentration versus time curve (AUC) of doxorubicin was calculated. Macrophages, collagen, and the amount of vasculature were assessed by IHC. Chemokines and cytokines were measured by multiplex immunochemistry. NL-doxo or PLD was administered at 6 mg/kg i.v. weekly x6 in efficacy studies. Analyses of intermediary tumor response and overall survival were performed. RESULTS Plasma AUC of NL-doxo and PLD encapsulated and released doxorubicin was similar between two models. However, tumor sum total AUC of PLD was 2-fold greater in C3-TAg compared with T11 (P < 0.05). T11 tumors showed significantly higher expression of CC chemokine ligand (CCL) 2 and VEGF-a, greater vascular quantity, and decreased expression of VEGF-c compared with C3-TAg (P < 0.05). PLD was more efficacious compared with NL-doxo in both models. CONCLUSION The tumor microenvironment and/or tumor cell features of breast cancer affected NP tumor delivery and efficacy, but not the small-molecule drug. Our findings reveal the role of the tumor microenvironment in variability of NP delivery and therapeutic outcomes.
Collapse
Affiliation(s)
- Gina Song
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, North Carolina
| | - David B Darr
- Lineberger Comprehensive Cancer Center, UNC at Chapel Hill, Chapel Hill, North Carolina
| | - Charlene M Santos
- Lineberger Comprehensive Cancer Center, UNC at Chapel Hill, Chapel Hill, North Carolina. The Animal Studies Core, UNC at Chapel Hill, Chapel Hill, North Carolina
| | - Mark Ross
- The Animal Studies Core, UNC at Chapel Hill, Chapel Hill, North Carolina
| | - Alain Valdivia
- The Animal Studies Core, UNC at Chapel Hill, Chapel Hill, North Carolina
| | - Jamie L Jordan
- Lineberger Comprehensive Cancer Center, UNC at Chapel Hill, Chapel Hill, North Carolina
| | - Bentley R Midkiff
- Lineberger Comprehensive Cancer Center, UNC at Chapel Hill, Chapel Hill, North Carolina. Translational Pathology Lab, UNC at Chapel Hill, Chapel Hill, North Carolina
| | - Stephanie Cohen
- Translational Pathology Lab, UNC at Chapel Hill, Chapel Hill, North Carolina
| | - Nana Nikolaishvili-Feinberg
- Lineberger Comprehensive Cancer Center, UNC at Chapel Hill, Chapel Hill, North Carolina. Translational Pathology Lab, UNC at Chapel Hill, Chapel Hill, North Carolina
| | - C Ryan Miller
- Lineberger Comprehensive Cancer Center, UNC at Chapel Hill, Chapel Hill, North Carolina. Department of Pathology and Laboratory Medicine, UNC at Chapel Hill, Chapel Hill, North Carolina
| | - Teresa K Tarrant
- Lineberger Comprehensive Cancer Center, UNC at Chapel Hill, Chapel Hill, North Carolina. Department of Medicine, Division of Rheumatology, Allergy, and Immunology and Thurston Arthritis Research Center, UNC at Chapel Hill, Chapel Hill, North Carolina
| | - Arlin B Rogers
- Cummings School of Veterinary Medicine, Tufts University, Medford, Massachusetts
| | - Andrew C Dudley
- Lineberger Comprehensive Cancer Center, UNC at Chapel Hill, Chapel Hill, North Carolina. Department of Cell and Molecular Physiology, UNC at Chapel Hill, Chapel Hill, North Carolina
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, UNC at Chapel Hill, Chapel Hill, North Carolina. Department of Pathology and Laboratory Medicine, UNC at Chapel Hill, Chapel Hill, North Carolina. Department of Genetics, UNC at Chapel Hill, Chapel Hill, North Carolina
| | - William C Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, North Carolina. Lineberger Comprehensive Cancer Center, UNC at Chapel Hill, Chapel Hill, North Carolina. Carolina Center of Cancer Nanotechnology Excellence, UNC at Chapel Hill, Chapel Hill, North Carolina. Center for Pharmacogenomics and Individualized Therapy, UNC at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
38
|
Gatza ML, Silva GO, Parker JS, Fan C, Perou CM. An integrated genomics approach identifies drivers of proliferation in luminal-subtype human breast cancer. Nat Genet 2014; 46:1051-9. [PMID: 25151356 PMCID: PMC4300117 DOI: 10.1038/ng.3073] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/29/2014] [Indexed: 12/11/2022]
Abstract
Elucidating the molecular drivers of human breast cancers requires a strategy capable of integrating multiple forms of data and an ability to interpret the functional consequences of a given genetic aberration. Here we present an integrated genomic strategy based on the use of gene expression signatures of oncogenic pathway activity (n=52) as a framework to analyze DNA copy number alterations in combination with data from a genome-wide RNAi screen. We identify specific DNA amplifications, and importantly, essential genes within these amplicons representing key genetic drivers, including known and novel regulators of oncogenesis. The genes identified include eight that are essential for cell proliferation (FGD5, METTL6, CPT1A, DTX3, MRPS23, EIF2S2, EIF6 and SLC2A10) and are uniquely amplified in patients with highly proliferative luminal breast tumors, a clinical subset of patients for which few therapeutic options are effective. Our results demonstrate that this general strategy has the potential to identify putative therapeutic targets within amplicons through an integrated use of genetic, genomic, and genome-wide RNAi data sets.
Collapse
Affiliation(s)
- Michael L Gatza
- 1] Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Grace O Silva
- 1] Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [3] Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joel S Parker
- 1] Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cheng Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Charles M Perou
- 1] Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [3] Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [4] Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
39
|
Xiao L, Harrell JC, Perou CM, Dudley AC. Identification of a stable molecular signature in mammary tumor endothelial cells that persists in vitro. Angiogenesis 2013; 17:511-8. [PMID: 24257808 DOI: 10.1007/s10456-013-9409-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/13/2013] [Indexed: 12/25/2022]
Abstract
Long-term, in vitro propagation of tumor-specific endothelial cells (TEC) allows for functional studies and genome-wide expression profiling of clonally derived, well-characterized subpopulations. Using a genetically engineered mouse model of mammary adenocarcinoma, we have optimized an isolation procedure and defined growth conditions for long-term propagation of mammary TEC. The isolated TEC maintain their endothelial specification and phenotype in culture. Furthermore, gene expression profiling of multiple TEC subpopulations revealed striking, persistent overexpression of several candidate genes including Irx2 and Zfp503 (transcription factors), Alcam and Cd133 (cell surface markers), Ccl4 and neurotensin (Nts) (angiocrine factors), and Gpr182 and Cnr2 (G protein-coupled receptors). Taken together, we have developed an effective method for isolating and culture-expanding mammary TEC, and uncovered several new TEC-selective genes whose overexpression persists even after long-term in vitro culture. These results suggest that the tumor microenvironment may induce changes in vascular endothelium in vivo that are stably transmittable in vitro.
Collapse
Affiliation(s)
- Lin Xiao
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, 3340C Medical Biomolecular Research Building, Chapel Hill, NC, 27599, USA
| | | | | | | |
Collapse
|