1
|
Woo J, Loycano M, Amanullah M, Qian J, Amend SR, Pienta KJ, Zhang H. Single-Cell Proteomic Characterization of Drug-Resistant Prostate Cancer Cells Reveals Molecular Signatures Associated with Morphological Changes. Mol Cell Proteomics 2025; 24:100949. [PMID: 40090465 PMCID: PMC12008537 DOI: 10.1016/j.mcpro.2025.100949] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025] Open
Abstract
This study delves into the proteomic intricacies of drug-resistant cells (DRCs) within prostate cancer, which are known for their pivotal roles in therapeutic resistance, relapse, and metastasis. Utilizing single-cell proteomics (SCP) with an optimized high-throughput data-independent acquisition (DIA) approach with the throughput of 60 sample per day, we characterized the proteomic landscape of DRCs in comparison to parental PC3 cells. This DIA method allowed for robust and reproducible protein quantification at the single-cell level, enabling the identification and quantification of over 1300 proteins per cell on average. Distinct proteomic sub-clusters within the DRC population were identified, closely linked to variations in cell size. The study uncovered novel protein signatures, including the regulation of proteins critical for cell adhesion and metabolic processes, as well as the upregulation of surface proteins and transcription factors pivotal for cancer progression. Furthermore, by conducting single-cell RNA-seq (scRNA-seq) analysis, we identified six upregulated and 10 downregulated genes consistently altered in drug-treated cells across both SCP and scRNA-seq platforms. These findings underscore the heterogeneity of DRCs and their unique molecular signatures, providing valuable insights into their biological behavior and potential therapeutic targets.
Collapse
Affiliation(s)
- Jongmin Woo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Loycano
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Md Amanullah
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sarah R Amend
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kenneth J Pienta
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
2
|
Church SJ, Pulianmackal AJ, Dixon JA, Loftus LV, Amend SR, Pienta K, Cackowski FC, Buttitta LA. Oncogenic signaling in the Drosophila prostate-like accessory gland activates a pro-tumorigenic program in the absence of proliferation. Dis Model Mech 2025; 18:dmm052001. [PMID: 40304035 PMCID: PMC12067084 DOI: 10.1242/dmm.052001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
Drosophila models for tumorigenesis have revealed conserved mechanisms of signaling involved in mammalian cancer. Many of these models use highly mitotically active Drosophila tissues. Few Drosophila tumorigenesis models use adult tissues, when most cells are terminally differentiated and postmitotic. The Drosophila accessory glands are prostate-like tissues, and a model for prostate tumorigenesis using this tissue has been explored. In this prior model, oncogenic signaling was induced during the proliferative stages of accessory gland development, raising the question of how oncogenic activity impacts the terminally differentiated, postmitotic adult tissue. Here, we show that oncogenic signaling in the adult Drosophila accessory gland leads to activation of a conserved pro-tumorigenic program, similar to that of mitotic tissues, but in the absence of proliferation. In our experiments, oncogenic signaling in the adult gland led to tissue hypertrophy with nuclear anaplasia, in part through endoreduplication. Oncogene-induced gene expression changes in the adult Drosophila prostate-like model overlapped with those in polyploid prostate cancer cells after chemotherapy, which potentially mediate tumor recurrence. Thus, the adult accessory glands provide a useful model for aspects of prostate cancer progression that lack cellular proliferation.
Collapse
Affiliation(s)
- S. Jaimian Church
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ajai J. Pulianmackal
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph A. Dixon
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Luke V. Loftus
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sarah R. Amend
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kenneth Pienta
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Frank C. Cackowski
- Karmanos Cancer Institute and Wayne State University, Department of Oncology, Detroit, MI 48201, USA
| | - Laura A. Buttitta
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Woo J, Loycano M, Amanullah M, Qian J, Amend S, Pienta K, Zhang H. Single-Cell Proteomic and Transcriptomic Characterization of Drug-Resistant Prostate Cancer Cells Reveals Molecular Signatures Associated with Morphological Changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619905. [PMID: 39553982 PMCID: PMC11565813 DOI: 10.1101/2024.10.23.619905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
This study delves into the proteomic intricacies of drug-resistant cells (DRCs) within prostate cancer, which are known for their pivotal roles in therapeutic resistance, relapse, and metastasis. Utilizing single-cell proteomics (SCP) with an optimized high-throughput Data Independent Acquisition (DIA) approach with the throughput of 60 sample per day, we characterized the proteomic landscape of DRCs in comparison to parental PC3 cells. This optimized DIA method allowed for robust and reproducible protein quantification at the single-cell level, enabling the identification and quantification of over 1,300 proteins per cell on average. Distinct proteomic sub-clusters within the DRC population were identified, closely linked to variations in cell size. The study uncovered novel protein signatures, including the regulation of proteins critical for cell adhesion and metabolic processes, as well as the upregulation of surface proteins and transcription factors pivotal for cancer progression. Furthermore, by integrating SCP and single-cell RNA-seq (scRNA-seq) data, we identified six upregulated and ten downregulated genes consistently altered in drug-treated cells across both SCP and scRNA-seq platforms. These findings underscore the heterogeneity of DRCs and their unique molecular signatures, providing valuable insights into their biological behavior and potential therapeutic targets.
Collapse
|
4
|
Zhao S, Wang L, Ouyang M, Xing S, Liu S, Sun L, Yu H. Polyploid giant cancer cells induced by Docetaxel exhibit a senescence phenotype with the expression of stem cell markers in ovarian cancer cells. PLoS One 2024; 19:e0306969. [PMID: 38990953 PMCID: PMC11239069 DOI: 10.1371/journal.pone.0306969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
Docetaxel (Doc) plays a crucial role in clinical antineoplastic practice. However, it is continuously documented that tumors frequently develop chemoresistance and relapse, which may be related to polyploid giant cancer cells (PGCCs). The aim of this study was investigate the formation mechanism and biological behavior of PGCCs induced by Doc. Ovarian cancer cells were treated with Doc, and then the effect of Doc on cellular viability was evaluated by MTT assay and microscopic imaging analysis. The biological properties of PGCCs were further evaluated by Hoechst 33342 staining, cell cycle and DNA content assay, DNA damage response (DDR) signaling detection, β-galactosidase staining, mitochondrial membrane potential detection, and reverse transcription-quantitative polymerase chain reaction. The results indicated that Doc reduced cellular viability; however, many cells were still alive, and were giant and polyploid. Doc increased the proportion of cells stayed in the G2/M phase and reduced the number of cells. In addition, the expression of γ-H2A.X was constantly increased after Doc treatment. PGCCs showed senescence-associated β-galactosidase activity and an increase in the monomeric form of JC-1. The mRNA level of octamer-binding transcription factor 4 (OCT4) and krüppel-like factor 4 (KLF4) was significantly increased in PGCCs. Taken together, our results suggest that Doc induces G2/M cell cycle arrest, inhibits the proliferation and activates persistent DDR signaling to promote the formation of PGCCs. Importantly, PGCCs exhibit a senescence phenotype and express stem cell markers.
Collapse
Affiliation(s)
- Song Zhao
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Lili Wang
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Mingyue Ouyang
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Sining Xing
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Shuo Liu
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Lingyan Sun
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Huiying Yu
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
5
|
Church SJ, Pulianmackal AJ, Dixon JA, Loftus LV, Amend SR, Pienta K, Cackowski FC, Buttitta LA. Oncogenic signaling in the adult Drosophila prostate-like accessory gland leads to activation of a conserved pro-tumorigenic program, in the absence of proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593549. [PMID: 38853988 PMCID: PMC11160766 DOI: 10.1101/2024.05.10.593549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Drosophila models for tumorigenesis and metastasis have revealed conserved mechanisms of signaling that are also involved in mammalian cancer. Many of these models use the proliferating tissues of the larval stages of Drosophila development, when tissues are highly mitotically active, or stem cells are abundant. Fewer Drosophila tumorigenesis models use adult animals to initiate tumor formation when many tissues are largely terminally differentiated and postmitotic. The Drosophila accessory glands are prostate-like tissues and a model for some aspects of prostate tumorigenesis using this tissue has been explored. In this model, oncogenic signaling was induced during the proliferative stage of accessory gland development, raising the question of how oncogenic activity would impact the terminally differentiated and postmitotic adult tissue. Here, we show that oncogenic signaling in the adult Drosophila accessory gland leads to activation of a conserved pro-tumorigenic program, similar to that observed in mitotic larval tissues, but in the absence of proliferation. Oncogenic signaling in the adult postmitotic gland leads to tissue hyperplasia with nuclear anaplasia and aneuploidy through endoreduplication, which increases polyploidy and occasionally results in non-mitotic neoplastic-like extrusions. We compare gene expression changes in our Drosophila model with that of endocycling prostate cancer cells induced by chemotherapy, which potentially mediate tumor recurrence after treatment. Similar signaling pathways are activated in the Drosophila gland and endocycling cancer cells, suggesting the adult accessory glands provide a useful model for aspects of prostate cancer progression that do not involve cellular proliferation.
Collapse
Affiliation(s)
- S. Jaimian Church
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Ajai J. Pulianmackal
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Joseph A. Dixon
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Luke V. Loftus
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sarah R. Amend
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kenneth Pienta
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Frank C. Cackowski
- Karmanos Cancer Institute and Wayne State University Department of Oncology, Detroit, MI
| | - Laura A. Buttitta
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
6
|
White-Gilbertson S, Lu P, Saatci O, Sahin O, Delaney JR, Ogretmen B, Voelkel-Johnson C. Transcriptome analysis of polyploid giant cancer cells and their progeny reveals a functional role for p21 in polyploidization and depolyploidization. J Biol Chem 2024; 300:107136. [PMID: 38447798 PMCID: PMC10979113 DOI: 10.1016/j.jbc.2024.107136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/03/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
Polyploid giant cancer cells (PGCC) are frequently detected in tumors and are increasingly recognized for their roles in chromosomal instability and associated genome evolution that leads to cancer recurrence. We previously reported that therapy stress promotes polyploidy, and that acid ceramidase plays a role in depolyploidization. In this study, we used an RNA-seq approach to gain a better understanding of the underlying transcriptomic changes that occur as cancer cells progress through polyploidization and depolyploidization. Our results revealed gene signatures that are associated with disease-free and/or overall survival in several cancers and identified the cell cycle inhibitor CDKN1A/p21 as the major hub in PGCC and early progeny. Increased expression of p21 in PGCC was limited to the cytoplasm. We previously demonstrated that the sphingolipid enzyme acid ceramidase is dispensable for polyploidization upon therapy stress but plays a crucial role in depolyploidization. The current study demonstrates that treatment of cells with ceramide is not sufficient for p53-independent induction of p21 and that knockdown of acid ceramidase, which hydrolyzes ceramide, does not interfere with upregulation of p21. In contrast, blocking the expression of p21 with UC2288 prevented the induction of acid ceramidase and inhibited both the formation of PGCC from parental cells as well as the generation of progeny from PGCC. Taken together, our data suggest that p21 functions upstream of acid ceramidase and plays an important role in polyploidization and depolyploidization.
Collapse
Affiliation(s)
- Shai White-Gilbertson
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ping Lu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ozge Saatci
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Joe R Delaney
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Christina Voelkel-Johnson
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
7
|
Sassi A, You L. Microfluidics-Based Technologies for the Assessment of Castration-Resistant Prostate Cancer. Cells 2024; 13:575. [PMID: 38607014 PMCID: PMC11011521 DOI: 10.3390/cells13070575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/13/2024] Open
Abstract
Castration-resistant prostate cancer remains a significant clinical challenge, wherein patients display no response to existing hormone therapies. The standard of care often includes aggressive treatment options using chemotherapy, radiation therapy and various drugs to curb the growth of additional metastases. As such, there is a dire need for the development of innovative technologies for both its diagnosis and its management. Traditionally, scientific exploration of prostate cancer and its treatment options has been heavily reliant on animal models and two-dimensional (2D) in vitro technologies. However, both laboratory tools often fail to recapitulate the dynamic tumor microenvironment, which can lead to discrepancies in drug efficacy and side effects in a clinical setting. In light of the limitations of traditional animal models and 2D in vitro technologies, the emergence of microfluidics as a tool for prostate cancer research shows tremendous promise. Namely, microfluidics-based technologies have emerged as powerful tools for assessing prostate cancer cells, isolating circulating tumor cells, and examining their behaviour using tumor-on-a-chip models. As such, this review aims to highlight recent advancements in microfluidics-based technologies for the assessment of castration-resistant prostate cancer and its potential to advance current understanding and to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Amel Sassi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada;
| | - Lidan You
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada;
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Mechanical and Materials Engineering, Queen’s University, Kingston, ON K7L 2V9, Canada
| |
Collapse
|
8
|
Jiao Y, Yu Y, Zheng M, Yan M, Wang J, Zhang Y, Zhang S. Dormant cancer cells and polyploid giant cancer cells: The roots of cancer recurrence and metastasis. Clin Transl Med 2024; 14:e1567. [PMID: 38362620 PMCID: PMC10870057 DOI: 10.1002/ctm2.1567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Tumour cell dormancy is critical for metastasis and resistance to chemoradiotherapy. Polyploid giant cancer cells (PGCCs) with giant or multiple nuclei and high DNA content have the properties of cancer stem cell and single PGCCs can individually generate tumours in immunodeficient mice. PGCCs represent a dormant form of cancer cells that survive harsh tumour conditions and contribute to tumour recurrence. Hypoxic mimics, chemotherapeutics, radiation and cytotoxic traditional Chinese medicines can induce PGCCs formation through endoreduplication and/or cell fusion. After incubation, dormant PGCCs can recover from the treatment and produce daughter cells with strong proliferative, migratory and invasive abilities via asymmetric cell division. Additionally, PGCCs can resist hypoxia or chemical stress and have a distinct protein signature that involves chromatin remodelling and cell cycle regulation. Dormant PGCCs form the cellular basis for therapeutic resistance, metastatic cascade and disease recurrence. This review summarises regulatory mechanisms governing dormant cancer cells entry and exit of dormancy, which may be used by PGCCs, and potential therapeutic strategies for targeting PGCCs.
Collapse
Affiliation(s)
- Yuqi Jiao
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yongjun Yu
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Minying Zheng
- Department of PathologyTianjin Union Medical CenterNankai UniversityTianjinChina
| | - Man Yan
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jiangping Wang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yue Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Shiwu Zhang
- Department of PathologyTianjin Union Medical CenterTianjinChina
| |
Collapse
|
9
|
Heng E, Thanedar S, Heng HH. The Importance of Monitoring Non-clonal Chromosome Aberrations (NCCAs) in Cancer Research. Methods Mol Biol 2024; 2825:79-111. [PMID: 38913304 DOI: 10.1007/978-1-0716-3946-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Cytogenetic analysis has traditionally focused on the clonal chromosome aberrations, or CCAs, and considered the large number of diverse non-clonal chromosome aberrations, or NCCAs, as insignificant noise. Our decade-long karyotype evolutionary studies have unexpectedly demonstrated otherwise. Not only the baseline of NCCAs is associated with fuzzy inheritance, but the frequencies of NCCAs can also be used to reliably measure genome or chromosome instability (CIN). According to the Genome Architecture Theory, CIN is the common driver of cancer evolution that can unify diverse molecular mechanisms, and genome chaos, including chromothripsis, chromoanagenesis, and polypoidal giant nuclear and micronuclear clusters, and various sizes of chromosome fragmentations, including extrachromosomal DNA, represent some extreme forms of NCCAs that play a key role in the macroevolutionary transition. In this chapter, the rationale, definition, brief history, and current status of NCCA research in cancer are discussed in the context of two-phased cancer evolution and karyotype-coded system information. Finally, after briefly describing various types of NCCAs, we call for more research on NCCAs in future cytogenetics.
Collapse
Affiliation(s)
- Eric Heng
- Stanford University, Stanford, CA, USA
| | - Sanjana Thanedar
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Henry H Heng
- Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
10
|
Sieler M, Dittmar T. Cell Fusion and Syncytia Formation in Cancer. Results Probl Cell Differ 2024; 71:433-465. [PMID: 37996689 DOI: 10.1007/978-3-031-37936-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The natural phenomenon of cell-cell fusion does not only take place in physiological processes, such as placentation, myogenesis, or osteoclastogenesis, but also in pathophysiological processes, such as cancer. More than a century ago postulated, today the hypothesis that the fusion of cancer cells with normal cells leads to the formation of cancer hybrid cells with altered properties is in scientific consensus. Some studies that have investigated the mechanisms and conditions for the fusion of cancer cells with other cells, as well as studies that have characterized the resulting cancer hybrid cells, are presented in this review. Hypoxia and the cytokine TNFα, for example, have been found to promote cell fusion. In addition, it has been found that both the protein Syncytin-1, which normally plays a role in placentation, and phosphatidylserine signaling on the cell membrane are involved in the fusion of cancer cells with other cells. In human cancer, cancer hybrid cells were detected not only in the primary tumor, but also in the circulation of patients as so-called circulating hybrid cells, where they often correlated with a worse outcome. Although some data are available, the questions of how and especially why cancer cells fuse with other cells are still not fully answered.
Collapse
Affiliation(s)
- Mareike Sieler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany.
| | - Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany
| |
Collapse
|
11
|
Heng J, Heng HH. Karyotype as code of codes: An inheritance platform to shape the pattern and scale of evolution. Biosystems 2023; 233:105016. [PMID: 37659678 DOI: 10.1016/j.biosystems.2023.105016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Organismal evolution displays complex dynamics in phase and scale which seem to trend towards increasing biocomplexity and diversity. For over a century, such amazing dynamics have been cleverly explained by the apparently straightforward mechanism of natural selection: all diversification, including speciation, results from the gradual accumulation of small beneficial or near-neutral alterations over long timescales. However, although this has been widely accepted, natural selection makes a crucial assumption that has not yet been validated. Specifically, the informational relationship between small microevolutionary alterations and large macroevolutionary changes in natural selection is unclear. To address the macroevolution-microevolution relationship, it is crucial to incorporate the concept of organic codes and particularly the "karyotype code" which defines macroevolutionary changes. This concept piece examines the karyotype from the perspective of two-phased evolution and four key components of information management. It offers insight into how the karyotype creates and preserves information that defines the scale and phase of macroevolution and, by extension, microevolution. We briefly describe the relationship between the karyotype code, the genetic code, and other organic codes in the context of generating evolutionary novelties in macroevolution and imposing constraints on them as biological routines in microevolution. Our analyses suggest that karyotype coding preserves many organic codes by providing system-level inheritance, and similar analyses are needed to classify and prioritize a large number of different organic codes based on the phases and scales of evolution. Finally, the importance of natural information self-creation is briefly discussed, leading to a call to integrate information and time into the relationship between matter and energy.
Collapse
Affiliation(s)
- Julie Heng
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Henry H Heng
- Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
12
|
Bukkuri A, Pienta KJ, Austin RH, Hammarlund EU, Amend SR, Brown JS. A mathematical investigation of polyaneuploid cancer cell memory and cross-resistance in state-structured cancer populations. Sci Rep 2023; 13:15027. [PMID: 37700000 PMCID: PMC10497555 DOI: 10.1038/s41598-023-42368-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/09/2023] [Indexed: 09/14/2023] Open
Abstract
The polyaneuploid cancer cell (PACC) state promotes cancer lethality by contributing to survival in extreme conditions and metastasis. Recent experimental evidence suggests that post-therapy PACC-derived recurrent populations display cross-resistance to classes of therapies with independent mechanisms of action. We hypothesize that this can occur through PACC memory, whereby cancer cells that have undergone a polyaneuploid transition (PAT) reenter the PACC state more quickly or have higher levels of innate resistance. In this paper, we build on our prior mathematical models of the eco-evolutionary dynamics of cells in the 2N+ and PACC states to investigate these two hypotheses. We show that although an increase in innate resistance is more effective at promoting cross-resistance, this trend can also be produced via PACC memory. We also find that resensitization of cells that acquire increased innate resistance through the PAT have a considerable impact on eco-evolutionary dynamics and extinction probabilities. This study, though theoretical in nature, can help inspire future experimentation to tease apart hypotheses surrounding how cross-resistance in structured cancer populations arises.
Collapse
Affiliation(s)
- Anuraag Bukkuri
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, USA.
| | - Kenneth J Pienta
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | | | - Emma U Hammarlund
- Tissue Development and Evolution Research Group, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sarah R Amend
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | - Joel S Brown
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, USA
| |
Collapse
|
13
|
Zhang X, Yao J, Li X, Niu N, Liu Y, Hajek RA, Peng G, Westin S, Sood AK, Liu J. Targeting polyploid giant cancer cells potentiates a therapeutic response and overcomes resistance to PARP inhibitors in ovarian cancer. SCIENCE ADVANCES 2023; 9:eadf7195. [PMID: 37478190 PMCID: PMC10361597 DOI: 10.1126/sciadv.adf7195] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
To understand the mechanism of acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) olaparib, we induced the formation of polyploid giant cancer cells (PGCCs) in ovarian and breast cancer cell lines, high-grade serous cancer (HGSC)-derived organoids, and patient-derived xenografts (PDXs). Time-lapse tracking of ovarian cancer cells revealed that PGCCs primarily developed from endoreplication after exposure to sublethal concentrations of olaparib. PGCCs exhibited features of senescent cells but, after olaparib withdrawal, can escape senescence via restitutional multipolar endomitosis and other noncanonical modes of cell division to generate mitotically competent resistant daughter cells. The contraceptive drug mifepristone blocked PGCC formation and daughter cell formation. Mifepristone/olaparib combination therapy substantially reduced tumor growth in PDX models without previous olaparib exposure, while mifepristone alone decreased tumor growth in PDX models with acquired olaparib resistance. Thus, targeting PGCCs may represent a promising approach to potentiate the therapeutic response to PARPi and overcome PARPi-induced resistance.
Collapse
Affiliation(s)
- Xudong Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoran Li
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Na Niu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yan Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard A. Hajek
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shannon Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
14
|
Mallin MM, Kim N, Choudhury MI, Lee SJ, An SS, Sun SX, Konstantopoulos K, Pienta KJ, Amend SR. Cells in the polyaneuploid cancer cell (PACC) state have increased metastatic potential. Clin Exp Metastasis 2023:10.1007/s10585-023-10216-8. [PMID: 37326720 DOI: 10.1007/s10585-023-10216-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Although metastasis is the leading cause of cancer deaths, it is quite rare at the cellular level. Only a rare subset of cancer cells (~ 1 in 1.5 billion) can complete the entire metastatic cascade: invasion, intravasation, survival in the circulation, extravasation, and colonization (i.e. are metastasis competent). We propose that cells engaging a Polyaneuploid Cancer Cell (PACC) phenotype are metastasis competent. Cells in the PACC state are enlarged, endocycling (i.e. non-dividing) cells with increased genomic content that form in response to stress. Single-cell tracking using time lapse microscopy reveals that PACC state cells have increased motility. Additionally, cells in the PACC state exhibit increased capacity for environment-sensing and directional migration in chemotactic environments, predicting successful invasion. Magnetic Twisting Cytometry and Atomic Force Microscopy reveal that cells in the PACC state display hyper-elastic properties like increased peripheral deformability and maintained peri-nuclear cortical integrity that predict successful intravasation and extravasation. Furthermore, four orthogonal methods reveal that cells in the PACC state have increased expression of vimentin, a hyper-elastic biomolecule known to modulate biomechanical properties and induce mesenchymal-like motility. Taken together, these data indicate that cells in the PACC state have increased metastatic potential and are worthy of further in vivo analysis.
Collapse
Affiliation(s)
- Mikaela M Mallin
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA.
| | - Nicholas Kim
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ, USA
| | | | - Se Jong Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Steven S An
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ, USA
| | - Sean X Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Kenneth J Pienta
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA
| | - Sarah R Amend
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA
| |
Collapse
|
15
|
Kim CJ, Gonye AL, Truskowski K, Lee CF, Cho YK, Austin RH, Pienta KJ, Amend SR. Nuclear morphology predicts cell survival to cisplatin chemotherapy. Neoplasia 2023; 42:100906. [PMID: 37172462 DOI: 10.1016/j.neo.2023.100906] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
The emergence of chemotherapy resistance drives cancer lethality in cancer patients, with treatment initially reducing overall tumor burden followed by resistant recurrent disease. While molecular mechanisms underlying resistance phenotypes have been explored, less is known about the cell biological characteristics of cancer cells that survive to eventually seed the recurrence. To identify the unique phenotypic characteristics associated with survival upon chemotherapy exposure, we characterized nuclear morphology and function as prostate cancer cells recovered following cisplatin treatment. Cells that survived in the days and weeks after treatment and resisted therapy-induced cell death showed increasing cell size and nuclear size, enabled by continuous endocycling resulting in repeated whole genome doubling. We further found that cells that survive after therapy release were predominantly mononucleated and likely employ more efficient DNA damage repair. Finally, we show that surviving cancer cells exhibit a distinct nucleolar phenotype and increased rRNA levels. These data support a paradigm where soon after therapy release, the treated population mostly contains cells with a high level of widespread and catastrophic DNA damage that leads to apoptosis, while the minority of cells that have successful DDR are more likely to access a pro-survival state. These findings are consistent with accession of the polyaneuploid cancer cell (PACC) state, a recently described mechanism of therapy resistance and tumor recurrence. Our findings demonstrate the fate of cancer cells following cisplatin treatment and define key cell phenotypic characteristics of the PACC state. This work is essential for understanding and, ultimately, targeting cancer resistance and recurrence.
Collapse
Affiliation(s)
- Chi-Ju Kim
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA.
| | - Anna Lk Gonye
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA; Cellular and Molecular Medicine Graduate Program, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Kevin Truskowski
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA; Cellular and Molecular Medicine Graduate Program, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Cheng-Fan Lee
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Yoon-Kyoung Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Building 103, Ulsan 44919, Republic of Korea; Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Robert H Austin
- Department of Physics, Princeton University, Jadwin Hall, Washington Rd., Princeton, NJ 08544, USA
| | - Kenneth J Pienta
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA; Cellular and Molecular Medicine Graduate Program, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Sarah R Amend
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA; Cellular and Molecular Medicine Graduate Program, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA.
| |
Collapse
|
16
|
Casotti MC, Meira DD, Zetum ASS, de Araújo BC, da Silva DRC, dos Santos EDVW, Garcia FM, de Paula F, Santana GM, Louro LS, Alves LNR, Braga RFR, Trabach RSDR, Bernardes SS, Louro TES, Chiela ECF, Lenz G, de Carvalho EF, Louro ID. Computational Biology Helps Understand How Polyploid Giant Cancer Cells Drive Tumor Success. Genes (Basel) 2023; 14:801. [PMID: 37107559 PMCID: PMC10137723 DOI: 10.3390/genes14040801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Precision and organization govern the cell cycle, ensuring normal proliferation. However, some cells may undergo abnormal cell divisions (neosis) or variations of mitotic cycles (endopolyploidy). Consequently, the formation of polyploid giant cancer cells (PGCCs), critical for tumor survival, resistance, and immortalization, can occur. Newly formed cells end up accessing numerous multicellular and unicellular programs that enable metastasis, drug resistance, tumor recurrence, and self-renewal or diverse clone formation. An integrative literature review was carried out, searching articles in several sites, including: PUBMED, NCBI-PMC, and Google Academic, published in English, indexed in referenced databases and without a publication time filter, but prioritizing articles from the last 3 years, to answer the following questions: (i) "What is the current knowledge about polyploidy in tumors?"; (ii) "What are the applications of computational studies for the understanding of cancer polyploidy?"; and (iii) "How do PGCCs contribute to tumorigenesis?"
Collapse
Affiliation(s)
- Matheus Correia Casotti
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Débora Dummer Meira
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Aléxia Stefani Siqueira Zetum
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Bruno Cancian de Araújo
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Danielle Ribeiro Campos da Silva
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | | | - Fernanda Mariano Garcia
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Flávia de Paula
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Gabriel Mendonça Santana
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, Brazil
| | - Luana Santos Louro
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, Brazil
| | - Lyvia Neves Rebello Alves
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Raquel Furlani Rocon Braga
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Raquel Silva dos Reis Trabach
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Sara Santos Bernardes
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - Thomas Erik Santos Louro
- Escola Superior de Ciências da Santa Casa de Misericórdia de Vitória (EMESCAM), Vitória 29027-502, Brazil
| | - Eduardo Cremonese Filippi Chiela
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Brazil
- Serviço de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Guido Lenz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
| | - Elizeu Fagundes de Carvalho
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Iúri Drumond Louro
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| |
Collapse
|
17
|
DeLuca VJ, Saleh T. Insights into the role of senescence in tumor dormancy: mechanisms and applications. Cancer Metastasis Rev 2023; 42:19-35. [PMID: 36681750 DOI: 10.1007/s10555-023-10082-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/12/2023] [Indexed: 01/23/2023]
Abstract
One of the most formidable challenges in oncology and tumor biology research is to provide an accurate understanding of tumor dormancy mechanisms. Dormancy refers to the ability of tumor cells to go undetected in the body for a prolonged period, followed by "spontaneous" escape. Various models of dormancy have been postulated, including angiogenic, immune-mediated, and cellular dormancy. While the former two propose mechanisms by which tumor growth may remain static at a population level, cellular dormancy refers to molecular processes that restrict proliferation at the cell level. Senescence is a form of growth arrest, during which cells undergo distinct phenotypic, epigenetic, and metabolic changes. Senescence is also associated with the development of a robust secretome, comprised of various chemokines and cytokines that interact with the surrounding microenvironment, including other tumor cells, stromal cells, endothelial cells, and immune cells. Both tumor and non-tumor cells can undergo senescence following various stressors, many of which are present during tumorigenesis and therapy. As such, senescent cells are present within forming tumors and in residual tumors post-treatment and therefore play a major role in tumor biology. However, the contributions of senescence to dormancy are largely understudied. Here, we provide an overview of multiple processes that have been well established as being involved in tumor dormancy, and we speculate on how senescence may contribute to these mechanisms.
Collapse
Affiliation(s)
- Valerie J DeLuca
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
| |
Collapse
|
18
|
Tessmann JW, Rocha MR, Morgado-Díaz JA. Mechanisms of radioresistance and the underlying signaling pathways in colorectal cancer cells. J Cell Biochem 2023; 124:31-45. [PMID: 36565460 DOI: 10.1002/jcb.30361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/23/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Radiotherapy is one of the most common modalities for the treatment of a wide range of tumors, including colorectal cancer (CRC); however, radioresistance of cancer cells remains a major limitation for this treatment. Following radiotherapy, the activities of various cellular mechanisms and cell signaling pathways are altered, resulting in the development of radioresistance, which leads to therapeutic failure and poor prognosis in patients with cancer. Furthermore, even though several inhibitors have been developed to target tumor resistance, these molecules can induce side effects in nontumor cells due to low specificity and efficiency. However, the role of these mechanisms in CRC has not been extensively studied. This review discusses recent studies regarding the relationship between radioresistance and the alterations in a series of cellular mechanisms and cell signaling pathways that lead to therapeutic failure and tumor recurrence. Our review also presents recent advances in the in vitro/in vivo study models aimed at investigating the radioresistance mechanism in CRC. Furthermore, it provides a relevant biochemical basis in theory, which can be useful to improve radiotherapy sensitivity and prolong patient survival.
Collapse
Affiliation(s)
- Josiane W Tessmann
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Murilo R Rocha
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Jose A Morgado-Díaz
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Zamkova MA, Persiyantseva NA, Tatarskiy VV, Shtil AA. Therapy-Induced Tumor Cell Senescence: Mechanisms and Circumvention. BIOCHEMISTRY (MOSCOW) 2023; 88:86-104. [PMID: 37068872 DOI: 10.1134/s000629792301008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Plasticity of tumor cells (multitude of molecular regulation pathways) allows them to evade cytocidal effects of chemo- and/or radiation therapy. Metabolic adaptation of the surviving cells is based on transcriptional reprogramming. Similarly to the process of natural cell aging, specific features of the survived tumor cells comprise the therapy-induced senescence phenotype. Tumor cells with this phenotype differ from the parental cells since they become less responsive to drugs and form aggressive progeny. Importance of the problem is explained by the general biological significance of transcriptional reprogramming as a mechanism of adaptation to stress, and by the emerging potential of its pharmacological targeting. In this review we analyze the mechanisms of regulation of the therapy-induced tumor cell senescence, as well as new drug combinations aimed to prevent this clinically unfavorable phenomenon.
Collapse
Affiliation(s)
- Maria A Zamkova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Nadezhda A Persiyantseva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Victor V Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alexander A Shtil
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
- Institute of Cyber Intelligence Systems, National Research Nuclear University MEPHI, Moscow, 115409, Russia
| |
Collapse
|
20
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
21
|
Lampropoulos I, Charoupa M, Kavousanakis M. Intra-tumor heterogeneity and its impact on cytotoxic therapy in a two-dimensional vascular tumor growth model. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Bukkuri A, Pienta KJ, Austin RH, Hammarlund EU, Amend SR, Brown JS. A life history model of the ecological and evolutionary dynamics of polyaneuploid cancer cells. Sci Rep 2022; 12:13713. [PMID: 35962062 PMCID: PMC9374668 DOI: 10.1038/s41598-022-18137-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022] Open
Abstract
Therapeutic resistance is one of the main reasons for treatment failure in cancer patients. The polyaneuploid cancer cell (PACC) state has been shown to promote resistance by providing a refuge for cancer cells from the effects of therapy and by helping them adapt to a variety of environmental stressors. This state is the result of aneuploid cancer cells undergoing whole genome doubling and skipping mitosis, cytokinesis, or both. In this paper, we create a novel mathematical framework for modeling the eco-evolutionary dynamics of state-structured populations and use this framework to construct a model of cancer populations with an aneuploid and a PACC state. Using in silico simulations, we explore how the PACC state allows cancer cells to (1) survive extreme environmental conditions by exiting the cell cycle after S phase and protecting genomic material and (2) aid in adaptation to environmental stressors by increasing the cancer cell's ability to generate heritable variation (evolvability) through the increase in genomic content that accompanies polyploidization. In doing so, we demonstrate the ability of the PACC state to allow cancer cells to persist under therapy and evolve therapeutic resistance. By eliminating cells in the PACC state through appropriately-timed PACC-targeted therapies, we show how we can prevent the emergence of resistance and promote cancer eradication.
Collapse
Affiliation(s)
- Anuraag Bukkuri
- Cancer Biology and Evolution Program, Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, USA.
| | - Kenneth J Pienta
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | | | - Emma U Hammarlund
- Nordic Center for Earth Evolution, University of Southern Denmark and Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sarah R Amend
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | - Joel S Brown
- Cancer Biology and Evolution Program, Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, USA
| |
Collapse
|
23
|
Stochastic models of Mendelian and reverse transcriptional inheritance in state-structured cancer populations. Sci Rep 2022; 12:13079. [PMID: 35906318 PMCID: PMC9338039 DOI: 10.1038/s41598-022-17456-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/26/2022] [Indexed: 11/08/2022] Open
Abstract
Recent evidence suggests that a polyaneuploid cancer cell (PACC) state may play a key role in the adaptation of cancer cells to stressful environments and in promoting therapeutic resistance. The PACC state allows cancer cells to pause cell division and to avoid DNA damage and programmed cell death. Transition to the PACC state may also lead to an increase in the cancer cell’s ability to generate heritable variation (evolvability). One way this can occur is through evolutionary triage. Under this framework, cells gradually gain resistance by scaling hills on a fitness landscape through a process of mutation and selection. Another way this can happen is through self-genetic modification whereby cells in the PACC state find a viable solution to the stressor and then undergo depolyploidization, passing it on to their heritably resistant progeny. Here, we develop a stochastic model to simulate both of these evolutionary frameworks. We examine the impact of treatment dosage and extent of self-genetic modification on eco-evolutionary dynamics of cancer cells with aneuploid and PACC states. We find that under low doses of therapy, evolutionary triage performs better whereas under high doses of therapy, self-genetic modification is favored. This study generates predictions for teasing apart these biological hypotheses, examines the implications of each in the context of cancer, and provides a modeling framework to compare Mendelian and non-traditional forms of inheritance.
Collapse
|
24
|
Nehme Z, Pasquereau S, Haidar Ahmad S, El Baba R, Herbein G. Polyploid giant cancer cells, EZH2 and Myc upregulation in mammary epithelial cells infected with high-risk human cytomegalovirus. EBioMedicine 2022; 80:104056. [PMID: 35596973 PMCID: PMC9121245 DOI: 10.1016/j.ebiom.2022.104056] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/08/2023] Open
Abstract
Background Human cytomegalovirus (HCMV) infection has been actively implicated in complex neoplastic processes. Beyond oncomodulation, the molecular mechanisms that might underlie HCMV-induced oncogenesis are being extensively studied. Polycomb repressive complex 2 (PRC2) proteins, in particular enhancer of zeste homolog 2 (EZH2) are associated with cancer progression. Nevertheless, little is known about EZH2 activation in the context of HCMV infection and breast oncogenesis. Methods Herein, we identified EZH2 as a downstream target for HCMV-induced Myc upregulation upon acute and chronic infection with high-risk strains using a human mammary epithelial model. Findings We detected polyploidy and CMV-transformed HMECs (CTH) cells harboring HCMV and dynamically undergoing the giant cells cycle. Acquisition of embryonic stemness markers positively correlated with EZH2 and Myc expression. EZH2 inhibitors curtail sustained CTH cells’ malignant phenotype. Besides harboring polyploid giant cancer cells (PGCCs), tumorigenic breast biopsies were characterized by an enhanced EZH2 and Myc expression, with a strong positive correlation between EZH2 and Myc expression, and between PGCC count and EZH2/Myc expression in the presence of HCMV. Further, we isolated two HCMV strains from EZH2HighMycHigh basal-like tumors which replicate in MRC5 cells and transform HMECs toward CTH cells after acute infection. Interpretation Our data establish a potential link between HCMV-induced Myc activation, the subsequent EZH2 upregulation, and polyploidy induction. These data support the proposed tumorigenesis properties of EZH2/Myc, and allow the isolation of two oncogenic HCMV strains from EZH2HighMycHigh basal breast tumors while identifying EZH2 as a potential therapeutic target in the management of breast cancer, particularly upon HCMV infection. Funding This work was supported by grants from the University of Franche-Comté (UFC) (CR3300), the Région Franche-Comté (2021-Y-08292 and 2021-Y-08290) and the Ligue contre le Cancer (CR3304) to Georges Herbein. Zeina Nehme is a recipient of a doctoral scholarship from the municipality of Habbouch. Sandy Haidar Ahmad is recipient of a doctoral scholarship from Lebanese municipality. Ranim El Baba is a recipient of a doctoral scholarship from Hariri foundation for sustainable human development.
Collapse
Affiliation(s)
- Zeina Nehme
- Department Pathogens and Inflammation-EPILAB, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 16 route de Gray, Besançon F-25030, France
| | - Sébastien Pasquereau
- Department Pathogens and Inflammation-EPILAB, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 16 route de Gray, Besançon F-25030, France
| | - Sandy Haidar Ahmad
- Department Pathogens and Inflammation-EPILAB, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 16 route de Gray, Besançon F-25030, France
| | - Ranim El Baba
- Department Pathogens and Inflammation-EPILAB, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 16 route de Gray, Besançon F-25030, France
| | - Georges Herbein
- Department Pathogens and Inflammation-EPILAB, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 16 route de Gray, Besançon F-25030, France; Department of Virology, CHU Besançon, Besançon, France.
| |
Collapse
|
25
|
Saini G, Joshi S, Garlapati C, Li H, Kong J, Krishnamurthy J, Reid MD, Aneja R. Polyploid giant cancer cell characterization: New frontiers in predicting response to chemotherapy in breast cancer. Semin Cancer Biol 2022; 81:220-231. [PMID: 33766651 PMCID: PMC8672208 DOI: 10.1016/j.semcancer.2021.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023]
Abstract
Although polyploid cells were first described nearly two centuries ago, their ability to proliferate has only recently been demonstrated. It also becomes increasingly evident that a subset of tumor cells, polyploid giant cancer cells (PGCCs), play a critical role in the pathophysiology of breast cancer (BC), among other cancer types. In BC, PGCCs can arise in response to therapy-induced stress. Their progeny possess cancer stem cell (CSC) properties and can repopulate the tumor. By modulating the tumor microenvironment (TME), PGCCs promote BC progression, chemoresistance, metastasis, and relapse and ultimately impact the survival of BC patients. Given their pro- tumorigenic roles, PGCCs have been proposed to possess the ability to predict treatment response and patient prognosis in BC. Traditionally, DNA cytometry has been used to detect PGCCs.. The field will further derive benefit from the development of approaches to accurately detect PGCCs and their progeny using robust PGCC biomarkers. In this review, we present the current state of knowledge about the clinical relevance of PGCCs in BC. We also propose to use an artificial intelligence-assisted image analysis pipeline to identify PGCC and map their interactions with other TME components, thereby facilitating the clinical implementation of PGCCs as biomarkers to predict treatment response and survival outcomes in BC patients. Finally, we summarize efforts to therapeutically target PGCCs to prevent chemoresistance and improve clinical outcomes in patients with BC.
Collapse
Affiliation(s)
- Geetanjali Saini
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Shriya Joshi
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | | | - Hongxiao Li
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jun Kong
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA; Department of Computer Science, Georgia State University, Atlanta, GA, USA; Department of Computer Science, Emory University, Atlanta, GA, USA
| | | | - Michelle D Reid
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
26
|
White-Gilbertson S, Lu P, Esobi I, Echesabal-Chen J, Mulholland PJ, Gooz M, Ogretmen B, Stamatikos A, Voelkel-Johnson C. Polyploid giant cancer cells are dependent on cholesterol for progeny formation through amitotic division. Sci Rep 2022; 12:8971. [PMID: 35624221 PMCID: PMC9142539 DOI: 10.1038/s41598-022-12705-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/06/2022] [Indexed: 12/16/2022] Open
Abstract
Polyploid Giant Cancer Cells (PGCC) are increasingly being recognized as drivers of cancer recurrence. Therapy stress promotes the formation of these cells, which upon stress cessation often successfully generate more aggressive progeny that repopulate the tumor. Therefore, identification of potential PGCC vulnerabilities is key to preventing therapy failure. We have previously demonstrated that PGCC progeny formation depends on the lysosomal enzyme acid ceramidase (ASAH1). In this study, we compared transcriptomes of parental cancer cells and PGCC in the absence or presence of the ASAH1 inhibitor LCL521. Results show that PGCC express less INSIG1, which downregulates cholesterol metabolism and that inhibition of ASAH1 increased HMGCR which is the rate limiting enzyme in cholesterol synthesis. Confocal microscopy revealed that ceramide and cholesterol do not colocalize. Treatment with LCL521 or simvastatin to inhibit ASAH1 or HMGCR, respectively, resulted in accumulation of ceramide at the cell surface of PGCC and prevented PGCC progeny formation. Our results suggest that similarly to inhibition of ASAH1, disruption of cholesterol signaling is a potential strategy to interfere with PGCC progeny formation.
Collapse
Affiliation(s)
- Shai White-Gilbertson
- Department of Microbiology and Immunology, Medical University of South Carolina, Basic Science Building, MSC250504, 173 Ashley Ave., Charleston, SC, USA
| | - Ping Lu
- Department of Microbiology and Immunology, Medical University of South Carolina, Basic Science Building, MSC250504, 173 Ashley Ave., Charleston, SC, USA
| | - Ikechukwu Esobi
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, USA
| | - Jing Echesabal-Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston Alcohol Research Center, Charleston, USA
| | - Monika Gooz
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, USA
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, USA
| | - Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Basic Science Building, MSC250504, 173 Ashley Ave., Charleston, SC, USA.
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, USA.
| |
Collapse
|
27
|
Mallin MM, Pienta KJ, Amend SR. Cancer cell foraging to explain bone-specific metastatic progression. Bone 2022; 158:115788. [PMID: 33279670 DOI: 10.1016/j.bone.2020.115788] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/18/2020] [Accepted: 12/01/2020] [Indexed: 01/06/2023]
Abstract
Metastatic cancer is lethal and patients who suffer bone metastases fare especially poorly. Bone-specific metastatic progression in prostate and breast cancers is a highly observed example of organ-specific metastasis, or organotropism. Though research has delineated the sequential steps of the metastatic cascade, the determinants of bone-specific metastasis have remained elusive for decades. Applying fundamental ecological principles to cancer biology models of metastasis provides novel insights into metastatic organotropism. We use critical concepts from foraging theory and movement ecology to propose that observed bone-specific metastasis is the result of habitat selection by foraging cancer cells. Furthermore, we posit that cancer cells can only perform habitat selection if and when they employ a reversible motile foraging strategy. Only a very small percentage of cells in a primary tumor harbor this ability. Therefore, our habitat selection model emphasizes the importance of identifying the rare subset of cancer cells that might exhibit habitat selection, ergo achieve bone-specific metastatic colonization.
Collapse
Affiliation(s)
- Mikaela M Mallin
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, 1830 E. Monument St. Suite 2-103, Baltimore, MD 21205, USA.
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, 600 North Wolfe St., Marburg 105, Baltimore, MD 21287, USA
| | - Sarah R Amend
- The James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, 600 North Wolfe St., Marburg 105, Baltimore, MD 21287, USA
| |
Collapse
|
28
|
Vainshelbaum NM, Salmina K, Gerashchenko BI, Lazovska M, Zayakin P, Cragg MS, Pjanova D, Erenpreisa J. Role of the Circadian Clock "Death-Loop" in the DNA Damage Response Underpinning Cancer Treatment Resistance. Cells 2022; 11:880. [PMID: 35269502 PMCID: PMC8909334 DOI: 10.3390/cells11050880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 12/11/2022] Open
Abstract
Here, we review the role of the circadian clock (CC) in the resistance of cancer cells to genotoxic treatments in relation to whole-genome duplication (WGD) and telomere-length regulation. The CC drives the normal cell cycle, tissue differentiation, and reciprocally regulates telomere elongation. However, it is deregulated in embryonic stem cells (ESCs), the early embryo, and cancer. Here, we review the DNA damage response of cancer cells and a similar impact on the cell cycle to that found in ESCs—overcoming G1/S, adapting DNA damage checkpoints, tolerating DNA damage, coupling telomere erosion to accelerated cell senescence, and favouring transition by mitotic slippage into the ploidy cycle (reversible polyploidy). Polyploidy decelerates the CC. We report an intriguing positive correlation between cancer WGD and the deregulation of the CC assessed by bioinformatics on 11 primary cancer datasets (rho = 0.83; p < 0.01). As previously shown, the cancer cells undergoing mitotic slippage cast off telomere fragments with TERT, restore the telomeres by ALT-recombination, and return their depolyploidised offspring to telomerase-dependent regulation. By reversing this polyploidy and the CC “death loop”, the mitotic cycle and Hayflick limit count are thus again renewed. Our review and proposed mechanism support a life-cycle concept of cancer and highlight the perspective of cancer treatment by differentiation.
Collapse
Affiliation(s)
- Ninel Miriam Vainshelbaum
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia; (N.M.V.); Latvia; (K.S.); (M.L.); (P.Z.); (D.P.)
- Faculty of Biology, University of Latvia, LV-1050 Riga, Latvia
| | - Kristine Salmina
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia; (N.M.V.); Latvia; (K.S.); (M.L.); (P.Z.); (D.P.)
| | - Bogdan I. Gerashchenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, 03022 Kyiv, Ukraine;
| | - Marija Lazovska
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia; (N.M.V.); Latvia; (K.S.); (M.L.); (P.Z.); (D.P.)
| | - Pawel Zayakin
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia; (N.M.V.); Latvia; (K.S.); (M.L.); (P.Z.); (D.P.)
| | - Mark Steven Cragg
- Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
| | - Dace Pjanova
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia; (N.M.V.); Latvia; (K.S.); (M.L.); (P.Z.); (D.P.)
| | - Jekaterina Erenpreisa
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia; (N.M.V.); Latvia; (K.S.); (M.L.); (P.Z.); (D.P.)
| |
Collapse
|
29
|
Mon Père NV, de Buyl P, de Buyl S. Brownian motion in a growing population of ballistic particles. Phys Rev E 2022; 105:034133. [PMID: 35428114 DOI: 10.1103/physreve.105.034133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
We investigate the motility of a growing population of cells in a idealized setting: We consider a system of hard disks in which new particles are added according to prescribed growth kinetics, thereby dynamically changing the number density. As a result, the expected Brownian motion of the hard disks is modified. We compute the density-dependent friction of the hard disks and insert it in an effective Langevin equation to describe the system, assuming that the intercollision time is smaller than the timescale of the growth. We find that the effective Langevin description captures the changes in motility, in agreement with the simulation results. Our framework can be extended to other systems in which the transport coefficient varies with time.
Collapse
Affiliation(s)
- Nathaniel V Mon Père
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Pierre de Buyl
- Royal Meteorological Institute of Belgium, Avenue Circulaire 3, 1180 Brussels, Belgium and KU Leuven, Institute for Theoretical Physics, Celestijnenlaan 200d - box 2415, 3001 Leuven, Belgium
| | - Sophie de Buyl
- Applied Physics Research Group, Physics Department, Vrije Universiteit Brussel, 1050 Brussels, Belgium and Interuniversity Institute of Bioinformatics in Brussels, Vrije Universiteit Brussel-Université libre de Bruxelles, 1050 Brussels, Belgium
| |
Collapse
|
30
|
Liu J, Niu N, Li X, Zhang X, Sood AK. The life cycle of polyploid giant cancer cells and dormancy in cancer: Opportunities for novel therapeutic interventions. Semin Cancer Biol 2021; 81:132-144. [PMID: 34670140 DOI: 10.1016/j.semcancer.2021.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023]
Abstract
Recent data suggest that most genotoxic agents in cancer therapy can lead to shock of genome and increase in cell size, which leads whole genome duplication or multiplication, formation of polyploid giant cancer cells, activation of an early embryonic program, and dedifferentiation of somatic cells. This process is achieved via the giant cell life cycle, a recently proposed mechanism for malignant transformation of somatic cells. Increase in both cell size and ploidy allows cells to completely or partially restructures the genome and develop into a blastocyst-like structure, similar to that observed in blastomere-stage embryogenesis. Although blastocyst-like structures with reprogrammed genome can generate resistant or metastatic daughter cells or benign cells of different lineages, they also acquired ability to undergo embryonic diapause, a reversible state of suspended embryonic development in which cells enter dormancy for survival in response to environmental stress. Therapeutic agents can activate this evolutionarily conserved developmental program, and when cells awaken from embryonic diapause, this leads to recurrence or metastasis. Understanding of the key mechanisms that regulate the different stages of the giant cell life cycle offers new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jinsong Liu
- Departments of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Departments of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Na Niu
- Departments of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaoran Li
- Departments of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xudong Zhang
- Departments of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Anil K Sood
- Departments of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
31
|
Growth Inhibition of Triple-Negative Breast Cancer: The Role of Spatiotemporal Delivery of Neoadjuvant Doxorubicin and Cisplatin. Pharmaceuticals (Basel) 2021; 14:ph14101035. [PMID: 34681259 PMCID: PMC8540483 DOI: 10.3390/ph14101035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022] Open
Abstract
Combinations of platinum-based compounds with doxorubicin in free and/or in liposomal form for improved safety are currently being evaluated in the neoadjuvant setting on patients with advanced triple-negative breast cancer (TNBC). However, TNBC may likely be driven by chemotherapy-resistant cells. Additionally, established TNBC tumors may also exhibit diffusion-limited transport, resulting in heterogeneous intratumoral delivery of the administered therapeutics; this limits therapeutic efficacy in vivo. We studied TNBC cells with variable chemosensitivities, in the absence (on monolayers) and presence (in 3D multicellular spheroids) of transport barriers; we compared the combined killing effect of free doxorubicin and free cisplatin to the killing effect (1) of conventional liposomal forms of the two chemotherapeutics, and (2) of tumor-responsive lipid nanoparticles (NP), specifically engineered to result in more uniform spatiotemporal microdistributions of the agents within solid tumors. This was enabled by the NP properties of interstitial release, cell binding/internalization, and/or adhesion to the tumors’ extracellular matrix. The synergistic cell kill by combinations of the agents (in all forms), compared to the killing effect of each agent alone, was validated on monolayers of cells. Especially for spheroids formed by cells exhibiting resistance to doxorubicin combination treatments with both agents in free and/or in tumor-responsive NP-forms were comparably effective; we not only observed greater inhibition of outgrowth compared to the single agent(s) but also compared to the conventional liposome forms of the combined agents. We correlated this finding to more uniform spatiotemporal microdistributions of agents by the tumor-responsive NP. Our study shows that combinations of NP with properties specifically optimized to improve the spatiotemporal uniformity of the delivery of their corresponding therapeutic cargo can improve treatment efficacy while keeping favorable safety profiles.
Collapse
|
32
|
IL-6 promotes drug resistance through formation of polyploid giant cancer cells and stromal fibroblast reprogramming. Oncogenesis 2021; 10:65. [PMID: 34588424 PMCID: PMC8481288 DOI: 10.1038/s41389-021-00349-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 12/23/2022] Open
Abstract
To understand the role of polyploid giant cancer cells (PGCCs) in drug resistance and disease relapse, we examined the mRNA expression profile of PGCCs following treatment with paclitaxel in ovarian cancer cells. An acute activation of IL-6 dominated senescence-associated secretory phenotype lasted 2–3 weeks and declined during the termination phase of polyploidy. IL-6 activates embryonic stemness during the initiation of PGCCs and can reprogram normal fibroblasts into cancer-associated fibroblasts (CAFs) via increased collagen synthesis, activation of VEGF expression, and enrichment of CAFs and the GPR77 + /CD10 + fibroblast subpopulation. Blocking the IL-6 feedback loop with tocilizumab or apigenin prevented PGCC formation, attenuated embryonic stemness and the CAF phenotype, and inhibited tumor growth in a patient-derived xenograft high-grade serous ovarian carcinoma model. Thus, IL-6 derived by PGCCs is capable of reprogramming both cancer and stromal cells and contributes to the evolution and remodeling of cancer. Targeting IL-6 in PGCCs may represent a novel approach to combating drug resistance.
Collapse
|
33
|
Kostecka LG, Pienta KJ, Amend SR. Lipid droplet evolution gives insight into polyaneuploid cancer cell lipid droplet functions. Med Oncol 2021; 38:133. [PMID: 34581907 PMCID: PMC8478749 DOI: 10.1007/s12032-021-01584-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/12/2021] [Indexed: 12/16/2022]
Abstract
Lipid droplets (LDs) are found throughout all phyla across the tree of life. Originating as pure energy stores in the most basic organisms, LDs have evolved to fill various roles as regulators of lipid metabolism, signaling, and trafficking. LDs have been noted in cancer cells and have shown to increase tumor aggressiveness and chemotherapy resistance. A certain transitory state of cancer cell, the polyaneuploid cancer cell (PACC), appears to have higher LD levels than the cancer cell from which they are derived. PACCs are postulated to be the mediators of metastasis and resistance in many different cancers. Utilizing the evolutionarily conserved roles of LDs to protect from cellular lipotoxicity allows PACCs to survive otherwise lethal stressors. By better understanding how LDs have evolved throughout different phyla we will identify opportunities to target LDs in PACCs to increase therapeutic efficiency in cancer cells.
Collapse
Affiliation(s)
- Laurie G Kostecka
- The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, MD, 21287, USA. .,Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| | - Kenneth J Pienta
- The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, MD, 21287, USA.,Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Sarah R Amend
- The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, MD, 21287, USA.,Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
34
|
Song Y, Zhao Y, Deng Z, Zhao R, Huang Q. Stress-Induced Polyploid Giant Cancer Cells: Unique Way of Formation and Non-Negligible Characteristics. Front Oncol 2021; 11:724781. [PMID: 34527590 PMCID: PMC8435787 DOI: 10.3389/fonc.2021.724781] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Polyploidy is a conserved mechanism in cell development and stress responses. Multiple stresses of treatment, including radiation and chemotherapy drugs, can induce the polyploidization of tumor cells. Through endoreplication or cell fusion, diploid tumor cells convert into giant tumor cells with single large nuclei or multiple small nucleuses. Some of the stress-induced colossal cells, which were previously thought to be senescent and have no ability to proliferate, can escape the fate of death by a special way. They can remain alive at least before producing progeny cells through asymmetric cell division, a depolyploidization way named neosis. Those large and danger cells are recognized as polyploid giant cancer cells (PGCCs). Such cells are under suspicion of being highly related to tumor recurrence and metastasis after treatment and can bring new targets for cancer therapy. However, differences in formation mechanisms between PGCCs and well-accepted polyploid cancer cells are largely unknown. In this review, the methods used in different studies to induce polyploid cells are summarized, and several mechanisms of polyploidization are demonstrated. Besides, we discuss some characteristics related to the poor prognosis caused by PGCCs in order to provide readers with a more comprehensive understanding of these huge cells.
Collapse
Affiliation(s)
- Yanwei Song
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yucui Zhao
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Deng
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruyi Zhao
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Huang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Del Piccolo N, Shirure VS, Bi Y, Goedegebuure SP, Gholami S, Hughes CC, Fields RC, George SC. Tumor-on-chip modeling of organ-specific cancer and metastasis. Adv Drug Deliv Rev 2021; 175:113798. [PMID: 34015419 DOI: 10.1016/j.addr.2021.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023]
Abstract
Every year, cancer claims millions of lives around the globe. Unfortunately, model systems that accurately mimic human oncology - a requirement for the development of more effective therapies for these patients - remain elusive. Tumor development is an organ-specific process that involves modification of existing tissue features, recruitment of other cell types, and eventual metastasis to distant organs. Recently, tissue engineered microfluidic devices have emerged as a powerful in vitro tool to model human physiology and pathology with organ-specificity. These organ-on-chip platforms consist of cells cultured in 3D hydrogels and offer precise control over geometry, biological components, and physiochemical properties. Here, we review progress towards organ-specific microfluidic models of the primary and metastatic tumor microenvironments. Despite the field's infancy, these tumor-on-chip models have enabled discoveries about cancer immunobiology and response to therapy. Future work should focus on the development of autologous or multi-organ systems and inclusion of the immune system.
Collapse
|
36
|
Cancer recurrence and lethality are enabled by enhanced survival and reversible cell cycle arrest of polyaneuploid cells. Proc Natl Acad Sci U S A 2021; 118:2020838118. [PMID: 33504594 PMCID: PMC7896294 DOI: 10.1073/pnas.2020838118] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We present a unifying theory to explain cancer recurrence, therapeutic resistance, and lethality. The basis of this theory is the formation of simultaneously polyploid and aneuploid cancer cells, polyaneuploid cancer cells (PACCs), that avoid the toxic effects of systemic therapy by entering a state of cell cycle arrest. The theory is independent of which of the classically associated oncogenic mutations have already occurred. PACCs have been generally disregarded as senescent or dying cells. Our theory states that therapeutic resistance is driven by PACC formation that is enabled by accessing a polyploid program that allows an aneuploid cancer cell to double its genomic content, followed by entry into a nondividing cell state to protect DNA integrity and ensure cell survival. Upon removal of stress, e.g., chemotherapy, PACCs undergo depolyploidization and generate resistant progeny that make up the bulk of cancer cells within a tumor.
Collapse
|
37
|
Kostecka LG, Pienta KJ, Amend SR. Polyaneuploid Cancer Cell Dormancy: Lessons From Evolutionary Phyla. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.660755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dormancy is a key survival strategy in many organisms across the tree of life. Organisms that utilize some type of dormancy (hibernation, aestivation, brumation, diapause, and quiescence) are able to survive in habitats that would otherwise be uninhabitable. Induction into dormant states is typically caused by environmental stress. While organisms are dormant, their physical activity is minimal, and their metabolic rates are severely depressed (hypometabolism). These metabolic reductions allow for the conservation and distribution of energy while conditions in the environment are poor. When conditions are more favorable, the organisms are then able to come out of dormancy and reengage in their environment. Polyaneuploid cancer cells (PACCs), proposed mediators of cancer metastasis and resistance, access evolutionary programs and employ dormancy as a survival mechanism in response to stress. Quiescence, the type of dormancy observed in PACCs, allows these cells the ability to survive stressful conditions (e.g., hypoxia in the microenvironment, transiting the bloodstream during metastasis, and exposure to chemotherapy) by downregulating and altering metabolic function, but then increasing metabolic activities again once stress has passed. We can gain insights regarding the mechanisms underlying PACC dormancy by looking to the evolution of dormancy in different organisms.
Collapse
|
38
|
Ashrafizadeh M, Mirzaei S, Hashemi F, Zarrabi A, Zabolian A, Saleki H, Sharifzadeh SO, Soleymani L, Daneshi S, Hushmandi K, Khan H, Kumar AP, Aref AR, Samarghandian S. New insight towards development of paclitaxel and docetaxel resistance in cancer cells: EMT as a novel molecular mechanism and therapeutic possibilities. Biomed Pharmacother 2021; 141:111824. [PMID: 34175815 DOI: 10.1016/j.biopha.2021.111824] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) mechanism is responsible for metastasis and migration of cancer cells to neighboring cells and tissues. Morphologically, epithelial cells are transformed to mesenchymal cells, and at molecular level, E-cadherin undergoes down-regulation, while an increase occurs in N-cadherin and vimentin levels. Increasing evidence demonstrates role of EMT in mediating drug resistance of cancer cells. On the other hand, paclitaxel (PTX) and docetaxel (DTX) are two chemotherapeutic agents belonging to taxene family, capable of inducing cell cycle arrest in cancer cells via preventing microtubule depolymerization. Aggressive behavior of cancer cells resulted from EMT-mediated metastasis can lead to PTX and DTX resistance. Upstream mediators of EMT such as ZEB1/2, TGF-β, microRNAs, and so on are involved in regulating response of cancer cells to PTX and DTX. Tumor-suppressing factors inhibit EMT to promote PTX and DTX sensitivity of cancer cells. Furthermore, three different strategies including using anti-tumor compounds, gene therapy and delivery systems have been developed for suppressing EMT, and enhancing cytotoxicity of PTX and DTX against cancer cells that are mechanistically discussed in the current review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Leyla Soleymani
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc. 6 Tide Street, Boston, MA 02210, USA
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
39
|
Ye JC, Horne S, Zhang JZ, Jackson L, Heng HH. Therapy Induced Genome Chaos: A Novel Mechanism of Rapid Cancer Drug Resistance. Front Cell Dev Biol 2021; 9:676344. [PMID: 34195196 PMCID: PMC8237085 DOI: 10.3389/fcell.2021.676344] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jing Christine Ye
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Steve Horne
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jack Z. Zhang
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Lauren Jackson
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Henry H. Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
40
|
Was H, Borkowska A, Olszewska A, Klemba A, Marciniak M, Synowiec A, Kieda C. Polyploidy formation in cancer cells: How a Trojan horse is born. Semin Cancer Biol 2021; 81:24-36. [PMID: 33727077 DOI: 10.1016/j.semcancer.2021.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/29/2021] [Accepted: 03/03/2021] [Indexed: 01/04/2023]
Abstract
Ploidy increase has been shown to occur in different type of tumors and participate in tumor initiation and resistance to the treatment. Polyploid giant cancer cells (PGCCs) are cells with multiple nuclei or a single giant nucleus containing multiple complete sets of chromosomes. The mechanism leading to formation of PGCCs may depend on: endoreplication, mitotic slippage, cytokinesis failure, cell fusion or cell cannibalism. Polyploidy formation might be triggered in response to various genotoxic stresses including: chemotherapeutics, radiation, hypoxia, oxidative stress or environmental factors like: air pollution, UV light or hyperthermia. A fundamental feature of polyploid cancer cells is the generation of progeny during the reversal of the polyploid state (depolyploidization) that may show high aggressiveness resulting in the formation of resistant disease and tumor recurrence. Therefore, we propose that modern anti-cancer therapies should be designed taking under consideration polyploidization/ depolyploidization processes, which confer the polyploidization a hidden potential similar to a Trojan horse delayed aggressiveness. Various mechanisms and stress factors leading to polyploidy formation in cancer cells are discussed in this review.
Collapse
Affiliation(s)
- Halina Was
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland.
| | - Agata Borkowska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland; Postgraduate School of Molecular Medicine, Zwirki i Wigury 61 Street, Warsaw, Poland
| | - Aleksandra Olszewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland; Postgraduate School of Molecular Medicine, Zwirki i Wigury 61 Street, Warsaw, Poland
| | - Aleksandra Klemba
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland; College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c Street, Warsaw, Poland
| | - Marta Marciniak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland
| | - Agnieszka Synowiec
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland
| |
Collapse
|
41
|
Zhang Z, Feng X, Deng Z, Cheng J, Wang Y, Zhao M, Zhao Y, He S, Huang Q. Irradiation-induced polyploid giant cancer cells are involved in tumor cell repopulation via neosis. Mol Oncol 2021; 15:2219-2234. [PMID: 33523579 PMCID: PMC8334289 DOI: 10.1002/1878-0261.12913] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/07/2020] [Accepted: 01/27/2021] [Indexed: 12/25/2022] Open
Abstract
Tumor repopulation occurs when residual tumor cells surviving therapies tenaciously proliferate and re‐establish the tumor. The cellular and molecular mechanisms underlying this process remain poorly understood. In this study, we propose that polyploid giant cancer cells (PGCCs) are involved in tumor repopulation via neosis following radiotherapy. We found that although the majority of PGCCs induced by irradiation underwent cell death, some PGCCs exhibited proliferative capacity. Utilizing time‐lapse microscopy and single‐cell cloning assays, we observed that proliferating PGCCs underwent neosis, thereby contributing to tumor cell repopulation after irradiation. Notably, HMGB1 released from dying tumor cells rather than intracellular HMGB1 could promote neosis‐based tumor repopulation, and the latter could be suppressed by the use of HMGB1 inhibitors. Taken together, our results indicate that PGCC can initiate tumor repopulation via neosis following radiation therapy.
Collapse
Affiliation(s)
- Zhengxiang Zhang
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Feng
- Department of Oncology, Henan Province People's Hospital, Henan University, Zhengzhou, China
| | - Zheng Deng
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Cheng
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwei Wang
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minghui Zhao
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yucui Zhao
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sijia He
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Huang
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Cancer cells employ an evolutionarily conserved polyploidization program to resist therapy. Semin Cancer Biol 2020; 81:145-159. [PMID: 33276091 DOI: 10.1016/j.semcancer.2020.11.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Unusually large cancer cells with abnormal nuclei have been documented in the cancer literature since 1858. For more than 100 years, they have been generally disregarded as irreversibly senescent or dying cells, too morphologically misshapen and chromatin too disorganized to be functional. Cell enlargement, accompanied by whole genome doubling or more, is observed across organisms, often associated with mitigation strategies against environmental change, severe stress, or the lack of nutrients. Our comparison of the mechanisms for polyploidization in other organisms and non-transformed tissues suggest that cancer cells draw from a conserved program for their survival, utilizing whole genome doubling and pausing proliferation to survive stress. These polyaneuploid cancer cells (PACCs) are the source of therapeutic resistance, responsible for cancer recurrence and, ultimately, cancer lethality.
Collapse
|
43
|
Abstract
Despite the continuous deployment of new treatment strategies and agents over many decades, most disseminated cancers remain fatal. Cancer cells, through their access to the vast information of the human genome, have a remarkable capacity to deploy adaptive strategies for even the most effective treatments. We note there are two critical steps in the clinical manifestation of treatment resistance. The first, which is widely investigated, requires molecular machinery necessary to eliminate the cytotoxic effect of the treatment. However, the emergence of a resistant phenotype is not in itself clinically significant. That is, resistant cells affect patient outcomes only when they succeed in the second step of resistance by proliferating into a sufficiently large population to allow tumor progression and treatment failure. Importantly, proliferation of the resistant phenotype is by no means certain and, in fact, depends on complex Darwinian dynamics governed by the costs and benefits of the resistance mechanisms in the context of the local environment and competing populations. Attempts to target the molecular machinery of resistance have had little clinical success largely because of the diversity within the human genome-therapeutic interruption of one mechanism simply results in its replacement by an alternative. Here we explore evolutionarily informed strategies (adaptive, double-bind, and extinction therapies) for overcoming treatment resistance that seek to understand and exploit the critical evolutionary dynamics that govern proliferation of the resistant phenotypes. In general, this approach has demonstrated that, while emergence of resistance mechanisms in cancer cells to every current therapy is inevitable, proliferation of the resistant phenotypes is not and can be delayed and even prevented with sufficient understanding of the underlying eco-evolutionary dynamics.
Collapse
Affiliation(s)
- Robert A Gatenby
- Cancer Biology and Evolution Program
- Department of Radiology, Moffitt Cancer Center, Tampa, Florida 33612 USA
| | | |
Collapse
|
44
|
Pienta KJ, Hammarlund EU, Axelrod R, Brown JS, Amend SR. Poly-aneuploid cancer cells promote evolvability, generating lethal cancer. Evol Appl 2020; 13:1626-1634. [PMID: 32952609 PMCID: PMC7484876 DOI: 10.1111/eva.12929] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/25/2022] Open
Abstract
Cancer cells utilize the forces of natural selection to evolve evolvability allowing a constant supply of heritable variation that permits a cancer species to evolutionary track changing hazards and opportunities. Over time, the dynamic tumor ecosystem is exposed to extreme, catastrophic changes in the conditions of the tumor-natural (e.g., loss of blood supply) or imposed (therapeutic). While the nature of these catastrophes may be varied or unique, their common property may be to doom the current cancer phenotype unless it evolves rapidly. Poly-aneuploid cancer cells (PACCs) may serve as efficient sources of heritable variation that allows cancer cells to evolve rapidly, speciate, evolutionarily track their environment, and most critically for patient outcome and survival, permit evolutionary rescue, therapy resistance, and metastasis. As a conditional evolutionary strategy, they permit the cancer cells to accelerate evolution under stress and slow down the generation of heritable variation when conditions are more favorable or when the cancer cells are closer to an evolutionary optimum. We hypothesize that they play a critical and outsized role in lethality by their increased capacity for invasion and motility, for enduring novel and stressful environments, and for generating heritable variation that can be dispensed to their 2N+ aneuploid progeny that make up the bulk of cancer cells within a tumor, providing population rescue in response to therapeutic stress. Targeting PACCs is essential to cancer therapy and patient cure-without the eradication of the resilient PACCs, cancer will recur in treated patients.
Collapse
Affiliation(s)
- Kenneth J. Pienta
- The Brady Urological InstituteJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Emma U. Hammarlund
- Nordic Center for Earth EvolutionUniversity of Southern DenmarkOdenseDenmark
- Translational Cancer ResearchDepartment of Laboratory MedicineLund UniversityLundSweden
| | - Robert Axelrod
- Gerald R. Ford School of Public PolicyUniversity of MichiganAnn ArborMIUSA
| | - Joel S. Brown
- Cancer Biology and Evolution Program and Department of Integrated Mathematical OncologyMoffitt Cancer CenterTampaFLUSA
| | - Sarah R. Amend
- The Brady Urological InstituteJohns Hopkins School of MedicineBaltimoreMDUSA
| |
Collapse
|
45
|
Lin KC, Sun Y, Torga G, Sherpa P, Zhao Y, Qu J, Amend SR, Pienta KJ, Sturm JC, Austin RH. An in vitro tumor swamp model of heterogeneous cellular and chemotherapeutic landscapes. LAB ON A CHIP 2020; 20:2453-2464. [PMID: 32555901 DOI: 10.1039/d0lc00131g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The heterogenous, highly metabolic stressed, poorly irrigated, solid tumor microenvironment - the tumor swamp - is widely recognized to play an important role in cancer progression as well as the development of therapeutic resistance. It is thus important to create realistic in vitro models within the therapeutic pipeline that can recapitulate the fundamental stress features of the tumor swamp. Here we describe a microfluidic system which generates a chemical gradient within connected microenvironments achieved through a static diffusion mechanism rather than active pumping. We show that the gradient can be stably maintained for over a week. Due to the accessibility and simplicity of the experimental platform, the system allows for not only well-controlled continuous studies of the interactions among various cell types at single-cell resolution, but also parallel experimentation for time-resolved downstream cellular assays on the time scale of weeks. This approach enables simple, compact implementation and is compatible with existing 6-well imaging technology for simultaneous experiments. As a proof-of-concept, we report the co-culture of a human bone marrow stromal cell line and a bone-metastatic prostate cancer cell line using the presented device, revealing on the same chip a transition in cancer cell survival as a function of drug concentration on the population level while exhibiting an enrichment of poly-aneuploid cancer cells (PACCs) as an evolutionary consequence of high stress. The device allows for the quantitative study of cancer cell dynamics on a stress landscape by real-time monitoring of various cell types with considerable experimental throughput.
Collapse
Affiliation(s)
- Ke-Chih Lin
- Department of Physics, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
White-Gilbertson S, Voelkel-Johnson C. Giants and monsters: Unexpected characters in the story of cancer recurrence. Adv Cancer Res 2020; 148:201-232. [PMID: 32723564 DOI: 10.1016/bs.acr.2020.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polyploid giant cancer cells (PGCC) constitute a dangerous subpopulation of cancer cells and are a driving force in cancer recurrence. These unique cells arise from diploid tumor cells in response to stress encountered in the tumor microenvironment or during cancer therapy. PGCC are greatly dedifferentiated, acquire pluripotency, and are able to replicate through a form of asymmetric division called neosis, which results in new populations that are themselves able to differentiate into new cell types or to re-establish tumors. Progeny tend to be more genetically unstable than the founding population due to the dysregulation required to transition through a PGCC state. Therefore, cancers that escape stressors through this mechanism tend to re-emerge with a more aggressive phenotype that is therapy resistant. This review focuses on the clinical significance of PGCC, the need for standardized nomenclature and molecular markers, as well as possible avenues to develop therapies aimed at PGCC and the process of neosis. The biology underlying the development of PGCC including cell cycle checkpoint dysregulation, stress responses, dedifferentiation, stemness and epithelial-mesenchymal transition is discussed.
Collapse
Affiliation(s)
- Shai White-Gilbertson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
47
|
Senescence in polyploid giant cancer cells: A road that leads to chemoresistance. Cytokine Growth Factor Rev 2020; 52:68-75. [DOI: 10.1016/j.cytogfr.2019.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 01/07/2023]
|
48
|
Contreras HR, López-Moncada F, Castellón EA. Cancer stem cell and mesenchymal cell cooperative actions in metastasis progression and hormone resistance in prostate cancer: Potential role of androgen and gonadotropin‑releasing hormone receptors (Review). Int J Oncol 2020; 56:1075-1082. [PMID: 32319606 DOI: 10.3892/ijo.2020.5008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the leading cause of male cancer‑associated mortality worldwide. Mortality is associated with metastasis and hormone resistance. Cellular, genetic and molecular mechanisms underlying metastatic progression and hormone resistance are poorly understood. Studies have investigated the local effects of gonadotropin‑releasing hormone (GnRH) analogs (used for androgen deprivation treatments) and the presence of the GnRH receptor (GnRH‑R) on PCa cells. Furthermore, cell subpopulations with stem‑like properties, or cancer stem cells, have been isolated and characterized using a cell culture system derived from explants of human prostate tumors. In addition, the development of preclinical orthotopic models of human PCa in a nonobese diabetic/severe combined immunodeficiency mouse model of compromised immunity has enabled the establishment of a reproducible system of metastatic progression in vivo. There is increasing evidence that metastasis is a complex process involving the cooperative actions of different cancer cell subpopulations, in which cancer stem‑like cells would be responsible for the final step of colonizing premetastatic niches. It has been hypothesized that PCa cells with stemness and mesenchymal signatures act cooperatively in metastatic progression and the inhibition of stemness genes, and that overexpression of androgen receptor (AR) and GnRH‑R decreases the rate the metastasis and sensitizes tumors to hormone therapy. The aim of the present review is to analyze the evidence regarding this cooperative process and the possible influence of stem‑like cell phenotypes, AR and GnRH‑R in metastatic progression and hormone resistance. These aspects may represent an important contribution in the understanding of the mechanisms underlying metastasis and hormone resistance in PCa, and potential routes to blocking these processes, enabling the development of novel therapies that would be particularly relevant for patients with metastatic and castration‑resistant PCa.
Collapse
Affiliation(s)
- Héctor R Contreras
- Laboratory of Cellular and Molecular Oncology, Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Fernanda López-Moncada
- Laboratory of Cellular and Molecular Oncology, Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Enrique A Castellón
- Laboratory of Cellular and Molecular Oncology, Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| |
Collapse
|
49
|
Mirzayans R, Murray D. Intratumor Heterogeneity and Therapy Resistance: Contributions of Dormancy, Apoptosis Reversal (Anastasis) and Cell Fusion to Disease Recurrence. Int J Mol Sci 2020; 21:ijms21041308. [PMID: 32075223 PMCID: PMC7073004 DOI: 10.3390/ijms21041308] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/27/2022] Open
Abstract
A major challenge in treating cancer is posed by intratumor heterogeneity, with different sub-populations of cancer cells within the same tumor exhibiting therapy resistance through different biological processes. These include therapy-induced dormancy (durable proliferation arrest through, e.g., polyploidy, multinucleation, or senescence), apoptosis reversal (anastasis), and cell fusion. Unfortunately, such responses are often overlooked or misinterpreted as “death” in commonly used preclinical assays, including the in vitro colony-forming assay and multiwell plate “viability” or “cytotoxicity” assays. Although these assays predominantly determine the ability of a test agent to convert dangerous (proliferating) cancer cells to potentially even more dangerous (dormant) cancer cells, the results are often assumed to reflect loss of cancer cell viability (death). In this article we briefly discuss the dark sides of dormancy, apoptosis, and cell fusion in cancer therapy, and underscore the danger of relying on short-term preclinical assays that generate population-based data averaged over a large number of cells. Unveiling the molecular events that underlie intratumor heterogeneity together with more appropriate experimental design and data interpretation will hopefully lead to clinically relevant strategies for treating recurrent/metastatic disease, which remains a major global health issue despite extensive research over the past half century.
Collapse
|
50
|
Mannan R, Wang X, Bawa PS, Spratt DE, Wilson A, Jentzen J, Chinnaiyan AM, Reichert ZR, Mehra R. Polypoidal giant cancer cells in metastatic castration-resistant prostate cancer: observations from the Michigan Legacy Tissue Program. Med Oncol 2020; 37:16. [PMID: 32030484 PMCID: PMC8208238 DOI: 10.1007/s12032-020-1341-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/27/2020] [Indexed: 11/26/2022]
Abstract
Despite early diagnosis and established protocols, a subset of prostate cancer patients will eventually be categorized as castration-resistant prostate cancer. Recently, it has been reported that these multi-modal therapy cases may harbor a special subset of cancer cells termed as polypoidal giant cancer cells (PGCC). These cells are phenotypically described either as possessing highly irregular polylobated nuclei or multiple pleomorphic nuclei. To identify and characterize the distribution of these cells, we created a cohort of 5 randomly selected cases of multi-modal therapy failure prostate cancer (16 selected non-osseous and osseous tumor sites) enrolled in Michigan Legacy Tissue Program. In all cases, specific "regions of interest" or "hot spots" within tumor areas showing an increased proportion of these multi-nucleated/polylobated cells under light microscopy were labeled as PGCC-rich area. On microscopic evaluation, overall mean count of PGCC was 42.4 ± 3.91 with case 2 in the study cohort with the highest number of average PGCC count of 17 ± 4.04. Site wise analysis showed retroperitoneal lymph node as the tissue with highest number of average PGCC number/site (5.0 ± 0.32). On correlating the average number of PGCC recorded with the time elapsed from last dose of chemotherapy administered to autopsy, the spearman correlation value (R) was 0.67, but the result was not statistically significant (p = 0.22). A systematic assessment of PGCC in a large stratified cohort of prostate cancer patients integrated with various histopathological and clinical parameters along with discovery of specific biomarkers for PGCC are the future studies suggested.
Collapse
Affiliation(s)
- Rahul Mannan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, Ann Arbor, MI, USA
| | - Xiaoming Wang
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, Ann Arbor, MI, USA
| | - Pushpinder S Bawa
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, Ann Arbor, MI, USA
| | - Daniel E Spratt
- Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI, USA
- Department of Radiation Oncology, Michigan Medicine, Ann Arbor, MI, USA
| | - Allecia Wilson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jeffrey Jentzen
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, Ann Arbor, MI, USA
- Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, Ann Arbor, MI, USA
| | - Zachery R Reichert
- Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI, USA
- Division of Hematology/Oncology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Michigan Center for Translational Pathology, Ann Arbor, MI, USA.
- Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI, USA.
| |
Collapse
|